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Blade tip timing is a technique for the measurement of vibrations in rotating bladed assemblies. Although the fundamentals of
the technique are simple, the analysis of data obtained in the presence of simultaneously occurring synchronous resonances is
problematic. A class of autoregressive-based methods for the analysis of blade tip timing data from assemblies undergoing two
simultaneous resonances has been developed. It includes approaches that assume both sinusoidal and general blade tip responses.
The methods can handle both synchronous and asynchronous resonances. An exhaustive evaluation of the approaches was per-
formed on simulated data in order to determine their accuracy and sensitivity. One of the techniques was found to perform best on
asynchronous resonances and one on synchronous resonances. Both methods yielded very accurate vibration frequency estimates
under all conditions of interest.
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1. INTRODUCTION

Blade tip timing (BTT) is a vibration measurement tech-
nology that can be used to identify vibration problems in
bladed assemblies through measurement of the passing times
of blade tips under stationary points. The aim of research-
ing and developing BTT vibration measurement systems is
to provide technically feasible cost-effective means to iden-
tify causes of potential blade failures. Blade tip timing has
the potential to overcome many of the limitations of cur-
rently well-established systems, providing more information
at a fraction of the cost.

However, the recovery of the vibration information is
complex because the analysis techniques differ depending on
the type of blade response being sampled. The main recent
focus of BTT data analysis research has been the determina-
tion of frequencies when the vibration of the blades is syn-
chronous. Synchronous vibration, also known as integral-
ordered or engine-ordered (EO) resonance, occurs when the
response frequency of the blades is an integer multiple of the
rotational speed of the assembly. During synchronous reso-

nance, the probes always detect the blade at the same phase
of the vibration cycle, thus limiting the amount of data that
is available for the estimation of the response frequency and
amplitude.

A number of methods have been proposed for the analy-
sis of BTT data from assemblies undergoing synchronous vi-
brations, such as the single parameter technique developed
by Zablotskiy and Korostelev [1], the two-parameter plot
method (Heath et al. [2]), the technique by Zielinski and
Ziller [3], and various autoregressive methods (Dimitriadis
et al. [4], Carrington et al. [5], the authors [6], Gallego-
Garrido and Dimitriadis [7]).

The problem of synchronous resonance is further com-
plicated when two or more modes of vibration resonate si-
multaneously. This is not an uncommon event and has been
repeatedly reported in the literature regarding aeroengine vi-
bration problems since the early investigations of Armstrong
and Stevenson [8]. Autoregressive-based methods and the
two-parameter plot method have been shown to fail when
two simultaneous synchronous resonances from simulated
BTT data are analysed (the authors [6]).
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Example of BTT sampling on 2 and 16 response
(9 probes used, 0.25% DC offset)
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Figure 1: Relationship of sampling points to data points.

Virtually no detailed information on the recovery of mul-
tiple frequencies from BTT data exists in the public domain.
A few techniques were developed at Rolls-Royce PLC over
the last 30 years but never published externally. Robinson
[9, 10] reported the existence at Pratt and Whitney of tech-
niques for decoupling two simultaneously occurring syn-
chronous modes. In literature, reporting the current capa-
bilities of BTT systems used by partners in the High Cy-
cle Fatigue programme and the Propulsion Instrumentation
Working Group, the issue of simultaneous multimode capa-
bility is often referred to (Jones [11], Hayes et al. [12]). How-
ever, there is no clear statement that this capability is fully im-
plemented and has been used successfully. In a white paper,
Jones [11] described that the expected capabilities of a 4th
generation NSMS1 system (Gen IV) would include an offline
simultaneous mode capability. Hayes et al. [12] reported that
the current capabilities of the 4th generation system include
the ability to recover up to 5 simultaneous modes in offline
analysis depending on the number of probes used; however,
no description of the methodology is given.

This paper presents a new class of methods for the anal-
ysis of BTT data from assemblies undergoing two simulta-
neous resonances. The techniques are based on an autore-
gressive framework. The methods are demonstrated and val-
idated on simulated data.

2. BASIC METHODOLOGY (MAR)

The autoregressive (AR) model can be applied to a set of sam-
pled output data in order to identify a given output-only dy-
namic system. The multiple-frequency autoregressive (MAR)

1 Noncontacting stress measurement system (NSMS) is the United States
Air Force term for BTT.

BTT method is based on the linear-prediction autoregres-
sive equation for a multi-degree-of-freedom system with J
modes

yi = a0 −
2J∑

m=1

amy(i−m), (1)

where yi are the observations made, am are the autoregres-
sive coefficients, and a0 is the constant offset. The notation
y(i−m) denotes observations recorded earlier than yi by m
time steps, that is, mΔt, where Δt is the time step. Equa-
tion (1) is only valid in the case where Δt is a constant.
Since the measurements y are obtained by means of BTT
probes, the constant time step requirement can be translated
to a constant spacing of the probes around the circumfer-
ence of the bladed assembly, provided the rotational speed
of the assembly is approximately constant or varying very
slowly.

Equation (1) can be put in matrix form for N observa-
tions of y, thus giving

⎡
⎢⎢⎢⎢⎣

y2J+1

y2J+2
...
yN

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−y2J −y2J−1 · · · −y1 1
−y2J+1 −y2J · · · −y2 1

...
...

. . .
...

...
−yN−1 −yN−2 · · · −yN−2J 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2
...
a2J

a0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

or in short notation

y = Ha. (3)

The autoregressive model of (1) is fully defined when the am
coefficients are evaluated by solving (3). There are 2J + 1 un-
knowns requiring at least 2J + 1 equations. In terms of BTT
probes, this means that a minimum of Nmin probes is re-
quired, where Nmin is given by

Nmin = 4J + 1. (4)

For example, if two frequencies are to be extracted from the
data, the minimum number of observations, that is, probes,
will be 9 and (2) is written as

⎡
⎢⎢⎢⎢⎢⎣

y5

y6

y7

y8

y9

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

−y4 −y3 −y2 −y1 1
−y5 −y4 −y3 −y2 1
−y6 −y5 −y4 −y3 1
−y7 −y6 −y5 −y4 1
−y8 −y7 −y6 −y5 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a0

⎤
⎥⎥⎥⎥⎥⎦
. (5)

The data points in (5) are plotted graphically in Figure 1, as
they would be measured by a BTT system. The figure shows
a continuous signal made up of two sine waves with different
frequencies, amplitudes, and phases, sampled by nine BTT
probes. The constant term a0 corresponds to a constant blade
offset which occurs due to aerodynamic loading and other
factors. Estimating or removing the blade offset prior to the
analysis of the data will translate into a reduction to the num-
ber of required probes.
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The system of (5) can be solved directly or in a least
squares sense in the case where there are more than the min-
imum number of probes or where data from more than one
revolution is used. Using the notation in (3)

a = (HTH
)−1

HTy. (6)

2.1. Frequency estimation by Prony’s method

The frequency estimates from the MAR formulation for BTT
data analysis are obtained by means of Prony’s method. The
method assumes that a sample of data can be represented as a
sum of damped exponentials. The method has been adapted
to suit the BTT problem by assuming that the exponentials
are undamped when the blade is undergoing forced reso-
nance, so that the real parts of the exponential solution can
be discarded.

It can be shown that the elements a1, a2, a3, . . . , a2J in the
solution vector of coefficients a are the coefficients of the
characteristic equation that defines the decay response mo-
tion of a J-degree of freedom dynamic system (Marple [13])

μ2J + a1μ
2J−1 + a2μ

2J−2 + · · · + a2J = 0. (7)

The solution for the roots is

μj = e−σ jωjΔt+iωdjΔt = eλjΔt, (8)

where μj is the jth solution of the characteristic equation,
λj is the jth eigenvalue of the vibrating system, ωj is the
jth frequency of vibration, ζj is the jth damping ratio, and

ωdj = ωj

√
1− σ2

j is the jth damped frequency of vibra-
tion. The characteristic equation has 2J solutions, leading to
J complex conjugate pairs λ1, λ∗1 , λ2, λ∗2 , λ3, λ∗3 , . . . , λJ , λ∗J for
the system eigenvalues.

In the presence of high levels of noise, the term (HTH) in
(6) can become badly conditioned, thus causing inaccuracies
in the estimation of the am coefficients, which in turn will
affect the estimation of μj from (7). In that case, it can hap-
pen that the resulting eigenvalues λj are not complex conju-
gate pairs. Hence only the recovered eigenvalues that come
in complex conjugate pairs are accepted during the BTT data
analysis procedure. Eigenvalues which do not conform to this
condition are discarded. Another approach to determining
the quality of the estimates exists, by which the eigenvalues
are plotted on the complex plane. The acceptable estimates
will lie outside the unit circle, while the estimates produced
by noise will lie inside the unit circle (Marple [13]).

For the application of the technique to BTT data, it was
decided to assume that the response on the resonance is si-
nusoidal with constant amplitude. Therefore, it can be sim-
plified by setting σ j = 0 and ωdj = ωj so that

λj = iωj . (9)

This simplifies the solution of (8) to

λj =
ln
(
μj
)

Δt
(10)

since the real part has been eliminated from the complex
eigenvalues. The jth frequency of vibration is obtained as

ωj =
∣∣λj

∣∣. (11)

2.2. Frequency estimation by exact solution

Another way in which the frequency estimates can be im-
proved is by reducing the order of the system in (5). An
exact solution can be derived for the special case of sinu-
soidal motion with two harmonic components. Consider the
displacement of the blade tip as the linear superposition of
two undamped sinusoids without any offsets:

yi = A1 · sin
(
ω1ti + φ1

)
+ A2 · sin

(
ω2ti + φ2

)
, (12)

where yi is the measured displacement, ti is the time at which
the displacement was calculated, ω1, ω2 are the frequencies of
vibration of the first and second modes, respectively, A1, A2

are the amplitudes and φ1, φ2 are the phases of vibration.
According to this formulation, the (i − m) term in the

expansion of the linear prediction shown in (1) would be

yi−m = A1 sin
(
ω1
(
ti −mΔt

)
+ φ1

)

+ A2 sin
(
ω2
(
ti −mΔt

)
+ φ2

)
.

(13)

Substitution of the terms in (13) into (1) yields an expres-
sion from which the sine and cosine terms can be isolated if
a homogenous solution is assumed:

A1 · sin
(
ω1t + φ1

)×(1 + a1 cos
(
ω1Δt

)
+ a2 cos

(
ω12Δt

)

+ a3 cos
(
ω13Δt

)
+a4 cos

(
ω14Δt

))=0,

A1 · cos
(
ω1t
)×(a1 sin

(
ω1Δt

)
+ a2 sin

(
ω12Δt

)

+ a3 sin
(
ω13Δt

)
+a4 sin

(
ω14Δt

))=0,

A2 · sin
(
ω2t + φ2

)×(1 + a1 cos
(
ω2Δt

)
+ a2 cos

(
ω22Δt

)

+ a3 cos
(
ω23Δt

)
+a4 cos

(
ω24Δt

))=0,

A2 · cos
(
ω2t + φ1

)×(a1 sin
(
ω2Δt

)
+ a2 sin

(
ω22Δt

)

+ a3 sin
(
ω23Δt

)
+a4 sin

(
ω24Δt

))=0.
(14)

The system of equations in (14) can be solved to find expres-
sions for the autoregressive coefficients a1, a2, a3, a4:

a1 = −2
(

cos
(
ω1Δt

)
+ cos

(
ω2Δt

))
,

a2 = 2
(
1 + 2 cos

(
ω1Δt

)
cos
(
ω2Δt

))
,

a3 = −2
(

cos
(
ω1Δt

)
+ cos

(
ω2Δt

))
,

a4 = 1.

(15)

It is evident that a3 = a1 and a4 is known. The result is logi-
cal; since there are two unknown frequencies, there will only
be two solutions to the system of equations.

Therefore it is only necessary to determine the values
of the a1 and a2 autoregressive coefficients from the least
squares computation. It is also possible to simplify the lin-
ear prediction expansion in (1) as

yi + yi−4 = −a1
(
yi−1 + yi−3

)− a2yi−2 + a0. (16)
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The system of equations for the exact solution model be-
comes

⎡
⎢⎣
y5 + y1

y6 + y2

y7 + y31

⎤
⎥⎦ =

⎡
⎢⎣
−(y4 + y2

) −y3 1
−(y5 + y3

) −y4 1
−(y6 + y4

) −y5 1

⎤
⎥⎦

⎡
⎢⎣
a1

a2

a0

⎤
⎥⎦ . (17)

Notice that the reduction in the order of the system of equa-
tions means that less data points are needed with respect to
the linear prediction model used for Prony’s method. For this
exact solution, the minimum number of data points required
is:

Nmin = 4J − 1 (18)

corresponding to a reduction of two data points, that is,
probes, with respect to the Prony method. In addition, if the
blade offsets are known or removed, (18) is reduced to

[
y5 + y1

y6 + y2

]
=
[
−(y4 + y2

) −y3

−(y5 + y3
) −y4

][
a1

a2

]
(19)

signifying that only 6 probes are required.
Once a1 and a2 have been determined, the frequencies of

vibration, ω1 and ω2, can be recovered in one of two ways.

(a) Determining the values of a1, a2, from (17), deducing
a3 and a4 from (15), and then using Prony’s method,
(10), and (11).

(b) Determining the values of a1, a2, from (17), and then
directly substituting them into (15) to obtain

ω1 = arctan

⎛
⎜⎜⎝

1
4

√
4− a2

1 − a1

√
a2

1 + 8 + 4a2 − 2a2

a1 +
√
a2

1 + 8 + 4a2

⎞
⎟⎟⎠

1
Δt

,

ω2 = arctan

⎛
⎜⎜⎝

1
4

√
4− a2

1 − a1

√
a2

1 + 8 + 4a2 − 2a2

a1 −
√
a2

1 + 8 + 4a2

⎞
⎟⎟⎠

1
Δt

.

(20)

It should be stressed that both (10) and (20) contain Δt, the
time step. As with the basic autoregressive method, the time
step must be approximately constant.

3. MULTIPLE REVOLUTION FORMULATION (MGAR)

As described up to now, the MAR method uses data from
a single revolution of the assembly (this will be referred to
as a rev-by-rev approach). Here, the technique will be ex-
tended to use data from multiple revolutions and the result-

ing methodology will be denoted by the initials MGAR. The
MGAR formulation improves the MAR frequency estimates
by creating an over-determined system of equations. The ef-
fect of the over-determination is to reduce the scatter in the
least squares estimates, although bias may still be present.

The MGAR formulation assumes that each blade will vi-
brate at a constant frequency over the range of revolutions
used. For such an assumption to be valid, it is also necessary
to assume continuity in sampling between different blades
and rotations. The number of revolutions to be used depends
on the type of test that is being performed on the assembly. If
the assembly is run at constant speed, then all the data from
all the revolutions can be used in the frequency estimation
procedure. If the assembly is being accelerated or decelerated,
then the number of revolutions to be used depends on the
speed of the manoeuvre and the damping rates of the struc-
ture.

Using the same notation as in (3), the multirevolution
system of equations is written as

⎡
⎢⎢⎣

rev1y
...

revRy

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rev1H
...

revRH

⎤
⎥⎥⎦ a, (21)

where R is the total number of revolutions used, y and H
are the data points vectors and matrices; and a is the vector
of unknown autoregressive coefficients. Any of the following
schemes can be used in the multirev formulation, namely

(i) Prony with no constant offset,
(ii) Prony with constant offset,

(iii) exact solution with no constant offset,
(iv) exact solution with constant offset.

As an example, the global expansion over two revolutions
worth of data for the Prony formulation with offsets when
seeking to recover two simultaneous frequencies is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1y5
1y6
1y7
1y8
1y9
2y5
2y6
2y7
2y8
2y9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1y4 −1y3 −1y2 −1y1 1
−1y5 −1y4 −1y3 −1y2 1
−1y6 −1y5 −1y4 −1y3 1
−1y7 −1y6 −1y5 −1y4 1
−1y8 −1y7 −1y6 −1y5 1
−2y4 −2y3 −2y2 −2y1 1
−2y5 −2y4 −2y3 −2y2 1
−2y6 −2y5 −2y4 −2y3 1
−2y7 −2y6 −2y5 −2y4 1
−2y8 −2y7 −2y6 −2y5 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a0

⎤
⎥⎥⎥⎥⎥⎦

, (22)

where the left superscript denotes the first or second revolu-
tions.

4. MULTIREV AUTOREGRESSIVE WITH
INSTRUMENTAL VARIABLES (MGARIV)

As mentioned in the previous section, the inclusion of addi-
tional data in the least squares curve-fit decreases the scatter
in the results but not necessarily the bias. A simple instru-
mental variables scheme can be used in order to attempt to
decrease the bias.
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In this work, an instrumental variables matrix of delayed
observations is used. If the delayed observations are defined
as

zi = xi+λ for i = 1, 2, 3, . . . ,N , (23)

then zi is the instrumental variable of the measured data xi.
The lag parameter λ represents the delay in the time domain
and can be chosen as

λ = NIV × RIV, (24)

where RIV is the number of revolutions, and NIV is the num-
ber of equations given by

NIV = Nmin − 2J. (25)

Equation (21) is rewritten for the instrumental variables for-
mulation as

⎡
⎢⎢⎣

rev 1y
...

rev R−λy

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rev 1H
...

rev R−λH

⎤
⎥⎥⎦ a (26)

or using the IV subindex to differentiate from previous ex-
pressions, it can be written in matrix notation as

yIV= HIV × a. (27)

The corresponding instrumental variables matrix is con-
structed by grouping the observation matrices but delayed
by λ with respect to those in (24)

Zλ =

⎡
⎢⎢⎣

rev 1+λH
...

rev RH

⎤
⎥⎥⎦ . (28)

Finally, using the usual notation

a = (ZT
λHIV

)−1
ZT
λyIV. (29)

The estimation of the autoregressive coefficients can be made
either by Prony’s method or the exact solution method.

5. MULTIREV AUTOREGRESSIVE MOVING
AVERAGE METHOD (MGARMA)

The autoregressive moving average formulation is also aimed
at increasing the robustness of the methods to noise. The
ARMA approach acknowledges that a white noise compo-
nent is present in the linear prediction model.

The general form of an ARMA for a multi-degree-of-
freedom system with J modes is

2J−1∑

n=0

bnui−n = yi +
2J∑

m=1

amyi−m, (30)

where yi are the output observations, ui is a white noise in-
put, and am and bn are constant coefficients. Equation (30)

can be expanded for N observations to give
⎡
⎢⎢⎢⎢⎣

y2J+1

y2J+2
...
yN

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−y2J −y2J−1 · · · −y1

−y2J+1 −y2J · · · −y2
...

...
. . .

...
−yN−1 −yN−2 · · · −yN−2J

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

u2J+1 u2J · · · u2

u2J+2 u2J+1 · · · u3
...

...
. . .

...
uN uN−1 · · · uN−2J+1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2
...
a2J

bo
b1
...

b2J−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

or

y = Bc. (32)

The white noise observations u1,u2, . . . ,un are random en-
tries with a normal distribution of zero mean and unit vari-
ance. The system of equations can be solved in a least squares
sense to obtain the ARMA coefficients in vector c. However,
it can be seen from (31) that the number of equations needed
in order to solve the equations is

N = (2× 2J) + 2J , (33)

which indicates that the number of probes required to iden-
tify a double resonance would be 12. This is an unrealisti-
cally high number for the application of the method to a BTT
application. Rather than increasing the number of probes, it
was decided to construct the matrix using data from multi-
ple revolutions. Hence the MGARMA is obtained simply by
substituting the system in (31) into (21), that is,

⎡
⎢⎢⎣

rev 1y
...

rev Ry

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rev 1B
...

rev RB

⎤
⎥⎥⎦ c. (34)

Notice that the minimum value that R can take is 2. Accord-
ing to Marple [13], it is enough to consider the a1, a2, . . . , a2J

coefficients for the estimation of the vibration frequencies.
These can be obtained using either the Prony or the exact so-
lution approach.

6. METHOD CLASSIFICATION

Either of the approaches of Sections 2.1 and 2.2 can be used
to extract the frequencies from the autoregressive formula-
tions of Sections 2, 3, 4, and 5. Therefore, two classes of
methods can be created.

(1) Prony-based methods

These are MAR, MGAR, MGARIV, and MGARMA, where
all of the a0, a1, a2, a3, and a4 coefficients are assumed to be
unknown and included in the curve-fit. The frequencies are
then estimated using Prony’s method, (11).
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c41

k41

k4, c4

k34

c34
k3
c3

k23

c23

k2, c2

k12

c12

k1

c1

Figure 2: Assembly with four blades.

(2) Exact methods

These are MARE, MGARE, and MGARIVE, where only a0,
a1, and a2 are assumed to be unknown and included in the
curve-fit. The remaining coefficients are obtained from a3 =
a1 and a4 = −1 (see (15)). There are two variants of these
exact methods.

(a) The frequencies are calculated from (20). These meth-
ods are termed MARES, MGARES, and MGARIVES
where the letter E denotes that the exact solution form
of curve-fit is used and the letter S denotes that the
frequencies are obtained from the purely sinusoidal as-
sumption used to derive (20).

(b) The frequencies are calculated using Prony’s method,
(10) and (11). These methods are terms MAREP,
MGAREP, and MGARIVEP. The letter P denotes that
the frequencies are estimated from Prony’s method.

In total, 10 different techniques are created in this manner.
The remainder of this paper is devoted to the comparison of
the performance of these methods. The aim is to understand
which approach performs best under what conditions and to
eliminate the least promising methods.

7. METHOD EVALUATION USING SIMULATED DATA

In this section the new methods are evaluated using a BTT
data simulator. The simulator is a mathematical model of a
bladed assembly with any number of blades. The blades are
modelled as cantilever beams with two bending modes of vi-
bration; torsion is not considered. The blades are coupled
through coupling springs and dampers, representing cou-
pling due to the disc. The simulator is represented graphi-
cally in Figure 2 for the special case of four blades. Further
details on the mathematics of the simulator are given by the
authors [6].

Several exhaustive tests were performed using BTT data
obtained from the simulator to evaluate the accuracy of the
new methods and their sensitivity to various test parameters.
These parameters were the following.
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Figure 3: Example of BTT measurements with low and high PSR
values.

(a) Type of simultaneous resonances, that is, whether the
resonances are synchronous or asynchronous. Two
cases were considered; one with two simultaneous syn-
chronous resonances and one with one synchronous
and one asynchronous resonance.

(b) Percentage of the waveform sampled (probe spacing
on the resonance): one of the most important consid-
erations in BTT data analysis is the percentage of one
cycle that is measured by the probes. If the percentage
is too small, then significant errors can occur in the es-
timation of the response frequency. If the percentage
is too large, then the response may be undersampled,
again leading to large errors. The probe spacing on the
resonance (PSR) is defined as

PSR = EOγ

2π
, (35)

where EO is the response engine order and γ is the
angular distance in radians between the first and last
probes. Figure 3 shows a single cycle of a 1-EO reso-
nance sampled by 9 BTT probes at low PSR (16.9%)
and at high PSR (80.1%). It is clear that the low PSR
data are not very representative of the sine wave re-
sponse; in fact they could be mistaken to represent a
straight line. On the other hand, the high PSR BTT
data are clearly samples taken from a sine wave.

(c) Noise levels: the nominal amount of noise in BTT data
is around 10% of the root mean square (RMS) value
of the blade tip response. However, higher noise levels
can be encountered.

Two different assemblies were used in the tests, denoted
by Test 1 and Test 2. The first assembly featured two syn-
chronous simultaneous resonances and the second has one
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synchronous resonance and one asynchronous resonance oc-
curring nearly simultaneously. The assembly characteristics
are summarised in Table 1.

The resulting data simulate acceleration manoeuvres
through a range of rotational speeds with constant excita-
tion patterns, that is, engine orders. Notice that from a phys-
ical and mathematical point of view, an engine order of 6.5
is meaningless. However, it is a convenient way to approxi-
mating asynchronous data using the BTT simulator. Accord-
ingly, the engine order estimates produced by the autoregres-
sive methods for the 6.5 case do not represent a real Engine
Order but the ratio of the blade tip response frequency to
the assembly’s rotational speed. The objective of case T2 is
to investigate the performance of the autoregressive methods
when an asynchronous vibration phenomenon such as flut-
ter coincides with an engine-ordered resonance.

The resulting BTT data was analysed as the resonance was
traversed. The simulated assembly was perfectly tuned as all
blades and coupling ratios between the blades were identi-
cal. The parameters that define the blade characteristics were
kept constant for both test cases.

The natural frequencies of the assembly modes are given
in Table 2. Note that, since the assembly is perfectly tuned,
the natural frequencies of assembly modes 2 and 3 are iden-
tical, that is, these modes are double modes.

The noise sequences were generated from sets of random
numbers chosen from a distribution with 0 mean and vari-
ance 1. Given an infinite number of entries, the noise se-
quence would have a mean exactly equal to zero. However,
finite sets of data always feature some bias. To ensure that
the results obtained from the analysis of each level of noise
were not biased, one hundred different sequences of noise
sets were generated and added to the BTT data. The 100 sets
of corrupted BTT data sequences were then analysed with all
the methods and the resulting engine order estimates were
processed statistically to yield the average error in engine or-
der estimation, that is,

E = 1
100

100∑

j=1

(
EOtrue − EOei

)
, (36)

where EOtrue is the true engine order and EOei is the ith esti-
mated engine order. The standard deviation, σ , of the errors
in engine order was calculated as

σ =
√√√√√

1
99

100∑

j=1

(
EOtrue − EOei − E

)2
. (37)

7.1. Discussion of results from evaluation A

Evaluation A consisted of varying the PSR values and noise
levels simultaneously with the aim to determine the effect of
PSR variation upon the ability of the methods to recover the
correct frequencies of vibration. Additionally, this evaluation
was designed to determine the optimum PSR values to use
with the new methods. The evaluation was carried out using
test case T1 only, as it is the critical case for which the new
analysis methods were developed.

Table 1: Test cases using simulated data.

Trial case Engine order Blades

T1 6, 36 4

T2 6.5, 39 4

Table 2: Natural frequencies of assembly modes in Hz.

Frequency (Hz)

Blade mode 1 Blade mode 2

Assembly modes

1 17.0111 105.9959

2 18.8102 114.9826

3 18.8102 114.9826

4 20.0244 123.3862

At each PSR level, the average error in recovered engine
order, E, was calculated over all the noise levels for each
method individually. Tables 3 and 4 show E, as recovered by
the MAR method for blade modes 1 and 2, respectively, along

with the average E (i.e., E) values displayed in the last row of
the table. The same procedure was used to calculate the av-
erage standard deviation of the recovered engine orders, σ .
The E results obtained that are below 2%, that is, 0.02 are
considered as acceptable errors. A 2% bias error means that
solutions up to 25 EOs would yield a correct result. The re-
sults above 2% error have been shaded in the tables. Figure 4
shows that, for mode 1, acceptable solutions are obtained for
progressively higher noise levels as the PSR is increased. For
the second mode (Figure 5), if the PSR is increased beyond
55%, the errors start increasing again. All the recovered solu-
tions from all the methods were processed in the same way.

Table 5 shows a summary of the PSR values for which
the minimum average E was obtained. Similarly, the PSRs
yielding the lowest average values of the standard deviation
were extracted. It can be seen from the table that for the res-
onance corresponding to blade mode 1, all the methods re-
cover the least average error (E) at 80% PSR. However, for
blade mode 2 the Prony-based methods yield better results
between 45% and 60% PSR; the techniques using the exact
solution (EP/ES) obtain the best results at 50% PSR exactly.
The lowest average σ occurs at the highest tested PSR value
for both blade modes.

Table 6 summarises for each method the PSR values for
which the E and σ results remained below 10% for both
modes. The PSR value at which E is below 10% differs from
method to method, but for most techniques this limit is at
a PSR setting close to or above 30%. The average E results
for the second mode deteriorate for PSR settings above 70%
for nearly all methods. Average σ values below 10% were ob-
tained for PSR settings above 20% for nearly all methods.

The main conclusion to be drawn from evaluation A is
that all methods can yield good estimates of the response en-
gine orders as long as the PSR value lies between 40 and 70%,
with the optimum accuracy for both simultaneous responses
occurring at a PSR of 50%.
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Table 3: MAR E results for mode 1 at for different noise level and PSR%.

MAR Mode 1 E

AC noise
level

PSR

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0 331.24 21.21 0.90 0.67 0.22 0.16 0.10 0.06 0.08 0.09 0.08 0.07 0.07 0.07 0.06

5 539.85 473.30 458.95 224.02 12.47 0.72 0.07 0.06 0.13 0.03 0.03 0.03 0.11 0.05 0.10

10 534.23 491.01 506.80 318.28 49.64 3.03 0.49 0.08 0.13 0.28 0.09 0.02 0.08 0.10 0.05

15 566.69 503.96 532.94 371.36 94.88 8.85 0.32 0.13 0.39 0.28 0.20 0.16 0.06 0.25 0.00
20 542.05 547.97 532.77 429.82 141.61 18.82 0.25 0.02 0.43 0.66 0.05 0.06 0.09 0.34 0.09

25 586.30 560.41 551.27 437.48 162.96 25.97 2.62 0.90 0.68 0.75 0.32 0.56 0.77 0.78 0.08

30 571.92 608.89 547.27 450.82 201.72 44.93 3.44 2.04 2.06 1.47 0.19 0.02 1.15 0.86 0.10

35 579.82 610.38 562.47 446.90 237.68 48.22 8.37 2.27 3.13 2.35 1.00 1.06 0.95 0.55 0.10

Average, E 531.51 477.14 461.67 334.92 112.65 18.84 1.96 0.70 0.88 0.74 0.24 0.25 0.41 0.37 0.07

Table 4: MAR E results for mode 2 at for different noise level and PSR%.

MAR Mode 2 E

AC noise
level

PSR

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0 13.34 0.24 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 9.84 22.51 33.62

5 349.45 69.94 8.83 0.28 0.43 0.04 0.07 0.04 0.00 0.00 0.13 1.73 9.54 22.48 33.63

10 372.77 109.60 16.81 0.02 0.81 0.07 0.25 0.07 0.02 0.02 0.26 2.53 10.07 22.48 33.61

15 374.99 138.12 22.99 0.81 0.26 0.27 0.50 0.09 0.06 0.09 0.94 3.79 10.41 22.64 33.61

20 376.00 159.95 38.09 3.56 0.06 0.45 0.91 0.23 0.06 0.11 1.64 4.51 11.09 22.89 33.57

25 375.49 175.20 46.29 2.46 0.47 1.38 1.15 0.35 0.06 0.04 2.46 5.98 11.57 23.16 33.59

30 374.78 181.31 51.94 5.16 1.04 1.84 1.62 0.49 0.09 0.00 3.17 6.27 11.60 23.52 33.52

35 373.34 190.48 61.06 8.57 2.77 1.96 2.23 0.60 0.08 0.03 3.70 7.15 12.41 23.76 33.63

Average, E 326.27 128.10 30.75 2.61 0.73 0.75 0.84 0.23 0.05 0.04 1.54 4.00 10.81 22.93 33.60

7.2. Discussion of the results from evaluation B

Evaluation B consisted of increasing the noise level from 0 to
35% at a single PSR value, 35%. This value was chosen as it
is near the lower end of the validity region for most methods
(see Table 6). The results for this evaluation are presented in
the form of figures showing the 95% confidence bands recov-
ered by each method for increasing levels of noise. Evaluation
B was repeated for the two test cases Test 1 (two simultaneous
synchronous resonances) and Test 2 (one synchronous and
one asynchronous resonance occurring simultaneously).

Test 1

Results from this test are shown in Figures 4–7. There are
two figures for blade mode 1, one showing results from the
Prony-based methods and one from the exact methods. Sim-
ilarly, there are two figures for blade mode 2. The grey bands
on the figures show the area within which the results are ac-
ceptable. Inaccuracies start to occur when at least one of the
confidence bands for a particular method exits this grey area.

It is clear that the exact methods (Figures 5 and 7) per-
form better than the Prony-based methods (Figures 4 and
6). MGARIV is the best Prony-based method; its confidence
bounds remain inside the acceptable area at noise levels

up to 20% for blade mode 1 and 35% for blade mode 2.
MGARIVES and MGARIVEP are the best exact methods,
their predictions remaining acceptable up to the maximum
tested noise level of 35%.

Test 2

Results from this test are shown in Figures 8–11. As for Test
1, there are two figures for blade mode 1, (Prony-based and
exact methods) and two figures for blade mode 2. In this case
it is harder to separate the performance of the Prony-based
methods from that of the exact approaches. On balance, the
Prony-based techniques appear to yield more accurate results
for the asynchronous engine order while the exact methods
are more accurate for the synchronous engine order.

The best Prony-based approach for Test 2 is again
MGARIV, yielding predictions within the acceptable region
at noise levels of up to 30% for mode 1 and 35% for mode
2. MGARIVEP is the best exact method for Test 2, remain-
ing accurate up to noise levels of 35% for both mode 1 and
mode 2. Note that for Test 1 the results from MGARIVEP
and MGARIVES are virtually identical. This is not the case
for the asynchronous mode of Test 2.

Test 2 was repeated for a PSR of 50%, which is the PSR
for which most of the methods yield their best predictions
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95% confidence bands for recovered mean EO,
mode 1, PSR = 35%

7.5

7

6.5

6

5.5

R
ec

ov
er

ed
E

O

0 5 10 15 20 25 30 35

AC noise (%)

MAR
MGAR

MGARIV
MGARMA

Figure 4: Test 1: 95% confidence bands for Prony-based methods,
mode 1.
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Figure 5: Test 1: 95% confidence bands for exact solution methods,
mode 1.

for blade mode 2 and very good predictions for blade mode
1 (see Tables 5 and 6). For this PSR, all the methods had con-
fidence bands within the acceptable regions for both modes
up to a noise level of 35%.

8. CONCLUSIONS

A class of autoregressive-based methods for the analysis of
blade tip timing data from assemblies undergoing two simul-

Table 5: PSR values for lowest average mean engine order error and
average standard deviation of all noise sequences.

Method

PSR yielding the

lowest E
PSR yielding the
lowest σ

Mode 1 Mode 2 Mode 1 Mode 2

MAR 80 55 80 80

MGAR 80 60 80 80

MGARIV 80 45 80 80

MGARMA 80 50 80 80

MARES 80 50 80 80

MAREP 80 50 80 80

MGARES 80 50 80 80

MGAREP 80 50 75 80

MGARIVES 80 50 75 80

MGARIVEP 80 50 75 80

Table 6: PSR values at which acceptable results were obtained for
both modes.

Method
PSR (%) yielding PSR (%) yielding

E < 10% σ < 10%

MAR 40 to 70 >10

MGAR 35 to 70 >22

MGARIV 35 to 70 >19

MGARMA 50 to 68 >21

MARES 30 to 70 >19

MAREP 35 to 70 >19

MGARES 30 to 70 Any

MGAREP 30 to 70 Any

MGARIVES 20 to 70 >19

MGARIVEP 25 to 70 >19

taneous resonances has been developed. The basis of all the
approaches is the assumption that the blade tip response can
be represented as the response of a dynamic system with two
modes. For the simplest method, an autoregressive model is
used to represent the blade tip response over a single revolu-
tion of the assembly. More complex methods use data from
multiple revolutions, an instrumental variable technique and
an autoregressive moving average methodology.

The autoregressive coefficients are calculated using least
squares curve-fits. Two curve-fitting schemes have been de-
veloped; one where all the autoregressive coefficients are con-
sidered unknown and the response frequencies are calculated
using Prony’s method and one where only two autoregressive
coefficients are unknown and the response frequencies are
estimated using the assumption that the blade tip response is
sinusoidal.

The performance of the methods was evaluated and com-
pared using data from a mathematical BTT data simulator.
The sensitivity of the approaches to probe spacing on the
resonance (PSR) and measurement noise was of particular
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95% confidence bands for recovered mean EO,
mode 2, PSR = 35%
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Figure 6: Test 1: 95% confidence bands for Prony-based methods:
mode 2.
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Figure 7: Test 1: 95% confidence bands for exact solution methods,
mode 2.

interest. It was shown that increasing PSR has different ef-
fects for the low frequency and high frequency modes. For
the lower frequency mode, bias and scatter are reduced
as the PSR is increased. For the higher mode, bias is re-
duced until a PSR value where the optimum accuracy is
obtained. At PSRs higher than this value bias increases, al-
though scatter continues to decrease. A PSR of 50% yields
accurate engine order predictions for both modes under
investigation and is considered to be an optimum choice.

95% confidence bands for recovered mean EO,
mode 1, PSR = 35%
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Figure 8: Test 2: 95% confidence bands for Prony-based methods,
mode 1.
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Figure 9: Test 2: 95% confidence bands for exact solution methods,
mode 1.

MGARIVES and MGARIVEP exhibited the broadest PSR
ranges within which highly accurate frequency estimates can
be obtained.

The instrumental variables formulations (MGARIV,
MGARIVES/EP) are significantly better than the other meth-
ods, both in terms of bias and scatter. MGARIV is most
accurate when analysing asynchronous resonances while
MGARIVEP is most accurate for synchronous resonances.
The poor results obtained from the MGARMA method are
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95% confidence bands for recovered mean EO,
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Figure 10: Test 2: 95% confidence bands for Prony-based methods,
mode 2.
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Figure 11: Test 2: 95% confidence bands for exact solution meth-
ods, mode 2.

most likely due to the attempt to create a noise model from
data with such a low sampling rate.

The MGARIVES/EP and MGARES/EP pairs yield almost
identical frequency estimates for all cases. Therefore, only
one of each pair should be considered for further applica-
tions to real-life problems.

Part II of this paper will show examples of experimental
application of the new methods.
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