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ABSTRACT 

Indoor air quality (IAQ) is influenced by several parameters and the sources of indoor air pollutants are numerous (building 

materials, occupant behavior, HVAC systems, Outdoor air, etc.). Utilization of low-cost sensor devices for screening the 

indoor air pollution has made notable interests over the recent years. These systems are easy to access, portable, low-

maintenance needed, and can provide real-time and continuous screening of target contaminants. The implementation of 

these systems to monitor the IAQ in real-time and for long period, can support the study of indoor air pollutants trends and 

variations. In this paper, we present sensors performance needed for an indoor air use. For this reason, four multi-sensor 

devices are fabricated and developed to measure O3, CO, NO, NO2, PM2.5, PM10, as well as the temperature and humidity, in 

an experimental measurement campaign study and were compared with results of a validated reference analyzers with high 

accuracy. The results showed a sufficient correlation of the measuring devices and the reference data considering the 

temperature and relative humidity. By the mean of Orthogonal regression method, the calibration equations were acquired 

for measuring parameters to enhance the IAQ monitoring devices performances. The results were examined on the basis of 

threshold limit value concentrations defined by European Commission indoor exposure limit values. 

INTRODUCTION 

Climate change will affect the pollutant levels in residential buildings (Nazzarof 2013). The essential need to provide 

residential buildings with acceptable Indoor Air Quality (IAQ) level and high energy performance has grown in recent years. 

Heatwaves and pollution peak events suggest that residential building design needs to address varying weather patterns 

caused by climate change. The main concern is obtaining a high level of IAQ and preserving thermal comfort while using 

less energy. The impacts of the IAQ on occupants’ health, wellbeing and comfort demonstrate a key area and needs a 

comprehensive method wherein the multidisciplinary major environmental parameters are measured and evaluated at the 

same time. According to new data from WHO about 9 out of 10 people breathe air containing high levels of pollutants 

worldwide which is estimated in about 7million deaths per year (WHO, 2020). On the other hand, generally, people spend 

nearly 90% of their time in indoor areas and consequently the impact of indoor conditions on health cannot be disregarded 

(Klepeis et al. 2001). Moreover, most of the indoor air contaminants are intangible to humans, which leads to occupants’ 
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unawareness of indoor air pollution. (Marios et al. 2011).  

Indoor air pollutants may include a wide variety of physical, biological or chemical, contaminants including CO, CO2, 

VOCs, NOx, PM, and O3 among others (González-Martín et al. 2020). It should be noted that CO2 is not listed in the selected 

indoor pollutants by WHO, however it has been employed as a proxy of air ventilation where high CO2 concentrations 

indicate poor ventilation, which might specify accumulation of indoor pollutants (Moreno-Rangel et al. 2018). 

Measuring indoor pollutant levels is essential for a better perception and further assessment of IAQ (Ma et al.2020). 

While sophisticated measuring devices enable accurate determination of indoor pollutants, the expense and difficulty in 

application make them impractical for a broad range of missions. Low-cost sensors (LCS) monitoring devices provide dense 

temporal and spatial data measurement in a wider range of interior spaces. The literature and scientific articles on the LCS 

and indoor application are increasing. However, due to complex and multi-dimensional characteristic of IAQ and LCS 

studies, it is challenging to holistically track all studies being carried out. 

Recognized approaches like gravimetry, chromatography, spectrometry, etc are able to deliver high temporal resolution 

data but these scientific devices are essentially designed for laboratory/stationary practice. Moreover, they need of expert 

operators and long results time and make them unsuitable for indoor air examinations (Abraham and Li 2014). These 

approaches are not time and cost efficient. Additionally, the precision of these utilities is superfluous for large-scale 

measurement campaigns, where determining of relative concentrations and their trends are main purposes. By the advances 

of LCSs in quality and operation, reliable devices with compact design and low-cost could be employed in holistic 

measurement/monitoring campaigns (bigger datasets), or any other required applications (Demanega et al. 2021). Low cost 

gas sensors have various working principles including electrochemical sensors (Kumar et al. 2011), metal oxide (MOx) 

semiconductor sensors, IR sensors, photoionization detector (PID) and light scattering (Chojer 2020). Modern measurement 

devices based on LCSs, enable the potential of a better perception of IAQ for residential inhabitants. These devices usually 

employ online recording for the convenience of users. Still, there are few experimental performance information of LCS 

measuring devices available for indoor air applications. It should be noted that significant agreement with scientific 

instruments of many IAQ LCSs are due to experiments in the laboratory environments. The LCS calibrationprocedure has 

direct effects on precision, accuracy, and bias of sensors. It has been reported development or modification of calibration 

models can effectively increase the measurement accuracy (Moreno-Rangel et al. 2018; Liu et al. 2020; Falzone et al. 2020).  

The objective of this study is to evaluate the performance of four IAQ monitoring devices based on LCSs, designed by 

SAM-ULiège (Sensing of Atmospheres and Monitoring Laboratory, University of Liège) especially CO, NO, NO2, O3, PM2.5 

and PM10, in residential buildings. For this aim, test results from four fabricated devicesre compared to the data of reference 

analyzers from a wallonia public institute (ISSeP - Institut Scientifique de Service Public). This study equivalences the 

specifications of fabricated four indoor-air measuring devices and investigates their modules in detail. Since the development 

of these devices has been part of the OCCuPANt project (Impacts of climate change on the indoor environmental and energy 

performance of buildings in Belgium during summer, University of Liege project 2020) they are named and refered as OCT 

in this study. Lastly, field calibration equations are presented to enhance the trueness of OCT devices relative to reference 

analyzers.  

MATERIAL AND METHODS 

The measurement campaign was held from 2nd Oct 8:30 local time to 31th Oct 2020 23:30 for CO, NO, NO2, O3, PM2.5 

and PM10 in Val-Benoît, Liège, Belgium. The sensors were located at a height of 2m at the same place than the reference 

analyzers. Figure 1 shows the OCT designed devices based on low cost electrochemical and light scattering sensors. Table 1 

presents their main specifications. The data logging was set to measure the parameters all together in each minute. The 

meteorological data including the temperature, relative humidity, wind speed and direction were recorded and was employed 

to contextualize the data, to confirm that different conditions were characterized. 

   



 

Figure 1 Schematic of OCT IAQ measuring devices. 

Table 1.   Specification of Sensors Included in OCT Devices 

Sensors Provider Concentration  Temp ˚C 

PM2.5/PM10 Light scattering Sensirion SPS30 0-1000 μg/m3(±10) 10 - 40 

O3 EC -Alphasense OX-B431 1-20 ppm (±2) -30 - 40 

NO EC Alphasense B4 2-20 ppm (±2) -30 - 40 

NO2 EC Alphasense B43F 2-20 ppm (±2) -30 - 40 

CO EC Alphasense B4 2-1000 ppm (±2) -30 - 50 

VOC(Planned) PID -AMETEK MOCON – Blue 0.5 ppb - 2 ppm -20 - 60 

 

Regarding the measurement of O3, it should be mentioned that EC (Alphasense) employs both an oxidant sensor (OX-

B431) for the total of O3+NO2 and a single NO2 sensor (B43F) at the same time to quantify the levels of O3. The NO2-B43F 

sensor excludes the O3 by an MnO₂ strainer (conversion of ozone to oxygen) and thus the value of O3 can be calculated by 

Equation 1 as follows: 

   (1) 

Statistical analysis 

Data treatment is performed in MATLAB software. Firstly, the input of 85280 data logs were averaged by the time 

interval of 30 minutes (1423 half an hourly averages points per contaminant for each device) since the reference (ISSeP) data 

had been recorded in the form of half hourly mean. In the next step, 1423 input values of each test contaminant were divided 

into 1138 and 285 pairs for calibration and validation datasets, respectively. 

The K–S test (Kolmogorov–Smirnov examination) disapproved the hypothesis of normal distribution. Due to 

synchronized real-time measurement process, a monotonic relationship is observed. Since Spearman's correlation 

measures the strength and direction of monotonic association between variables, it was used to define the correlation 

between variables of paired OCTs. 

When examining whether samples originate from the same distribution, the nonparametric Kruskal–Wallis approach is 

applied. Hence, for comparison of the four IAQ devices, the Kruskal–Wallis test by ranks was performed to detect if there 

were statistically meaningful differences among them. In the next step, field calibration formulations were determined with 

an orthogonal regression analysis (Späth 2014) with the ISSeP reference data. The validation dataset is used in order to assess 

the correctness of the sensors outputs after applying calibration equation. The obtained values are then compared with the 

reference analysers one by the Bland–Altman method. The Bland-Altman technique (mean-difference and limits of 

agreement (LOA) plot) is applied to evaluate the difference between two measurements within 95% LOA from the mean 

difference (1.96 of the standard deviation (SD) (Falzone et al. 2020; Moreno-Rangel et al. 2018). 

 

 



RESULTS 

CO. The data of the four OCT devices were compared to those from the ISSeP. The data analysis presented that the CO 

measurements were highly correlated ( ). As it is shown in Figure 2 (a), it was revealed that 

OCTs averagely underestimated CO concentration ( , 95% confidence interval from 

). Information of variability between OCTs is essential for the practical reliability of devices. 

Examination of the CO data from the four OCT devices presented a very high uniformity ( ) 

and low variability ( , from 0.003 to 0.005 mg/m³) among the CO measurements. 

 

Figure 2 Measurment results of OCT device and ISSeP: (a) CO (b) NO (c) NO2 (d) O3 (e) PM2.5 (f) PM10 

Figure 3 (a) illustrates the relationship between the CO levels of ISSeP and OCT calibrated dataset by the apply of best 

Orthogonal regression model. The best fit results in an  of 0.79 and the CO equation generated by regression is: 

CO(ISSeP) = 0.033 + 0.963 CO(OCT)  (6) 



 

Figure 3 Comparision of calibrated OCT data with the ISSeP, for: (a) CO (b) NO (c) NO2 (d) O3 (e) PM2.5 (f) PM10 

Figure 4 (a) presents the Bland–Altman analysis for the comparison of four calibrated sensor devices with the reference 

analiser. It presents the mean difference between the ISSeP and the OCT CO calculated measurements (-2.34E-10 mg/m3 

with the LOA of –0.055 to 0.055 mg/m3 at a 95% confidence interval). The number of 48 points (3.5 %) of the dataset were 

beyond of the LOA (42 higher than the upper LOA and 6 less than the lower LOA). 

This range is meaningfully far below the European Commission (EC) Exposure Limit Values (ELVs) for indoor CO 

which is about 10 mg/m3 (Maximum daily, 8-hour mean, 2005). 

 

 

Figure 4 Bland–Altman plot for validation datasets: (a) CO (b) NO (c) NO2 (d) O3 (e) PM2.5 (f) PM10 



NO. The data analysis presented that the NO measurements were weakly correlated ( ) 

by the four OCT and the ISSeP monitors. As it is showen in Figure 2 (b) a shift of the values was detected between OCT and 

ISSeP measurements, as long as the OCT overestimated the NO levels by average of 185.47 µg/m³, from 171.17 to 199.42 

µg/m³. Investigation of the four OCTs revealed a very high uniformity ( ) and high 

difference regarding ( ,  from 157.16 to 229.55 µg/m³) of the NO reference data. Figure 3 (b) 

illustrates the relationship between the ISSeP and OCT calibrated NO levels determined by the Orthogonal regression model. 

The best fit results in an  of 0.75 and the NO regression output modeled is: 

NO(ISSeP) = 0.033 + 0.963 NO(OCT)  (7) 

 

Figure 4 (b) depicts the Bland–Altman analysis for the ISSeP NO measurements by the corresponding best fit 

determined by the Orthogonal regression for the validation dataset from the four OCT measurement devices. It presents the 

mean difference between the ISSeP and the OCT NO calculated measurements (-2.19 µg/m³ with the LOA of -12.14 to 8.03 

µg/m³ at a 95% confidence interval). The number of 28 points (2.8 %) of the dataset were beyond of the LOA (28 higher than 

the upper LOA). 

NO2. The statistical analysis showed that the NO2 measurements from the four OCT devices and the ISSeP NO2 showed 

a good correlation ( ). As it is depicted in Figure 2 (c) very high variability was 

detected between OCT and ISSeP measurements, as long as the OCT overestimated the NO2 levels by average of 134.66 

µg/m³, from 114.57 to 149.21 µg/m³. Study of four OCT devices presented a very high uniformity 

( ) and high variance ( , from 88.67 to 247.28 µg/m³) between the 

different NO2 sensors. Figure 3 (c) illustrates the relationship between the ISSeP and OCT calibrated NO2 levels by the 

Orthogonal regression model. The best fit results in an  of 0.78 and the NO2 regression equation is: 

NO2(ISSeP) = -172.41 + 1.14 NO2(OCT)  (8) 

 

Where NO2 is the concentration (µg/m3). Figure 4 (c) depicts the Bland–Altman analysis for the ISSeP NO2 

measurements by the corresponding best fit determined by the Orthogonal regression for the validation dataset from the four 

OCT measurement devices. It presents the mean difference between the ISSeP and the OCT NO2 calculated measurements (-

1.39 µg/m³ with the LOA of -11.64 to 8.85 µg/m³ at a 95% confidence interval). The number of 75 points (5.7 %) of the 

dataset were beyond of the LOA (40 higher than the upper LOA and 35 less than the lower LOA). This range is much less 

than the EC defined indoor ELV for NO2 equal to 200 µg/m3 (1-hour mean, 2010). 

O3. Investigation of the O3 measurement by the OCT devices and the ISSeP reference data revealed that the OCT O3 

concentrations varied from those of ISSeP. Figure 2 (d) presents a low correlation ( ) was 

identified. The OCTs overrated the O3 levels ( , from -3.2 to 7.8 µg/m³). Investigation of the four OCT 

datasets presented a low but notable uniformity ( ) and a moderate variance 

( , from 21.39 to 31.28 µg/m³) between the O3 measurements. Figure 3 (d) illustrates the relationship 

between the ISSeP and OCT calibrated O3 levels from the Orthogonal regression model. The best fit results in an  of 0.16 

and the regression formulation of O3 is: 

 

O3(ISSeP) = 30.0328 + 0.23866 O3(OCT)  (9) 

 

Where O3 is the concentration (µg/m3). Figure 4 (d) depicts the Bland–Altman analysis for the ISSeP O3 measurements 

by the corresponding best fit determined by the Orthogonal regression for the validation dataset from the four OCT 

measurement devices. It presents the mean difference between the ISSeP and the OCT O3 calculated measurements (-0.188 

µg/m³ with the LOA of -27.78 to 27.4 µg/m³ at a 95% confidence interval). The number of 65 points (5.2 %) of the dataset 

were beyond of the LOA (65 less than the lower LOA). This range is remarkably less than the defined EC indoor ELV for O3 

equal to 120 µg/m3 (Maximum daily, 8-hour mean, 2010). 

 

 

 



PM2.5. PM2.5 measurements from the four OCT devices and the ISSeP were very highly correlated 

( ) to each other. As it is shown by Figure 2 (e) the OCT underestimate PM2.5 values 

( , from -2.76 to -2.47 µg/m³). The examination of the four OCT monitors revealed a very high 

uniformity ( ) and a small variance ( , from 8.43 to 9.64 µg/m³) among PM2.5 

measurements. Figure 3 (e) illustrates the relationship between the ISSeP and OCT calibrated PM2.5 levels from the 

Orthogonal regression model. The best fit results in an  of 0.91 and the PM2.5 regression equation is: 

 

PM2.5(ISSeP) = -1.57 + 3.08 PM2.5(OCT)  (10) 

 

Where PM2.5 is the concentration (µg/m3). Figure 4 (e) depicts the Bland–Altman analysis for the ISSeP PM2.5 

measurements by the corresponding best fit determined by the Orthogonal regression for the validation dataset from the four 

OCT measurement devices. It presents the mean difference between the ISSeP and the OCT PM2.5 calculated measurements 

(-0.017 µg/m³ with the LOA of -4.1 to 4.07 µg/m³ at a 95% confidence interval). The number of 69 points (5.3 %) of the 

dataset were beyond of the LOA (40 higher than the upper LOA 29 less than the lower LOA). This range is much less than 

the defined EC indoor ELV for PM2.5 which is 25 µg/m3 (yearly, 2010). 

PM10. It should be mentioned that the sensor does not measure PM10 but a correction factor is applied by the producer 

on the PM2.5 measurements. 

The statistical analysis showed that the PM10 measurements from the four OCT monitors and the ISSeP were highly 

correlated ( ) to each other. As it is depicted by Figure 2 (f) the analysis of the measurements 

showed that the OCT underestimated PM10 concentrations ( , from -9.09 to -8.33 µg/m³). The study of 

four OCT datasets presented that there was a very high uniformity ( ) and a small variance 

( , from 2.33 to 3.12 µg/m³) between the different PM10 sensors. Figure 3 (f) illustrates the relationship 

between the ISSeP and OCT calibrated PM10 levels by the Orthogonal regression model. The best fit results in an  of 0.57 

and the regression model of PM10 is: 

 

PM10(ISSeP) = -2.12 + 4.77 PM10(OCT)  (11) 

 

Where PM10 is the concentration (µg/m3). Figure 4 (f) depicts the Bland–Altman analysis for the ISSeP PM10 

measurements by the corresponding best fit determined by the Orthogonal regression for the validation dataset from the four 

OCT measurement devices. It presents the mean difference between the ISSeP and the OCT PM2.5 calculated measurements 

(-0.06 µg/m³ with the LOA of -19.63 to 19.5 µg/m³ at a 95% confidence interval). The number of 69 points (5.3 %) of the 

dataset were out of the LOA (51 higher than the upper LOA 18 less than the lower LOA). 

 This range is almost equal to the EC indoor ELV for PM10 which is 50 µg/m3 (24 hours, 2005). The number of data 

points on which the PM10 levels surpassed the 50 µg/m3 is about an average of 0.38%. At last, the correlation between the 

calibration and validation datasets were favorably accredited. Both presented a sufficient agreement on the PM10 levels higher 

than 50 µg/m3. 

DISCUSSION 

In this very first step, the accuracy of lab-made devices for measurement of pollutants (CO, NO, NO2, O3, PM2.5, PM10) 

during a campaign of one-month is evaluated. Calibration was not performed in the lab by using synthetic gases but by 

comparison with reference analyzers (from Scientific Institute of Public Service of Wallonia, environmental institute of 

Wallonia, ISSeP). To achieve best results, specific calibration equations should be derived for each device. The validation 

outcomes presented that there was correct agreement between the reference analyzer data and those of the OCT devices for 

some pollutants, when using the regression equations. However, the O3 sensors (Alphasense OX-B431) were not so good 

(precise) as expected even after correction with te calibration equation. It is probably related to the way of working of these 

sensors. In order to enhance the quality of O3 measurement, the zero offset, the sensitivity (nA/ppm) and temperature 

dependence of the NO2 sensors (B43F) and the O3 one (B431) have to be checked in laboratory before usage. 



The OCT devices presented a very good agreement with the ISSeP analyzers, for CO ( ), NO2 

( ), PM2.5 ( ) and PM10 ( ) data. The NO concentration was 

overestimated by an average of 185.47 µg/m³. The generated regression fits for CO, NO, NO2 and PM2.5 decreased the 

variance among the measurements sufficiently and enhanced their performances in comparison with ISSeP which led to  

values equal to 0.79, 0.75, 0.78 and 0.91, respectively. The absence of an exact O3 detector resulted in wrong results. 

Nevertheless, outcomes indicated that it has not influenced the performance of the other detectors. Thus, OCTs can be 

utilized in future research experiments and free running ventilation indoor environments. The results revealed that OCT 

devices based on LCSs, can detect ELV exceedance by high contaminant picks. It is noteworthy to be mentioned that Wi-Fi 

communication with a physical as well as a cloud storage, make the OCT a user-friendly gadget to assess the IAQ in wider 

temporal and spatial dimension, in comparison with typical methods. Implementation of several devices in a measurement 

campaign and applying calibration modifications increase the accuracy and precision of the measurements. 

According the OCT calibration results, it was revealed that less than 5% of the CO, NO, NO2, O3, PM2.5 and PM10 

values were beyond the LOA range when the range was set to ±1.96 SD of the difference. Variability of the fraction of 

concentrations higher than ELVs was mostly insignificant and was considered to be improbable to make drastic alteration in 

the IAQ evaluation.  

CONCLUSION 

The results indicated that the OCTs could provide appropriately results for IAQ study in residential buildings. It is 

important to experimentally evaluate the accuracy of LCS to study their reliability and correctness. The OCT monitoring 

devices based on LCSs, will provide extensive indoor air data for inhabitants which ensure the adoption of correct strategies 

to deal with bad IAQ. Furthermore, the effects of occupant’s behaviour on IAQ and the efficiency of natural (free running) or 

mechanical ventilation can be determined. Thus, OCTs can be utilized in future research experiments and free running 

ventilation indoor environments. The results revealed that OCT devices based on LCSs, can detect ELV exceedance by high 

contaminant picks. It is noteworthy to be mentioned that Wi-Fi communication with a physical as well as a cloud storage, 

make the OCT a user-friendly tool to assess the IAQ in wider temporal and spatial dimension, in comparison with typical 

methods. Implementation of several devices in a measurement campaign and applying calibration modifications increase the 

accuracy and precision of the measurements. 

Thanks to these results, indoor air measurement campaign is now organized in residential buildings (naturally ventilated 

and mechanical one), simultaneously with outdoor air measurement. Heat events and proxy data linked to climate change 

(CC) are considered to establish some relations between IAQ and CC. This study will be presented in a following paper. The 

information provided in this study can support the basics of research on how climate change affects the IAQ in residential 

buildings by considering outdoor environmental data in future studies 
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