ABSTRACT. Atmospheric lensing effects deform our view of distant objects; simi-

 larly, without any doubt, gravitational lensing perturbs our view of the distant Universe and affects our physical understanding of various classes of extragalactic objects. We summarize here part of the theoretical and observational evidences supporting these claims.After briefly reviewing the history of gravitational lenses, we recall the basic prin ciples underlying the formation of gravitationally lensed images of distant cosmic sources. We describe a simple optical lens experiment, which was actually shown during the oral discourse, and which accounts for all types of presently known gravitational lens systems.

The various optical and radio searches for new gravitational lens systems that are being carried out at major observatories are reviewed. State-of-the-art observation of selected gravitational lens systems, obtained with highly performing ground-based telescopes, are then presented. These include several examples of multiply imaged QSO images, radio rings and giant luminous arcs

Through the modeling of these enigmatic objects, we show how it is possible to weigh the mass of distant lensing galaxies as well as to probe the distribution of luminous and dark matter in the Universe. Among the astrophysical and cosmological interests of observing and studying gravitational lenses, we also discuss the possibility of deriving the value of the Hubble parameter H_{o} from the measurement of a time delay and how to determine the size and structure of distant quasars via the observational study of micro-lensing effects.

At the end of this paper, we conclude on how to possibly achieve major astroplysical and cosmological goals in the near future by dedicating, on a site with good plysical and cosmological goals in the near future by dedicating, on a site with good
atmospheric seeing conditions, a medium size ($2-3 \mathrm{~m}$) telescope to the photometric monitoring of the multiple images of known and suspected gravitational lens systems.
,. Bergeron (ed.). Highlights of Astronomy , Vol. 9. 3-32.
$\Theta 1992$ IAU. Printed in the Netherlands.

1. INTRODUCTION

The human mind has first to construct forms, independently before we can find them in things"
A. Einstein

Approximately 12 years ago, the dream of several theoreticians who had anticipated the existence of gravitational lenses became reality: the first gravitational lens (GL) was serendipitously identified in the sky by Walsh, Carswell and Weymann (1979). Since then, several tens of additional lenses have been found and studied.

It has of course been a great pleasure for us to deliver an invited discourse on these fascinating objects during the XXI ${ }^{\text {st }}$ General Assembly of the IAU in Buenos Aires. We have tried, in our discourse, to convince the audience that these objects should deserve more observational attention in the future as they turn out to be full of promises for astrophysical and cosmological applications. We present here a somewhat promises for astrophysical and
extended version of our talk.

The general layout of our paper is organized as follows: in order to set up some analogy with gravitational lensing, we discuss first the case of mirages formed by analogy with "ravitateric "lensing" (Section 2). We then summarize the historical background of gravitational lenses (Section 3). The basic principles of gravitational lensing are briefly discussed afterwards (Section 4). By means of an optical lens experiment (Figure 5) as well as observations of known astronomical lensed objects (Section 5), we illustrate the major properties of gravitational lenses as they exist in the Universe. Finally, selected astrophysical and cosmological applications of gravitational lensing (Section 6) and some general conclusions are presented at the end of this article (Section 7).

Because of space limitation, we apologize for only covering a few subjectively seBecause of space limitation, we apologize for only covering a ew subjective for most lected aspects of gravitational lensing and ald astrophysicists who have contributed to the devent of our knowledge in this astrophysicists who have controuted they are just too numerous! A more dailed and complete approach will soon field. They are just woo numerous! A more detad Narayan (1992) and also in the book of Schneider, Ehlers and Falco (1992).

2. ATMOSPHERIC LENSING

Figure 1 gives a schematic representation of the light rays from a distant source when the ground turns out to be somewhat hotter than the ambient air. Because air refraction always leads to a bending of light rays towards regions of colder air, the formation of one lower, inverted and somewhat deformed image of a distant source may result. The right side of Fig. 1 illustrates such a double image: a distant car as photographed along the North Panamericana highway between the towns of Pichidangui and La Serena, in Chile.
Such atmospheric mirages, usually consisting of two single images, can actually be seen

Figure 1: Atmospheric lensing
everyday, almost from anywhere on Barth. Because atmospheric lensing preserves surface brighness, just as in the case of gravitational lensing, the amplification of the mirage luminosity is simply equal to the ratio (i.e. magnification) of the solid angle of the observed image to that of the source image. Therefore, in addition to affecting significantly our view (image deformation, enlargement, multiplication, etc.) of distant resolved Earth-sources, atmospheric lensing is also often responsible for the light amplification of distant unresolved objects located along straight and long roads or across flat countrysides. As we shall see hereafter, there is quite some similarity between atmospberic and gravitational lensing. Let us first review shortly the history of gravitational lensing.

3. HISTORICAL BACKGROUND

Considering that light may be composed of elementary packets, Newton suggested as carly as 1704 that the gravitational field of a massive object may bend light rays. However, because the wave description of light prevailed during the whole XVII ${ }^{\text {th }}$ and XIX ${ }^{\text {th }}$ centuries, the conjecture of Newton was not taken seriously. During the claboration of his theory of General Relativity, Einstein predicted that a massive object does curve the spacetime in its vicinity and that any particle, massive or not (cf. the photons), will move along the geodesics of this curved spacetime. He predicted in 1916 that the apparent position of a star located near the solar limb should be displaced by 1.75", exactly twice the value that is derived from the classical Newtonian theory.

By using photographs of a stellar field taken during the solar eclipse in May 1919, Eddington and his collaborators (1920) were able to confirm the deflection angle predicted by Einstein. This was not only a triumph for General Relativity but also a marvelous confirmation of the concept that light rays may undergo deflections in
gravitational fields.

4. PHYSICAL BASIS OF GRAVITATIONAL LENSES

4.1. General remarks

The physical basis of gravitational lensing essentially consists in the deflection of light, and electromagnetic waves in general, in gravitational fields as predicted by Einsten's theory of General Relativity

In the regime of small deflection angles, which is of practical interest to us here, the so-called Einstein deflection of a light ray passing near a compact mass at a distance ξ is:

$$
\begin{equation*}
\hat{\alpha}=\left(4 G M / c^{2} \xi\right)=2 R_{s c} / \xi \ll 1, \tag{1}
\end{equation*}
$$

where G and c stand for the constant of gravitation and the velocity of light, respectively, and where $R_{s c}$ represents the Schwarzschild radius of the mass M (see Fig. 3). The best measurements of the Enstein deflection have been made by means of radio interferometric observations of quasars close to the Sun, and confirm Einsten's value to nearly one tenth of a percent. In Newtonian terms, the Einstein deflection also folows if one assumes a refractive index n which depends on the Newtonian gravitational potential U via the relation $n=1-2 U / c^{2}$.

The great interest in gravitational lensing comes from the fact that this phemomenon can be used as a very powerful astrophysical tool. Indeed, it may help us in determining: (1) the size of the Universe (H_{o}) and possibly the values of other cosmological parameters (cl. q_{0} and Λ), (2i) the mass M and mass distribution of the ens, (iii) the nature and distribution of luminous and dark matter in the Universe, (iv) the size and structure of quasars, (v) the size of intergalactic gas clouds and (vi) the detection of random motions in the Universe, such as deviations from the Hubble flow. But before describing some of these potential applications, we shall introduce some basic concepts relevant to gravitational lensing

Since the Einstein deflection is independent of wavelength, gravitational lenses are chromatic. Also, there is usually only one mass concentration which acts as a lens and which has a small extent relative to the cosmological distances involved: therefore the thin lens approximation is usually justified and the deflection can be considered as taking place at the location where the ray crosses the lens plane, Furthermore cometrical optics can be used since physical optical effects are neglipible in realistic tuations.

Let now the true position of the source S on the sky be defined by the angle $\vec{\theta}_{S}$ and the image(s) position by $\vec{\theta}_{i}(i=1,2, \ldots)$. The lens equation which connects $\vec{\theta}_{S}$ and $\vec{\theta}_{i}$ is then simply given by

$$
\vec{\theta}_{S}=\vec{\theta}_{i}-\left(D_{d s} / D_{s}\right) \vec{\alpha}(\vec{\xi})=\vec{\theta}_{i}-\vec{\alpha}(\vec{\xi}),
$$

(2)
where $D_{d s}$ and D_{s} represent respectively the "deflector- source" and "observer-source" angular size distances and where $\vec{\alpha}$ is the displacement angle, $\vec{\alpha}=\left(D_{d s} / D_{s}\right)$ 人 (see Figs. 3 and 4). We note that a given source position may sometimes correspond to

Figure 3: Deffection of a light ray due to a point mass lens
several distinct image positions whereas a given image position always corresponds to several ific source position. For the case of an extended lens and within the thin lens aproximation, if is easy to calculate the effective deffection angle by just summing up the individual deffections due to all the mass elements (points) constituting the lens.
A typical lens situation is shown in Fig. A, where source and image positions (one mage in this case) are seen projected on the sky. We see again that the image position is shifted by $\vec{\alpha}$ relative to the source position; note however that $\vec{\alpha}$ is usually no sources

Since gravitational lensing preserves the surface brightness of a source, the ratio (i.eme i.e. maginat source immediately gives the amplification μ due to lensing. Mor on the transformation matrix between the source and the image planes: $\mu=1 \operatorname{det}\left(\partial \vec{\theta}_{s} /\left.\partial \vec{\theta}\right|^{-1}\right.$
If there are serage planes. $\mu=\mid$ seurce, the total magnification (amplification) H there are several images of a given source, the magnifications (amplifications) is of course given by the sum of all ind 'maguification' whenever the lensed images (cl We suggest hereafter to use the term nesolved by the observer and the term 'amplifica. tion', otherwise (cf. when referring to micro-lensing effects)
4.2. The point mass lens
4.2.1. The model

Let us now describe the classical gravitational lens consisting of a single point mass a black hole or a very compact object). If the alignment of the source, the lens and the observer is perfect, all rays passing near the lens at a certain distance ξ_{0} will

Figure 4: Image of a lensed source S as seen projected on the sky

Table 1: Angular $\left(\alpha_{o}\right)$ and linear $\left(\xi_{o}\right)$ radii of the Einstein ring for different values of M and D_{d}, and $D_{s}=2 D_{d}$

| M | $\mathrm{D} \mathrm{D}_{d}$ | α_{o} | $\xi_{o}=\alpha_{o} D_{d}$ |
| ---: | ---: | ---: | ---: | ---: |
| $1 \mathrm{M}_{\odot}$ | 10 kpc | $710^{-4 \prime}$ | 10 AU |
| $1 \mathrm{M}_{\mathrm{C}}$ | $10^{3} \mathrm{Mpc}$ | $210^{-6 \prime}$ | $10^{-2} \mathrm{pc}$ |
| $10^{12} \mathrm{M}_{\odot}$ | $10^{3} \mathrm{Mpc}$ | $2^{\prime \prime}$ | 10 kpc |
| $10^{14} \mathrm{M}_{\odot}$ | $10^{3} \mathrm{Mpc}$ | $20^{\prime \prime}$ | $10^{2} \mathrm{kpc}$ |

be bent towards the observer who will therefore see a very bripht ring, the so-called Einstein ring (which should have been more properly named the Chwolson (1924) ring of. Fig. 5a). From Eqs. (1) and (2), it is easy to show that the angular radius of the Einstein ring is given by

$$
\begin{equation*}
\alpha_{o}=\frac{2}{c} \sqrt{\frac{G M D_{d s}}{D_{d} D_{s}}} \tag{3}
\end{equation*}
$$

The value of α_{o} is very important because it can be used to estimate the angular separation between multiple lensed images in more general cases. Observed image separations $\left(\simeq 2 \alpha_{o}\right)$ can therefore lead to the value of M / D_{d}, or the value of M times the fubble constant if the redshifts z_{d} and z_{s} are known. We see from Table 1 that for a source and a lens located at cosmological distances ($z_{d} \simeq 0.5$ and $z_{s} \simeq 1$), α_{0} can vary from micro-arcsec to some tens of arcsec, depending on the mass of the deflector.

For a slight deviation from perfect alignment, but retaining the lens symmetry the Einstein xing breaks up in two bright images (cf. Fig. 5b). If the misalignment is further increased, one image approaches its normal luminosity whereas the is further increased,
image, which is now seen very close to the lens, becomes fainter and fainter
4.2.2. Optical depth for lensing

For the case of randomly distributed compact lenses, let us now estimate the freer gravitational lensing from observations of distant compact sources, i.e. obquency of gravitational ensing siom is definitely smaller than α_{0}.
Sis the total magnification since the total magnification μ_{r} of a coition lies inside the imaginary Einstein ring exceeds 1.34 whenever the true source position iges inside lensing (by convention, $\mu_{T}>$ (i.e. for $\theta_{S}<\alpha_{o}$), the probability P to have significant lensing (by istance D_{s} is simply given by:

$$
\begin{equation*}
P=\frac{\pi \alpha_{o}^{2}}{4 \pi}=\frac{D_{d s} G M}{D_{s} c^{2} D_{d}}=-\frac{D_{d s} U}{D_{s} c^{2}}, \tag{4}
\end{equation*}
$$

where $U(<0)$ represents the Newtonian gravitational potential of the lens (at the whserver). We see that the probability P is linear in U so that Eq. (4) is also valid for several deflectors acting independently of each other, irrespective of their individual masses. Considering a constant density of deflectors in a static universe, we may take an appropriate average of $D_{d s}$ and derive the expression for the total probability P (or optical depth τ for lensing)

$$
\begin{equation*}
P=\tau=-\left\langle\frac{D_{d s}}{D_{s}}\right\rangle \frac{U_{L}}{c^{2}}=-\frac{U_{L}}{3 c^{2}}, \tag{}
\end{equation*}
$$

where U_{L} is the grate to all possible lenses at distances D_{L} gravitational potental athers it is clear that stars in our Galay distances $D_{d}<D_{s}$. From this simple result, it is clear an extremely small optical depth for lens. $(1965,1970)$ and Press much more promising for (1973), it can be shown that

$$
\begin{equation*}
\tau=\frac{1}{4} \Omega_{L} z_{s}^{2}, \text { for } z_{s} \leq 1, \tag{6}
\end{equation*}
$$

where z_{s} is the redshift of the source and Ω_{L} the cosmological density parameter of where z_{s} is met compact lenses. For $z_{s}>1, \tau$ still increases may be reached for $z_{s} \geq 1$ and that very Eq. (6). We see that values of τ near unity may be reached for lensed. Since the value distant cosmic sources constitute the best candicy of multiply imaged compact sources of τ may be derived from (quasars), we may use Eq. (6) to infer Ω_{L} and since $\Omega_{L} \leq \Omega_{o}$,

13. Uniform disk lens

A transparent circular disk of matter, seen face on and having a radius r and
a miform surface mass density Σ, is characterized by an effective deflecting mass $\pi \triangle \xi^{2}, \xi(<r)$ representing the impact parameter for a chosen light ray. The latiter will thus bo deflected by the angle $\hat{\alpha}=4 \pi C \Sigma C^{-2} \xi$; the disk is actually acting as a normal converging lens with a focal length

$$
f=c^{2} /(4 \pi G \Sigma) .
$$

It is now easy to see that, by exact alignment, light from a distant point source focuses in the observer plane when

$$
\begin{equation*}
\Sigma=\Sigma_{\mathrm{crit}}=c^{2} D_{s} /\left(4 \pi G D_{d} D_{d s}\right), \tag{8}
\end{equation*}
$$

$E_{\text {crit }}$ being the so-called critical surface mass density. It is interesting to note that $\Sigma_{\mathrm{crit}} \simeq 1 \mathrm{~g} \mathrm{~cm}^{-2}$ for typical cosmological distances, a value which roughly corresponds to the surface mass density in the central pants of massive gataxies, and that the average surface mass density inside an Einstein ring is $\Sigma_{\text {crit }}$. For extended deflec tors, one must usually have $\Sigma \geq \Sigma_{\text {crit }}$ in at least some part of the deflector in order to create multiple images.
4.4. More complex lens models

Symmetric lenses are of course seldom realized in nature; usually the main lens itself is asymmetric or some asymmetric disturbances may also be induced by the presence of neighbouring masses We may simulate in our optical experiment the effects of a typical non symmetric gravitational lens by just tilting the plexiglass lens This las been done for the examples shown in Figs. 5c-g and results typically in image configurations whid have been observed for the cases of two images (e), four images (c), and the optical huminous arcs (f) and Einstcin radio rings of extended sources (g)

Ju an important paper, Burke (1981) has demonstrated that a non singutar, transparent lens always produces an odd number of images for a given point source (except when located on the caustics). This is in apparent contradiction with the prefered even mumber of images observed in our lens experiment and in nature. If, however, our plexiglas lens would have been constructed non-singular in the centre, we would have seen an additional image formed in the contral part of the lens. For the known lenses with an even number of observed images, it may well be that a black hole resides in the centre of the lens. The presence of a compact core could also account for the "missing image since then the very faint image expected to be seen close to, or through the core, would be well below the detection limits that are presently achievable.
4.5. Time scales of gravitational lensing effects

Since for the case of asymmetric lenses the size of the diamond shaped caustic is usually comparable to the radius ε of the Einstein ring associated with a compact oljee of smiar mass, the tapical lifetime l_{0} of a gravitational lens system should be

OPTICAL GRAVITATIONAL LENS EXPERIMENT (see Fig. 5)

The seven pictures to the left illustrate our optical gravitational lens experiment Fig. 5a shows the setup for the lens experiment. The compact light source is located on the right side (not clearly seen), then comes a plexiglass lens which deffects the ight rays very nearly as a black hole with one third of the Earth mass ($R_{s c} \simeq 0.3 \mathrm{~cm}$) Behind the lens, we find a black screen with a small hole at the center (pinhole lens). Further behind, there is a large screen on which is projected the lensed image(s) of the source (the Einstein ring, in this case) as would be seen if our eye were located at the position of the pinhole. In the example illustrated here, the pinhole is set very precisely on the optical axis of the gravitational lens so that the source, the lens and the pinhole (observer) are perfectly aligned. Note that the bright regions seen on the lens are caused by scattered light.
Fig. 5b illustrates what happens when the pinhole (observer) is moved slightly away from the symmetry axis: the Einstein ring breaks up in two images.
Fig. 5 c then shows the resulting four lensed images when the optical lens is somewhat tilted around the vertical axis. In this case, the bright line along the optical axis which existed in the symmetric configuration (cf. Fig. 5a) has changed into a two dimensional caustic surface, a section of which is seen as a diamond shaped caustic (made of four folds and four cusps) in the pinhole plane. The four lensed images observed here arise when the pinhole (observer) lies inside the diamond formed by the caustic
Fig. 5d shows the merging of two images into one bright image when the pinhole approaches one of the fold caustics. Due to the large amplification (magnification) and short time scale during the crossing of such a caustic, there results a High Amplification Event (HAB).
Fig. 5e: Here, the pinhole (observer) is located just outside the diamond. The two merging images have now disappeared.
Fig. 5 shows the image configuration when the pinhole is located very close to one of the cusps. One observes in this case a very nice luminous arc and a much fainter of the cusps.
Fig. 5 g illustrates the lensed image(s) when the pinhole size is increased by a factor $\simeq 4$, equivalent to a significant increase in the source size. In this example, an almost complete ring is observed, although the source, lens and observer are not perfectly aligned and the lens is still being tilted.
the time it would take for an observer (the pinhole) to cross the radius $x_{o}=\xi_{o} D_{s} / D_{d s}$ of the Einstein ring projected onto the observer's plane. The relative motion between the observer and the caustic may be thought of as arising from the relative velocities the observer and the caustic may be thought of If V represents the effective transverse between the observer, her, then the typical lifetime t_{o} of a gravitational lens system is given by

$$
t_{o} \simeq x_{o} / V .
$$

Referring to Table 1 and assuming $V \simeq 600 \mathrm{~km} \mathrm{~s}^{-1}$, we see that for typical' cosmological distances and for the case of a massive galaxy lens, we obtain $t_{o} \simeq 210^{7} \mathrm{yr}$, whereas for a one solar mass star acting as a lens, we get $t_{0} \simeq 20 \mathrm{yr}$. If the star is in our Galaxy ($D_{d} \simeq 10 \mathrm{kpc}$), we get a typical lifetime of just a few months ($V \simeq 200$ $\mathrm{km} \mathrm{s}^{-1}$). The time scale for merging and disappearance of lensed images, as shown in our experiment, can be much shorter than the time scales given above; this will be discussed later.

5. OBSERVATIONS OF GRAVITATIONALLY LENSED OBJECTS

As it will become apparent in this section, the previous optical gravitational lens As it will experiment turns an the different known lens systerns in the sky.

Before perenting such observations, we shall firsi describe very briefly some of the Beren (optical and radio) surveys which are being carried out at several

Among the optical lens surveys, we should like to mention the search for multiply imaged quasars within a sample of highly luminous quasars (HLQs), i.e. quasars whose absolute magnitude in B is typically brighter than -28 (Surdej et al. 1988). whose absolute magme is presently dedicated to such a survey with parallel and also An ESO-key programme is presenty tether major observatories (CFH, Las Campanas, CTIO, Palomar, NOT at La Palma, NRAO).
The observations consist first in obtaining direct multi-color CCD frames of quasars The observations consist first in obtaining direct multiple images of a distant quasar under the best possible seeing conditions. When spectroscopically. If the spectra turn out to show similar colors, they are then observed spectroscopically. Med light to try appear to be identical, one performs a deep imaging of the system in red lighdidates, detecting directly the lens. Among the ten or so known lensed quasar candidates, more than two thirds correspond to HLQs. The reason is in fact simple: it is due to an observational bias (the so-called 'magnification' bias). Indeed, the probability of including a quasar that has been magnified by gravitational lensing effects is greater in a flux limited sample than in a volume limited one, and since onls

The signature of gravitational lonsing effects is also searched for in larger samples of normal quasars, which are of course less affected by the magnification bias. Such surveys are actually being performed all over the world.

Also very interesting are the systematic optical surveys for the detection of giant Also very interesting are the systematic optical surveys for the detection of giant by several teams of european and north and south american astronomers (Toulouse, Meudon, AT'S'T Bell Laboratorics, Princeton, Barcelona). The detection of such arcs, characterized by a very low surface brightness, essentially relies on the good quality of the site (seeing, darkness of the night, etc.) and on the sensitivity of the instrumentation used (large telescopes, CCDs with low read-out-noise and high quantum efficiency, long exposure times, etc.).

Let us now describe two radio surveys for lensing effects. We wish specially to mention the VILA snapshot survey, at 5 GHz . It consists in a search for lensed objects among some 4200 ligh galactic latitude radio sources chosen from the MIT Greenbank catalogue. With an angular resolution of typically $0.3^{\prime \prime}$, this survey should produce a statistically well defined sample of more than ten lens systems. Several discoveries of such gravitational lenses have already been reported (Hewitt et al. 1987). The other survey consists of the flux limited radio sample of 3C and 4C distant sources which are being imaged optically at high angular resolution both at ESO and at the CFH'T. Because these samples are also subject to a (double) magnification bias (Borgeest et at. 1991), it is not surprising that several good gravitational lens candidates have been reported in the past (see Hammer and Le Fevre 1990).

A photometric monitoring survey for micro-lensing effects is presently conducted by the Famburg lens group in Calar Alto (Spain). It consists in a program of direct CCD imagery of a selected sample of 100 guasars (known GLs, HLQss, quasars near galaxies, narrow absorption line (QSOs, Blazars, etc.). Photometric monitorings of kown (GLs are also being made at ESO and with the NOT at La Palma.

Last but not least, in order to prove the possible existence of dark massive compact objects in the halo of our Galaxy, Paczynski (1986) has suggested to search for induced micro-lensing effects by the former objects on the light emitted from background stars. Two major observational projects aiming at the detection of micro-lensing effects of Magellanic Cloud stars by foreground compact halo objects have been recently initiated by a French group and an American-Australian team of astronomers at ESO and Mt. Stromlo, respectively.
5.1. Individual lensed oljects

By now, there are about 10 proposed cases of multiply imaged quasars, 5 radio ring and more than 10 examples of giant luminous arcs and arclets. Because of space limitation, we shall only describe some of these.
5.1.1. Mulliply imaged quasars

We shall first have a look at some examples of multiply imaged quasars belonging

Table 2: Observational information relevant to Figure 6a-j

Fig.	Source name	Image(s)	Waveband
6 a	$0957+561$	A-B + Lens	Optical R + Radio
6 b	$0142-100$	A-B	Optical R
6 c	$0142-100$	Lens	Optical R
6 d	$1115+080$	A-D	Optical R
6 e	$2237+0305$	A- B$)+$ Lens	Optical R
6 f	$1413+117$	A-D	Optical R
6 g	MG1131+0456	A-B + Ring	Radio
6 h	MG1654+1346	Ring	Radio
6 i	Abell 370	Arc	Optical B
6 j	Cl2244-02	Arc	Optical B

the elasses of image configurations (i.e. 2 or 4 images). In the two mage configuration (cf. Fig. 5e), the lensing galaxy is usually located between the mage configuration (c. . image configuration (cf. Fig. 5c), the QSO images lie roughly wo images. In hensing galaxy being located near its center.
$0957+561$. The first reported example of a multiply imaged quasar ($0957+561$) $0957+561$: The first reported example or a miff $z=1.41$, separated by 6.1 ", consists of two components (A andio source (see Fig. 6a and Table 2). The lensing accompanied by an extended $(\simeq 1$) the southern component. gaaxy at $z=0.30$ is This galaxy is a member of a rich chuster ortant from the point of view of cosmological解 aplications (nament of the time delay Δt, see Section 6.1.)
the measurement on the fist gravitational lens system that heen discer 0142-100: The QSO at ESO in a syster a by $2.2^{\prime \prime}$ (see Fig. 6b) and their spectra turn out to images ($z-2.0$) abserved QSO images a double point spread be identical. An) function (PSF), whe (he mass of this deflector (within isolated galaxy at a (1)") an angular radius of 1.1) has been cenater has been detected around the lensing $\mathrm{s}^{-1} \mathrm{Mpc}^{-1}$). Because no trace or a galaxy chaster has bedate to attempt an independent galaxy, this system . determination of H_{0}. monitoring of this system is under way at 1 of scheduling constrains, uncertaintweares. We should like to stress here that the to get sufficiently well sampled lightcurves. We should like to stress here that the

Tigure 6: Some examples of known gravitational lens systems (a-j)
possible use of a 2.3 m class optical telescope, fully dedicated to the monitoring of pnown gravitational lens systems, would most probably bring just after a few years of known gravitational lens systems contributions in the fields of cosmology and physics of
continuous observations major con continuo

1115+080: By means of the pupil segmentation technique used with the CFH 1115+080: (Lelievre et al. 1988), high angular resolution observations of PG1115+080 telescope (Lelievvre et al. 1988), high angular (esolution. 6d). This so called "Triple $(z=1.72)$ have been obtained in the past (see Fig. his collaborators in 1980, does Quasar", discovered serendipitously by Weymanm and actually, consist of 4 mages: compone The time delays between the different pairs of separation is just 0.5 (cl. Fig. 5d). several months. A lensing galaxy $(z=0.305)$ the 4 mages
$2237+0305$ (the Einstein Cross): This is another example of a multiply im$2237+0305$ (the Einstein Cross). Huchra and his collaborators in 1985, during
 a survey of galaxy redshifts. First of all, superb high atg that the Einstein cross conFig. 6e) and spectroscopy have cols ($z=1.69$, with angular separations between 1.4 " and 1.8 ") sists of four lensed images $z=1.69$, with angular separate deffector inside the 4 lensed plus a central mages is abon (he expected time delays are so effects (Kayser and Resdal 1989). Thdich, bility should show up almost simultaneously short, (at most a few days), inemsion brightness variation affecting just some of the four in the form a miso-lensing. Also, due to the large distance ratio single images may be a lead to more frequent and rapid between the sors (HARS and the expected number of HAEs should be large high amplification evens (hand per image). It was therefore not a surprise when Inwin (about 0.3 events per . et al. (1989) announced and taken at La sine mareden by micro-lensing effects. In indicate that at las particuar, the about 1.3 to 0.8 in less an ane mene to tively small masses invoke masses below $0.1 M_{\odot}$ (hambsganss et and the structure of the QSO (c. also be able to Section 6.2.).
$143+117$ (the Cla OSO (aged QSO $(z=2.55)$ that has been identiod 6 , High angular resolution for lenses among Hl.Qs (Magain et al. 1988, cf. Fig. 6). High anguar resolution (FWHM $\simeq 0.6^{\circ}$) integral field spectroscopy of this system obtained with the bidimen sional spectrograph SILFD at the CFIT has enabled one to resolve the spectra tion line four individual images. The spectra, which show characteristic broad absoms (probprofiles, turn out to be very similar, except for narrow absorption line systems (prob
bly related to the lens(es)) seen in images A and B and also for small but significant diferences in the spectrum of image D which are probably due to micro-lensing effects (Angonin et al. 1990).
5.1.2. Radio rings
'This new class of lensing phenomena, first discovered with the VLA, occurs when some part of the extended radio source covers most of the diamond shaped caustic associated with the lensing object (cf. Fig. 5g). The resulting lensed image consists associated wimt the lensigh obliptical ring of radio emission.
MG1131+0456: Maps of the radio source MG1131+0456 in Jeo has revealed such an elliptical ring of emission with two compact sources lying on opposite sides of the ring (angular separation $\simeq 2 \alpha_{o} \simeq 2.1^{\prime \prime}$, see Fig. 6 g). It was found by J. Hewitt and her collaborators in 1988. A very sophisticated modeling of this lensed radio source has been reported by Kochanek et al. (1989). Their numerical inversion f the olserved mirage leads to a normal galaxy-like elliptical potential for the lens and ordinary double-lobed structure for the background radio source. In this model, the two compact images correspond to the lensing of the central core of the source while the ring is associated with a radio jet which covers most of the diamond shaped Sustic in the source plane
MG1654+1346: A second ring was found in Hercules by Langston et al. in 1989. A deep red optical CCD frame of MG1654+1346 shows only an elliptical galaxy $(z=0.25)$ and a quasar $(z=1.74)$ located 2 " away (see the two crosses in Fig. 6h). However, VLA radio maps at 3.6 cm reveal that the foreground galaxy lenses one © the quasar's radio lobes into a ring having an ansular diameter of 21 " (cf. the ontour levels in Fig. 6h). From the angular size of the radio ring, it is easy to show (c. Ecy (3)) that the mass of the deflecting palaxy (projected inside the ring) is about $310^{11} h_{50}^{-1} M_{0}$
5.1.3. Giant luminous arcs and arclets

We shall now describe a last class of lensing phenomena consisting of the fascinating optical giant luminous ares and arclets.

The first giant luminous arcs (angular extent $\simeq 20$ ", angular width ≤ 0.5 ") were discovered serendipitously in 1986 by Soucail and Fort and by Lynds and Petrosian plus their collaborators, in the centres of rich clusters of galaxies (mass $\simeq 10^{14} M_{\mathrm{C}}$). As suggested by Paczyński (1987), the measurement of several arc redshifts has confirmed that they result from the gravilational lens distortions of distant background galaxies by rid foreground clusters acting as lenses (cf. Fig 5.f). Up to now, about 10 giant ares, whose surface brightness is only about one tenth of the sky brightness, have been identified in rich clusters; half of them have a measured redshift which, in all cases, is arger than that of the cluster.
Abell 370: The A370 arc (see Fig. 6i) has been found to be the gravitational mage of a background source $(z=0.72)$. This source is most probably a nearly edgeon spiral galaxy, lensed by a rich foreground cluster $(z=0.37)$.

Cl2244-02: The core of the cluster Cl2244-02 seems to be dominated by galaxies che consists of the gravitationally lensed image(s) of a background source, which is probconsist of the gang galaxy at redshift $z=2.238$. This is one of the most distant and clearly shows how gravitational lenses ges as cosmic telescopes to detect very faint and distant galaxies.

6. COSMOLOGICAL AND ASTROPHYSICAL APPLICATIONS

6.1. Determination of the Hubble constant H_{o} and the mass of the lens

We shall address now one of the most interesting cosmological applications of grave suan a the measurement itational lensing: the determination of the Hubble constant H_{o} via the measus. We of the time delay Δt between the observed lightcurves of multiply imaged QSOs. We discuss hereafter the wavefront method for the case of a symmetric lens as it was first proposed, although in a slightly less obvious form, by Refsdal (1964a, b); a somewhat clearer presentation has been given by Chang and Ressdal (1976). An alternative way of calculating Δt was suggested by Cooke and Kantowski (1975), they showed that the time delay could be split into two parts, a geometrical time delay and a potential time delay.
With the wavefrent methed, a simple expression for Δt can be obtained for the case of an axially symmetric lens by considering the wavefronts from a distant QSO as an symetric lens by considering the waveronss an the symmetry point drawn in Fig. 7. Since the wavefronts are crossing each other at the symmetry point E, they must, represent the same light propagation time and for an observer $($ deance at a distance x from the symmetry axis, the time delay must be cgual to that between the wavefronts at the observer divided by the velocity of light. Noting that $\theta_{A B}$ is very small, we thus obtain from simple triangle geometry

$$
\Delta t \simeq 0_{A B} x c^{-1}
$$

Furthermore, we easily find that

$$
\begin{equation*}
0_{S}=x D_{d s} /\left(D_{d} D_{s}\right) \tag{11}
\end{equation*}
$$

Assuming a deflection law of the type
$\hat{\alpha} \propto \xi^{(k-1)}$
(12)
eiween the impact parameters ξ_{A} and ξ_{B}, we find a simple relation between θ_{A}, θ_{B} and θ_{S}

$$
\begin{equation*}
\theta_{S}=\left(\theta_{A}-\theta_{B}\right)(2-c) / 2 . \tag{13}
\end{equation*}
$$

It is very simple to derive Eq. (13) for the case $\epsilon=1$, and it is also accurate for $\epsilon=0$ and $\epsilon \rightarrow 2$. For intermediate values of ϵ, this equation is not exact but it is nevertheless

figure 7: The wavefront method for the determination of the time delay and making use of the Hubble relation for the deflector and the source

$$
\begin{equation*}
D_{d}=c z_{d} H_{o}^{-1}, D_{s}=c z_{s} H_{o}^{-1}, \tag{14}
\end{equation*}
$$

we can easily derive an expression for H_{o} in terms of observable quantities

$$
\begin{equation*}
H_{o}=\frac{z_{d} z_{s} \theta_{A B}\left(\theta_{A}-\theta_{B}\right)(2-\epsilon)}{\left(z_{s}-z_{d}\right) 2 \Delta t} . \tag{15}
\end{equation*}
$$

For the case of the double quasar $0957+561 \mathrm{~A}$ and B , we know the observed positions $\theta_{A}=5.1$ " and $\theta_{B}=1.04$ ", from which we derive

$$
\begin{equation*}
H_{o}=140(2-\epsilon)\left(\frac{1 \text { year }}{\Delta t}\right) k m s^{-1} \mathrm{Mpc}^{-1} . \tag{16}
\end{equation*}
$$

Based upon a much more sophisticated model which takes into account all available observation and lens positions, redshifts, time delay, luminosity ratios observational data (image and lens Rostinge model for the defecting galaxy, a point and radio data and colco et al. (1991) have derived the following expression for H_{o}

$$
\begin{equation*}
H_{o}=(90 \pm 10)\left(\frac{\sigma_{u}}{390 k m s^{-1}}\right)^{2}\left(\frac{1 \text { year }}{\Delta t}\right) \mathrm{km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \tag{17}
\end{equation*}
$$

, σ_{v} dispersion of the deflecting galaxy. For $\sigma_{v}<390 \mathrm{~km}$ $-^{-1}$, the gatary , the thensing alone; the effects due to the cluster must s^{-1}, the galaxy camot do the whas of course direct consequences for the determination be taken into acoun (15) a of H_{o}. Equations (15) and (16) could also have been generamzed circular disk with a σ_{v} correction term by surface mass density $\epsilon \simeq 1.36, \mathrm{Eq}$. . (16) leads unreasonable in mate mass in the centre derived from their best
which slightly reduces e. Which value on the value $\sigma_{v}=303 \pm 50 \mathrm{~km} \mathrm{~s}$ value should however be increased bers a dispersion. In any effects caused by its probabie dark hater the case, a considerable part of the lensing must also ata campaigns of $0957+561 \mathrm{~A}$ and results from recent optical as wol 1.55 (Press et al. 1991), although a value 13 seem to indicate a time deay of ± 0. Inserting in near 1.14 yr camot yet be totally excluded (vanderriest et al. 1at). Iection factor Eq. (17) all these data and taking into accoun a mall cosmog is in good agreement with (about $\pm 10 \%$), we finally end up with a
in a somewhat better agreement with the 'school' that favors a low value for H_{o}. Please note that since the observed separation ($\simeq 2 \alpha_{o}$) between multiply lensed images scales $\sqrt{M H_{0}}$ (see Section 4.2.1.) and making use of the simple relation between the as $\sqrt{M H_{o} \text { (see Section 4.2.1.) and making use of the simple relation between the }}$ time delay Δt and H_{o} (i.e. $\Delta t \propto H_{o}^{-1}$, c. Eq. (15)), one may determine the mass M of the galaxy deflector, located within an angular radius $\left(\theta_{A}+\theta_{B}\right) / 2$, from the direct measurement of the time delay Δt, irrespective of the Hubble constant. A more detailed examination shows that this mass determination is also independent of the resence of the cluster and of the cosmological model (Borgeest 1986). For the case of $957+561$, Borgeest has derived the lens mass $M=(1.1 \pm 0.2) 10^{12}(\Delta t / 1.45 \mathrm{yr}) M_{\odot}$. We note however that the determination of H_{o} may be strongly influenced by the luster. Due to a degeneracy in the estimate of system parameters (Gorenstein et al. C 0957+561 1 and B. This is an important and general result, also valid when more as han
 an le forited measements of the velocity field elocity field
6.2. Micro-lensing
6.2.1. Generalities

We come now to another interesting aspect of lensing phenomena, the so-called micro-lensing due to individual stars (Chang and Refsdal 1979), or other compact objects having a similar or even a lower mass, usually located in a galaxy which acts as a macro-gravitational lens. Since the angular sizes of quasars are smaller than, as a macro-gravitational lens. Since the anguar sizes of quasars are smanter than, QSO macro-image into several micro-images, with typical angular separations of some micro-arcsec. Of course, these are not resolvable with techniques avalable today; micro-arcsec. in course, these are not resolvabe with techniques avalable today; however, the integrated luminosity observed for all those micro-images will vary with
time due to the transverse motions of the stars. It is therefore an important and very ime due to the transverse motions of the stars. It is therefore an important and very ine so-called ray plot diagram (Kayser et al. 1986), which consists in a mapping of a regular grid of points in the deflector plane onto the observer plane (source plane). One regular grid of points in the deflector plane onto the observer plane (source plane). One
can easily show that, apart from a scaling factor, the ray plots in the observer plane can easily show that, apart from a scaling factor, the ray plots in the observer plane
are identical to those in the source plane. An example of such a diagram, constructed are identical to those in the source plane. An example of such a diagram, constructed
by a simpleminded ray shooting (inverse ray shooting), is shown in Fis, 8 where the by a simpleminded ray shooting (inverse ray shooting), is shown in Fig. 8 where the randomy distributed stars, here all with the same mass M, correspond to an optical a fraction 0.4 of the sky and that the smoothed out surface mass density of the stars is $0.4 \Sigma_{\text {crit }}$.

The density of points in a ray plot is directly proportional to the flux of the amplified macro-image under consideration if the source is point-like. For extended sources with a constant surface brightness, the flux is simply proportional to the number of points covered by the source. It is interesting to see that the same diamond shaped austic structures appear in the ray plot as in the optical lens experiment. Now, howver, the diamond shaped caustics are obviously distorted by the neighbouring stars. If we neglect the motions of the deflecting stars relative to one another, the correponding ray plot will not change with time. However, due to the relative transverse motion between the source, the star field and the observer, the source will move across the ray plot, causing a variation of its brightness with time. It thus becomes clear hat light variations caused by micro-lensing are greater and faster for small sources han for large ones, as clearly seen in Fig. 8. These lightcurves were constructed by hoving sources with different sizes along the middle track indicated in the ray plot. The length unit in the ray plot diagram was chosen to be the radius of the Einstein The length unit in the ray plot diagram which for cosmological distances is typically $x_{o}^{\prime}=\left(D_{s} / D_{d}\right) \xi_{o}=0.01 \sqrt{M / M_{\odot}} \mathrm{pc}$, corresponding to a time scale of

$$
\begin{equation*}
t_{o}=x_{o}^{\prime} / V^{\prime} \simeq 20 y r \sqrt{M / M_{\odot}}\left(600 \mathrm{~km} \mathrm{~s}^{-1} / V^{\prime}\right), \tag{19}
\end{equation*}
$$

where V^{\prime} is the effective transverse velocity in the source planc; compare with Eq. (9). Since micro-lensing variability occurs independently for the different macro-images, his effect may complicate the determination of the time delay from the observed this effect may complicate the determination on tro-lensed images, one must consider with caution the observed luminosity ratios of compact sources. Note, however, that the observed positions of the macro-lensed images are little affected by micro-lensing. Gravitational lenses are basically achromatic but since the amplification factor Gravitational lenses are basically achromatic but since the amplification factor if the micro-lensing depends on the source size, indirect chromatic effects may result if the source size depends on wavelength. In particure differently magnified, causing the (much larger) broad emission-line regions may be lines observed in the spectra of differences between the equivales. Even small differences in the emission-line profiles may occur.
he macro-images. Even small differences in the emission-line profies may occur.
The best candidates expected to show strong micro-lensing effects are those quasars already multiply imaged (macro-lensing). Indeed, since we know that there is so much mass located between the lensed images, we may reasonably expect a lags is in the depth for micro-lensing. Only if a very small fraction of the lensing mass is in the form of compact onjects or he centre of the macro-ens, shoun wed a Photometric montoring on mutper to get information on dank in such stur.s. 6 micro-Hidh Mennifation Wuets (HME)
6.2.2. High Magnificalzon Events (HMEs)

Of special interest are the so-called high amplification events (HAEs) which occur

Figure 8: Ray plot diagram (above) for an optical depth $\tau=0.4$ and corresponding lightarves (below) for three different sources with radii $\simeq x_{o}^{\prime}, 0.1 x_{o}^{\prime}$ and $0.01 x_{o}^{\prime}$, respectively. The simulated lightcurves correspond to motions of the source along the middle track drawn in the ray plot diagram. One unit along the x^{\prime} and y^{\prime} axes corresponds to x_{o}^{\prime}, the radius of the Einstein ring projected onto the source plane. For typical cosmological distances, we expect that one unit in this diagram corresponds to $\simeq 20 \cdot \sqrt{M / M_{\mathrm{e}} y r}$, see Eq. (19).
when the somrce (or observer) crosses a caustic. For compact sources, one gets typical asymmetric peaks in the lighturve of the relevant macro-image (see Fig. 8). We saw in our optical lens experiment that the number of micro-images then changes by two. Thus an HAE resembles an edipse phenomenon. It is then obvious that the time scale of for the steep rise (or dedine) of the lightarve is given by

$$
\partial \simeq \simeq 2 R_{s} / V_{N}^{\prime}
$$

where V_{*}^{\prime} is the component of V^{\prime} along the normal to the caustic and $R_{\text {s }}$, the radius where s is we Whall see herealter how it is possible to infer independently the of the sonce. y^{\prime} sud that $R_{\text {s }}$ can be determined. By analysing the lightenve observed value of an AE , it becomes then eren possible to retrieve the intrinsic one-dimensional brightncss profile of the source following a method similar to that used for stellar beliping binarics (Grieger el al. 1988). However, in contrast to a normal eclipse, we echpsing into accoum the increasing amplifation μ of the merging micro-images as must take into account the increasing amplifation μ of ine distance to the caustic; the source approaches the caustic (μ of $d^{-1 / 2}$, where d is the distance to the caustic, thown that one dimensional profiles can usually be retrieved for sources whose radius shom thaty: less than one tenth of the projected Einstein radius, which corresponds to a few light days for solar mass stars and cosmological distances (Grieger et al. 1988).
6.2.3. The parallax offect
2.3. The parallax offect microtensing causes flux gradients in the observer plane,
We have nust seen that mis so that a brightuess difference

$$
\delta m=\operatorname{grad}(m) \delta \vec{r}
$$

is observed by two observers located at a distance $\delta \vec{r}$ from each other. This effect is often referred to as the parallax effect. (Grieger et al. 1986). Expected values of rad (m) are typically between $10^{-1} \mathrm{AU} U^{-1}$ and $10^{-3} \mathrm{~A} U^{-1}$, but during HABs values ap to $10^{-2} \mathrm{~A} U^{-1}$ may be reached (assuming that $R_{s} \simeq 10^{-3}$ pe and $M \simeq M_{0}$). For two observers (1 and 2) located some , H apart, it slould then be possible to determine the time lag $\delta h_{1,2}$ between the photometric lighturves recorded during an HAE and thereby get information on the velocity V_{N} (perpendicular component to hre local caustic Langem.) Dy which the caustic is sweeping through the solar system. Neglecting the "small" velocity of the observers relative to the Sun and the very small curvature of the caustic, we get

$$
\begin{equation*}
V_{N}=r_{1,2} \sin (\beta) / \delta t_{1,2} \leq r_{1,2} / \delta l_{1,2}, \tag{22}
\end{equation*}
$$

where $r_{1,2}$ represems the projected distance between the observers into the observer plane (perpendicular to the line-of sight) and β is the angle between the line connecting plane (perpendictar two olservers and the caustic. Since β is not known, we obtain an upper limit on Yis the pesence of a thind observer (3), a second time lag may be derived and it
then becomes possible to get a point value for V_{N}. Taking into account the redshifts of the source and of the lens and assuming a cosmological model, we can determine V_{N}^{\prime} (in the source plane) and thereby R_{s} from Eq. (20). We note that such velocity determinations have a great value in themselves since they should also allow one to probe possible deviations from the Hubble flow. Assuming V_{N}^{\prime} to be about 600 km s^{-1}, we note that this corresponds to approximately one $A U$ in 3 days; one would therefore expect a time lag of about one month between a terrestrial observer and an observer located close to Saturn.

From the known micro-lensing variability ($\simeq 0.1 \mathrm{mag} / \mathrm{month}$) reported for the A image in the Einstein Cross ($2237+0305$, see Section 5.1.1.), it is clear that simultaneous observations of this system with even a modest space observatory passing near Saturn should allow one to measure the time lag δ t.

An interesting point in connection with the measurement of a time lag is that it would immmediately prove that we are dealing with micro-lensing variability and not with intrinsic variations since the latter ones would only produce extremely small time lags which can easily be corrected for. This is particularly important for sources with only one macro-image since then the distinction between the two types of vaviability is very difficult to establish by other means.

Considering baselines of the order of 100 AU or even larger, we expect that most distant quasars should show small brightness differences. Observations of a large number of quasars would then provide very valuable information on the mass distribution in the Universe (masses between $\simeq 0.001 M_{\mathcal{C}}$ and $\simeq 100 M_{\mathcal{C}}$). One should note that the space observatories needed to achieve these goals could be mostly dedicated to other scientific projects and that the applications suggested here would just consist in by-products of great astrophysical importance.
6.3. Search for dark matter

Various types of lens observations can provide us with information on dark matter in the Universe. This is a field which is still in its infancy, but with a great promise for the future.
6.3.1. Search for compact lenses

As already discussed in Section 4.2.2., the frequency of multiply imaged sources (e.g. quasars) depends on the cosmological density parameter Ω_{L} of compact objects. Lef us however note that a magnification bias may strongly influence the results de rived from flux limited samples of quasars (cf. Section 5). Since the highest angular resolution achievable today is slighty below $10^{-3 n}(V L B I)$, masses down to $10^{4} M_{0}$ can in principle be searched for at cosmological distances; see Eq. (3). From presently known surveys of quasars, Surdej et al. (1992) conclude that $\Omega_{L}<0.02$ in the mass
range $10^{10.6} M-10^{11.8} M$, Tange $10^{10.6} M_{\odot}-10^{11.8} M_{\odot}$, with a 99.7% confidence level. From the VLA snapshot survey (resolution $\simeq 0.3^{\prime \prime}$), lensing compact objects with masses down to $\simeq 10^{10} M_{\mathrm{O}}$ may be searched for, and the conclusion is similar: the density of compact objects is
well below the critical density $\left(\Omega_{L} \ll 1\right)$. VLBI observations seem to exclude $\Omega_{L} \geq 1$ for masses down to about $10^{5} M_{\odot}$, but many more observations are needed in order to better constrain limits on Ω_{L}.
An original way of searching for compact objects in the Universe with a mass in An range $10^{-3} M_{\odot}-100 M_{\odot}$ is based upon the detection of micro-lensing effects which produce characteristic light variations of distant compact sources (cf. quasars). Particularly promising are the multiply (macro-) imaged quasars whose lensing galaxy should have a large optical depth for micro-lensing. We expect that imporan section mation on the nature of dark matter in these galaxies will be derived (see also Section 6.2.1.). For single isolated quasars, it is however more difficult to distinguish micro lensing variability from intrinsic light variations, and observations of a large number of quasars over many years are in any case necessary in order to set reasonable limits on Ω_{L}.

As mentioned in Section 6.2.3, the parallax effect with a large baseline ($\simeq 100 \mathrm{AU}$) also offers very exciting possibilities to "detect" compact masses in the range given above.
6.3.2. Luminous arcs and arclets

As seen in Section 5.1.3., the angular radius of the huminous arcs observed near rich foreground clusters is typically $20^{\prime \prime}$ and the mass inside the corresponding Einstein ring must therefore be about $10^{14} M_{0}$. This gives already strong evidence for the presence of large amounts of dark matter in the clusters and/or in the lensing galaxy lying close to the center of the arc.

Since giant luminous arcs represent cases of strong lensing by clusters, we know that cases of weak lensing of background galaxies must occur much more frequently. The main effect of such a weak lensing consists in a slight distortion of the lensed galaxies. This is however difficult to measure because the intrinsic distortion may vary from source to source. By looking at a large number of faint galaxies behind rich clusters, Tyson (1985) found however that the galaxies were preferentially stretched tangentially relative to the cluster centre (if their observed axis ratio is greater than 2 , one usuall. call these "arclets"). Such a distortion is actually what one expects from the lensing effect of the cluster. For a few rich clusters, it has already been possible to estimate their mass from the direct observation and analysis of such arclets. This has only been possible because of the large surface density of faint galaxies that exist everywhere in the sky (about 30 per square arcmin. as reported by Tyson). Furthermore, since these galaxies have different colors (being generally bluer) than those of the cluster members, they can easily be distinguished from the latter ones. Following the success by various theoreticians in fitting gravitational lens models to the observed giant lummous arcs and arclets, it has become clear that the mass responsible for these is characterized by high mass-to-light ratios ($\geq 100 M_{\odot} / L_{\odot}$), confirming that at least 90% of the mather is unseen in rich galaxy clusters, in agreement with the values obtained from the somewhat uncertain application of the virial theorem. The studies of arcs and arclets thus provide a new powerful tool for probing the distribution of visible and dark matter
in the Universe. This new type of astrophysical application has been recently reviewed by Tyson (1991)

With the new generation of large format CCDs which will come soon into operation, it should be possible to look for systematic deformation effects of very faint galaxies over large areas of the sky, therely providing important information on the large scale mass distribution in the Universe.
6.4. Probing the intergalactic medium

Since the light rays associated with the multiply lensed images of a distant quasar have travelled along different lines of sight through the intergalactic medium, it appears very interesting to probe the size and the structure of various types of intergalactic gas clouds by just identifying the number of coincidences and anti-coincidences of narrow absorption lines detected in the spectrum of the multiple QSO images. In doing so, Smette et al. (1992) have reported a study of the Lyo forest on the basis of high resolution spectra obtained at MMTO, ESO and CTIO for the A and B images of he gravitationally lensed high-redshift quasar 0142-100 (cf. Section 5.1.). They have derived a best value of $12 h_{50}^{-1} \mathrm{kpc}\left(q_{0}=0\right)$ for the 2σ lower limit of the diameter of derived a best value or $12 h_{50} \mathrm{kpc}\left(q_{\circ}=0\right.$ for Lyo clouds. Similar studies of other gravitational lens systems $(2345+007$, see Foltz et al. 1984 and Steidel and Sargent 1991) will enable one to set more stringent constraints on the size of Lyo and heavy element absorption line clouds in the near future.

7. CONCLUSIONS

Just 12 years after their discovery, gravitational lenses constitute today a major field of astronomical research. Theoretical modeling of these enigmatic systems have already provided us with important astrophysical and cosmological information, not attainable in any other way. When looking towards the future, it is also clear that only few fields of astronomy other than gravitational lensing will profit as much from the next generation of large telescopes: for instance, very detailed observations of arcs and ardets will become feasible thanks to the large collecting area of future VLITs, and the study of multiply imaged quasars with small separations will benefit directly from the high map are being la are ing ine of very interesting field of research. Let us fimally stress again the great need for a fully with particular emphasis on the monitoring of multiply imaged sources.

30
Acknowledgements: We should like to address our thanks to the executive comAcknowledgements: We surgested the title of the present talk, and also to the mittee of the IAU for having suggested the tite Schmidt (Optical Laboratory from the IAU Local Organizing Committee and to Dr. Schme University of Buenos Aires) for their help in collecting pariment in Buenos Aires. Our been used during the presentation of the optical ens experiment in Buenos Aires. Oun the thanks go also to Ulf Borgeest, Rolf Stabell and Jean-Pierre Swing (ow G. Langston, manuscript, to J. Hazlehurst for valuable advice, to J. Arnaud, J. Hew J. Lehar, G. Lelièvre and G. Soucail for providing us with sides of Gome of the figures. Fig. 6, and to J. Bosseloirs and J. Beonkens for the preparation or some (DFG), the Part of this research has been supported by the (FNRS) and ARC 90/94-140 "Actions Belgian National an Commanté Francaise de Belgique"
e recherche concertée de la Communauté Française de Belgique"

References:
Angonin, M.C., Remy, M., Surdej, J., Vanderriest, C.: 1990, Astron. Astrophys. Letters 233, L5-L. 8 .
Blandford, R.D., Narayan, R.: 1992, preprint, to appear in Annual Review of Astron. Astrophys.
Borgeest, U.: 1986, Astrophys. J. 309, 467.
Borgeest, U., van Linde, J., Refsdal, S.: 1991, Astron. Astrophys. 251, L35. Bourassa, R.R., Kantowski, R., Norton, T.D.: 1973, Astrophys. J. 185, 747. Burke, W.L.: 1981, Astrophys. J. 244, L1.
Chang, K., Refsdal, S.: 1976 , Colloques Int. du C.N.R.S., 263, 369.
Chang, K., Refsdal, S.: 1979, Nature 282, 561
Chwolson, O.: 1924, Astr. Nachr. 221, 329.
Cooke, J.H., Kantowski, R.: 1975, Astrophys. J. 195, L11.
Dyer, C.C., Roeder, R.C.: 1972, Astrophys. J. 174, L115.
Dyson, F.W., Eddington, A.S., Davidson, C.R.: 1920, Phil. Trans. Roy. Soc. 220A, 291; Mem. Roy. Astron. Soc. 62, 291.
Falco, E.E., Gorenstein, M.V., Shapiro, I.I.: 1991, Astrophys. J. 372, 364. Foltz, C.B., Weymann, R...., Roeser, H.J., Chaffee, F.H.: 1984, Astrophys. J. 281, L1: Gorenstein, M.V., Falco, E.E., Shapiro, I.I.: 1988, Astrophys. J. 327, 693. Grieger, B., Kayser, R., Refsdal, S.: 1986, Nature 324, 126.
Grieger, B., Kayser, R., Refsdal, S.: 1988, Astron. Astrophys. 194, 54.

Hammer, F., Le Fèvre, O.: 1990, Astrophys. J. 357, 38.
Hewitt, J., Turner, E.L., Burke, B.F., Lawrence, C.R., Bennett, C.L., Langston, J.I., Gumn, J.E.: 1987, in "Observational Cosmology", p. 751
Hewitt, J.N., Turner, E.L., Schneider, D.P., Burke, B.F., Langston, G.I., Lawrence, C.R.: 1988, Nature 333, 537.

Huchra, J., Gorenstein, M., Kent, S., Shapiro, I., Smith, G., Horine, E., Perley, R.: 1985, Astron. J. 90, 691.
Irwin, M.J., Webster, R.L., Hewett, P.C., Corrigan, R.T., Jedreejewski, R.I.: 1989 Astron. J. $98,1989$.
Kayser, R., Refsdal, S., Stabell, R.: 1986, Astron. Astrophys. 166, 36.
Kayser, R., Refsdal, S.: 1989, Nature 338, 746.
Klimov, Y.G.: 1963, Sov. Phys. Doklady 8, 119.
Kochanek, C.S., Blandford, R.D., Lawrence, C.R., Narayan, R.: 1989, Monthly Notices Roy. Astron. Soc. 238, 43.
Langston, G.I., Schneider, D.P., Conner, S., Carilli, C.L., Lehár, J., Burke, B.F., Langston, G.1., Schneider, D.P., Conner, S., Carilli, C.L., Lehár, J., Burke,
Turner, E.L., Gum, J.E., Hewitt, J.N., Schmidt, M.: 1989, Astron. J. 97,1283 . Lelièvre, G., Nieto, J.-L., Salmon, D.: 1988, Astron. Astrophys. 200, 301.
Jiebes, S.: 1964, Phys. Rev. B133, 835.
Lynds, R., Petrosian, V.: 1986, Bull. Am. Astron. Soc. 18, 1014
Magain, P., Surdej, J., Swings, J.-P., Borgeest, U., Kayser, R., Kühr, H., Refsdal, S., Remy, M.: 1988, Nature 334, 325.
Paczyński, B.: 1986, Astrophys. J. 304, 1.
Pacyyński, B.: 1987, Nature 325, 572.
Press, W.il., Gumn, J.E.: 1973, Astrophys. J. 185, 397.
Press, W.I., Rybicki, G.B., Hewitt, J.N.: 1991, CfA preprint 3230.
Refsdal, S.: 1964a, Monthly Notices Roy. Astron. Soc. 128, 295.
Refsdal, S.: 1964b, Monthly Notices Roy. Astron. Soc. 128, 307.
Refsda, S.: 1965, Proc. of the Int. Conf. on Relativistic Theories of Gravitation, London.
Refsdal, S.: 1966a, Monthly Notices Roy. Astron. Soc. 132, 101
Refsdal, S.: 1966b, Monthly Notices Roy. Astron. Soc. 134, 315.
Refsdal, S.: 1970, Astrophys. J. 159, 357.
Rhee, G.: 1991, Nature 350, 211.

Schneider, P., Ehlers, J., Falco, E.E.: 1992, "Gravitational Lensing", Springer-Verlag, in press.
Smette, A., Surdej, J., Shaver, P.A., Foltz, C.B., Chaffee, F.H., Weymann, R.J., Smette, A., Surdej,
Soucail, G., Mellier, Y., Fort, B., Hammer, F., Mathez, G.: 1987, Astron. Astrophys. 184, L7.
Steidel, C.C., Sargent, W.L.W.: 1991, Astron. J., in press.
Surdej, J., Magain, P., Swings, J.-P., Borgcest, U., Courvoisier, T.J.-L., Kayser, R., Kellermann, K.I., Kuhr, H., Reisdal, S.: 1987, Nature 329, 695.
Surdej, J., Swings, J.P., Magain, P., Borgeest, U., Kayser, R., Refsdal, S., Courvoisier, T.J.-L., Kellermann, K.I., Kühr, H.: 1988, in the proceedings of a work
"Optical surveys for quasars", Astron. Soc. of the Pac. Conf. Series 2, 183.
Surdej, J., Clacskens, J.F., Hutsemékers, D., Magain, P., Pirenne, B.: 1992, Proc. of the Hamburg Int. Conf. on Gravitational Lenses, Lecture Notes in Physics, Springer-Verlag, in press.
Tyson, J.A.: 1985, Nature 316, 799.
Tyson, J.A.: 1991, preprint.
Vanderriest, C., Gosset, E., Remy, M., Swings, J.P.: 1992, Proc. of the Hamburg Int. Conf. on Gravitational Lenses, Lecture Notes in Physics, Springer-Verlag, in press. Walsh, D., Carswell, R.F., Weymann, R.J.: 1979, Nature 279, 381.
Wambsganss, J., Paczyński, B., Schneider, P.: 1990, Astrophys. J. 358, L33.
Weymann, R.J., Latham, D., Angel, J.R.P., Green, R.F., Liebert, J.W., Turnshek, D.A., 'Turnshek, D.E., Tyson, J.A.: 1980, Nature 285, 641
Zel'dovich, Y.B.: 1964, Soviet Astron. 8, 13.
Zwicky, F.: 1937a, Phys. Rev. Lett. 51, 290.
Zwicky, F.: 1937b, Plys. Rev. Lett. 51, 679.

VOYAGER: A RETROSPECTIVE

> Bradford A. Smith University of Hawaii Institute for Astronomy 2680 Woodlawn Drive Hoonolulu, HI 96822 USA

ABSTRACT. Within the brief span of a decade, from 1979 to 1989 , the Voyager spacecraff visited the four giant planets - Jupiter, Saturn, Uranus and Neptune - along with their satellites and their rings. The science return from these two spacecratt forever changed our views of this remote region of our solar system. Often overlooked, however, is the incremental gain in knowledge from these
encounters over that which had been known in the early 1970 s when the Voyager project first came encounters over that which had been known in the early 1970 s when the Voyager project first came
into being. From a post-Voyager perspective, it is astonishing how little was known about the outer into being. From a post-Voyager perspective, it is astonishing how little was known about the outer
planets just a mere two decades ago. Yet, with all of the knowledge that the space program has planets just a mere two decades ago. Yet, with all of the knowledge that the space program has brought us, there remain a number of unanswered questions and a great many new ones that have
been posed as a result of this wealth of new information. Discussed here is summary of the results of the Voyager imaging cameras together with some of the many new questions that subsequentiy have been raised.

1. Introduction

It was nearly two decades ago that we, as a community of scientists, reluctantly turned our backs on human exploration of the moon and turned our expectations to the outer solar system. Preparations were then being made to launch two Pioneer spacecraft to Jupiter, and planning was well underway for a "Grand Tour" of the entire outer solar system, making use of a rare planetary alignment that would take place in the year 1977. The fiscal realities of the times, that would explore only the two most accessible of the outer planets. On July 1st, 1972 Mariner Jupiter/Saturn, or MJS as it was called, became an approved NASA project, and within six months, even as the Apollo 17 astronauts were bidding a final farewell to the moon, the first of the MIS science planning meetings was already taking place.
Our keen disappointment in the cutback, which might otherwise have dampened those early Saumn trajectory mated by the knowledge that any spacecraft launched on the right se early and Neplume a in 1977 would also have the capability of continuing onward to both Uranus legislapivene, a fact that may or may not have been understood by the administrative and legislative committees that killed the Grand Tour and substituted MJS. Two identical Marinerclass spacecraft were to be sent to Jupiter and Saturn, and throughout our five years of plaming, we carefully held open all options for at least one of them to go beyond. In 1977 approval was given to send Voyaser 2 onward from Saturn out after lau and
\pm Bergeronn (ed.). Hightitights of Astronomy, Vol. $9,33-42$.

