Rainfall - Soil moisture response in relation to land use in steep tropical environments: field-based research in NW-Rwanda

Pascal Sibomana ^{1,2}, Matthias Vanmaercke ^{1,3}, Déogratias Nahayo ^{2,4}, Judith Uwihirwe ^{5,6}, Thom Bogaard⁵, Aurélia Hubert ¹, Emmanuel Rukundo ², Bernard Tychon ⁴, Olivier Dewitte ⁷

¹ Department of Geography, University of Liège, Liège, Belgium, ² Department of Civil Engineering, INES-Ruhengeri, Musanze, Rwanda, ³ Department of Earth and Environmental Sciences, KU Leuven, Belgium, ⁴ Department of Environmental Sciences and Management, University of Liège, Belgium, ⁵ Department of Water Management, Delft University of Technology, Delft, The Netherlands, ⁶ Department of Irrigation and Drainage, University of Rwanda, Musanze, Rwanda, ⁷ Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium.

Young Soil Scientists Day 'Future challenges for soil scientist'

museum

Context

- Many tropical regions are strongly affected by landslides due to their intense rainfall and weathering rates, specifically in zones with steep topography and/or tectonic activity (Nsengiyumva et al., 2018).
- For example, the steep sloped environments of the Northern-western provinces of Rwanda are often affected by severe cases of rainfalltriggered shallow landslides. These landslides often lead to severe direct (and indirect) impacts.
- The high demographic pressure of this area and its associated impacts on land use/cover (e.g. deforestation) strongly aggravates this problem. This because the actually triggering of rainfall-induced landslides largely depends on local soil moisture conditions.

Study area: Mukungwa and Sebeya catchments (NW provinces of Rwanda); **2,070 km**²

* There is therefore a large need to better understand and predict the conditions that trigger landslides and, specifically, the relation

between rainfall, soil type, land cover/use and soil moisture.

The objective of my PhD will be:

To better quantify and understand the relation between rainfall and soil moisture and how this is influenced by weather patterns, soil

characteristics, land use/management and topography.

Methodology

We recently installed equipment along six hillslope transects, reflecting different soil types and land use/cover that are representative for the

study area. More specifically, we selected forested, cultivated and terraced hillslopes on both a sandy and a clayey soil.

The following activities are conducted at each site:

- Monitoring of spatial variation of soil moisture: Around 10 access tubes of 100 cm depth were installed at each transect;
- Monitoring of temporal soil moisture: 3 soil moisture sensors (Ech20 10HS) were installed at each site at the depth of 30 cm, 60 cm, and 100 cm.
- Measuring groundwater fluctuations: 1 piezometer, equipped with TD-Diver was installed on each site.
- Measurement of rainfall: 5 automatic rain gages were installed near the experimental hillslopes.

Experiment setup

a) Landscape of cultivated hillslope in sandy soil, b) Installation of soil moisture sensors, c) Installed piezometer, d) Automatic rain gage, e) PRD-SDI12 its HH2 moisture.

Frequency of monitoring :

-Spatial variation of soil moisture content : everyday and at each access tube 18 measurements are taken

-Temporal variation of soil moisture content: on each hillslope 3 measurements are recorded for each 15 minutes

-Groundwater fluctuation: on each hillslope the water level is recorded at each hour

-Rainfall: Rain gages record the data each 15 minutes

REFERENCES

Nsengiyumva, J. B., Luo, G., Nahayo, L., Huang, X., & Cai, P. (2018). Landslide susceptibility assessment using spatial multi-criteria evaluation model in Rwanda. International Journal of Environmental Research and Public Health, 15(2). https://doi.org/10.3390/ijerph15020243