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Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively
applied as a prebiotic. The objective of this study was to investigate the effect of XOS
supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut
microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total
of 180 weaned piglets were randomly allocated to three treatments for 28 days, as
follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and
positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the
piglets in the XOS500 group improved body weight (BW) on days 28, average daily
gain (ADG) and reduced feed: gain ratio during days 1–28 (P < 0.05). The XOS500
supplementation increased Villus height and Villus height: Crypt depth ratio in the
ileum (P < 0.05). Villus Height: Crypt Depth of the ileum was also increased in the
CTC treatment group (P < 0.05). Meanwhile, the XOS500 supplementation increased
significantly the numbers of goblet cells in the crypt of the cecum. High-throughput
16S rRNA gene sequencing revealed distinct differences in microbial compositions
between the ileum and cecum. XOS500 supplementation significantly increased the
bacterial diversity. However, CTC treatment markedly reduced the microbial diversity
(P < 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased
the abundance of Lactobacillus genus compared to the CON and CTC group in
the ileum and cecum (P < 0.01), whereas the level of Clostridium_sensu_stricto_1,
Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly
lower than the CON and CTC group (P < 0.05). In addition, dietary supplementation with
XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate
concentrations and decreased the acetate concentration compared to the CON group
in the cecum (P < 0.05). In summary, dietary supplemented with XOS500 could enhance
specific beneficial microbiota abundance and decrease harmful microbiota abundance
to maintain the structure of the intestinal morphology and improve growth performance
of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed
antibiotics in weaned piglets in modern husbandry.
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INTRODUCTION

Weaning piglets in modern swine industry are often challenged
by post-weaning stresses including dietary, social, and
environmental changes. These stresses result in increasing
disease and mortality risks, reducing growth rates and rising
impairment of the intestinal microbiota. Every year, 17% of
piglets born in Europe died during weaning due to opportunistic
pathogen infection (Gresse et al., 2017). China is the biggest
pork producer and consumer in the world but about 24 million
weaning piglets every year die from diarrhea due to inappropriate
treatment during weaning (Wang T. et al., 2019).

Antibiotics were widely used in weanling piglets to promote
animal growth and prevent infections (Cromwell, 2002; Wijtten
et al., 2011; Hu et al., 2020). However, the addition of
antibiotics in feed can result in changes in the intestinal
microbiota due to its broad-spectrum antibacterial activity
(Neuman et al., 2018). In addition, antibiotics resistance
and antimicrobial residues has become a major threat in
treating pathogenic bacterial infections (Toutain et al., 2016).
For example, apramycin sulfate was widely used in China
to prevent piglet diarrhea, however, taking apramycin might
cause cross-resistance of apramycin/gentamicin in Escherichia
coli and S. enteritidis (Herrero-Fresno et al., 2016). For these
reasons, the European Commission decided to ban the use of
antibiotics as feed additives since January 2006 due to the risk
of spreading antibiotic resistance (Smith et al., 2010). Other
countries are also trying to gradually reduce or forbid use
of feed antibiotics. For instance, the use of colistin sulfate
as feed additives in animal diets has been banned in China
since April, 2017 and India since July, 2019 (Wang Y. et al.,
2020). Therefore, it is urgent to develop novel alternatives to
antibiotic feed additives.

Recently, several alternatives to antibiotics were reported
to maintain swine health and improve growth performance,
including probiotics, prebiotics, acidifiers, and essential oils
(Gresse et al., 2017; Wang W. et al., 2019). Prebiotics are
defined as a substrate that is selectively utilized by host
microorganisms conferring benefits upon host health (Gibson
et al., 2017). Callaway et al. (2008) showed that prebiotics are
a preferable alternative to antibiotics. Commercially available
prebiotics mainly include xylo-oligosaccharides (XOS), fructo-
oligosaccharides (Mikkelsen et al., 2003), inulin (Mair et al.,
2010), mannan-oligosaccharides (Zhao et al., 2012), galacto-
oligosaccharides (Alizadeh et al., 2015), and transgalacto-
oligosaccharides (Mikkelsen and Jensen, 2004). XOS are sugar
oligomers made up of 2–6 xylose units linked through β-(1→4)-
linkages (Samanta et al., 2015). XOS has been demonstrated to
improve animal health, growth performance, and enhance the
role of endogenous beneficial microbiota, such as bifidobacterium
and lactic acid bacteria in the gut (Gobinath et al., 2010; De
Maesschalck et al., 2015; Yang et al., 2015). However, the effect
of XOS as antibiotic substitution in weaned piglets has not been
reported until now. Therefore, this study aimed to investigate
the effects of dietary supplementation with XOS as potential
replacements for antibiotic on the growth, gut morphology, gut
microbiota, and hindgut SCFA contents of weaned piglets.

MATERIALS AND METHODS

Animals and Experimental Design
This study was approved by the Animal Welfare Committee of
Institute of Animal Sciences, Chinese Academy of Agriculture
Sciences (IASCAAS). All animal treatments in this study were
performed according to the guidelines of the Animal Care and
Use Committee of the Chinese Academy of Agriculture Sciences
(CAAS). Humane animal care was practiced throughout the
experiments and every effort was made to minimize suffering for
piglets (ethics approval code: IAS2019-34).

A total of 180 healthy weaned piglets
(Duroc × Landrace × Large White, weaned at 28 d of age)
with an average initial body weight (BW) of 8.84 ± 0.25 kg, were
randomly assigned to three treatments based on the BW and
sex. The control group with basal diet without any antibiotics
or prebiotics (CON), and the antibiotic group with basal diet
supplemented with 100 mg/kg pure chlortetracycline (CTC)
were attributed as the positive control group. The XOS treated
group piglets were fed 500 (XOS500) mg/kg corncob-derived
XOS (Longlive Biotechnology Co., Ltd., Shandong, China). This
XOS has a purity of 95% a degree of polymerization (DP) 2–7
and is formed by xylose residues linked through β-(1,4)-linkages
monomeric units. Prior to the trial, no clinical signs of diarrhea
or other diseases were observed in the piglets. All pigs here had
similar husbandry practices. Each treatment had four replicated
pens with 15 pigs per pen. All diets were formulated to provide
all of the nutrients to meet NRC requirements in 2012 (Table 1).
The relative humidity and temperature of the piglet house were
monitored at 60–65% and 25–28◦C, respectively. Piglets were
allowed ad libitum access to feed and water throughout the
experiment for 28 days.

Sample Collection
At 28 days, six piglets from each group were chosen randomly
and euthanized aseptically. Afterward, the entire intestine was
removed from each pig. Segments of the ileum and cecum
flushed with saline were collected. These intestinal segments
were immediately fixed in 4% paraformaldehyde solution and
then embedded in paraffin for morphological examination.
The luminal digesta of the ileum and cecum was collected
aseptically into sterile plastic containers and stored at −80◦C
until processing.

Morphological Examination
PAS staining was performed according to standard protocols
(Shatos et al., 2003). Paraformaldehyde-fixed ileum and cecum
segments taken were then dehydrated with ethanol, embedded in
paraffin, and sectioned (5 µm). After dewaxing and immediately
washing with distilled water for 1 min, the specimens were
immersed in 0.5% periodate solution (Sigma Co.) for 5 min
at room temperature in the dark. Afterward, sections were
immediately washed (30 s × 2) and soaked in Schiff ’s solution
at 37◦C. After 60 min, sections were washed twice with a
sulfuric acid solution then quickly rinsed with distilled water.
The subsequent steps followed the routine protocols of the
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laboratory. The sections were examined using light microscopy.
The villus length, crypt depth and the numbers of goblet
cells were measured by random measurement of 10 villi
and 10 measurements of the crypt per section using DS-
U3 (Nikon, Japan).

Genomic DNA Extraction
For 16S rDNA sequencing, six individuals from eight slaughtered
piglets in every group were selected randomly (n = 6). Microbial
DNA of digesta samples of the cecum was extracted using
the E.Z.N.A. R© soil DNA Kit (Omega Bio-tek, Norcross, GA,
United States) according to the manufacturer’s protocols. The
final DNA concentration and purification were determined by
NanoDrop 2000 UV-vis spectrophotometer (Thermo Scientific,
Wilmington, NC, United States), and DNA quality was evaluated
on 1% agarose gels.

Illumina Mi-seq Sequencing
To analyze the taxonomic composition of the bacterial
community, the V3–V4 hypervariable regions of the
bacterial 16S rRNA gene were amplified with primers 338F

TABLE 1 | Composition and nutrient levels of basal diets (basis).

Item CON

Ingredients (%)

Corn 59.00

Soybean meal 18.40

Fermented soybean meal 5.00

Fish meal 3.00

Soybean oil 2.50

Dried whey 5.00

Sugar 2.00

Glucose 2.00

CaHPO4 0.50

Limestone 0.50

Salt 0.30

Lysine HCl 0.40

Met 0.10

Thr 0.10

Choline chloride 0.10

Anti-mildew agent 0.10

Premix 1.00

Nutrient level

Dry matter (%) 87.80

Crude protein (%) 20.00

Crude fiber (%) 1.60

Neutral detergent fiber (%) 22.90

Acid detergent fiber (%) 3.70

Gross energy (cal/g) 4,563.00

The premix provided the following per kg of diet: vitamin A, 13500 IU; vitamin D3,
2925 IU; vitamin E, 45 mg; vitamin K3, 36.75 mg; vitamin B1, 6.75 mg; vitamin
B2, 11.25 mg; vitamin B6, 7.2 mg; vitamin B12,0.054 mg; nicotinamide, 54 mg;
calcium pantothenate, 15.75 mg; folic acid, 1.8 mg; biotin, 0.342 mg; Fe, 140 mg;
Cu, 20 mg; Zn, 100 mg; Mn, 30 mg; I, 0.4 mg; Se, 0.4 mg.

(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) by thermocycler PCR
system (GeneAmp 9700, ABI, United States). The PCR
reactions were performed with the following program: an initial
denaturation at 95◦C for 3 min, 27 cycles of 30 s at 95◦C,
annealing 55◦C for 30 s, and 45 s for elongation at 72◦C, and
a final extension at 72◦C for 10 min and held at 4◦C. PCR
reactions were performed in triplicate with a final volume of
20 µL mixture containing 4 µL of 5 × FastPfu Buffer, 2 µL of
2.5 mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu
Polymerase and 10 ng of template DNA. The PCR products were
extracted using electrophoresis on 2% agarose gels and further
purified with an AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, United States) and quantified
using QuantiFluorTM-ST (Promega, United States). Purified
amplicons were pooled in equimolar and paired-end sequenced
(2 × 250 bp) on an Illumina MiSeq platform (Illumina, San
Diego, CA, United States) according to the standard protocols.
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China)
carried out the sequencing.

Bioinformatics Analysis
Raw read quality was quality-filtered using the QIIME (version
1.9.01) software package according to the following criteria: (i)
the reads were clipped with an average quality score <20 over
a 50-bp sliding window. (ii) sequences whose overlap being
longer than 10 bp were merged according to their overlap
with mismatch no more than 2 bp. (iii) reads with more than
two nucleotide mismatches in the primer, any mismatch in
barcode, or ambiguous nucleotides were removed. The clean
reads were compared with the reference database using the
UCHIME algorithm to detect chimera sequences (Edgar et al.,
2011). Operational taxonomic units (OTUs) were clustered with
97% similarity level using UPARSE (version 7.12) with a novel
“greedy” algorithm that performs chimera filtering and OTU
clustering simultaneously. The taxonomy of each 16S rRNA gene
sequence was analyzed by RDP Classifier algorithm3 against the
Silva (SSU123) 16S rRNA database using a confidence threshold
of 70%. α-diversity indices including Chao1 value and Shannon
index were determined by the Mothur software package (Schloss
et al., 2009). β-diversity was investigated with QIIME using
principal coordinate analysis (PCoA) based on the Bray Curtis
distance matrix.

Absolute Quantification of Cecal Specific
Bacteria by qPCR
The designs of primers used for absolute quantification of
cecal specific bacteria Lactobacillus, Clostridium_sensu_stricto_1,
and Terrisporobacter via qPCR are shown in Supplementary
Table 1. Tenfold serial dilutions of the genomic DNA of
cecal samples from 10−1 to 10−6 were subjected to qPCR to
generate a standard curve. The qPCR assay of standards, samples,
and no-template control was performed in triplicate on an

1http://qiime.org/index.html
2http://drive5.com/uparse/
3http://rdp.cme.msu.edu/
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Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher
Scientific, United States) with a 96-well format.

The 20 µL reaction mixture contained 10 µL of SYBR Premix
Ex Taq (Tli RNase H Plus; 2 × concentration) from TaKaRa
(Shiga, Japan); 0.5 µL of each 10 µmol/L primer; 7 µL of sterile
DNase-free water; and 2 µL of DNA. The PCR was performed
under the following conditions: 95◦C for 30 s, followed by 40
cycles of 5 s at 95◦C, 40 s at 60◦C, and 20 s at 72◦C. The
fluorescence signal was acquired following the 72◦C extension
phase of each cycle. Melting curve analysis was performed to
check the specificity of the products followed by a cooling step
performed at 95◦C for 10 s, 60◦C for 60 s, and 95◦C for 15 s
(ramp rate of 0.05◦C/s). PCR products that had been resolved on
a 3% agarose gel were checked after ethidium bromide staining to
confirm the specificity of the amplification. Data were analyzed
with ABI 7500 Real-Time PCR software version 2.0.5 using
the second derivate maximum method, which calculates PCR
efficiency in accordance with Pfaffl (2001).

Composition of Short Chain Fatty Acid in
the Cecum
The concentration of short chain fatty acids (SCFAs) in the cecum
was measured using the method described by Erwin et al. (1961)
with modifications. In brief, about one gram of cecal contents
were thoroughly mixed with 10 ml distilled water, incubated at
4◦C for 24 h and centrifuged at 10,000 g for 10 min at 4◦C. 0.9 ml
of supernatant was mixed with 0.1 ml 25% (v/v) metaphosphoric
acid and kept in the ice bath for at least 30 min. Then, the sample
was centrifuged at 10,000 g for 10 min at 4◦C and 800 microliters
of the sample were injected for analysis on an Agilent 6890N GC
(Palo Alto, CA, United States).

Statistical Analysis
To compare differences among different treatments, all data
were subjected to ANOVA using the MIXED procedure of
SAS (SAS9.4, Cary, NC, United States). Treatment means were
calculated using the LSMEANS statement and means were
separated using the PDIFF option. Least square means were
compared using the Tukey–Kramer adjustment. The differences
were considered to be statistically significant if P ≤ 0.05 or
0.001 < P ≤ 0.01 and were considered extremely significant if
the P < 0.001. While 0.05 < P ≤ 0.1 was considered as having a
trend of difference.

RESULTS

Growth Performance
To evaluate the effect of XOS on growth performance of weaned
piglets, the BW and average daily feed intake (ADFI) were
measured, and average daily gain (ADG) and feed: gain ratio
(F:G) were calculated (Figure 1). Piglets in the CTC group and
XOS500 group had higher BW and higher ADG during days 1–
28 than those in the CON group (P < 0.05). Compared with the
CON group, the CTC and XOS500 groups had also significantly
better F:G during days 1–28 (P < 0.05). However, there was no

significant difference between the CTC and XOS500 group for
growth performance indices of weaned piglets. No difference in
ADFI was observed during different dietary groups.

Effects of Dietary Treatments on Ileal
and Cecal Morphology
The effects of dietary treatments on intestinal characteristics
are shown in Figure 2. The XOS500 supplementation increased
Villus Height and Villus Height: Crypt Depth Ratio in the ileum
(P < 0.05). Villus Height: Crypt Depth Ratio was also increased
in the ileum as the CTC treatment (P < 0.05). Meanwhile, the
XOS500 supplementation increased significantly the numbers of
goblet cells in the crypt of the cecum (P < 0.05) compared with
the CTC and CON group.

DNA Sequence Analysis and Quality
Filtering
A total of 1,857,463 valid sequences from 36 ileal and cecal
samples remained after chimeras were filtered out and low-
quality sequences were removed. Among the high-quality
sequences, about 99.98% were longer than 400 bp, with an average
of 433 bp. Results showed that the all Good’s coverage was >0.99,
implying that most of the microbial diversity within the samples
had been sufficiently captured.

Comparison Between the Ileal and the
Cecal Microbiota
According to the Chao1 index and Shannon index (P < 0.01),
there were significant differences in microbiota richness and
diversity in the cecal samples compared with those in
corresponding ileal samples (Figures 3A,B), indicating that the
cecal microbiota was more diversified than the ileal microbiota.
Furthermore, PCoA plots using the Bray–Curtis matrix distances,
where bacterial communities clustered by the intestine, clearly
showed the distinct bacterial community structure between the
ileum and cecum (R = 0.70, P = 0.001, Figure 3C). All differential
bacteria were shown in the cladogram of LEfSe in the ileum and
the cecum. The circles from inner to outer represent distinct
bacteria from phylum to genus levels, respectively. The yellow
dots inserted in the circle suggest no significant difference
in bacteria among different dietary treatments. LEfSe results
showed that 38 bacterial clades at all taxonomic levels were
differentially abundant (LDA > 4.0) between the ileal and cecal
microbiota (Figure 3D).

Effects of Dietary Treatments on the Ileal
Microbiota
Alpha diversity was evaluated in this study by analyzing the
Chao1 index and Shannon index. Both the Chao 1 and Shannon
index in the CTC group was significantly lower than the
CON group. However, XOS500 supplementation significantly
increased the ileal bacterial index of observed-species, the
Chao1 and Shannon index (Figures 4A,B). Beta diversity was
assessed by using the Bray–Curtis distance matrices and principal
component analysis (PCoA). It was clear that the microbiota
in the XOS500 group could separate from the CON group.
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FIGURE 1 | Effect of dietary treatments on growth performance in weaned piglets. (A) Body weight, (B) average daily gain, (C) average daily feed intake, and (D)
feed gain ratio. CON, control; CTC, chlortetracycline; XOS500, 500 mg/kg XOS. *P ≤ 0.05.

FIGURE 2 | Effect of dietary treatments on histological morphology in the ileum and cecum of weaned piglets. (A) Villus height (ileum), (B) crypt depth (ileum), (C)
villus height: crypt depth (ileum), and (D) numbers of goblet cells in the crypt of cecum. CON, control; CTC, chlortetracycline; XOS500, 500 mg/kg XOS. *P ≤ 0.05;
**0.001 < P ≤ 0.01.

The CTC group microbiota did not separate from the CON
group community (Figure 4C). At the phylum level, the
dominant phylum was Firmicutes in the ileum in each group
(Supplementary Figure 1). At the genus level, the predominant
genus was Lactobacillus. The relative abundance of Lactobacillus
in the XOS500 group was significantly higher than in the
CON and CTC group (P < 0.01), while the relative abundance
of Clostridium_sensu_stricto_1 and Escherichia-Shigella were
remarkably reduced in the CTC and XOS500 group (Figure 4D).

Effects of Dietary Treatments on the
Cecal Microbiota
The Chao1 index and Shannon index were calculated using the
OTU counts for each group and then compared among three
dietary treatments (Figures 5A,B). The results showed that the
Chao1 index and Shannon index in the XOS500 group were
significantly higher than the CON and CTC group in this study.
To determine similarities between microbial communities, we
compared the Bray–Curtis distance of the cecum content samples
from the three dietary treatments (Figure 5C). It was clear that
the microbiota in the XOS500 group was separated from the CTC
and CON group. The first axis of the PCoA explained 35.51% of
the variation in bacterial diversity while the second axis explained
10.66%. No significant differences were observed with respect to
the relative abundances of bacterial phyla in the cecum during
these groups (Supplementary Figure 2). At the genus level, the
relative abundances of Lactobacillus in the XOS500 group were
significantly higher than the CON and CTC groups. Meanwhile,

the CTC supplementation could remarkably reduce the relative
abundances of Lactobacillus compared to the CON group.
However, the piglets in the XOS500 and CTC group showed
a lower relative abundance of Clostridium_sensu_stricto_1 and
Terrisporobacter in comparison to the CON group (Figure 5D).
The butyrate-producing genus Blautia and Faecalibacterium in
the XOS500 group displayed an increasing trend compared
to the CTC and CON group (0.05 < P < 0.1), while no
significant differences were observed among the three groups
(Supplementary Figure 3).

Absolute Quantification of Cecal Specific
Microbiota by qPCR Assays
To determine absolute quantification of qPCR, nucleic acid
standard was generated from genomic DNA of Lactobacillus,
Clostridium_sensu_stricto_1, and Terrisporobacter. The Ct-values
were plotted as a function of the cell concentration and
the plot showed the expected linear relationship between the
copies per microliter (copies/µl) and Ct-values (Supplementary
Figure 4). Figure 6 showed that the absolute quantification of
Lactobacillus in the XOS500 group was 7.23 × 109 copies/g
cecal sample and was approximately 2.6-fold higher than
the CON group (approximately 2.01 × 109 copies/g cecal
sample). However, CTC supplementation remarkably reduced
the absolute quantification of Lactobacillus (approximately
1.18× 109 copies/g cecal sample). In addition, the XOS500 group
and CTC group markedly reduced the absolute quantification of
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FIGURE 3 | Differences between ileal and cecal microbiota of weaned piglets with supplementation XOS. Alpha diversity for ileal and cecal bacteria, for the observed
(A) Chao1 index and (B) Shannon index. (C) PCoA analysis of OTUs indicates that the bacterial profile differed strongly according to sampling site (R = 0.71,
P = 0.001). (D) Taxa significantly associated with ileal communities (red) vs. cecal communities (blue), shown in circular cladogram based on the LDA. The diameter
of each circle is proportional to the abundance of the taxon. Biomarker taxa are heighted by colored circles and shaded areas. The yellow nodes indicate taxa that
were not significantly differentially represented. Only differentially abundant taxa at the genus or higher taxonomic ranks were indicated. *P ≤ 0.05; ***P ≤ 0.001.

Clostridium_sensu_stricto_1 and Terrisporobacter compared with
the CON group (P < 0.01).

SCFA in the Cecum
To further identify whether the observed microbial changes
due to dietary treatment also affected the gut function, SCFA
concentrations were measured. In the cecum, the most abundant
SCFAs were acetate, propionate, and butyrate (Figure 7). Dietary
supplementation with XOS500 significantly decreased the acetate
concentrations and increased the total SCFAs, propionate and
butyrate concentrations compared to the CON group in the
cecal digesta (P < 0.05). In the CTC group, the concentration
of propionate was remarkably higher than the CON group
(P < 0.05). However, there is no significant difference in the SCFA
concentrations between the XOS500 and CTC group.

DISCUSSION

In the present study, we evaluated the effect of the administration
of CTC and XOS on the growth performance and intestinal health
of weaned piglets. We used high-throughput sequencing of the
V1-V3 region of the 16S rRNA gene to monitor the ileal and
cecal microbiota of piglets fed either CTC or XOS. Furthermore,
we detected the absolute quantification of the specific bacterial

genera and measured SCFA concentration in the cecal sample.
We showed that XOS consumption altered specific bacterial
genera and fermentation metabolites. We hypothesize that the
improvement in growth performance of piglets is related to
the characteristics of the intestinal ecosystem. Previous studies
have shown that XOS are good additives for improving animal
growth performance. For example, Liu et al. (2018) reported
that supplemented with XOS had a greater ADG and feed
efficiency. Similarly, our results showed that dietary XOS500
supplementation had a positive effect on growth performance of
weaned piglets compared with the CON group. Weaned piglets
fed a diet supplemented with CTC exhibited greater performance
than the CON group, but no differences were observed between
the CTC and XOS500 group. Some broiler studies also showed
that dietary XOS significantly increased the ADG and reduced
FCR (De Maesschalck et al., 2015; Yuan et al., 2018). In addition,
Pourabedin et al. (2015) found that feed conversion ratio (FCR)
in broilers fed 2 g/kg XOS diets was significantly lower than those
fed CTL or 1 g/kg XOS between days seven and 21. In contrast,
Yin et al. (2019) reported that 0.01% XOS treatment failed to
observe significant improvement in growth performance of the
piglets. These reports indicate that different XOS doses may exert
diverse effects on the growth performance of animals.

Intestinal morphology indices are often a useful criterion
to estimate the nutrient digestion and absorption capacity of
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FIGURE 4 | Effect of dietary treatments on ileal microbiota diversity and composition of weaned piglets. (A) Chao1 index, (B) Shannon index, and (C) the
beta-diversity of ileal microbiota of piglets. Principal coordinates analysis (PCoA) was used to compare the composition of ileal microbiota in different diet treatments
group using Bray–Curtis. (D) Kruskal–Wallis H test bar plot showed the major different ileal bacterial genus during the different treatment groups. CON, control; CTC,
chlortetracycline; XOS500, 500 mg/kg XOS. *P ≤ 0.05; **0.001 < P ≤ 0.01; ***P ≤ 0.001.

FIGURE 5 | Effect of dietary treatments on cecal microbiota diversity and composition of weaned piglets. (A) Chao1 value, (B) Shannon index, and (C) the
beta-diversity of cecal microbiota of piglets. Principal coordinates analysis (PCoA) was used to compare the composition of cecal microbiota in different diet
treatments group using Bray–Curtis. (D) Kruskal–Wallis H test bar plot showed the major different cecal bacterial genus during the different treatment groups. CON,
control; CTC, chlortetracycline; XOS500, 500 mg/kg XOS. *P ≤ 0.05; **0.001 < P ≤ 0.01; ***P ≤ 0.001.

the intestine. Prebiotics were reported to improve growth via
promoting nutrient absorption by improving intestinal structure
(Pan et al., 2018). For example, Liu et al. (2018) demonstrated that

XOS supplementation could improve the intestinal morphology
and the apparent total tract digestibility of piglets. In this
study, we found that villus height and villus height: crypt
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FIGURE 6 | Absolute quantification for major bacteria genus on cecal samples by qPCR (copies/g sample). (A) Lactobacillus, (B) clostridium_sensus_stricto_1, and
(C) Terrisporobacter. CON, control; CTC, chlortetracycline; XOS500, 500 mg/kg XOS; SEM, pooled standard error of the means. *P ≤ 0.05; **0.001 < P ≤ 0.01;
***P ≤ 0.001.

FIGURE 7 | Short-chain fatty acids (SCFAs) concentration (µmol/g) in cecum of piglets during different dietary treatments. (A) Total SCFAs, (B) acetate, (C)
propionate, (D) butyrate, (E) valerate, (F) isobutyrate, and (G) isovalerate. Total SCFAs are the sum of the following SCFAs: acetate, propionate, isobutyrate,
butyrate, isovalerate, and valerate. Group differences were tested with a Duncan test. CON, control; CTC, chlortetracycline; XOS500, 500 mg/kg XOS. *P ≤ 0.05;
**0.001 < P ≤ 0.01; ***P ≤ 0.001.

depth ratio of the ileum in the XOS500 treatment group was
significantly increased compared to the CON group. Similarly,
De Maesschalck et al. (2015) found that supplementation
of 0.5% XOS to the broiler feed significantly improved the
villus height of the ileum. Villi are important structures in
the small intestine, mainly involved in nutrient absorption.
Therefore, an increased villus height would increase the surface
area for nutrient absorption (Choe et al., 2012). These results
demonstrated that XOS may improve the gut absorptive function.
The possible explanation for the improvement of intestinal

morphology is that XOS500 supplementation stimulated the
increase of Lactobacillus. Some studies found that Lactobacillus
could improve the villus height and the villus height to crypt
depth ratio of the ileum in the weaned piglets (Suo et al., 2012; Yi
et al., 2018). Moreover, the numbers of goblet cells in the crypt of
the cecum in the XOS500 treatment group was remarkably higher
than the CON group. Goblet cells produce mucin glycoproteins,
constituents of the mucus, which is in the first line of defense
and protects the epithelium lining the intestinal mucosa from
damage and invading pathogens (Strobel et al., 2015; Li et al.,
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2019). The increase of goblet cells numbers thus indicates that
XOS500 supplementation contributes to an improvement of the
chemical barrier (mucus layer) in the cecum. This effect on the
large intestinal morphology may at least partly be due to the
butyrate production improvement. In our study, the increasing
of butyrate-producing genus Blautia and Faecalibacterium
abundance in the hindgut may positively bring about butyrate
production improvement. Therefore, XOS supplementation can
be a promising approach for improving intestinal morphology
and protecting the intestinal barrier function in pigs.

Great variations in α-diversity and β-diversity of the
microbiota were found between the ileum and the cecum, similar
to what has been previously observed in pigs (Zhang et al., 2018).
Furthermore, the relative abundance of certain bacterial families
or genera were differentially abundant in the ileum and cecum
of the piglets. For example, the relative abundance of the family
Ruminococcaceae, the genus Blautia and Prevotella_9 was higher
in the cecum compared with the ileum. The spatial changes
in bacterial composition along the intestinal tract may result
from the dramatic changes in the intestinal microenvironments.
On the one hand, from the ileum to cecum, oxygen availability
significantly decreases (Espey, 2013). On the other hand, pH
gradient along the intestine is another important factor to
influence the dynamic composition of the microbiota (Duncan
et al., 2009). In addition, most dietary nutrients are fully digested
at the end of the ileum under normal physiological conditions,
and undigested material is then fermented by the microbiota in
the large intestine.

High bacterial diversity is beneficial for the general health and
productivity of animals (Lukić et al., 2019). We used the Chao1
index and Shannon index to compare the microbial diversity
among different treatment groups. The CTC group both in the
ileum and cecum showed a lower alpha diversity, which is in
line with other studies using an antibiotic treatment (Knecht
et al., 2014; Looft et al., 2014). Meanwhile, the CTC treatment
significantly reduced the relative abundance of certain genera,
mainly including Lactobacillus and Clostridum_sensu_stricto_1
and Escherichia-Shigella. This observation is in accordance with
the study of Zhang et al. (2016) who reported that CTC
addition reduced the piglets Escherichia-Shigella, Lactobacillus,
and Streptococcus abundance in the intestinal tract. In contrast,
Kim et al. (2012) demonstrated that the relative abundance
of the genus Lactobacillus increased due to the antimicrobial
growth promoter tylosin exposure. In addition, our study showed
that the CTC treatment markedly increased the propionate
concentration compared with the CON group in the cecum.
Previous research has also found that the concentration of
propionate significantly increased as a result of the addition
of antibiotic in broilers and was positively correlated with
the change in the relative abundance of Propionibacterium
(Pourabedin et al., 2015). As propionate is a well-known
precursor of hepatic gluconeogenesis and is regarded as an
inhibitor for lipogenesis, it thus seems that the improved animal
performance of the CTC treatment is in part the result of the
modulation of the microbiota.

The ileal and cecal microbiota was mainly composed of
Firmicutes. Within this phylum, the majority belonged to the

Lactobacillus genus which is consistent with previous 16S
rRNA gene-based studies (Zhang et al., 2018). Our study
found that the relative abundance of certain bacterial genera
was altered with XOS500 supplementation in the ileum and
cecum of the piglets. For instance, the relative abundances
of Lactobacillus increased whereas Clostridium_sensu_stricto_1
and Escherichia_Shigella decreased in the ileum. It was also
noted that XOS500 supplementation significantly increased
Lactobacillus level and reduced Clostridium_sensu_stricto_1 and
Terrisporobacter level by high-throughput sequencing of 16S
rRNA gene amplicons in the cecum. Absolute quantification for
these specific bacteria genera on cecal samples by qPCR further
confirm the above results. Furthermore, this is in accordance with
a recent study showing that XOS supplementation improved the
lactobacilli abundance and reduced Escherichia coli abundance
on d14 of weanling pigs (Liu et al., 2018). Similarly, a previous
study reported that the cecal microbiota of HXOS-fed chickens
contained significantly higher proportions of the Lactobacillus
genus than the other dietary treatments (Pourabedin et al., 2015).
Additionally, Christensen et al. (2014) also confirmed that XOS
groups had higher relative abundance of Lactobacillus spp. than
the CON group in rat cecum content. In contrast, Yin et al.
(2019) found that the administration of XOS to piglets markedly
reduced the relative abundance of the Lactobacillus genus.
Lactobacillus is a dominant genus within the Firmicutes phylum
having beneficial effects for health including the exclusion of
pathogens, immunomodulation and the production of beneficial
molecules (Kravtsov et al., 2008). The high abundance of
Lactobacillus in the XOS500 group suggested that XOS has
a real potential of promoting the proliferation of beneficial
bacteria in the ileum and cecum. We hypothesize that the
increase in Lactobacillus abundance may contribute to the
improvement in the intestinal morphology and promote piglet
growth. This observation is in accordance with the study
of Yi et al. (2018) who reported that Lactobacillus reuteri
LR1 improved the villus height to crypt depth ratio of the
ileum in the weaned pigs. This positive relation between the
increase of Lactobacillus population and improvement in weight
gain has also been confirmed in other studies (Dumonceaux
et al., 2006; Lin, 2011). The Clostridium_sensu_stricto_1 genus
has been shown to be correlated with epithelial inflammation
in the intestinal mucosa (Wang et al., 2017). In addition,
Terrisporobacter is a kind of emerging anaerobic pathogen
and acetogenic bacterium, which can degrade various carbon
sources, like xylose and cellobiose (Deng et al., 2015; Cheng
et al., 2016; Groher and Weuster-Botz, 2016). Interestingly, our
study showed that XOS500 supplementation only decreased the
opportunistic pathogenic strains Clostridium_sensus_stricto_1,
Escherichia_Shigella and Terrisporobacter and increased the
beneficial bacteria genus Lactobacillus. However, CTC treatment
not only reduced the abundance of pathogenic strains but also
decreased the abundance of the beneficial bacteria. Therefore,
the results further support that XOS500 supplementation may
contribute to the resistance of piglets to disease and exert
a protective effect on intestine as an alternative to in-feed
antibiotics of weaned piglets for maintaining favorable gut
microflora composition.
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Some studies have shown that SCFAs, mainly acetate,
propionate and butyrate produced by gut microorganisms
have health-promoting effects. Acetate can be oxidized in the
tricarboxylic acid (TCA) cycle or is involved in de novo
lipogenesis by conversion into to acetyl-CoA, while propionate
is a well-known precursor for gluconeogenesis in the liver and
is regarded as an inhibitor for lipogenesis (Den Besten et al.,
2013a). Butyrate is the favored energy source for large intestinal
cells and the majority of this SCFA is absorbed and utilized
within the large intestine (Wang R. X. et al., 2020), while acetate
and propionate enter hepatic circulation in significant quantities
(Den Besten et al., 2013b). Except energy provision, butyrate
probably plays beneficial effects on gut morphology, growth
performance and anti-inflammatory under normal physiological
conditions (Carney, 2015; Huang et al., 2017) through regulation
of gene expression like proinflammatory cytokines nuclear factor
kappa B (NF-κB) and interferon gamma (IFN-γ) inhibition
and activation of SCFA-specific G protein-coupled receptors
(Klampfer et al., 2003; Layden et al., 2013; Silva et al., 2018). Our
results showed that XOS500 supplementation greatly decreased
the concentration of acetate. However, the concentrations of
propionate and butyrate in the XOS500 group clearly increased.
Consistent with these findings, previous studies also showed
that dietary XOS significantly increased the butyric acid content
and decreased the concentrations of acetate (Lecerf et al.,
2012; Ding et al., 2017). A remarkable increase in cecal
butyrate concentration was observed as a result of XOS500
treatment and was positively correlated with the change in
the relative abundance of Blautia and Faecalibacterium in the
cecum. Thus, the altered SCFA concentrations were closely
associated with the changes in the intestinal microbiota. Taken
the results of the intestinal morphology, microbiota and the
SCFA together, it is suggested that XOS is an interesting
alternative to antibiotics to promote growth performance and
modulate gut health in weaning piglets. However, further
research is needed on the detailed mechanism of XOS on the
host gut microbiota.

CONCLUSION

In conclusion, this study indicates that dietary XOS or CTC
supplementation enhanced the growth performance, improved
intestinal morphology and modulated the relative abundance
of specific bacteria by changing the overall microbial structure
and metabolites. The increased population of Lactobacillus
and decreased abundance of Clostridium_sensu_stricto_1,
Escherichia_Shigella, and Terrisporobacter piglets fed XOS500
might be a growth-promoting attribute. Thus, XOS may
potentially function as an alternative to in-feed antibiotics in
weaned piglets in modern husbandry.
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