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Abstract

The homogenized mechanical response of heterogeneous, elasto-plastic composite materials
is investigated by the use of the transformation field analysis (TFA), a two-scale algorithm
relying on microscopically piece-wise uniform fields of internal variables. Not optimized spa-
tial subdomain decompositions of the microscopic domain cause over-stiff composite material
responses modeled by the TFA since the main characteristics of the inelastic field interac-
tions are not well-represented. To improve mechanical predictions using the TFA approach,
emerging inelastic fields were used to achieve enhanced spatial decompositions. The numer-
ical estimation of the interaction functions between the subdomains allows the use of this
TFA approach for the numerical modeling of a wide variety of composite materials without
the need of any pre-determined reference stiffnesses. The new TFA approach was tested
for materials with isotropic and anisotropic microstructures and various material systems,
with a particular emphasis on the complex case of perfectly plastic material phases. Com-
parisons are drawn between the TFA modeling using elasticity-based and inelasticity-based
spatial divisions and to reference full-field computations. The achieved results prove that
more accurate predictions for the mechanical responses of composite materials can be found
when inelastic fields are considered as the foundation of the spatial division into subdomains.
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Figure 1: Schematic demonstration of full-field homogenization approach for a composite RVE subjected to
a boundary problem expressed by an overall strain ε(x), where the overall stress response σ(x) follows from
the consideration of local fields, for any material point x of the macroscopic boundary value problem.

1. Introduction

In recent years, the need for numerical modeling of materials with complex heteroge-
neous microstructures, including composite materials, has been in increasing demand in
many engineering areas. Engineered composite materials have a microstructure with vary-
ing distribution, size and shape of the material constituents at the microscopic scale resulting
from the manufacturing process. Many other types of materials of interest in engineering
disciplines have a naturally heterogeneous microstructure (polycrystalline materials, geoma-
terials, biomaterials and more). Performing an accurate mechanical analysis of a macroscopic
structure requires an analysis of the underlying microstructure, since mechanical processes
affecting the materials macroscopic response like plasticity and damage originate on the
micro-scale. This kind of simulations, analysing the macroscopic material response by tak-
ing into account microscopic processes, are known as multi-scale simulations, see (Kanouté
et al., 2009; Charalambakis, 2010; Geers et al., 2010; Saeb et al., 2016; Geers et al., 2017;
Yvonnet, 2019, e.g.). In homogenization-based multi-scale methods, the deformation state
at one point of the macroscopic domain constitutes a new boundary value problem (BVP)
applied on a microscopic domain assumed to contain all microscopic features and called
representative volume element (RVE).

Analytical and semi-analytical methods in the non-linear range rely on the definition of
a so-called linear comparison composite (LCC) with linear properties being equivalent to
the linearized effective properties of the actual non-linear composite (Ponte Castaeda, 1992,
1996). Variational approaches (Ponte Castaeda, 2002a,b; Lopez-Pamies and Castaeda, 2004;
Lopez-Pamies et al., 2013) and the related mean-field homogenizations methods, which con-
sider per-phase average strain and stress fields linked by so-called concentration tensors
(Doghri et al., 2011; Wu et al., 2013, 2017) are formulated on the basis of this LCC. While
being computationally very efficient, analytical methods and MFH schemes rely on certain
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assumptions on the microstructural phase distributions and therefore have certain limita-
tions when dealing with cases of complex heterogeneous and anisotropic microstructures,
motivating the development of fully computational homogenization approaches (Fig. 1).
Computational homogenization methods contain FE2 (Feyel, 1999; Kouznetsova et al., 2001,
e.g.) as well as fast Fourier transformation (FFT) based approaches (Moulinec and Suquet,
1994, 1998), in which, at the micro-scale, local constitutive equations are solved over the
fully discretized integration domain. While the use of direct numerical simulations for the
solution of the RVE boundary problem are able to provide a high accuracy, their computa-
tional effort is immense when dealing with complex heterogeneous microstructures due to
the need of a fine discretization and therefore a large number of internal variables.

In order to make multi-scale simulations with high accuracy utilizable for a wider range of
purposes, homogenization methods based on fully computational homogenization approaches
ought to follow a model reduction step. Reduced order models (ROMs) consist of an offline
stage which contains direct numerical simulations, providing the capability to deal with
complex microstructures. Subsequently, the gathered information from the offline stage is
reduced in order to consider only the essential features of the full-field problem by the means
of a reduced number of internal variables. In the online stage, constitutive relations for the
reduced problem are solved in order to achieve the estimated mechanical response of the
overall composite.

Models can be reduced by projecting the governing equations into suitably selected sub-
spaces defined from offline computations, leading to a reduction of the number of unknown
variables by means of proper orthogonal decomposition (POD) as suggested by Yvonnet and
He (2007). In this context, the equilibrium equations are projected in a basis of reduced
size, and a further order reduction called hyper-reduction, see the work by Hernández et al.
(2014); Soldner et al. (2017); Caicedo et al. (2019), follows to reduce the evaluation of the
constitutive laws at a reduced set of points or elements.

Liu et al. (2019); Liu and Wu (2019) have developed the so-called deep material network
(DMN) approach based on analytical micro-mechanics models, such as laminate theory,
defining mechanistic building blocks which form a binary hierarchical topological structure.
Elastic offline simulations define the parameters of the building blocks, so that the DMN
can be used to predict non-linear responses. The good handling of this extrapolation was
theoretically explained by Gajek et al. (2020). Nguyen and Noels (2022b) have provided
an efficient implementation, Wu et al. (2021) have used complex micro-mechanical models
such as MFH in the mechanistic building blocks for woven composite materials, and Nguyen
and Noels (2022a) have replaced the micro-mechanical models in the building blocks by
interactions which obey the Hill-Mandel condition.

ROMs can also be based on micro-mechanics models involving much less variables, as in
the transformation field analysis (TFA) pioneered by Dvorak (1992) first for two-phase and
following for multi-phase composite materials. The TFA is based on the spatial division of
the RVE into subdomains and the separation of local elastic and inelastic fields, alternatively
referred to as transformation fields or eigenfields. Local elastic interaction functions due to
transformation fields are provided by local coupling relations. The interaction functions
make the TFA applicable as a ROM method using a spatial division into subdomains and
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assuming piecewise uniform fields of internal variables inside the single subdomains (Dvorak,
1990). Considering the objective of a ROM application, local interactions are computed by
full-field simulations in the offline stage and mean interactions between chosen subdomains
are used to solve the TFA constitutive equations in the online stage. Applying the TFA
for the case of a microstructure consisting of two phases and using one subdomain per
phase can be considered as an actual MFH approach. But since no restrictions for the
number of phases and their geometry exist, the TFA can be regarded as a generalized MFH
method. After it was recognized that the TFA with a low number of subdomains clearly
overestimates the inelastic stress response of a composite and that the reason are insufficient
interaction effects of the mean inelastic fields, Chaboche et al. (2001) introduced a plastic
correction method based on a comparison to the Hill strain concentration tensors in a two-
phase solid. A comparison to different MFH formulations is given by Chaboche et al. (2005).
Starting from the asymptotic homogenization mathematical formalism, Fish et al. (1997)
have formulated the response of elasto-plastic composites from eigenstrain fields discretized
using piecewise uniform approximations on the RVE, yielding a formulation bearing some
similarities with the TFA approach. Michel and Suquet (2003, 2004, 2009) introduced the
non-uniform TFA (NTFA) with the goal of achieving better estimates for the composite
mechanical response by extending the TFA to an integration of global heterogeneous plastic
fields. The non-uniform fields are represented by a number of dominant plastic modes acting
as global shape functions, extracted from inelastic offline simulations. The mode activity in
the online stage was controlled by and restricted to basic evolution laws. The global NTFA
was extended to the computation of evolution equations of internal variables derived from
variational principles by Fritzen and Leuschner (2013), allowing the use of the NTFA for
all generalized standard material (GSM) classes, and subsequently to the incorporation of
second-order potentials (Michel and Suquet, 2016).

Based on the NTFA considering a number of global inelastic modes, a strategy was intro-
duced building on a non-uniform distribution of internal variables over selected subdomains
(Sepe et al., 2013). Only elastic offline simulations are required, but evolution equations
during the online stage are evaluated at all microscopic integration points resulting in sig-
nificantly increased computational efforts. A further development incorporates the use of
stress instead of inelastic strain shape functions in each subdomain and the solution of weak-
form relations for the subdomains, reducing computational requirements for the online stage
(Covezzi et al., 2016). A recent extension of this piecewise non-uniform TFA using global
inelastic modes combines it with the domain decomposition using a statistical clustering ap-
proach based on different deformation conditions (Ri et al.). The computed overall behavior
of the RVE follows purely from the constitutive relations in the subdomains, allowing the
computation of the mechanical response for all kinds of heterogeneous material systems.

Another ROM approach relying on the assumption of piecewise uniform fields of internal
variables is the self-consistent clustering analysis (SCCA) by Liu et al. (2016, 2018). The
offline stage consists of elastic pre-simulations and a clustering approach, dividing the RVE
into subdomains purely based on elastic strain distributions. The SCCA formulation bases
on interactions between the subdomains by making use of influence functions of the local
transformation field. The influence functions are expressed by the Green’s function of a
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selected isotropic and homogeneous material. The Lippmann-Schwinger equation is used
as coupling equation between the clusters in the online stage to solve the overall problem,
while the internal variables are considered uniform per subdomain. The local transformation
field during the online stage does not follow from the classical tangent relation, but on a
homogeneous and isotropic reference stiffness, being either chosen as constant or updated
during the online stage using a self-consistent formulation. We note the assumption of
the isotropic character of the reference material when using the Green’s function in the
SCCA method. A related and recently presented approach of this class relying on piece-
wise uniform fields and the integration of an isotropic and homogeneous reference stiffness
is the Hashin-Shtrikman type finite element method (HSFE) used as a ROM technique for
non-linear-elastic materials by Wulfinghoff et al. (2018); Cavaliere et al. (2020). It was later
applied for elasto-plastic materials by Castrogiovanni et al. (2021). For this method, a similar
clustering approach based on elastic strain distributions is used to discretize the RVE into
subdomains. The overall RVE response is achieved by solving a coupling relation between
the subdomains in the online stage. Similarly to the previously mentioned approach, the
incremental local transformation field for the subdomains during the online stage does not
follow purely from the local subdomain properties, but is evaluated by the use of the chosen
isotropic and homogeneous reference stiffness, being defined as a secant stiffness.

The paper at hand presents the uniform TFA approach used as a ROM homogeniza-
tion technique suitable for the purpose of multi-scale modeling of random-structured inelas-
tic composite materials during loading-unloading conditions even in cases of very localized
plasticity. To this end, the following ingredients are considered

• In order for the spatial division into subdomains to be well-representative of the inelas-
tic micromechanical deformation patterns inside the material, this subdivision is based
on plastic strain tensor distributions obtained by selected offline loading conditions;

• In order to account for plastic field fluctuations inside each subdomain and to allow
for an additional acceleration of the convergence towards full-field results, a sensible
correction approach for the use of piecewise uniform field approaches is constructed
from the inelastic field fluctuations within each subdomain observed during the offline
stage;

• In order to remain general for different microstructures, the local interaction functions
are evaluated numerically.

As a result, the TFA constitutive relations rely purely on local properties and therefore do
not require any pre-assumptions for an isotropic and homogeneous reference material, which
distinguishes the TFA from the two aforementioned approaches SCCA and HSFE. Further-
more, the need of any local shape functions is waived using the uniform TFA, significantly
reducing the memory and computational requirements with respect to the mentioned NTFA
techniques. The method using a reasonable number of subdomains provides overall RVE
responses being in good accuracy with full-field simulations, considered as “real” solutions.
For elasto-plastic phase responses exhibiting a hardening behavior, very low numbers of
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subdomains (≤ 20) are sufficient to provide accurate results, while the most demanding
case of elastic inclusions in a perfectly plastic matrix requires a few hundreds of subdo-
mains. In particular improved results in comparison with the use of the conventional spatial
decomposition based on elasticity are achieved.

This paper is structured as follows: Section 2 presents the analytical TFA approach by
means of an overview of the constitutive relations demonstrated in a continuous medium
before translating them into the discretized form using subdomains. Section 3 contains an
overview of the numerical aspects of computational homogenization, before all numerical
steps to achieve the solution for the mechanical RVE response by using the TFA as a
ROM approach are presented. The elasticity-based and inelasticity-based reductions from
a discretized full-field problem to a reduced problem are described. A new approach is
proposed for the incorporation of numerically determined plastic field fluctuations inside the
subdomains in order to achieve improved homogenized responses, making use of statistical
measures of plastic field inhomogeneities gathered in the offline stage. Finally, the iterative
procedure using the TFA algorithm to solve the RVE problem in the online stage is described.
Section 4 displays homogenized stress responses resulting from the TFA implementations
in comparison to reference full-field computations. The mechanical behavior of composite
materials with various micro-structures and material systems, in particular the complex
case of elastic inclusions in a matrix phase with a perfectly plastic behavior, are accurately
represented using the developed enhanced spatial subdivision for low to moderate volume
fraction of inclusions. In Section 5, concluding remarks of this work and possible future
contributions on this subject are pointed out.

2. Constitutive relations in a heterogeneous medium

2.1. Micromechanics in a heterogeneous continuous medium

Considering a representative volume element (RVE) V with the volume

|V | =
∫
V

dχ, (1)

inside a heterogeneous medium, the overall strain and stress of the material body V are
given as

ε =
1

|V |

∫
V

ε(χ)dχ (2)

and

σ =
1

|V |

∫
V

σ(χ)dχ. (3)

The local stress field σ(χ, t) at the time t follows from a constitutive model

σ(χ, t) = f
(
ε(χ, t), z(χ, t′),∀t′ ≤ t

)
, (4)

with the internal state variables z(χ, t′), where the dependence on the history is expressed
through t′ with t′ ≤ t.
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If the state of the material domain V is elastic, the local strain field ε(χ) inside the body
can be expressed as

ε(χ) = Ael(χ) : ε, χ ∈ V (5)

with the local elastic strain concentration tensor Ael(χ). The local stress field in Eq. (4) is
given as

σ(χ) = Cel(χ) : ε(χ), χ ∈ V, (6)

with the local elastic stiffness tensor Cel(χ). The expression of the overall strain and stress
in Eqs. (2) and (3) can be reformulated to

ε =

[
1

|V |

∫
V

Ael(χ) dχ

]
: ε (7)

and

σ =

[
1

|V |

∫
V

Cel(χ) : Ael(χ) dχ

]
: ε, (8)

the latter leading to the expression for the overall elastic stiffness

Cel
=
dσ

dε
=

1

|V |

∫
V

Cel(χ) : Ael(χ)dχ. (9)

The non-linear behavior of the material is accounted for by a consideration of local
eigenstress field σ∗(χ), or corresponding local eigenstrain field

ε∗(χ) = −Sel(χ) : σ∗(χ) , (10)

with the local elastic compliance

Sel(χ) = Cel(χ)−1, (11)

in an elastic medium, leading to the definition of the local strain field

ε(χ) = εel(χ) + ε∗(χ), (12)

composed of an elastic portion εel(χ) and the eigenstrain field ε∗(χ). The constitutive
relation in Eq. (4) is alternatively stated under the form

σ(χ) = Cel(χ) :
(
ε(χ)− ε∗(χ)

)
= Cel(χ) : ε(χ) + σ∗(χ) ,

(13)

implying that the eigenstrains belong to the internal state variables z(χ) in Eq. (4).
In the concept of the TFA, the local strain field inside V is directly connected to the

local eigenstrain field ε∗(χ). In the case of a vanishing overall strain ε = 0, the local strain
field can be expressed as

ε(χ) = D(χ,χ′) : ε∗(χ′) χ,χ′ ∈ V , (14)
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with the interaction function D(χ,χ′), estimating the effect of an eigenstrain field ε∗(χ′) on
the strain at χ (Dvorak, 1992). Subject of this paper is the numerical determination of the in-
teraction function D(χ,χ′) in a heterogeneous and finite material domain. An existing eigen-
strain field in the material domain under a vanishing overall strain ε = |V |−1

∫
V
ε(χ)dχ = 0

leads to the expression ∫
V

ε(χ) dχ =

∫
V

D(χ,χ′) : ε∗(χ′) dχ = 0, (15)

implying for arbitrary eigenstrain distributions ε∗(χ′) the condition∫
V

D(χ,χ′) dχ = 0 . (16)

Considering now a general mechanical problem as given in Eq. (12), the resulting local
strain field is given as the superposition of the two particular problems presented above

1. the material with an overall strain ε 6= 0 in the absence of an eigenstrain field,

2. the material containing an eigenstrain field ε∗(χ) 6= 0 and a vanishing overall strain,

expressed by the superposition of the Eqs. (5) and (14), yielding

ε(χ) = Ael(χ) : ε+ D(χ,χ′) : ε∗(χ′), χ ∈ V. (17)

This equation provides an analytical field relation and a coupling relation between the mi-
croscopic and macroscopic material scales.

2.2. Discretized subdomain consideration of the continuous problem
The continuum TFA form presented in Section 2.1 can be formulated in a reduced form

considering a division of the continuous domain V into subdomains Vr. Average quantities
over the subdomains with the volumes

|Vr| =
∫
Vr

dχ (18)

are considered instead of local quantities and a uniform distribution of all internal state
variables is assumed inside the K subdomains denoted by the index r. The piecewise uniform
fields of local variables β(χ) are expressed by

β(χ) =
K∑
r=1

βrξr(χ) (19)

with the per-subdomain r constant value βr and the spatial distribution function

ξr(χ) =

{
1 ,χ ∈ Vr
0 , otherwise,

(20)

automatically implying

βr =
1

|Vr|

∫
Vr

β(χ)dχ, (21)

meaning that the uniform quantities of a subdomain equal the averaged quantities over the
subdomain. Using Eq. (21), all local variables can be written in their discrete reduced form.
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2.2.1. Total formulation

The overall homogenized strain and stress of the RVE are given as

ε =
K∑
r=1

υrεr (22)

and

σ =
K∑
r=1

υrσr, (23)

where υr = |Vr|/|V | and the subdomain strains and stresses read

εr = εel
r + ε∗r (24)

and

σr = Cel
r : (εr − ε∗r)

= Cel
r : εr + σ∗r .

(25)

In the absence of an eigenstrain field, subdomain strains and stresses are given as

εr = Ael
r : ε (26)

and
σr = Cel

r : Ael
r : ε (27)

with the piecewise uniform subdomain stiffness Cel
r . The reduced form of Eq. (7),

K∑
r=1

υrAel
r = I, (28)

is implied in order to satisfy Eq. (22). The expression for the subdomain stresses in Eq.
(27) leads to the reduced equivalent of the overall elastic stiffness in Eq. (9) formulated as

Cel
=

K∑
r=1

υrCel
r : Ael

r . (29)

Considering the case of possible existing eigenstrains ε∗r in the subdomains r, the elastic
eigenstress-eigenstrain relation following Eq. (10) reads

ε∗r = −Sel
r : σ∗r (30)

with the subdomain elastic compliance Sel
r . The discretized continuum relation in Eq. (14)

for the subdomains in the presence of eigenstrains and the absence of an overall strain reads

εr =
K∑
s=1

Drs : ε∗s , at ε = 0 (31)
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with the eigenstrain interaction tensor Drs, accounting for elastic influence effects of the
eigenstrain in the subdomains s on the strain in subdomain r. For Eq. (22) to remain true
for all possible eigenstrain distributions over the subdomains, the condition in Eq. (16) in
its reduced form

K∑
r=1

υrDrs = 0 (32)

is to be satisfied (Eq. (50.1) in Dvorak (1992)).
The solution of the discrete total non-linear problem follows from a superposition of

the two distinct problems of the material body in elasticity (Eq. (26)) and the case of a
vanishing overall strain and occurring eigenstrain field (Eq. (31)) as

εr = Ael
r : ε+

K∑
s=1

Drs : ε∗s, (33)

being the reduced form of the micro-macro coupling relation in Eq. (17).

2.2.2. Incremental formulation

In the following, history-dependent behavior of the material is considered. The rates
of the above equations integrated over a discrete time interval lead to the TFA coupling
relation in its incremental formulation

∆εr = Ael
r : ∆ε+

K∑
s=1

Drs : ∆ε∗s. (34)

The overall strain and stress increments read

∆ε =
K∑
r=1

υr∆εr (35)

and

∆σ =
K∑
r=1

υr∆σr. (36)

The incremental strain-stress relation of the subdomains reads

∆σr = Cel
r : (∆εr −∆ε∗r). (37)

The eigenstrain increment ∆ε∗r, its derivative ∂∆ε∗r/∂εr and the per-subdomain uniform
tangent operator

Ctan
r =

∂∆σr
∂εr

, (38)

expressing the incremental response of the subdomains, follow from the local constitutive
law as detailed in the next section.
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2.3. Local constitutive relations

In this work, local inelastic stress responses and the local tangent stiffnesses follow from
the classical J2-plasticity model. In this section, the material point denoted by χ and the
subscript r referring to the subdomain Vr are omitted in the equations. The yield function
for isotropic hardening

fY(σ, p) = σeq − σY(p) ≤ 0 (39)

is to be fulfilled in order to satisfy the von Mises law, where p is the accumulated equivalent
plastic strain. In the yield function fY(σ, p), the current yield stress reads

σY = σY0 +R(p), (40)

with the initial yield stress σY0 and the hardening stress R(p) following from the expression of
the governing hardening law and the accumulated equivalent plastic strain p. The equivalent
plastic strain increment reads

∆p =

√
2

3
∆εp : ∆εp (41)

with the incremental plastic strain tensor

∆εp = ∆pN , (42)

where N = ∂fY/∂σ is the plastic flow direction. The eigenstrain ε∗ considered in Sections
2.1 and 2.2 corresponds to the plastic strain tensor as εp.

The second part is the current equivalent von Mises stress

σeq =
√

3J2(s), (43)

with the second invariant

J2(s) =
1

2
s : s (44)

of the deviatoric stress
s = dev(σ). (45)

The resolution of the incremental problem at one current time step follows a predictor-
corrector scheme, starting from the assumption of no occurring plastic flow, and hence the
incremental (”predicted”) elastic trial stress state

σtr = σn + Cel : ∆ε, (46)

where σn is the stress solved at the former time step, and the corresponding yield function

fY(σ, εp) = σtr,eq − σY (47)

with σtr,eq =
√

3J2(str). In case of fY > 0, the scheme yields, by solving the above equations
in order to satisfy the condition (39), the resulting plastic flow in Eq. (42), where the flow
direction is given as

N =
3

2

str

σtr,eq
. (48)
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The plastic flow maps the trial stress state in Eq. (46) on to the corresponding yield surface,
finally providing the (”corrected”) stress state as

σ = σtr − Cel : ∆εp. (49)

In case of isotropic plasticity, Eq. (49) can be expressed as

σ = σtr − 2Gel∆εp, (50)

with the elastic shear modulus of the material Gel. The derivative of the plastic strains reads

∂∆εp

∂ε
=

2Gel

h
N ⊗N + 2Gel ∆p

σtr,eq

(
3

2
Idev −N ⊗N

)
, (51)

and the consistent tangent stiffness reads

Ctan =
∂∆σ

∂ε
= Cel − 2Gel∂∆εp

∂ε

= Cel − (2Gel)2

h
N ⊗N − (2Gel)2 ∆p

σtr,eq

(
3

2
Idev −N ⊗N

) , (52)

where
h = 3Gel + ∂R/∂p. (53)

Details of the computations in Eqs. (51) and (52) are given in Appendix A.

3. Numerical methodology

Using a full-field homogenization technique to compute the overall response of the RVE,
a system of equations over the whole material domain V inside the RVE is solved. ROM
techniques considering a reduced problem instead can be used as surrogate models replacing
the often computationally heavy full-field homogenization methods. The TFA formulation
Eq. (34) is developed in this work to be used as such a ROM surrogate modeling approach.
This is achieved by using averaged variables over subdomains containing the microscopic
material points that follow a similar deformation behavior.

This section provides first in Section 3.1 a summary of the fundamental rules to be
satisfied using computational homogenization schemes. Following, the details of the model
order reduction procedure through the spatial division based on elastic and inelastic fields is
described in Section 3.2. A TFA correction scheme based on in-subdomain heterogeneities
with the goal of providing improved results is proposed in Section 3.3. Finally, the solution
details of the reduced mechanical problem are presented in Section 3.4.
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3.1. Computational Homogenization

The homogenized strain-stress response of a RVE can be achieved by solving a BVP
computationally over the discretized microscopic domain using full-field approaches like the
FE method. In the absence of dynamic effects, the equilibrium equations{

∇ · σ = 0 ∀χ ∈ V ,
n · σ = t ∀χ ∈ ∂V ,

(54)

are to be satisfied at all microscopic material points χ, where σ = σ(χ) is the Cauchy
stress tensor and t = t(χ) is the surface traction in the direction of the outward unit normal
n = n(χ) on the RVE boundary ∂V . Homogenized quantities over the full discretized
domain (or ”overall” quantities) are expressed as

β =
1

|V |

∫
V

β(χ)dχ . (55)

The problem of computational homogenization is schematically presented in Fig. 1, where
the homogenized strain-stress response is extracted from the resolution of the BVP over the
discretized RVE with a prescribed overall strain using the FE method. A requirement
for the multi-scale modeling of finite domains using direct numerical simulations (DNS) is
the satisfaction of the Hill-Mandel condition, providing the energy consistency between the
different scales. The base for the computational homogenization of finite domains was set
up by the work done by Peric et al. (2010); Geers et al. (2010); Saeb et al. (2016). The
consideration of volume elements with sizes below the statistical representation was treated
by Ostoja-Starzewski et al. (2007), where it is shown that presented formalism for the
computational homogenization of statistical volume elements still hold for smaller domains.
For the two-dimensional direct numerical simulations performed in this work using the FE
method, periodic boundary conditions (PBCs) were applied. The displacement field imposed
by PBCs satisfies the weak form of the equilibrium condition in Eq. (54) and the Hill-Mandel
condition as detailed by Nguyen et al. (2017).

3.2. Offline stage: reduction of the full field problem

In order to use the TFA as a ROM technique for the mechanical homogenization, the
microscopic points of the RVE are divided into several subdomains and over the subdomains
averaged quantities

βr =
1

|Vr|

∫
Vr

β(χ)dχ (56)

are considered. For the case of more than one material phase, each phase is subdivided
separately. A more refined discretization than simply using one subdomain per material
phase is achieved by selecting a local variable β(χ) and analyzing its distribution in the
corresponding phase. The microscopic points are then divided based on the local similarity
of the selected quantity. Thereby the subdivisions are not necessarily coherent in space.
In the following, RVE decomposition based on elastic and inelastic strain distributions are
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presented. A k-means clustering approach as proposed by Liu et al. (2016) is used to divide
all microscopic points in the full-field domain into groups based on the similarity of their
elastic or inelastic strain tensors (MacQueen, 1967). In order to achieve accurate mechan-
ical local fields for the spatial partitioning, certain discrete numerical full field simulations
are performed in the offline stage. The number and type of the full field pre-simulations
depend on the chosen variable to be characterized. In the following, all Nr local data points
constituting the subdomain volume Vr are denoted by the index i, expressed as

χi ∈ Vr, i = 1, ..., Nr . (57)

After the spatial decomposition, interaction tensors between the subdomains are determined.
The division of all local material points into the subdomains is performed phase-wise, and
in the following, the material phases are denoted by the index Ω.

3.2.1. Subdomain decomposition based on local elastic strain fields

The local elastic strain concentration tensors Ael(χ) in an RVE link the strain at any
material point χ in the microscopic domain inside the RVE, considered in elasticity and
without any eigenfields, to the overall strain of the RVE following from Eq. (5) as

ε(χ) = Ael(χ) : ε . (58)

The local strain concentration tensors in the RVE are fully characterized by the computation
of local strains under certain different loading cases applied by prescribed strain boundary
conditions ε on the elastic RVE (Section 3.1). For the estimation of all local strain con-
centration tensors in a 3D heterogeneous structure, 6 different orthogonal boundary modes

ε(1) = E~ex ⊗ ~ex , (59a)

ε(2) = E~ey ⊗ ~ey , (59b)

ε(3) = E~ez ⊗ ~ez , (59c)

ε(4) =
1

2
E(~ex ⊗ ~ey + ~ey ⊗ ~ex) , (59d)

ε(5) =
1

2
E(~ex ⊗ ~ez + ~ez ⊗ ~ex) , (59e)

ε(6) =
1

2
E(~ey ⊗ ~ez + ~ez ⊗ ~ey) (59f)

are applied on the RVE, with a strain magnitude E and the canonical unit vectors in a 3D
space ~ex, ~ey and ~ez. For 2D analyses, the boundary modes ε(1), ε(2) and ε(4) are applied.
Writing Eq. (58) in Voigt-notation, the local elastic strain concentration tensors are fully
characterized by a comparison of the resulting local strain field to the prescribed overall
strain. After the determination of the full strain concentration tensor field, a k-means
clustering technique (MacQueen (1967)) is applied on the local elastic strain concentration
tensors. The k-means clustering approach divides the data points it is applied on, into a
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number K of partitions by solving an optimization problem of the in-partition variances.
Here, it is used as a multi-dimensional clustering approach, grouping all the fourth order
strain concentration tensors at the microscopic points χ inside one material phase VΩ into
a number of KΩ partitions. During the clustering procedure, all tensor entries are taken
into account, meaning that the dimensionality amounts to the number of (independent)
components of a fourth-order tensor. The goal is the minimization of the function

H[Ael(χ)] =

KΩ∑
r=1

Nr∑
i=1

||Ael(χi)− Ael
r ||2, χ ∈ VΩ, χi ∈ Vr ⊂ VΩ, r ∈ 1, ..., KΩ , (60)

where
||Z|| =

√
Z :: Z , (61)

indicated by optimal variances of the strain concentration tensors Ael(χi) in one subdomain
r to the corresponding subdomain average Ael

r given by Eq. (56). The optimization problem
is solved by an iterative process finally achieving the optimal decomposition of all data points
into the KΩ sets. This optimal decomposition of one material phase Ω is accomplished as
follows:

1. First an arbitrary number of cluster KΩ is chosen and strain concentration tensors at
random data points are defined as the r = 1, ..., KΩ initial cluster mean values Ael

r .

2. Iterative clustering procedure starts

2.1. Variances of all local strain concentration tensors from the different cluster means

||Ael(χ)− Ael
s ||2, χ ∈ VΩ, s ∈ 1, ..., KΩ (62)

are calculated. All corresponding local data points i are assigned to a set r, so
that the variance between the local strain concentration tensor Ael(χi) and the
assigned cluster mean Ael

r is minimal:

||Ael(χi)− Ael
r ||2 ≤ ||Ael(χi)− Ael

s ||2, χi ∈ Vr ⊂ VΩ,

∀s, r ∈ 1, ..., KΩ, s 6= r .
(63)

2.2. Following, all strain concentration tensors assigned to the cluster are used to
determine the updated cluster means Ael

r using Eq. (56).

3. The iterative procedure ends when convergence of the procedure is reached, indicated
by a stationary assignment of the local data points to the sets. The cluster means
after convergence of the k-means clustering procedure act as the strain concentration
tensors of the subdomains in the online stage.
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Figure 2: Computed equivalent strain fields following the application of the boundary condition states (a,b)
bi-axial (as in Eq. (65a)) and (c,d) pure shear deformation (as in Eq. (65b)) during (a,c) purely elastic
deformation and (b,d) after severe plastic deformation has occurred.

3.2.2. Subdomain decomposition based on local plastic fields

Inelastic deformation due to plastic flow, initiated when the initial yield limit of a material
is exceeded, carries the major part of the total deformation in inelastic conditions. Inelastic
deformation patterns in the material can deviate strongly from the spatial elastic deformation
distributions (see Fig. 2), implying that subdivisions based on the distribution of elastic
strain do not necessarily represent real deformation patterns during inelastic deformation.
In this work, the eigenstrains introduced in Section 2 are equivalent to plastic strains as

ε∗ = εp. (64)

In order to achieve an improved spatial division into subdomains for the modeling of inelastic
processes, micromechanical deformation patterns occurring during inelastic deformation are
captured by means of the conduction of simulations containing inelastic deformation in the
material. For the investigated cases of 2D structures in this work, the following bi-axial and
pure shear deformation boundary modes

εin(1)

= Ein(~ex ⊗ ~ex − ~ey ⊗ ~ey) (65a)

εin(2)

= Ein(~ex ⊗ ~ey + ~ey ⊗ ~ex) (65b)

with the overall deformation factor Ein were selected, both resulting in distinct isochoric
deformation states and pure shearing in different orientations inside the material. The
resulting inelastic deformation patterns are presented in Fig. 2.

After the choice of np (here np = 2) different overall strain modes, the distinct simulations

l = 1, ..., np with the corresponding boundary conditions εin(l)
(Eq. (65)) are performed and

the local plastic equivalent strain fields εp(l)
(χ) computed. In order to capture plastic strain

concentrations under different loading conditions more comparable, the computed plastic
strain fields are normalized as

φ(l)(χ) = εp(l)

(χ)/p
(l)
Ω , ∀χ ∈ VΩ , (66)
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with the per-phase averaged equivalent plastic strain

p
(l)
Ω =

√
2

3
εp(l)

Ω : εp(l)

Ω (67)

following from the plastic strain averaged over the corresponding material phase VΩ

εp(l)

Ω =
1

|VΩ|

∫
VΩ

εp(l)

(χ)dχ. (68)

The Voigt notation is used for the transformation

φ(l)(χ)→ q(l)(χ) (69)

to obtain the local 6× 1 vectors q(l)(χ)1. Following, the normalized plastic strain fields are
arranged in local 6nP vectors

q(χ) =
(
q(1)T (χ) ... q(np)T (χ)

)T
, (70)

representing the entirety of the local inelastic fields. A k-means clustering procedure similar
to the one described above for the fourth-order elastic strain concentration tensors (Section
3.2.1) is performed, dividing all discrete material points in the considered RVE phase Ω into
a number of KΩ partitions r containing Nr data points based on the similarities of the local
vectors q(χ). The optimal decomposition is achieved by a minimization of the function

J [q(χ)] =

KΩ∑
r=1

Nr∑
i=1

|q(χi)− qr|2, χ ∈ VΩ, χi ∈ Vr ⊂ VΩ, r ∈ 1, ..., KΩ , (71)

where
|z| =

√
z · z , (72)

with the local vectors q(χi) inside the set r and the determined respective subdomain means

qr =
(
q

(1)
r ... q

(np)
r

)T
following Eq. (56). After the division of all local points inside the

microscopic RVE domain into subdomains based on inelastic fields, the strain concentration
tensors Ael

r of the subdomains r are determined using Eq. (56) following the application of
the elastic loading modes (detailed in Section 3.2.1) given by Eq. (59).

3.2.3. Eigenstrain - strain interaction tensors between the subdomains

The TFA homogenization method relies on so-called interaction tensors, describing the
elastic influences of eigenstrains at the ”radiating” material points on the deformation field
inside the RVE. The TFA relation under a vanishing overall strain is expressed following
Eq. (14). Considering a uniform eigenstrain in one certain subdomain s as

ε∗(χ′) = ε∗s, χ′ ∈ Vs, (73)

1Even for 2D cases, the 6 components of the plastic strain tensor are considered.
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local strains are given as
ε(χ) = Ds(χ) : ε∗s, (74)

with the local interaction function Ds(χ) estimating the total effect of a uniform eigenstrain
in an entire subdomain s on the strain at χ.

The eigenstrain-strain interaction tensors Ds(χ) are determined by applying a vanishing
overall strain, i.e. ε = 0, imposed by boundary conditions on the RVE in elasticity. Simul-
taneously, uniform eigenstrain modes are applied in each ”radiating” subdomain s one at a
time. The eigenstrain modes in 3D analyses are

ε∗
(1)

s = E∗~ex ⊗ ~ex (75a)

ε∗
(2)

s = E∗~ey ⊗ ~ey (75b)

ε∗
(3)

s = E∗~ez ⊗ ~ez (75c)

ε∗
(4)

s =
1

2
E∗(~ex ⊗ ~ey + ~ey ⊗ ~ex) (75d)

ε∗
(5)

s =
1

2
E∗(~ex ⊗ ~ez + ~ez ⊗ ~ex) (75e)

ε∗
(6)

s =
1

2
E∗(~ey ⊗ ~ez + ~ez ⊗ ~ey), (75f)

while in 2D analyses, solely the modes ε∗
(1)

s , ε∗
(2)

s and ε∗
(4)

s are applied. The reaction strain
field ε(χ) emerging from the vanishing overall strain and each applied eigenstrain mode is
computed. Local interaction tensors are fully characterized considering Eq. (74) in Voigt-
notation and a comparison to the imposed eigenstrains in Eq. (75). Averaging the resulting
strain field ε(χ) over a certain subdomain Vr to achieve the subdomain strain

εr =
1

|Vr|

∫
Vr

ε(χ) dχ =

[
1

|Vr|

∫
Vr

Ds(χ) dχ

]
: ε∗s (76)

leads to the characterization of the interaction tensors

Drs =
1

|Vr|

∫
Vr

Ds(χ) dχ (77)

between subdomains, such that
εr = Drs : ε∗s. (78)

In summary, the local fourth-order interaction tensors Drs represent elastic influence factors
of a uniform eigenstrain in the subdomain s on the average strain in the subdomain r.

3.3. Incorporation of a plastic correction based on real plastic field fluctuations

While the TFA used as a full-field modeling method as in Eq. (17) would lead to correct
predictions of the materials behavior (Dvorak et al., 1994), it was recognized that, using
the approximation of averages over subdomains, the tangent behavior of the material dur-
ing inelastic deformation may be strongly over-estimated. This over-stiff modeled behavior

18



2 4 8 16 32 64 128 256 512
number of subdomains K

1.000

1.002

1.004

1.006

1.008

1.010

(1
)

Figure 3: Exemplary computed total plastic fluctuation correction resulting from the application of the
deformation mode l = 1 described in Eq. (65a) on the composite material with the volume fraction of
inclusions υII = 30 % considered in Section 4.3.

is a consequence of under-estimated occurring plastic strain in plastically highly compli-
ant material phases. Considering the numerical TFA approach, too low plastic strains imply
under-estimated interaction effects between the phases and therefore inaccurate strain distri-
butions over the phases, in particular under-estimated strains in plastic phases and therefore
over-estimated strain accumulations in stiff phases. Over-estimated strain accumulations in
stiff phases lead effectively to an over-stiff behavior of the overall composite material.

Chaboche et al. (2001) proposed an approach to artificially increase plastic strains in
plastic subdomains by a consideration of a type of subdomains instantaneous strain concen-
tration tensors. However, this approach has the following limitations: the used subdomains
instantaneous strain concentration tensors are computed as the asymptotic strain concen-
tration tensors, dependent solely on the known subdomains asymptotic tangent stiffness
(not equivalent to the subdomain tangent stiffness in Eq. (52)). Firstly, the asymptotic
tangent stiffness cannot be used for a non-linear hardening behavior, where the subdomains
tangent stiffness is not constant. Secondly, the subdomains instantaneous strain concen-
tration tensors can generally not be computed just from the local tangent stiffness. For
an accurate estimation of the instantaneous strain concentration tensor, the overall tangent
stiffness needs to be known as well (Dvorak (1992); Aboudi et al. (2013)).

In the following, it is accounted for a physical explanation of the over-stiff material behav-
ior during inelastic deformation. The instantaneous spatial strain distribution in a material
domain is constant as long as the material is deforming purely linear-elastic. This holds even
if the material has experienced previous inelastic deformation. The stable strain distribution
under elastic loads implies that it can be correctly recovered by means of the constant, once
for all numerically determined, elastic strain concentration tensors. The constant strain
distribution, however, does not hold for inelastic behavior of the material phases. Plastic
strain is a direct consequence of the amount of local deformations during inelastic material
behavior (Section 2.3). It means that high fluctuations in the localization of deformation
are directly correlated to high plastic field fluctuations. Thus, plastic field fluctuations can
be regarded as a marker for the heterogeneity of the local deformation field. In subdomains
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with deformations considered as uniform, the microscopic yield starting points, and there-
fore the heterogeneity of the local onsets of non-linear behavior, are not well-represented.
It implies that a certain degree of considered uniform, although actually heterogeneous,
deformation εr of the subdomain leads to effectively under-estimated plastic yielding and
thus plastic strains. This under-estimation worsens if the deformation accumulates in very
localized zones, unable to be covered by the subdomains. Therefore, the more heterogeneous
the actual deformation field in a subdomain, the higher becomes the under-estimation of the
plastic strain due to the considered uniform deformation. The use of the TFA method using
a finer decomposition into subdomains is motivated by a more accurate representation of the
highly heterogeneous plastic field, resulting in a less stiff overall behavior of the material. If
the spatial decomposition is the same as used in full-field simulations, the fluctuations are
fully taken into account and the tangent behavior of the material can be estimated correctly
(see the non-uniform TFA, Michel and Suquet (2003)).

In order to use the uniform TFA method and account for the problem of under-estimated
inelastic and interaction effects in the subdomains due to the not well-captured deformation
field heterogeneities, an artificial increase for the subdomains eigenstrain as in

ε∗
corr

r = pcorr
r N corr

r = fPFC
r

(
εp
r (χ)

)
ε∗r. (79)

is sought, with a plastic fluctuation correction (PFC) function fPFC
r that depends on the

magnitude of the fluctuations of the in-subdomain plastic field εp
r (χ). Since in case of a

perfectly fine subdivision, and therefore no plastic fluctuations, the TFA leads to correct
results, fPFC

r must satisfy

ε∗
corr

r → ε∗r, εp
r (χ)→ εp

r , χ ∈ Vr . (80)

In this work, a first approach is tested, where fPFC
r is considered as a scalar function fPFC

r =
αr, correcting the subdomains equivalent plastic strain, while the plastic flow direction is
not manipulated:

pcorr
r = αrpr , N corr

r = N . (81)

The particular proposed PFC factors in this paper are determined as the square root of the
ratio between the arithmetic means p

(l)
r and the harmonic means p̂

(l)
r of the plastic fields

inside the subdomains. In the following, the procedure leading to the determination of the
PFC correction for the subdomain r is described: After the RVE domain was subdivided
into a certain number of subdomains based on the plastic fields εp(l)

(χ) under the loading
modes l = 1, ..., np, the before computed equivalent plastic strain field

p(l)(χ) =

√
2

3
εp(l)(χ) : εp(l)(χ) . (82)

is analyzed. Considering the equivalent plastic fields inside the subdomain r under each
mode

p(l)
r (χ) = p(l)(χ), χ ∈ Vr, (83)
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the arithmetic mean p
(l)
r and the harmonic mean p̂

(l)
r are achieved using Eq. (56) and

p̂(l)
r =

[
1

|Vr|

∫
Vr

dχ

p(l)(χ)

]−1

. (84)

Consequently, one PFC factor α
(l)
r for the subdomain r is determined under each of the np

inelastic offline deformation modes l as a measure of the heterogeneity of the corresponding
in-subdomain plastic fields εp(l)

r (χ).
In cases of non-uniform distributions, the harmonic mean is always lower than the arith-

metic mean. Since the harmonic mean is close to zero as soon as only a low number of
material points exhibit no or very low plastic strains, a lower limit of plasticity inside the
subdomain must be defined in order to achieve reasonable correction factors. Here, the PFC
for a subdomain r is solely taken into account if p

(l)
r ≥ p

(l)
Ω , implying a sufficiently high

harmonic mean of the plastic field. The formulation of the PFC finally reads

α(l)
r =

{√
p

(l)
r /p̂

(l)
r , p

(l)
r > p

(l)
Ω

1 , otherwise.
(85)

The expression Eq. (85) results in increasing corrections for the subdomains r the more the
considered plastic field in the subdomain r varies. An increasing number of subdomains im-
plies decreasing plastic field heterogeneities inside the subdomains and therefore decreasing
correction effects as a function of the numbers of subdomains. The evolution of the total
corrections ᾱ(l) (computed as in Eq. (55)) as a function of the used number of subdomains

is presented in Fig. 3 for the exemplary case of the corrections α
(1)
r determined under the

deformation mode l = 1. An additional restriction for the use of the PFC is mentioned: for
reasons of an irregular behavior of the correction factors in the range of very low numbers of
subdomains causing unreliable TFA modeling results, the PFC was not integrated for num-
bers of subdomains K < 8. For higher numbers of subdomains beyond the defined cut-off
number of subdomains, i.e. for K ≥ 8, a clear logarithmic decrease of the total correction
ᾱ

(1)
r (computed as in Eq. (55)) under an increasing number of subdomains is recognized.

The selection of the correction factor αr out of the pool α
(1)
r , ..., α

(np)
r during the online stage

is based on the current loading conditions, i.e. follows the consideration of the dominant
component of the current overall strain increment ∆ε:

αr =

{
α

(1)
r , if ∆ε11 > ∆ε12 or ∆ε22 > ∆ε12

α
(2)
r , if ∆ε12 > ∆ε11 and ∆ε12 > ∆ε22.

(86)

Therefore the correction factors can as well be applied for non-proportional loading histories
ε(t) containing different loading stages. If more different offline deformation modes were
applied, the correction factor under the current loading could be selected based on mini-
mal deviations between the various offline deformation modes εin(l)

and the current strain
increment, i.e. αr = α

(k)
r if ||∆ε− εin(k)||2 ≤ ||∆ε− εin(m)||2, ∀m, k 6= m (where, in order

to allow this comparison, all strain tensors should be normalized by their own equivalent
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values). The proposed PFC in Eq. (79) with Eq. (81) modifies the original TFA constitutive
equation Eq. (34) to

∆εr = Ael
r : ∆ε+

K∑
s=1

αsDrs : ∆ε∗s. (87)

Considering the property given in Eq. (32), which arises from the numerical evaluation of
the tensors Drs (Section 3.2.3), the modified condition for the interaction tensors

K∑
r=1

αsυrDrs = αs

( K∑
r=1

υrDrs

)
= 0, ∀s ∈ 1, ..., K (88)

is automatically satisfied.

Algorithm 1: Numerical TFA procedure at a glance: Newton-Raphson scheme at one
load step for a given overall strain increment ∆ε.

initialize: ∆εr = Ael
r : ∆ε (r = 1, ..., K)

iterative procedure:
repeat

for r = 1, K do
call constitutive relations for subdomain r to compute σr, ∆ε∗r and ∂∆ε∗r/∂εr,
Ctan
r (details in Section 2.3)

end
for r = 1, K do

initialize residual Fr = ∆εr − Ael
r : ∆ε

for s = 1, K do
add eigenstrain interaction contribution to residual:
Fr = Fr −

∑
s αsDrs : ∆ε∗s

compute Jacobian matrix Jrs = δrsI− αsDrs : (∂∆ε∗s/∂εs)
end

end
solve δ[ε] = {J}−1 : [F ]
update [∆ε] = [∆ε]− δ[ε]

until |[F ]| < tol;
after convergence:

compute σ and Ctan
, following Eq. (96) and Eq. (100), respectively.

3.4. Online stage: solution procedure using the TFA algorithm

In the following, the equations required to solve a mechanical problem using the TFA
algorithm are derived. A schematic overview of the numerical TFA solution procedure is
demonstrated in Algorithm 1.
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The incremental TFA solution for the overall RVE response under a prescribed overall
strain ε̄, is expressed as

∆εr − Ael
r : ∆ε−

K∑
s=1

αsDrs : ∆ε∗s = 0 , (89)

where αr = 1 if the plastic fluctuation correction is not used. The numerical solution of this
system is found using a Newton-Raphson procedure with the subdomain residuals

Fr = ∆εr − Ael
r : ∆ε−

K∑
s=1

αsDrs : ∆ε∗s , (90)

iteratively solving the problem Fr = 0 by the linearization

Fr → Fr + δFr = 0. (91)

Expressed as an assembled system using the K × 1 block column vectors denoted by ”[ ]”
and the square K ×K block matrices denoted by ”{ }”, the variational term δ[F ] follows
as

δ[F ] =

{
∂F

∂ε

}
: δ[ε] +

∂[F ]

∂ε
: δε = {J} : δ[ε] +

∂[F ]

∂ε
: δε . (92)

The full Jacobian system {J} consists of the single matrices (no sum on s intended)

Jrs =
∂Fr
∂εs

= δrsI− αsDrs :
∂∆ε∗s
∂εs

, (93)

with the derivatives of the subdomain eigenstrains by the subdomain strains ∂∆ε∗s/∂εs
defined by Eq. (51). Assuming a constant homogenized strain, implying δε = 0, the result

δ[ε] = −{J}−1 : [F ] (94)

is used to correct the strain increments in the subdomains by

[ε] = [ε] + δ[ε] (95)

per iteration.
Once the computed strain increments of the subdomains have converged, the homoge-

nized stress response is given by

σ =
K∑
r=1

υrσr . (96)

The homogenized instantaneous stiffness is computed as

Ctan
=
∂σ

∂ε
=

K∑
r=1

υr
∂∆σr
∂εr

∂εr
∂ε

, (97)
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where ∂∆σr/∂εr corresponds to the tangent operator of the subdomain (Eq. (52)). The
second term

∂εr
∂ε

= Ain
r , (98)

representing the subdomains instantaneous strain concentration tensors Ain
r , follows after

the solution in Eq. (92) as

∂[ε]

∂ε
= −{J}−1 :

∂[F ]

∂∆ε
= {J}−1 : [Ael] . (99)

The resulting full expression of Eq. (97) amounts to

Ctan
=

K∑
r=1

υrCtan
r :

[ K∑
s=1

{J}−1
rs : Ael

s

]
=

K∑
r=1

υrCtan
r : Ain

r . (100)

4. Numerical Applications

In this section, numerical applications of the TFA procedure described in this work
are presented. Details of the offline (Section 4.1) and online (Section 4.2) stages, and the
numerical results of applying the methods to different periodic two-phase structures with
varying inclusion phase volume fractions, elastic and inelastic material properties and degrees
of anisotropy are presented. The analysed material systems are

• a linear-elastic inclusion phase with isotropic elasticity in an elasto-plastic matrix phase
in Section 4.3

• inclusions with higher and with lower elastic stiffness than the matrix phase and elasto-
plastic behavior of both inclusion and matrix phases in Section 4.4

• a linear-elastic inclusion phase with transverse-isotropic elasticity in an elasto-plastic
matrix phase for the case of elongated inclusions in Section 4.5. .

The material properties of the phases are denoted by the indices Ω = I, II, where the index
I denotes the matrix and the index II the inclusion phase.

4.1. Offline stage

Cluster decompositions are consequences of the two different clustering techniques de-
scribed in Section 3.2.1 based on elastic and in Section 3.2.2 based on plastic strain distri-
butions.

Practical information for the conduction of the offline stage simulations under inelastic
conditions are presented. While the elastic phase properties used during the offline stage
must be equal to the ones considered in the online stage, the inelastic properties are allowed
to differ. The purpose of the choice of the inelastic phase properties during the offline stage is
the ability to identify the inelastic deformation patterns in order to achieve well-represented
inelastic fields by the spatial division. In the following, the superscript ”off” for the material
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properties denotes that these values are used in the offline stage and are not necessarily the
same as the material properties considered in the online stage. In case of elastic inclusions
in an elasto-plastic matrix phase, the low yield strength σY0,off

I = 10 MPa and the inelastic
behavior given by the power-law hardening relation

R = Hoff
I pm

off
I (101)

with the hardening modulus Hoff
I = 50 MPa and hardening exponent moff

I = 0.05 are used
in the offline stage, causing high plastic localizations, which enables the identification of
localized deformations. A convergence study was performed in order to specify the overall
deformation factor Ein that determines the degree of the RVE deformation (Section Ap-
pendix B). It was found that, using the aforementioned inelastic material properties, the
final plastic field patterns are established under an overall deformation of 2 %. Therefore,
the overall deformation factor Ein = 2 % was chosen for the offline deformation modes. In
the case of elasto-plasticity in both phases, low yield strengths values σY0,off

I = σY0
II = 10

MPa are used and the inelastic behavior in each phase is expressed by the power-law relation

R = Hoff
Ω pm

off
Ω , Ω = I,II (102)

with moff
Ω = 0.05. In case of an inclusion phase that is stiffer than the matrix phase, the

hardening moduli are Hoff
I = 50 MPa and Hoff

II = 100 MPa. In the reversed case of a more
compliant inclusion phase, the hardening moduli Hoff

II = 50 MPa and Hoff
I = 100 MPa are

reversed.

4.2. Online tests

Subsequently, different numerical tests were performed, described by the following bound-
ary conditions:

• prescribed overall axial loading-unloading cycle up to 6% strain in x-axis orientation
with free motion of one edge with its normal in y-orientation, corresponding to overall
uni-axial tension boundary conditions

εxx = 0→ 0.06→ 0

σyy = 0, εzz = 0 ;
(103)

• prescribed overall pure shear strain loading-unloading cycle up to 4%

ε =

(
0 0
0 0

)
→
(

0 0.04
0.04 0

)
→
(

0 0
0 0

)
; (104)

• non-proportional prescribed loading consisting of four different stages of bi-axial iso-
choric and shear loading and unloading stages, represented by the overall strain evo-
lution ε(t), with εzz = 0:

ε(0) =

(
0 0
0 0

)
→ ε(T/4) =

(
0.06 0

0 −0.06

)
→ ε(T/2) =

(
0.06 0.04
0.04 −0.06

)
→ ε(3T/4) =

(
0 0.04

0.04 0

)
→ ε(T ) =

(
0 0
0 0

)
.

(105)
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The resulting homogenized axial stress-strain responses under the uni-axial tension and shear
stress-strain responses under the pure shearing conditions computed by the TFA algorithm
(Section 3.4) based on the underlying foundations for the subdomain decomposition are
presented. Displayed are computed stress-strain responses by the TFA and the FE method,
and a convergence analysis based on the peak stresses computed by the TFA tending towards
the peak stresses computed by the FE method when increasing the number of subdomains.
The deviations of the homogenized axial and shear peak stresses max(σ)TFA

xx , max(σ)TFA
xy

by the TFA to the corresponding peak stresses max(σ)FE
xx , max(σ)FE

xy computed by the
FE method under uni-axial tension and pure shearing, respectively, lead to the TFA error
estimations

exx =

[
max(σxx)

TFA −max(σxx)
FE

max(σxx)FE

]
× 100% , (106a)

exy =

[
max(σxy)

TFA −max(σxy)
FE

max(σxy)FE

]
× 100% . (106b)

In the following, the TFA with one subdomain per material phase, equivalent to a mean-field
approach, is referred to as TFA-MF, the TFA with a subdomain decomposition based on
elasticity is referred to as TFA-E. The new approach using a plasticity-based foundation
for the spatial decomposition is referred to as TFA-P. The use of the plastic fluctuation
correction for the TFA-P (as described in Section 3.3) is referred to as TFA-PFC.

4.3. Isotropic microstructures with elastic inclusions

Considered is an isotropic microstructure, which consists of a matrix material with cir-
cular inclusions covering a volume fraction of successively υII = 20 %, 30 % and 50 % (see
Fig. 4). The elastic properties of the two phases are given in terms of the following bulk
and shear moduli

• matrix: bulk modulus κI = 10 GPa and shear modulus µI = 3 GPa;

• inclusion phase: bulk modulus κII = rIIκI and shear modulus µII = rIIµI, with succes-
sive values of rII =2, 10 and 100.

4.3.1. Spatial division into subdomains

The offline stage simulations were performed using a mesh consisting of 26508 and 27656
quadratic triangular elements for respectively υII = 20 % and υII =30 %. For the RVE with
the volume fraction of inclusions υII =50 %, the effect of a mesh refinement is studied by
considering two meshes of 40278 and 158420 triangular quadratic elements. Considered is
a material system consisting of an elasto-plastic matrix material reinforced by stiff linear-
elastic inclusions. The material properties used for the inelastic conditions in the offline
stage for this material system are given in Section 4.1. Under both deformation modes,
the inelastic deformation is carried by a low number of plastic shear bands, traversing the
material through the inter-inclusion spaces. While under the bi-axial isochoric deformation
mode, the plastic shear bands crossing the material are diagonally oriented, the pure shear
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Figure 4: Microstructure of the composite materials with (a-d) υII = 20 % , (e-h) υII = 30 % and (i-l)
υII = 50 % circular stiff elastic inclusions in an elasto-plastic matrix (case of 40278 elements), and spatial
decompositions based on elastic deformation into (a, e, i) 8 subdomains and (c, g, k) 128 subdomains and
based on inelastic deformation into (b, f, j) 8 subdomains and (d, h, l) 128 subdomains.
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Figure 5: Spatial distribution of the plastic fluctuation corrections (PFC) α
(1)
r (a, c) and α

(2)
r (b, d) for the

microstructure with υII = 30 % elastic inclusions for the cases of 8 (a, b) and 128 (c, d) subdomains.
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Table 1: Peak stress errors (computed as in Eq. (106)) using the different TFA approaches for the composite
material with different volume fractions υII of circular stiff elastic inclusions embedded in a perfectly plastic
matrix (Fig. 4).

υII =20% TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 9 5 4
exy (%) 8 2 2

υII =30% TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 19 8 7
exy (%) 15 5 4

υII =50% TFA-E 512 TFA-P 512
(coarse/fine)

TFA-PFC 512
(coarse/fine)

exx (%) 51 42/36 36/30
exy (%) 41 27/19 17/11

deformation mode causes plastic shear bands in axial orientations. Solely the thickness of
the band-like structures changes in dependence of the inclusion phase volume fraction: In
case of the lower volume fraction and higher inter-inclusion spaces, the plastic bands are
wider, while in case of the high volume fraction and therefore narrow inter-inclusion spaces,
the plastic bands are narrower. The full-field RVE domain was divided in the offline stage
into K = 2, 16, 32, 64, 128, 256, 512 subdomains, of which one subdomain is sufficient to
represent the elastic inclusion phase. The spatial subdivisions of the RVE into K = 8 and
K = 128 subdomains based on elastic and based on plastic deformation are displayed in
Fig. 4 (for the case of υII =50 %, only the decomposition for the mesh of 40278 triangu-
lar quadratic elements is shown). The consideration of plastic strain distributions allows a
spatial subdivision representing the inelastic band-like deformation patterns and their in-
tersections. The Fig. 5 shows the spatial distribution of the PFC factors (Section 3.3),
representing the degree of the plastic heterogeneity in the subdomains, after the inelasticity-
based clustering of the RVE domain with υII =30 into 8 and 128 subdomains (see Figs.
4(g) and 4(h)). The highest values (red color) of the PFC are located in regions with high
plastic strain concentrations, being not sufficiently captured by the clustering, what leads
to high local plastic field fluctuations inside the subdomains. This occurs for example in
regions where the plastic deformation patterns under the different offline deformation cases
intersect (see the dark red regions in Figs. 5(a) and 5(b)). In these regions, the clustering
needs to account for the inelastic fields under both deformation modes, leading to a less
accurate coverage of the single inelastic fields. Furthermore, the decrease of the PFC factor
values with an increasing number of subdomains (see Eq. (80)) is clearly visible.

4.3.2. Effect of the volume fraction of the inclusion phase

The matrix material behaves perfectly plastic with the yield strength σY0
I = 100 MPa,

while the inclusions deform linearly-elastic. The elastic stiffness contrast between both
phases is taken as rII =2. For both tested loading cases of uni-axial tension and pure shear
deformation, the stress-strain responses of the composite material are displayed in Figs. 6-8
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Figure 6: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material with υII = 20 % of circular stiff elastic inclusions
embedded in a perfectly plastic matrix in comparison to the full-field FE result. Displayed are (a, c) the
convergence of the peak stress depending on the number of subdomains (Fig. 4) and (b, d) stress-strain
curves computed by the different TFA approaches.

for the three tested volume fractions, and the peak stress errors at maximum loading are
reported in Table 1.

For low and moderate volume fractions, it is visible in Figs. 6(a) and 6(c) and in Figs.
7(a) and 7(c) that the TFA-P allows a better convergence towards the reference result than
the TFA-E throughout the whole range of the numbers of subdomains, and continues to
converge in the region of high numbers of subdomains K ≥ 256, where the TFA-E results
do not significantly improve anymore. Consequently, the peak stress errors can be strongly
reduced using the TFA-P in comparison with the TFA-E, while the TFA-PFC provides an
additional improvement that decreases with increasing numbers of subdomains. The stress-
strain responses computed by the TFA-P and TFA-PFC with 512 subdomains cover the
reference stress-strain responses computed by the full-field homogenization closely and with
significantly higher accuracy than the TFA-E (Figs. 6(b) and 6(d) and Figs. 7(b) and 7(d)).

Considering the higher inclusion volume fraction in Figs. 8(a) and 8(c), the TFA-E
achieves better results than the TFA-P in the range of low numbers of subdomains. How-
ever, the convergence rate of the TFA-E method starts to decrease earlier then the conver-
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Figure 7: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material with υII = 30 % of circular stiff elastic inclusions
embedded in a perfectly plastic matrix in comparison to the full-field FE result. Displayed are (a, c) the
convergence of the peak stress depending on the number of subdomains (Fig. 4(e-h)) and (b, d) stress-strain
curves computed by the different TFA approaches.

gence rate of the TFA-P, leading to better TFA-P results in the range of high numbers of
subdomains. Nonetheless, clearly stiffer stress-strain responses than for the lower volume
fractions are achieved using the TFA-E and TFA-P approaches with up to 512 subdomains
(Figs. 8(b) and 8(d)). Furthermore it is visible that the TFA-P prediction does not continue
to converge towards the reference results in the range 256≤ K ≤ 512 when the spatial divi-
sion is based on offline simulations using the coarse mesh. The fading convergence implies
that the k-means clustering was not able to define a meaningful subdomain refinement for
K > 256. For this reason, the previously mentioned refined mesh, with half dimensions
for the triangular quadratic elements, was tested in the offline stage for comparison. It
is recognized that the use of a finer mesh allows further improvements of accuracy and a
proceeding convergence towards the full-field results (denoted as TFA-P fine in Figs. 8(a)
and 8(c)). The TFA-PFC provides a slight improvement for the uni-axial tension test and a
significant error reduction for the pure shear test (Table 1). Mentioned are the fluctuations
in the TFA results in the range of low numbers of subdomains up to K ≤ 32 due to an
irregular behavior of the correction factor (see Section 3.3).
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Figure 8: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material with υII = 50 % of circular stiff elastic inclusions
embedded in a perfectly plastic matrix in comparison to the full-field FE result. Displayed are (a, c) the
convergence of the peak stress depending on the number of subdomains (Fig. 4(i-l)) and (b, d) stress-strain
curves computed by the different TFA approaches.

4.3.3. Effect of the elastic stiffness contrast between the phases

The RVE with the inclusion volume fraction υII = 30% is considered, now with an
increased elastic stiffness of the inclusion phase. The elastic properties of the matrix remain
the same as before and it follows a perfectly plastic behavior. While in the examples above
(Section 4.3.2), the ratio of the Young’s moduli of the inclusion phase and the matrix phase
was rII = 2, this ratio is increased to rII = 10 and rII = 100. Since it was recognized that the
TFA yields over-stiff results due to overestimated deformations of stiff elastic phases, the
investigation of high elastic stiffness contrasts is an important test of the TFA abilities for
general composite materials. With the same RVE and material system of elastic inclusions
in an elasto-plastic matrix as in the first example of this section and consequently the same
inelastic patterns, the subdomain decompositions are nearly identical to the ones in Fig. 4(e-
h), and therefore not displayed. Throughout the whole range of numbers of subdomains,
the TFA-P leads to improved results compared to the TFA-E, with the TFA-PFC allowing
for further improvements of accuracy in both the uni-axial tension and pure shear tests in
the region of low and intermediate numbers of subdomains 8 ≤ K ≤ 128. (Figs. 9 and 10).

31



2 4 8 16 32 64 128 256 512
number of subdomains K

100

140

180

220

260

300
m

ax
(

xx
) (

M
Pa

)
TFA-E
TFA-P
TFA-PFC
FE

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xx (-)

150
100

50
0

50
100
150
200
250
300

xx
 (M

Pa
)

TFA-MF
TFA-E 512
TFA-P 512
FE

(b)

2 4 8 16 32 64 128 256 512
number of subdomains K

50
60
70
80
90

100
110
120
130

m
ax

(
xy

) (
M

Pa
)

TFA-E
TFA-P
TFA-PFC
FE

(c)

0.00 0.01 0.02 0.03 0.04
xy (-)

70
50
30
10
10
30
50
70
90

110
130

xy
 (M

Pa
)

TFA-MF
TFA-E 512
TFA-P 512
FE

(d)

Figure 9: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material with υII = 30 % (Fig. 4(e-h)) consisting of circular
stiff elastic inclusions embedded in a perfectly plastic matrix with a ratio of the Young’s moduli rII = 10 in
comparison to the full-field FE result. Displayed are (a,c) the convergence of the peak stress depending on
the number of subdomains and (b,d) stress-strain curves computed by the different TFA approaches.

Table 2: Peak stress errors (computed as in Eq. (106)) using the different TFA approaches for the composite
material with υII = 30 % (Fig. 4(e-h)) consisting of circular stiff elastic inclusions embedded in a perfectly
plastic matrix for different phases Young’s moduli ratios rII.

rII = 2 TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 19 8 7
exy (%) 15 5 4

rII = 10 TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 23 11 9
exy (%) 18 6 5

rII = 100 TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 24 11 9
exy (%) 19 6 4
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Figure 10: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material with υII = 30 % (Fig. 4(e-h)) consisting of circular
stiff elastic inclusions embedded in a perfectly plastic matrix with a ratio of the Young’s moduli rII = 100
in comparison to the full-field FE result. Displayed are (a,c) the convergence of the peak stress depending
on the number of subdomains and (b,d) stress-strain curves computed by the different TFA approaches.

A comparison of the initial case rII = 2 and the two cases rII = 10 and rII = 100 shows a
decreasing TFA-E accuracy with increasing stiffness of the inclusion phase. In opposition
to that, the TFA-P is only weakly affected by the increasing inclusion stiffness and provides
accurate results with 512 subdomains (Table 2). The TFA-PFC nearly recovers the reference
results with hardly rising errors due to the increasing inclusion phase stiffness.

4.3.4. Effect of the RVE size

Table 3: Peak stress errors (computed as in Eq. (106)) using the different TFA approaches for the larger
composite RVE with υII = 50 % (Fig. 11) consisting of circular stiff elastic inclusions embedded in a perfectly
plastic matrix.

υII = 50 % TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 57 37 30
exy (%) 37 16 10
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Figure 11: Microstructure and spatial decompositions of the larger composite RVE with υII = 50 % of
circular stiff elastic inclusions in an elasto-plastic matrix based on elastic deformation into (a) 8 subdomains
and (b) 128 subdomains and based on inelastic deformation into (c) 8 subdomains and (d) 128 subdomains.

In the examples above, relatively small extracts of microstructures were considered as
RVEs. In this section, the TFA is applied for the case of a real representative portion of an
isotropic microstructure with an inclusions volume fraction υII = 50%, expected to contain
higher varieties of deformation states within the RVE. By this application it is investigated
if equal degrees of accuracy as for smaller RVEs are achieved for a real RVE using the
same range of numbers of subdomains. The elastic (the phase contrast rII = 2 is considered
for this application) and inelastic phase properties are the same as in Section 4.3.2. The
offline stage simulations were performed with a mesh consisting of 40460 triangular quadratic
elements, which corresponds to the coarse mesh size for the small RVE with υII = 50% in
Section 4.3.2. The inelastic deformation again localizes in plastic shear band deformation
patterns, oriented diagonally resulting from bi-axial isochoric and oriented axially resulting
from the pure shear deformation mode. In comparison to the examples above, the number
of band-like structures is increased, with some of them still traversing the whole material
domain in the presence of a much higher number of obstacles. Following, the RVE domain
was divided into K = 2, 16, 32, 64, 128, 256, 512 subdomains. The microstructure and the
spatial divisions resulting from elastic and inelastic deformation into 8 and 128 subdomains
are displayed in Fig. 11.

The results of convergence analyses are presented in Fig. 12. The TFA-E and the TFA-P
have an equal rate of convergence towards the full-field result in the range K ≤ 32 in the
uni-axial tension test. After this point, the TFA-P shows a faster decrease in error than the
TFA-E and therefore allows improved stress-strain predictions (Figs. 12(a) and 12(b)). The
error by the TFA-P with 512 subdomains is still considerably high but significantly lower
than the one by the TFA-E, and the TFA-PFC provides complementary improvements
(Table 3). Furthermore, the convergence of the transverse strain εyy and the evolution of
the homogenized Poisson ratio νxy(εxx) using the TFA-P and TFA-PFC methods during
the uni-axial tension test were investigated and are presented in Figs. 12(c) and 12(d).
Similarly to the stress response, the TFA-P and TFA-PFC allow a better convergence of εyy
than the TFA-E towards the FE result. The TFA-PFC allows for slightly better estimations
of the instantaneous Poisson ratio than the TFA-P. Considering the the pure shear test,

34



2 4 8 16 32 64 128 256 512
number of subdomains K

100

150

200

250

300

350
m

ax
(

xx
) (

M
Pa

)

TFA-E
TFA-P
TFA-PFC
FE

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xx (-)

150
100

50
0

50
100
150
200
250
300
350

xx
 (M

Pa
)

TFA-MF
TFA-E 512
TFA-P 512
FE

(b)

2 4 8 16 32 64 128 256 512
number of subdomains K

0.060

0.055

0.050

0.045

m
in

(
yy

) (
M

Pa
)

TFA-E
TFA-P
TFA-PFC
FE

(c)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
xx (-)

0.5

0.6

0.7

0.8

0.9

1.0

xy
 (-

) TFA-P 16
TFA-PFC 16
TFA-P 512
TFA-PFC 512
FE

(d)

2 4 8 16 32 64 128 256 512
number of subdomains K

50

70

90

110

130

150

170

m
ax

(
xy

) (
M

Pa
)

TFA-E
TFA-P
TFA-PFC
FE

(e)

0.00 0.01 0.02 0.03 0.04
xy (-)

70

30

10

50

90

130

170

xy
 (M

Pa
)

TFA-MF
TFA-E 512
TFA-P 512
FE

(f)

Figure 12: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under
pure shear deformation (Eq. (104)) of the larger composite RVE with υII = 50 % (Fig. 11) consisting
of circular stiff elastic inclusions embedded in a perfectly plastic matrix in comparison to the full-field FE
result. Displayed are (a,c) the convergence of the peak stress depending on the number of subdomains and
(b,d) stress-strain curves computed by the different TFA approaches.

the convergence achieved by the TFA-P is clearly better than that achieved by the TFA-E
throughout the whole range of subdomains. For a number of subdomains K = 512, the
TFA-P provides a clearly higher accuracy for the stress-strain response predictions, with
an error that is less than half compared to the one achieved using the TFA-E (Figs. 12(e)
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and 12(f)). The TFA-PFC results in even less stiff responses and achieves an acceptable
modeling accuracy. Compared to the results achieved for the small RVE using an equal
offline stage mesh size (see errors for the case υII = 50% with the coarse mesh in Table 1),
the computation errors are lower. Therefore it is concluded, that the TFA-PFC method is
not less accurate for larger RVEs.

4.3.5. Non-proportional loading conditions
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Figure 13: Non-proportional loading: Evolution of the (a) prescribed overall strain components, (b) the
CPU time comparison for different subdomains numbers K and (c, d) the computed homogenized stress
components predicted by the TFA-P and TFA-PFC approaches compared to the FE full-field for the com-
posite material with υII = 30 % (Fig. 4(e-h)) consisting of circular stiff elastic inclusions embedded in an
elasto-plastic matrix.

K 2 4 8 16 32 64 128 256 512
speed-up 3.2e6 1.9e6 9.2e5 2.8e5 6.8e4 1.3e4 2.5e3 460 70

Table 4: CPU time speed-ups for the non-proportional loading program in Eq. (105) using the different
numbers of subdomains K for the TFA-P methods.

In order to further explore the abilities of the TFA method, an isochoric non-proportional
loading program (105) displayed in Fig. 13(a) is applied to the υII = 30 % RVE consisting
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of circular stiff elastic inclusions embedded in an elasto-plastic matrix (Fig. 4(e-h)). The
elastic properties of the phases have a contrast rII = 2 for this application. The inelastic
behavior of the matrix with the initial yield strength σY0

I = 100 MPa follows the power-law
hardening behavior

R = HI p
mI (107)

with the matrix hardening modulus HI = 50 MPa and exponent mI = 0.05.
Compared are the evolutions of the different stress components predicted by the TFA-P

and TFA-PFC compared to the reference full-field computations (Figs. 13(c) and 13(d)). A
high accuracy of the modeled normal stress response during the applied axial deformation
by the TFA-P and TFA-PFC in the stage from t=0 to t = T/4 is achieved. Following,
inaccuracies are found considering the too low axial stress decrease during the shear loading
stage from t = T/4 to t = T/2. Therefore, the predicted axial stresses have too high initial
values at the start of the subsequent axial strain unloading stage from t = T/2 to t = 3T/4
but return back to the reference prediction at the end of this stage. During the final shear
unloading stage from t = 3T/4 to t = T , perfect accuracies of TFA-P and TFA-PFC are
maintained and therefore, correct final axial stresses are predicted. Similar observations
are made for the shear stress evolution. Sole inaccuracies are found during the axial strain
unloading stage from t = T/2 to t = 3T/4, where the shear stress decrease is too low.
During the remaining deformation evolution, the shear stresses are correctly predicted and
therefore, correct final shear stresses are predicted by both the TFA-P and TFA-PFC.

CPU time consumptions for performing the numerical analysis in Eq. (105) using the
TFA algorithm with the different numbers of subdomains and the FE analysis with the
same mesh as used for the offline stage simulations (27656 quadratic triangular elements),
are displayed in Fig. 13(b). The computational speed-ups using the different numbers of
subdomains for this 2D analysis are summarized in Table 4, providing an estimation of the
possible computational savings allowed by the TFA for 2D analyses. In addition to the time
savings, large CPU load reductions are provided by the use of the TFA with respect to
performing full-field simulations.

4.4. Isotropic microstructures with elasto-plastic inclusions

4.4.1. Stiff elasto-plastic inclusions

Considered is an isotropic microstructure, which consists of a matrix material with cir-
cular inclusions covering a volume fraction od υII = 30 %. The elastic properties of the two
phases are given in terms of the following bulk and shear moduli

• matrix: bulk modulus κI = 10 GPa and shear modulus µI = 3 GPa;

• inclusion phase: bulk modulus κII = 20 GPa and shear modulus µII = 6 GPa.

Both phases can deform elasto-plastically, with the yield strengths of both phases σY0
I =

σY0
II = 100 MPa and a hardening behavior following the power-law relation

R = HΩ p
mΩ , Ω = I,II (108)
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Figure 14: Microstructure and spatial decompositions of the elasto-plastic composite material with υII =
30 % of circular (a,b) stiff and (c,d) more compliant elasto-plastic inclusions based on elastic and inelastic
strains into 20 subdomains, 16 of them constituting the matrix and 4 the inclusion phase.
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Figure 15: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material consisting of circular stiff elasto-plastic inclusions in
an elasto-plastic matrix (Fig. 14) and the different hardening exponents of the phases (a,c) mI = 0.4 and
mII = 0.05 and (b,d) mI = 0.05 and mII = 0.4 resulting from the use of the different TFA approaches in
comparison to the full-field FE results.

with the hardening moduliHI = 50 MPa andHII = 100 MPa and the two tested combinations
of the exponents mI = 0.05, mII = 0.4 and mI = 0.4, mII = 0.05.

During the offline stage, the same mesh as in Section 4.3 was used. The material prop-
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erties used during the inelastic offline stage simulations for a material consisting of stiff
elasto-plastic inclusions in an elasto-plastic matrix are given in Section 4.1. As previously,
diagonal and axially-oriented inelastic bands, crossing the material on inter-inclusion paths,
are formed during the bi-axial and the pure shear deformation modes, respectively. The
inelastic deformations in the inclusions are not connected to the shear bands. The RVE
was divided into K = 20 subdomains, where the matrix phase is composed of 16 and the
inclusion phase of four subdomains. The spatial RVE decompositions based on elastic and
plastic strain distributions are depicted in Figs. 14(a) and 14(b). The plasticity-based spa-
tial subdivision approach allows covering deformation patterns corresponding to the same
general shear band orientations and their intersecting regions in the matrix phase as in the
considerations of elastic inclusions.

The resulting strain-stress responses are displayed in Fig. 15. Very high accuracies are
accomplished with the TFA-MF approach, using only one subdomain per material phase
(green curves). The full-field solution is nearly perfectly recovered by the TFA-E and TFA-
P in the cases of a low hardening exponent in the more compliant matrix phase and a high
hardening exponent in the stiffer inclusion phase (Figs. 15(b) and 15(d)). Less accurate
results represented by a slightly over-stiff behavior compared to the full-field solution are
predicted using the TFA-E and TFA-P in the case of a high hardening exponent in the matrix
phase and a low hardening exponent in the inclusion phase (Figs. 15(a) and 15(c)). In this
case, the TFA-P with more subdomains allows predictions with slightly increased proximity
to the full-field results compared to the TFA-MF in the low-strain regime. However, the
stress responses appear to converge towards the TFA-MF solution under an increasing strain.

4.4.2. Compliant elasto-plastic inclusions

Now, the role of the two materials are reversed compared to the case considered in Section
4.4.1, meaning that the stiff material constitutes the matrix phase and the more compliant
material the inclusion phase, represented in terms of the elastic properties

• matrix: bulk modulus κI = 20 GPa and shear modulus µI = 6 GPa;

• inclusion phase: bulk modulus κII = 10 GPa and shear modulus µII = 3 GPa.

Accordingly, the inelastic properties are reversed, implying a power-law hardening behavior
(Eq. (108)) of the corresponding phases governed by σY0

I = σY0
II = 100 MPa, the hardening

moduli HI = 100 MPa and HII = 50 MPa and the two combinations of the exponents mI =
0.05, mII = 0.4 and mI = 0.4, mII = 0.05.

During the inelastic offline stage simulations (performed with the same mesh as in Sec-
tion 4.3 and the inelastic material properties for a material with compliant elasto-plastic
inclusions in an elasto-plastic matrix given in Section 4.1), the inelastic deformation local-
izes in band-like patterns, oriented diagonally caused by bi-axial isochoric and axially caused
by pure shear overall deformation. Different from the case of stiff elasto-plastic inclusions
(Figs. 14(a) and 14(b)), the inclusions are now integrated in the plastic shear bands. The
resulting subdomain decompositions into a total of 20 subdomains based on elasticity and
plasticity are presented in Figs. 14(c) and 14(d), where the matrix phase is constituted by
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Figure 16: Normal stress response under uni-axial tension (Eq. (103)) and shear stress response under pure
shear deformation (Eq. (104)) of a composite material consisting of circular more compliant elasto-plastic
inclusions in an elasto-plastic matrix (Fig. 14) and the different hardening exponents of the phases (a,c)
mI = 0.4 and mII = 0.05 and (b,d) mI = 0.05 and mII = 0.4 resulting from the use of the different TFA
approaches in comparison to the full-field FE results.

16 subdomains and the inclusion phase by four subdomains. With inclusions considered
being more compliant than the matrix phase, the subdomain patterns using plastic strain
distributions do not avoid but connect through the inclusions.

The axial stress response under uni-axial tension and the shear stress response under pure
shear conditions are presented in Fig. 16. Again, the TFA-MF yields accurate predictions
and the full-field results are nearly exactly reproduced by the TFA-E and TFA-P in the cases
of a low hardening exponent in the more compliant phase, here the inclusion phase (Figs.
16(a) and 16(c)). The modeled behavior using the TFA-E and TFA-P is slightly overstiff in
comparison with the full-field result only in case of a high hardening exponent in the more
compliant phase (Figs. 16(b) and 16(d)).

4.5. Anisotropic microstructures and material behavior

The two anisotropic microstructures consist of a matrix with elliptic, purely-elastic in-
clusions, covering a volume fraction υII = 20 %. The degree of anisotropy represented by the
ratio of the radii rx and ry of the elliptic inclusions differs for the two microstructures: they
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Figure 17: Microstructure and spatial decompositions of the composite material with an anisotropic structure
with υII = 20% of elliptic stiff and anisotropic elastic inclusions with (a-d) aspect ratio rx/ry = 2.5 and (e-h)
aspect ratio rx/ry = 10 in an elasto-plastic matrix based on elastic deformation into (a, e) 8 subdomains
and (c, g) 128 subdomains and based on inelastic deformation into (b, f) 8 subdomains and (d, h) 128
subdomains.

rx/ry = 1 TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 9 5 4
exy (%) 8 2 2

rx/ry = 2.5 TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 11 6 5
exy (%) 4 2 1

rx/ry = 10 TFA-E 512 TFA-P 512 TFA-PFC 512
exx (%) 17 13 10
eyy (%) 10 4 3
exy (%) 1 1 1

Table 5: Peak stress errors (computed as in Eq. (106)) using the different TFA approaches for the composite
material with an anisotropic microstructure and υII = 20% (Fig. 17) consisting of elliptic stiff elastic
inclusions embedded in a perfectly plastic matrix.

are successively taken as rx/ry = 2.5 and rx/ry = 10, with the elongations along the x-axis
orientation. The material system consists of an elasto-J2-plastic matrix material with the
elastic and inelastic material properties as in Section 4.3 and stiff linear-elastic inclusions
with the transverse-isotropic (or ”polar-anisotropic”) properties
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Figure 18: Normal stress response under uni-axial tension in x-direction (longitudinal loading, Eq. (103)) and
shear stress response under pure shear deformation (Eq. (104)) of a composite material with an anisotropic
microstructure of υII = 20% (Fig. 17(a-d)) elliptic stiff and anisotropic elastic inclusions aspect ratio rx/ry =
2.5 embedded in a perfectly plastic matrix in comparison to the full-field FE result. Displayed are (a, c)
the convergence of the peak stress depending on the number of subdomains and (b, d) stress-strain curves
computed by the different TFA approaches.

• Ex = 40 GPa, Ey = Ez = 10 GPa

• νxy = νxz = 0.24, νyz = 0.3333,

• µxy = µxz = 8 GPa, µyz = Ey

2 (1+νyz)
= 3.75 GPa

where the inclusion phase subscript ”II” is omitted for the simplicity of notation. Addition-
ally to the uni-axial tension text in longitudinal fiber direction and the pure shear test, a
transverse uni-axial tension test with up to εyy = 3% (exchange of xx and yy in Eq. (103))
was applied on the RVE with the high inclusion aspect ratio. The computation errors of the
tension in y-direction are denoted as eyy.

4.5.1. Spatial division into subdomains

The offline stage simulations were performed using meshes consisting of 30018 and 34326
triangular quadratic elements for the microstructure with the lower degree of anisotropy
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Figure 19: Normal stress responses under uni-axial tension in x-direction (longitudinal loading, Eq. (103))
and in y-direction (transverse loading) and shear stress response under pure shear deformation (Eq. (104))
of a composite material with a higly anisotropic microstructure of υII = 20% (Fig. 17(e-h)) elliptic stiff and
anisotropic elastic inclusions aspect ratio rx/ry = 10 embedded in a perfectly plastic matrix in comparison
to the full-field FE result. Displayed are (a, c, e) the convergence of the peak stress depending on the number
of subdomains and (b, d, f) stress-strain curves computed by the different TFA approaches.

and the one used for the strong isotropic microstructure, respectively. The inelastic mate-
rial properties of the elasto-plastic matrix during the offline stage simulations are the ones
given in Section 4.1 for the material system of elastic inclusions in an elasto-plastic matrix.
The inclusions anisotropic elastic behavior is described by the previously introduced elastic
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properties. In the case of the microstructure with the lower anisotropy rx/ry = 2.5, the
inelastic deformations under the bi-axial deformation and pure shearing are carried by a
low number of wide shear bands, traversing the material in diagonal and axial directions, as
recognized in the spatial decomposition (Fig. 17(c,d)). In the case of a strong anisotropy
expressed by rx/ry = 10, the inelastic patterns differ from the previously considered cases.
Under the bi-axial isochoric deformation, plastic localizations form around and between the
sharp peaks of the inclusions. Under pure shearing, plastic strain localizes in longitudinal
direction and particularly along the long inclusion edges (see Fig. 17(g,h)), while the regions
between the inclusion peaks are almost spared by the occurrence of plasticity. The RVE
domains were divided in the offline stage into K = 2, 16, 32, 64, 128, 256, 512 subdomains,
with one subdomain representing the elastic inclusion phase. The microstructures and the
spatial decompositions resulting from elastic and inelastic deformation into 8 and 128 subdo-
mains are presented in Fig. 17(a-d) for the lower anisotropy rx/ry = 2.5 and in Fig. 17(e-h)
for the higher anisotropy rx/ry = 10.

4.5.2. Perfectly plastic matrix material with linear-elastic, transverse-isotropic inclusions

The matrix material behaves perfectly plastic with the yield strength σY0
I = 100 MPa,

while the inclusions deform linearly-elastic with the transverse-isotropic elastic properties
given above. In case of the lower degree of anisotropy, the TFA-P provides a better con-
vergence towards the reference result than the TFA-E throughout the whole range of the
numbers of subdomains for the uni-axial tension test and for K ≥ 32 for the pure shear test.
The TFA-PFC yields additional improvements of accuracy in the region of low numbers of
subdomains. It is recognized that peak stress errors are low using TFA-E but can still be
significantly reduced using the TFA-P and TFA-PFC (Table 5 and Figs. 18(a) and 18(c)).
Therefore, the stress-strain responses computed by the TFA-P and TFA-PFC with 512 sub-
domains show negligible deviations from the reference full-field stress-strain responses under
uni-axial tension and pure shearing (Figs. 18(b) and 18(d)).

In case of the strong anisotropic microstructure, the TFA-E provides more accurate
results than the TFA-P and TFA-PFC for a wide range of subdomains for both the uni-
axial tension and the pure shear tests (Figs. 19(a), 19(c) and 19(e)). In the uni-axial tests,
the TFA-P and TFA-PFC show a higher convergence rate towards the reference results
and allow more accurate predictions for respectively K ≥ 128 and K ≥ 32. With 512
subdomains, the peak stress error is slightly in the longitudinal tension and significantly in
the transverse tension test reduced using the TFA-P and the TFA-PFC (Table 5), visible
in the computed stress-strain responses (Figs. 19(b) and 19(d)). In the pure shear test,
the computation errors are negligible using all three TFA methods with a sufficiently high
number of subdomains (Fig. 19(e) Fig. 19(f)).

4.6. Evaluation of the achieved results

If a two-phase microstructure is considered where both phases deform inelastically, the
TFA with only one subdomain per phase, referred to as TFA-MF, provides accurate stress-
strain predictions (see Sections 4.4.1 and 4.4.2). Issues occur if the inclusion phase deforms
purely elastic and the matrix phase deforms inelastically with low hardening characteristics.
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The modeled over-stiff behavior is a result of over-estimated instantaneous strain concen-
trations in the stiff phases and under-estimated strain concentrations in the inelastically
deforming phases during inelastic deformation of the material. Over-estimated strain and
therefore stress accumulations in stiff phases cause, following Eq. (96), over-estimated com-
posite stress responses.

The issue of an over-estimated tangent behavior can as well be analysed by a considera-
tion of the composite tangent stiffness, computed as in Eq. (100). Following Eq. (100), the
error in the overall tangent stiffness is explained by inaccurate instantaneous strain concen-
tration tensors Ain

r . As visible in Eq. (99) with Eq. (93), the Ain
r are directly dependent

of the term Drs : ∂∆ε∗s/∂εs. Inaccuracies in the spatial capture of the inelastic interaction
field due to an averaging over subdomains (Section 3.3), and hence insufficient contributions
of the term Drs : ∂∆ε∗s/∂εs, are the cause of inaccurate instantaneous strain concentrations
during the TFA computation.

If the matrix phase has a perfectly plastic mechanical behavior, it carries all defor-
mation in the material and the inclusions undergo no strain. The concentration of the
entire overall strain in the matrix phase and zero strain in the inclusions can, using the
TFA approach, solely be successfully modeled if the interaction field is fully captured by
the spatial decomposition, meaning that the case of elastic inclusions in a perfectly plastic
matrix is a highly-complex material system. In composite materials with heterogeneous
micro-structures, a capture of the full highly-heterogeneous plastic field is impossible using
numbers of subdomains that are reasonably low, leading naturally to incorrect instantaneous
strain distributions and an over-estimated tangent behavior by the TFA method.

The mechanical predictions using the TFA for composite materials consisting of purely
elastic inclusions in a perfectly plastic matrix could be significantly improved with an opti-
mized subdomain decomposition which bases on inelastic fields compared to a subdomain
decomposition based on elastic fields (see Sections 4.3 and 4.5). The enhanced representa-
tion of the real interaction field by means of an inelasticity-based subdomain decomposition
results in more accurate strain distributions over the material phases during the online stage
and therefore allows an improved TFA modeling accuracy. The quality of the TFA model-
ing and the improvement of the enhanced spatial decomposition with respect to the spatial
decomposition based on elasticity were quantified with regard of the following influences:
the volume fractions of the stiff inclusion phases, the degree of microstructure anisotropy
and the contrast between the phase stiffnesses. The TFA provides accurate results with
errors < 10% for the cases of low or moderate inclusion volume fractions υII = 20% and
30%. Further it is shown that the subdomain decomposition based on inelastic fields under
proportional deformation modes holds for loading-unloading cycles as well as for a non-
proportional loading path consisting of four consecutive deformation stages (see Section
4.3.5). The proposed fluctuation correction (denoted as TFA-PFC) has a positive impact
on the achieved TFA modeling results of elastic inclusions in a perfectly plastic matrix due
to the artificially increased interaction effects in Eq. (93).

High prediction errors with up to 512 subdomains are encountered for a high inclusion
phase volume fraction υII = 50%. It appears that the TFA errors are increasing as a function
of the inclusion volume fraction. This can be explained as follows: First, the heterogeneity
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of the plastic field increases in case of higher volume fractions of inclusions, making the
efficient representation of the plastic field by an averaging procedure more complex. Second,
the inability of the TFA method to avoid occurring strains in stiff inclusions becomes more
severe the higher the volume fraction of inclusions. Higher numbers of subdomains may
lead to more accurate results, but at the same time, extremely fine meshes are required
for the k-means clustering to identify meaningful subdomains when such high numbers of
subdomains are used, resulting in more time-expansive offline and online stages.

5. Conclusions

The TFA based two-scale ROM approach for heterogeneous composite materials is in-
vestigated in this paper for a range of 2D micro-structures. Since the TFA does not rely
on the stiffness of a homogeneous (and isotropic) reference material, it is assumed to pro-
vide reliable mechanical predictions for general composite materials. However, the TFA
approach using piece-wise uniform fields is known to yield over-stiff approximations for the
inelastic mechanical behavior of composites, especially in cases of high localized plasticity
when using reasonably low numbers of subdomains. The reason for computed over-stiff com-
posite predictions by the TFA-ROM is an insufficiently accurate distribution of the overall
strain over the subdomains, resulting in over-predicted strain and stress accumulations in
stiff or elastic phases during inelastic deformation of the composite. Not ideally determined
eigenstrain-strain interaction tensors between subdomains, and therefore under-estimated
overall eigenfield influences were identified as a cause for incorrect strain distributions over
the material phases (more detailed in Sections 3.3 and 4.6).

Formerly proposed two-scale approaches achieving a model order reduction by using
piece-wise uniform fields often use elastic strain distributions as the foundation for the spatial
decomposition, proven to result in improved mechanical predictions in comparison to the use
of spatially regular subdomain decompositions (Liu et al., 2016; Wulfinghoff et al., 2018). In
this work it was recognized, that the consideration of inelastic micro-mechanical deformation
patterns can provide an improved modeling using piece-wise uniform field ROM approaches.
This new approach for the spatial decomposition provides a more physics-based modeling
respecting the real micromechanics due to an increased emphasis on the main features of the
inelastic and therefore of the interaction field. Inelastic deformation patterns evolving due to
plastic localization, often particularly in the form of plastic shear bands, are not detectable
and therefore not respected by purely elastic pre-analyses. It is successfully shown that the
predictions for the strain-stress responses for the more complex case of elastic inclusions in
an elasto-plastic matrix can be improved by using the enhanced subdomain decomposition
based on inelastic deformation fields.

Very accurate results using low numbers of subdomains are achieved for two-phase com-
posite materials with two inelastically deforming material phases. Clear improvements of
the TFA predictions and accurate modeling results using the enhanced spatial division are
achieved for the very demanding cases of elastic inclusions in a perfectly plastic matrix phase
for low to moderate volume fractions of inclusions υII. The high TFA prediction quality is
valid for heterogeneous composites materials with isotropic and anisotropic microstructures
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and material properties, as well as for different degrees of the phases elastic stiffness con-
trasts.

However, the error of the tangent behavior of composite materials increases with an
increasing inclusion volume fraction as discussed in Section 4.6. The TFA predictions for
the tangent behavior of composite materials with υII = 50% in this work are still over-stiff
for 512 subdomains defined using the inelasticity-based spatial decomposition, although the
error continues to decrease with an increasing number of subdomains, provided the mesh
used during the offline stage is fine enough.

The use of statistical field inhomogeneities is a first micromechanics-based correction ap-
proach for the modeling of composite materials based on piece-wise uniform fields. Although
it is shown to provide an additional acceleration of the convergence of the achieved strain-
stress responses by the TFA towards the reference full-field results, further work is required
in order to optimize the use of in-subdomain field fluctuations for an efficient improvement
of the inelastic response of composite materials.

The offline stage in this work consists of two RVE deformation modes. More deformation
modes can be included in the offline stage, allowing the enhanced inelasticity-based TFA
modeling of materials under arbitrary loading conditions. A higher number of offline defor-
mation modes might lead to the requirement of higher numbers of subdomains in order to
properly cover the various deformation patterns inside the RVE. Consequently, approaches
for adapted subdomain decompositions achieved by either using pre-computed load-specific
sets of subdomains or performing re-clustering procedures during the online stage may be
considered in the future.
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Appendix A. Derivatives of the incremental stress-strain response using the J 2-
plasticity model

In the following, the derivative of the incremental stress-strain response computed by
the J2-plasticity model are given. The stress tensor is computed as

σ = σtr − 2Gel∆εp = σtr − 2Gel∆pN . (A.1)

Derivatives with respect to the strain (it is noted that ∂�/∂∆ε = ∂�/∂ε) follow from
the derivatives

∂σtr

∂ε
= Cel, (A.2)
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∂∆p

∂ε
=
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h
N , (A.3)

and

∂N
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∂N

∂σtr
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(
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Idev −N ⊗N
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2Gel

σtr,eq

(
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2
Idev −N ⊗N

)
, (A.4)

where
h = 3Gel + ∂R/∂p. (A.5)

These expressions result into the expression of the plastic strain derivative
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)
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and into the expression of the algorithmic tangent

Ctan = Cel − 2Gel∂∆εp

∂ε
= Cel − (2Gel)2

h
N ⊗N − (2Gel)2 ∆p

σtr,eq

(
3

2
Idev −N ⊗N

)
. (A.7)

Appendix B. Convergence study of the overall deformation factor E in for the
inelastic deformation modes
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Figure B.20: Equivalent plastic field patterns inside the RVE with υII = 30 % of circular stiff elastic inclusions
in an elasto-plastic matrix under the two deformation modes (a, b) l = 1 and (c, d) l = 2 (Eq. (65)) with
the deformation factors (a, c) Ein = 2% and (b, d) Ein = 8%.

In this section, the justification of the overall deformation factor for the inelastic offline
deformation modes Ein = 2% is presented by means of a convergence study using the RVE
with υII = 30 % of circular stiff elastic inclusions in an elasto-plastic matrix. The k-means
clustering method is based on the differences of local quantities, and is therefore sensitive to
spatial distributions rather than the particular magnitudes of the local quantity. In order
to achieve a clustering into subdomains that does not change if the overall deformation
increases, it is important that the final spatial plastic field configurations are achieved under
the offline deformation modes. Thus, the overall deformation factor for the inelastic offline
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Figure B.21: The convergence of the (a) peak normal stress under uni-axial tension (Eq. (103)) and of the
(b) peak shear stress under pure shear deformation (Eq. (104)) depending on the number of subdomains
for the RVE with υII = 30 % of circular stiff elastic inclusions in an elasto-plastic matrix. Compared are
the use of the TFA-P using subdomains computed with the offline deformation factors Ein = 2% and Ein =
8%.

simulations was selected with the goal to be just high enough to achieve the final spatial
plastic patterns in the composite RVEs with the material properties given in Section 4.1.

According to Fig. B.20, the achieved plastic patterns under both deformation modes
in Eq. (65) with the overall deformation factors Ein = 2% and Ein = 8% are identical,
implying that final plastic field patterns are established under the selected deformation
factor Ein = 2%. We note that the clustering is achieved by considering the plastic strain
tensor components and not the equivalent plastic strain scalar, but for readability Fig. B.20
displays a scalar value. Additionally, the achieved TFA results for the uni-axial tension and
the pure-shear tests in Eqs. (103) and (104) using the subdomain decomposition based on
the two offline deformation factors are compared in Fig. B.21. It is visible that the deviations
between the two results are negligible. Based on this, it can be concluded that the RVE
deformation of 2 % in combination with the mentioned material properties is sufficient to
achieve the final plastic field patterns in the offline stage.
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Gajek, S., Schneider, M., Böhlke, T., 2020. On the micromechanics of deep material networks. Journal of
the Mechanics and Physics of Solids 142, 103984. doi:10.1016/j.jmps.2020.103984.

Geers, M., Kouznetsova, V., Brekelmans, W., 2010. Multi-scale computational homogeniza-
tion: Trends and challenges. Journal of Computational and Applied Mathematics 234, 2175–
2182. URL: https://www.sciencedirect.com/science/article/pii/S0377042709005536, doi:https:
//doi.org/10.1016/j.cam.2009.08.077. fourth International Conference on Advanced COmputational

50

https://www.springerprofessional.de/en/efficient-two-scale-simulations-of-engineering-structures-using-/17118994
https://www.springerprofessional.de/en/efficient-two-scale-simulations-of-engineering-structures-using-/17118994
http://dx.doi.org/10.1007/s00466-019-01758-4
http://dx.doi.org/10.1007/s00466-019-01758-4
https://www.sciencedirect.com/science/article/pii/S0749641904001433
http://dx.doi.org/https://doi.org/10.1016/j.ijplas.2004.07.001
http://dx.doi.org/https://doi.org/10.1016/j.ijplas.2004.07.001
https://www.sciencedirect.com/science/article/pii/S0749641900000565
http://dx.doi.org/https://doi.org/10.1016/S0749-6419(00)00056-5
http://dx.doi.org/https://doi.org/10.1016/S0749-6419(00)00056-5
https://doi.org/10.1115/1.4001911
http://dx.doi.org/10.1115/1.4001911
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article-pdf/63/3/030803/5442740/030803_1.pdf
https://www.sciencedirect.com/science/article/pii/S0263822316001173
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2016.01.094
http://dx.doi.org/https://doi.org/10.1016/j.compstruct.2016.01.094
https://www.sciencedirect.com/science/article/pii/S0749641910000835
http://dx.doi.org/10.1016/j.ijplas.2010.06.004
http://dx.doi.org/10.1016/j.ijplas.2010.06.004
https://link.springer.com/article/10.1007%2FBF00370073
https://link.springer.com/article/10.1007%2FBF00370073
http://dx.doi.org/10.1007/BF00370073
https://royalsocietypublishing.org/doi/10.1098/rspa.1990.0120
https://royalsocietypublishing.org/doi/10.1098/rspa.1990.0120
http://dx.doi.org/10.1098/rspa.1990.0120
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1990.0120
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0062
http://dx.doi.org/10.1098/rspa.1992.0062
http://dx.doi.org/10.1098/rspa.1992.0062
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1992.0062
https://www.sciencedirect.com/science/article/pii/S0927025699000774
https://www.sciencedirect.com/science/article/pii/S0927025699000774
http://dx.doi.org/10.1016/S0927-0256(99)00077-4
http://dx.doi.org/10.1016/S0045-7825(97)00030-3
https://www.sciencedirect.com/science/article/pii/S0045782513000583
http://dx.doi.org/10.1016/j.cma.2013.03.007
http://dx.doi.org/10.1016/j.cma.2013.03.007
http://dx.doi.org/10.1016/j.jmps.2020.103984
https://www.sciencedirect.com/science/article/pii/S0377042709005536
http://dx.doi.org/https://doi.org/10.1016/j.cam.2009.08.077
http://dx.doi.org/https://doi.org/10.1016/j.cam.2009.08.077


Methods in ENgineering (ACOMEN 2008).
Geers, M.G.D., Kouznetsova, V.G., Matou, K., Yvonnet, J., 2017. Homogenization Methods and

Multiscale Modeling: Nonlinear Problems. Wiley. pp. 1–34. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/9781119176817.ecm2107, doi:10.1002/9781119176817.ecm2107,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2107.

Hernández, J., Oliver, J., Huespe, A., Caicedo, M., Cante, J., 2014. High-performance model reduc-
tion techniques in computational multiscale homogenization. Computer Methods in Applied Mechan-
ics and Engineering 276, 149–189. URL: https://www.sciencedirect.com/science/article/pii/

S0045782514000978, doi:10.1016/j.cma.2014.03.011.
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