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Summary

The present article introduces an automated procedure to construct geometrical
Representative Volume Elements (RVE) of open-foam cellular materials from com-
puterized tomography (CT) images, with the final aim of generating meshable
geometries usable in the Finite Element Method (FEM) used in order to analyse their
mechanical behaviour. The methodology consists in growing and fitting a set of ellip-
soids to each of the foam cells. These ellipsoids are seeded by local maxima of the
distance to the struts obtained from computer tomography images. This methodol-
ogy is thus fully voxel-based and does not depend on any assumption about statistical
distributions of the foam cells. Therefore, it is able to reproduce an accurate geomet-
rical model of the foam’s microstructure and its possible irregularities. Moreover,
this procedure allows the processing of large 3D data sets that do not fit the random
access memory (RAM) by slicing it into smaller independent chunks. The effective-
ness of the proposed approach is illustrated by comparing it to FEM simulations for
which meshes are obtained from a feature reconstruction approach. Both FEM sim-
ulations are then compared with experimental results of uniaxial compressions of an
open foam.
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1 INTRODUCTION

Nowadays, cellular materials represent a promising approach for obtaining simultaneously optimised strength, stiffness, dissipa-
tion, and weight reduction, and are increasingly used in numerous engineering applications. Among other things, they are used
as insulators, filters and crash absorbers1,2. In particular, the class of open-foam materials has found countless applications in
many domains such as energy absorbers3, vibration damping4, hydrogen production5 and aerospace6, for instance. As a matter
of fact, cellular materials also exist in nature such as in bones or wood.
Manufacturing of metallic foams can be achieved via several processes. One approach for producing open-cell metallic foams

is to turn to the technique of electro-deposition onto a sacrificial polymer foamwith open-cells. The polymer phase is then etched
away, resulting in an open foam with hollow struts7. Metallic foams can also be manufactured by direct gas injection into melt,
the viscosity of which is controlled by temperature and by adding ceramics powder. This technique is extensively used to obtain

0Abbreviations: B-REP, boundary representation; CT, computer tomography; FEM, finite element method; RAM, random access memory; RVE, representative
volume element. RSA, random sequential addition
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aluminium alloy foams. For an extensive survey of metallic foam manufacturing techniques, the interested reader can refer to8.
Metallic foams manufactured by electro-deposition inherit the morphological characteristics of the underlying polymeric foams.
Their microstructure is complex and consists in an interconnected network of ligaments located along the edges of randomly
packed cells. In this regards, such metallic foams share structural similarities with equilibrated liquid foams, such as dry soap
foam and soap froth, where the cells originated from bubbles separated by tensioned liquid films adopt the shapes of near-
polyhedral volumes. Under conditions of mechanical equilibrium where the surface free energy is minimised, these latter foams
obey locally Plateau’s laws9,10. Under these conditions, each face adopts a constant mean curvature and each face meets at each
cell edge at equal dihedral angles of 120◦; while each vertex is adjacent to four edges joining at equal tetrahedral angles of
cos−1(−1∕3) = 109.47◦.
In the current context, there is a need to develop open foams models able to predict the homogenised or apparent behaviour

based on the microstructural features. The improvements in computer tomography during the last decade made the direct obser-
vation of the foam internal microstructures easier11, and this approach has been used extensively for building geometrical foam
models12,13,14,15. Though very detailed, images obtained from computer tomography need to be pre-processed in order to allow
their use as a geometrical basis in FEM models. Generally, the pre-processing involves, among other steps, a watershed and
(optionally) a H-maxima transform12,2,16,17, both of which can be computationally expensive. Some efforts have been made to
assess this difficulty, by either designing new algorithms with improved runtime complexity18,19,20, or by parallelising them21,22.
Computing a watershed transform remains nonetheless memory expensive for large 3D images.
One strategy to avoid these computationally expensive steps is to resort to direct image discretisation 23,14. However, obtaining

FEM models from discretised images24,25 remains a daunting task since characterising large data samples requires both time
and computational capacity, as well as frequent user input; currently restricting this method to smaller samples26. An interesting
strategy, though, has been proposed in27. It consists in coupling extended finite element methods (XFEM) with level sets on non-
conforming meshes. The use of non-conforming meshes allows to alleviate near zero or negative Jacobian mesh element issues.
Indeed, the complex geometry of the microstructure is implicitly encoded by the level sets. Elements of the non-conforming
mesh intersecting the level sets are then locally enriched within the XFEM framework in order to take into account the presence
of physical interfaces.
Another possibility is to turn to idealised microstructural geometries. One advantage of this approach is to allow exploring

the basic mechanisms linking the microstructure of the considered material to its mechanical behaviour. A simple model using
rectangular prisms, as proposed in1, can already provide some insights. However, a better idealised microstructure has been
proposed by Kelvin28 whose model tessellates space with a minimum partitional area using tetrakaidecahedra cells. Kelvin’s
model has been later improved by the Weaire-Phelan foam model29. As these models show a highly periodic geometry, they are
unable to capture the randomness of real microstructures, and, consequently, are poorly effective for capturing the mechanical
properties of real foams.
To tackle this randomness issue, various strategies were proposed in the literature (see, e.g.30,31,32 to mention a few). A

straightforward strategy is to start from a periodic cell structure and add some imperfections to it. This method has been studied
in33, leading to a better agreement with experimental data for the elastic response and the plateau stage. A common strategy con-
sists in using Voronoï tessellations that are based on a distribution of nuclei34; and their generalisations, especially the Laguerre
tessellations35,2,36. The Laguerre tessellation is a form of weighted Voronoï tessellation in which the space is partitioned using
random packings of spheres of different radii instead of pointwise nuclei. Though versatile and leading to more realistic geomet-
ric representations, Laguerre tessellations are not of straightforward use. Indeed, the question arises of how to randomly pack
the spheres (loosely or densely), following which distribution (normal, log-normal, gamma, Poisson...) and how to choose the
sphere radii. The link between these model parameters and geometric characteristics of foams (such as the porosity, the average
pore size and the pore size variation) is also far from being trivial and has been the subject of numerous studies37,38,39,40,41,42.
However, Laguerre tessellations are not able, by construction, to capture non-convex cells, cells with curved boundaries, and suf-
fer from the inconsistency of presenting seedless cells43. Also, when available, a Laguerre tessellation does not fully exploit the
voxel-informations present in CT-images. These issues have motivated the development of more generalised models exploiting
voxel information and/or generalised metrics such as in44,45,46,11,47,48,49, and the present article.
Another approach for trying to generate realistic foam geometries consists in randomly packing spheres. Numerous packing

algorithms can be found in the literature and can be classified under collective rearrangement, sequential addition or sedimen-
tation methods50. For instance, the random sequential addition consists in adding one by one spheres with randomly chosen
diameters under the action of some “gravitational” field. In order to obtain a packing as tight as possible, simulated annealing
can be used subsequently in order to randomly perturb the locations of the spheres and improve de tightness of the packing.
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Another option is to start with a very dense configuration of large overlapping spheres and then reduce stepwise their diameters
and locations in order to reduce the overlapping51. However, in order to reproduce accurately the morphological parameters of
the considered foam, some minimization criterion has to be designed; which is a task far for being trivial. To this aim, strategies
using surface minimisation principles by evolving tessellations thanks to the Surface Evolver Software have been studied52,53,54.
Moreover, in the case of poly-dispersed spheres, some statistical distribution for the sphere diameters must be chosen (e.g.,
Poisson, log-normal, gamma or Gaussian)10. Finally, from these algorithms it is only possible to reconstruct convex cells and
tessellation of the obtained packing only provides infinitely thin struts/walls that need to be “dressed”. Despite all these issues
and difficulties, random packing algorithm have been extensively used in conjunction with Voronoï tessellations55 as well as
Laguerre tessellations56,57.
All in all, the above idealised models are able to reproduce accurately foam morphological parameters such as cell-size

distribution, face-by-cell count and edge-by-cell count; provided that the considered sample is large enough to be statistically
representative of the overall foam58. However, they fail to account for local morphological variations as, for instance, struts
cross-section shape, variation of cell wall curvatures, local defects (such as damaged or partially missing struts) or the existence
of partially reticulated foams (presenting an intermediate state between closed and open microstructures). Such instances of
local morphological changes require further construction59. In order to introduce these microstructural features, the Distance
Neighbour based Random Sequential Addition (DN-RSA) was developed in60 and enriched in61 to represent struts complex
morphologies through level set functions.
An alternative model was also developed by62,63 in order to overcome some issues and limitations of random packing algo-

rithms. This model consists in generating a “skeletal” foam using a Voronoi tessellation constructed from randomly packed
mono-dispersed spheres. The constructed ligaments are then “dressed” with a circular cross-sections the areas of which vary
along the length of ligaments; based on empirical expressions developed from in-situ measurements. Nevertheless, though these
models are able to produce faithful geometries (at least statistically1) and quality meshes for FEM simulations, they still requires
some input parameters that are difficult to assess.
As geometrical features have a considerable impact on the mechanical behaviour of foams64,65, manufacturing cellular mate-

rials with the desired mechanical behaviour is a challenging task. Indeed, on the one hand, foams exhibit a large versatility
in their physical characteristics (mechanical, thermic or electromagnetic); allowing a large field of applications. On the other
hand, obtaining a specific physical property can be complex and cumbersome as the link between a given property and a foam’s
microstructure is far from being trivial. Inside a same sample, different pores may have variable mechanical properties66. More-
over, ensuring the production of foams with nominal and stable microstructural and mechanical properties is still a challenging
task in the research and industrial domains15,8. As a consequence, there a is a significant demand for quality control and char-
acterisation of new foam products in the industry. In this context, reliable computerized foam models that require minimum
user input and reasonable computer means are of potential use26. Such numerical model may need to exploit the geometrical
information of Representative Volume Elements (RVEs) obtained from computer tomography scans (CT-scans) of foam; while
requiring affordable computer resources.
In this work, two reconstruction methods from CT-scan images are developed in order to construct meshable RVEs for finite

element simulations. The first model exploits the tool developed in61 to construct detailed features from distance fields. Contrary
to the work50 in which the distance field are constructed from a RSA packing, in the present work the distance fields are based
on extracted CT-scan images of open foam morphologies, from which the open foam geometries can be reconstructed. This tool
will be called DN-CT-SCAN in the following.
The second geometric model, referred to in the following as Ellipsoidal Model, relies on the Poisson surface reconstruction67

from points and normals associated to the exterior surfaces of ellipsoids. It allows obtaining a closed surface representation
of the considered foam. The surface provided by the Ellipsoidal Model can subsequently be meshed for based Finite Element
Methods (FEM) simulations. Providing a geometric model with the properties of a B-REP instead of a mesh offers the possibility
to “tune” to some extent the mesh generated from that B-REP (for instance different levels of mesh refinements can be generated
from the same geometric surface). In the present article, the three-dimensional mesh generator used is Gmsh68.
Both geometric models rely on the construction of sets of ellipsoids or associated polyhedra. These sets are generated from

an original image analysis procedure (described in Section 2.2) which “grows” ellipsoids inside associated polyhedra using the
voxel information of CT-scan images, which act as “obstacles” to the ellipsoid growths. Moreover, both memory expensive
watershed and H-maxima transform are replaced by clustering and merging of overlapping ellipsoids. For the Ellipsoidal Model,

1In the sense that themain statistical geometric features of the considered foam, such as the cell-size distribution, themean number of faces per cell, etc., are reproduced.
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FIGURE 1 (a) Classical image processing steps. (b) Proposed image processing steps.

“auxiliary” ellipsoids are then grown from the surface of their “parent” ellipsoids in order to better fit local features present in
the CT-scan. Theses parent ellipsoids and associated polyhedra are provided to the DN-CT-SCAN model for it to compute its
distance fields.
Last but not least, the image analysis procedure has been designed to support the processing of large CT-scan images, i.e.

data that cannot be put entirely into the RAM. This feature is achieved by using the Insight Toolkit (ITK) framework69 and its
streaming capabilities70: large CT-scan images can be processed slice-by-slice by loading only one image slice at a time into
the RAM. This specific feature allows even standard consumer computers to process large CT-scan images, at a cost of a larger
computational time and with a limitation on the maximum allowed cell-size in the CT-scan image. These costs and limitations
will be detailed later-on in the present article.
The remainder of this article is organised as follows. Section 2.1 describes how the CT-scan images are processed in the

literature, while Section 2.2 describes the proposed image analysis steps, along with the corresponding streaming capabilities
(Section 2.3). Section 2.4 explains the advantages of the proposed image analysis in terms of peak memory usage compared
to standard image analysis steps, and especially the watershed transform. An image analysis application with the proposed
steps is then carried on a cubic aluminium foam sample in Section 3, where two reconstruction models are presented; namely,
the DN-CT-SCAN model and the Ellipsoidal Model, which use the ellipsoids and/or the polyhedra obtained from the image
analysis steps of an open foam sample. Finally, in Section 4, two FEM simulations, using the generated geometries obtained from
both reconstruction models of the open foam case, are carried out under uniaxial compression. Results from FEM simulations
associated to both geometric models are then compared with respect to experimental data taken from66.

2 IMAGE ANALYSIS

2.1 Standard image analysis procedure
The microstructure of a foam sample is described in terms of geometric characteristics of its cells. Identifying these cells
and extracting the associated geometric characteristics from grey-level CT-scan images requires the use of a chain of image
processing algorithms2. The aim of this processing chain is to unequivocally identify the cells and their shapes. A typical
processing chain is given in16,2 and outlined in Figure 1.
In principle, identifying the cells is easy: it is only necessary to identify where the distance transform (step 2) vanishes to zero

and the cell centres are identified as the local minima of the distance transform. However, in practice, the distance transform
may present several local minima for a given cell. As a consequence, superfluous local minima have to be removed. Typically,
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FIGURE 2 Example of the proposed processing steps on a 3D CT-scan image of an open aluminium foam. Subset of the
613 × 598 × 621 described in Section 3.1.

this is achieved using morphological transforms such as a watershed transform, optionally preceded by a (possibly adaptive)
H-maxima transform2,71,72,12 or even a grey-scale reconstruction18, in order to avoid cell “oversegmentation”.

2.2 Proposed image analysis procedure
The standard image analysis steps usually require the use of morphological algorithms, such as the watershed transform,
for unequivocally identifying cells. These algorithms are computationally heavy, despite efforts for tackling the issue (see
e.g.18,21,20,22 for the watershed transform). The present contribution presents an alternative processing chain for identifying cells
as outlined in Figure 1.
This alternative processing chain replaces the watershed transform (and, optionally, the H-maxima transform or other smooth-

ing algorithms) by a stage of growing and clustering ellipsoids. This, as it will be shown later, is memory-wise much cheaper
than morphological algorithms since it does not operate at the voxel level, as the investigation conducted in Section 2.4 on some
artificially generated foams samples and a real-world foam indicates.
This processing chain has been implemented using the ITK library as backbone69. The ITK library is handful and versatile: it

allows the user to construct its own processing chain using a large choice of pre-implemented algorithms, as well as implementing
customised algorithms which can be integrated in any processing chain. The capabilities of the ITK library can be handful if
some CT-scan images need extra processing steps due to some particular characteristics. The different proposed processing steps
are described hereafter.
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FIGURE 3 Discarding some local maxima based on the eigenvalues of their associated local Hessian. White enhanced points:
local maxima. Grey: cell walls. Red circled maxima: saddle points to be discarded (2D case).

2.2.1 Step 1 - Threshold
The threshold of grey-level images is obtained by the simple histogram-driven algorithm of Ridler and Calvard73,74. The results is
a black and white binary 3D image. Naturally, following the needs, any other threshold algorithm may be used here. A threshold
example is given in Figure 2-b.

2.2.2 Step 2 - Distance transform
The euclidean distance transform is computed by means of the algorithm of Maurer75. Applied on a black and white image (as
illustrated in Figure 2-c), where, for instance, white voxels represent cell struts/walls, this transform replaces the intensity values
of the black voxels by their euclidean distance to their respective closest white voxels. White voxels have their intensities values
set to zero.

2.2.3 Step 3 - Distance post-processing
This step is optional, if some post-processing of the distance transform is needed, it can be added here. For instance, a smoothing
step may be desirable for avoiding superfluous local maxima and oversegmentation16. For the data sets used in this article, such
optional processing step was not proven necessary and none was used.

2.2.4 Step 4 - Local maxima
The identification of local maxima is performed thanks to a customised three-dimensional implementation of the algorithm of
Pham76. The algorithm provided by ITK for locating local maxima was not used here because it is not provided with streaming
capabilities. On the contrary, the algorithm of Pham76 consists in collecting local maxima candidates by scanning voxels along
lines. The local maxima candidates are then compared against a constant neighbouring of voxelsNr. These characteristics make
this algorithm easy to adapt for streaming.
Local maxima are then selected following the eigenvalues or their associated local Hessian, computed from the distance trans-

form. Computing the local Hessians, and thus the local second derivatives, in a discrete image is an ill-posed problem. In order to
compute the local second derivatives as accurately as possible, the ITK filter “HessianRecursiveGaussianImageFilter” was used.
This filter uses a discrete convolution with a Gaussian kernel of standard deviation � on the considered image prior to computing
the derivatives. More details about how the local Hessians are computed can be found in77. Local maxima with associated neg-
ative Hessian eigenvalues (�i < 0) or with all negative Hessian eigenvalues except one which is such that ||maxi �i|| ≤ � |

|

mini �i||
(with the Hessian threshold � being a small value) are selected. Other local maxima are discarded as they actually correspond
to saddle points. This selection procedure does not aim at discarding all superfluous maxima. Instead, its objective is to avoid
having them located between two cells; as it may occur for open foams. Figure 3 shows a 2D example were some local maxima
are discarded. Figure 2-d gives an example applied to a 3D CT-scan data set.

2.2.5 Step 5 - Parent ellipsoids
Obviously, even if some superfluous local maxima are discarded on the basis of the eigenvalues of their associated Hessian,
most of them are still present at this stage. From the local maxima, even superfluous ones, ellipsoids are associated as follows.
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The ellipsoids are initially set as unit spheres centred at the local maxima positions. They are then grown by an optimisation
procedure described in78. This optimisation procedure iteratively grows ellipsoids inside associated polyhedra. At each iterations
the associated polyhedra are constructed from their current respective ellipsoids and the surrounding obstacles (here, the voxels
corresponding to struts in the considered CT image). Once the polyhedra are constructed, the ellipsoids are grown by one more
increment. This process is repeated until the relative volume variation of each ellipsoid drops below a prescribed threshold.
Ellipsoids are indeed able to capture cell anisotropies, which is considered as a necessity for assessing the mechanical

behaviour of foams1,79,80,81. Although sets of growing spheres are able to capture some foam anisotropies82, it is believed that
ellipsoids lead to better results by capturing more precisely local cell features83,47,48.
It should be noted that the idea of modelling the geometry of a foam as the result of a growth process, as presented above,

is not new. The Voronoï and Laguerre tessellations can be defined as the result of a growth process of spheres56. For growth
of spheres, the idea has been explicitly exploited in, e.g.82. Growth of ellipsoids in the context of polycrystalline microstruc-
tures reconstruction has been proposed in83. More recently, algorithms implementing ellipsoid growths for fitting cell have been
presented by A. Alpers et al.46 and improved by O. Sedivy et al.47,48. These algorithms try to optimise an objective function
encoding the positions and shape factors of all ellipsoids. The objective function tries to maximise ellipsoids volumes while
avoiding voxels representing boundaries between crystal grains. Obviously, the optimisation problem becomes rapidly high-
dimensional as the number of parameters to consider grows linearly with the number of ellipsoids. This issue has been tackled
in48 with an heuristic approach. In this approach, only a subset of parameters are optimised at each step, using simulated anneal-
ing. Though faster, the algorithm proposed in48 still requires on the order of several million of iterations to converge. On the
contrary, the algorithm proposed by R. Deits et al.78 maximises the volumes of the considered ellipsoids independently. As a
consequence it breaks down the high-dimensional optimisation of E. Alpers in a set of independent low-dimensional optimisa-
tion problems. Indeed, since each ellipsoid volume is independently maximised, only nine parameters (three for the position of
the centre and six for the shape factors) need to be optimised. Therefore, the number of ellipsoids (and thus cells) that can be
optimised is much higher than with the approaches of E. Alpers and O. Sedivy. Moreover, the algorithm presented by R. Deits
can be trivially parallelised. A drawback, though, of the approach of R. Deits et al. is that there is no guarantee that ellipsoids are
not overlapping. However, this drawback is not a concern for us as subsequent steps do not depend on this peculiarity. Therefore,
the approach proposed by R. Deits for growing ellipsoids has been chosen as it can process a large number of ellipsoids while
being less computationally expensive than the approach suggested by O. Sedivy.
Once superfluous ellipsoids (associated to superfluous local maxima located in the same cell) have been grown, they are

clustered together by using theGeneralized Density-Based Scan (GDBScan) algorithm84. Since ellipsoids that have been grown
in the same cell (even from different starting local maxima) are more likely to overlap than ellipsoids grown in two different cells,
the criterion for associating two ellipsoids in the same cluster is based on their relative intersecting volume. More precisely, two
ellipsoids 1 and 2 potentially associated to the same cell, are clustered together if their associated volumes satisfy one of the
relations (1).

V ol
(

1 ∩ 2
)

V ol
(

1
) ≥ � or

V ol
(

1 ∩ 2
)

V ol
(

2
) ≥ � (1)

Where � ∈ [0, 1] is the relative intersection volume threshold. When � is set close to zero, any slightly intersecting pair of
ellipsoids will be clustered together; while for � set close to one, only pairs of almost overlapping ellipsoids will be clustered
together. In general, a suitable guess value for this parameters will be � ≈ 0.5.
Finally, ellipsoids identified by the above criterion as belonging to a same cluster are merged together into one ellipsoid

using the Minimum Volume Covering Ellipsoid of Ellipsoids (MVCEE) algorithm detailed in85. Figure 2-e shows an example
of computed parent ellipsoids.

2.2.6 Step 6 - Auxiliary ellipsoids
“Auxiliary” ellipsoids are grown using the previously expanded ellipsoids for generating new seeds. These “auxiliary” ellipsoids
are constructed as follows (see Figure 4): each previously grew ellipsoid is uniformly discretised into a set of points and serves
as “parent” to its associated auxiliary ellipsoids. This discretisation is parametrised by an azimuthal angle increment Δ�, which
drives, in turn, the polar angle increment

Δ�i =
2�

⌊2�sin(�i)∕�i⌋ + 1
(2)
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FIGURE 4 Schematic sequence illustrating the growth of auxiliary ellipsoids into a cell. The last step f. is obtained by taking
the zero iso-surface (iso-line) of the distance field to the ellipsoids.

Where �i = �i−1 + Δ� is the ith increment in angle �, and ⌊.⌋ returns the closest lower integer of its argument. Once the
discretisation computed, each of the associated point is attached to an auxiliary ellipsoid. Initially, these auxiliary ellipsoids are
simply spheres the radii of which are one voxel wide. Then, between each sphere and the centre of the “parent” ellipsoids an
“artificial” obstacle is added. These obstacles are simply the closest points of each sphere to the centre of the parent ellipsoid.
The aim of these “artificial” obstacles is to avoid the auxiliary ellipsoids to all decay into their parent ellipsoids. Once initialised
by unit spheres and their associated artificial obstacles, the auxiliary ellipsoids are then grown using the same algorithm as their
parent ellipsoids78, taking into account for each auxiliary ellipsoid the same obstacles as for its associated parent ellipsoid and
the artificial ones generated from it and the spheres. The result shown in Figure 4-f is obtained by extracting the zero iso-surface
of the distance field to the ellipsoids.
From all the above described steps, an approximation of a CT-scan image of foam in terms of a set of ellipsoids (and associ-

ated polyhedra) can be obtained. This set can then be used to reconstruct the geometry of the foam as demonstrated in Section 3;
geometry that can be subsequently used into a FEM simulation (see Section 4). These steps avoid the memory expensive water-
shed and H-maxima transforms, replacing them by the clustering and merging of overlapping ellipsoids. Depending on the
number of auxiliary ellipsoids associated to each “parent” ellipsoid, the obtained set of ellipsoids allows a rather precise fitting
of the struts structure present in the CT-scan images, including local defects such as partially missing or deformed struts.

2.3 Proposed image analysis procedure with streaming
Streaming is the ability to process an image by slices. It offers the advantage to be able to process large amounts of data that are
not manageable otherwise (e.g. that do not fit the RAM of a computer, and/or parallelise the processing). The Insight Toolkit
framework69 offers such streaming capabilities70. All the steps described in Section 2.2 have been implemented as ITK filters
which are streamable along slices (Figure 5).

2.3.1 Streaming of threshold (step 1)
The streaming of the threshold in the proposed image analysis does not pose difficulties. Since threshold algorithms mostly
operate voxel by voxel, they are streamable without any modification.
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FIGURE 5 Extraction of a slice from a 3D image.

FIGURE 6 Computation of the correct distance transform on slice Rg, by computing an incorrect distance transform on slice
Rgext. See text for details.

2.3.2 Streaming of distance transform (step 2)
The streaming of the distance transform is less straightforward: computing the distance transform only on one slice will generally
provide an incorrect transform on that slice. This is due to the fact that some voxels outside the considered slice may influence
the computation of the distance inside that slice. It is nevertheless possible to overcome this difficulty by computing an incorrect
distance transform on a thicker sliceRgext so as to ensure a correct distance transform inside the initial sliceRg. The thicker slice
Rgext is computed as follows (see Figure 6): first, an incorrect distance transform is computed on the initial slice Rg. Second,
voxels xmax− and xmax+ on the boundaries of Rg with maximum associated (incorrect) distances ld and ℎd are searched for.
Third, the slice Rg is extended to Rgext along both directions by, respectively, ld and ℎd voxels. Finally, an incorrect distance
transform is computed on Rgext, with the guarantee to be correct on slice Rg.

2.3.3 Streaming of distance post-processing (step 3)
If some additional filters are added in step 3, the user must ensure that they are streamable in order to benefit from this feature.

2.3.4 Streaming of local maxima (step 4)
The computation of local maxima from the distance transform in section 2.2.4 requires modifications to the original algorithm of
Pham76: it needs to “scan” along voxel lines for local maxima candidates. The algorithm has been implemented such that these
voxel lines are always located inside a given slice. Computation of local maxima candidates by this algorithm is thus exact. Local
maxima are then selected from candidates by analysing the values associated to their neighbouring voxels in a region of radius
Nr. In order to ensure a correct computation of the local maxima inside the current slice Rg, the same procedure as described
earlier for step 2 is used: the current sliceRg is extended to a thicker sliceRgext where the (incorrect) maxima are looked for, and
the (guaranteed correct) maxima inside slice Rg are returned. The computation of the thicker slice Rgext is, however, simpler
than in step 2: extension distances ld and ℎd are simply equal to the radius of the neighbouring search regionNr.



10

FIGURE 7 Growth of ellipsoids inside a slice Rg . If some ellipsoids grew outside Rg (red ellipsoids), their growths are
recomputed in a thicker slice Rgext until no more ellipsoids grow outside the last considered slice.

2.3.5 Streaming of ellipsoid growth (steps 5 and 6)
Regarding the growing of parent and auxiliary ellipsoids (Sections 2.2.5 and 2.2.6), a similar strategy as in Sections 2.3.2
and 2.3.4 is used. Ellipsoids with centres located inside the current slice Rg are grown. If some of the ellipsoids grew outside
of the current slice Rg, their growths are recomputed within a thicker slice Rgext (see Figure 7). If the slice Rgext is not thick
enough (meaning that there are still some ellipsoids which grew outside this slice) then, the slice Rgext is extended further until
no more ellipsoid grows outside it or if a boundary of the CT-scan images is reached (meaning that there are no more voxel data
available beyond the extended region Rgext).

2.3.6 Discussion
With the adaptations described above, it is possible to use the proposed image analysis procedure within a streaming framework,
provided that each optional added filter (step 3) is also streamable. As shown in Section 2.4 this allows processing CT-scan data
of foams that would normally not fit in the available RAM. Nonetheless, there is one downside and one limitation when using
streaming. The downside is that the computational time for processing the whole considered image will increase compared
to a normal image analysis procedure (where the whole CT-scan data is fitted into the RAM). This is caused by the fact that
some algorithms used for the image analysis procedure have to be called twice. That fact can be seen as “communication costs”
between slices. The scalability is thus not one as expected with any parallelised setting. Regarding the limitation, there is no
strict guarantee that the extended regions Rgext will not cover the entire CT-scan data set (and thus obliterating the whole point
of doing streaming). As a matter of fact, the biggest extended region Rgext will approximatively be of the size of the biggest
cell present in the foam. In general, cells seldom span an entire foam sample, especially for large samples. Thus, the memory
benefits obtained by streaming can be significant.

2.4 Memory usage
Memory usage can be considered as an issue regarding the techniques of geometric reconstructions of foams. Indeed, storing
in the RAM the CT-scan data alone may already be an impossible task for standard computers (such as consumer market
computers), even less regarding the processing of those data. The above proposed image analysis procedure aims to overcome
this limitation by trying to use less RAM than a standard image analysis procedure (and, especially, the watershed). Moreover,
its streaming ability offers the possibility for standard computers to process CT-scan data that would not even fit their RAM.
In order to determine the ability of the proposed image analysis procedure, an investigation has been conducted on an artifi-

cially generated honeycomb foams of different sizes. For the sake of comparison, every foam has the same cell size. An example
of such artificially generated foam can be seen on the left of Figure 8.
Table 1 reports the sizes of the different generated artificial honeycomb foams along with their corresponding number of cells.

The cell sizes are kept constant for all honeycomb foams. Table 1 also reports the theoretical minimum amount of RAM needed
for storing the corresponding data, assuming 8 bytes per voxel. The last three columns display the measured peak memory
usages2 for the watershed algorithm (as implemented in the ITK library69) and the proposed image analysis procedure without
and with using the streaming ability (using 10 slices). The “> 64.0” entry in the table corresponds to a peak memory usage

2Peak memory usages were measured using the software valgrind 86.
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FIGURE 8 Left: artificially generated honeycomb foam of size 600×600×600 voxels and containing 1430 cells. Right: artificial
foam generated using the DN-CT-SCAN model61 with 616 random inclusions.

exceeding the maximum of 32 GB RAM available (extended to 64 GB RAM thanks to the RAM compression utility ZRAM3)
of the computer on which this investigation was conducted. It was, therefore, not possible to measure the peak memory usage
for this entry of the table.
From Table 1 it can be seen that the proposed image analysis procedure is indeed less memory demanding than the watershed

algorithm (as implemented in the ITK library69) for the considered artificial honeycomb data sets. Especially, the usage of
streaming allowed reducing the peak memory usage by a large amount. Thanks to streaming, it was possible to process an
artificially generated foam of 1800 × 1800 × 1800 ≈ 5.8 109 voxels; which, due to RAM limitations, was possible neither using
the watershed nor using the proposed image analysis procedure without using the RAM compression utility ZRAM.
It should be noted that, technically, only one bit per voxel is required for storing a thresholded image such as the ones shown

in figure 8. However, some filters, such as the (inverse) euclidean distance transform, require at least 4 bytes per voxel in order
to perform their calculations. Distance calculations indeed require a floating type, or at least a sufficiently “big” integer type
(such as “int” encoded on 32 bits) if one whishes to compute squared distances. Thus, the real storage cost of voxel data is not
1 bit, but at least 4 bytes per voxel. Here, Table 1 considers a worst case scenario were a filter might require 8 bytes per voxel.
Figure 9 displays the peak memory usages for the watershed and the proposed image analysis procedure, with and without

streaming (points). It can be noted that, for the generated artificial honeycomb foam, the proposed image analysis has always
a lower peak memory usage than the watershed, and that the streaming increases this trend. Roughly, by using ten slices, the
streaming was able to use ten times less memory than the watershed. This ability can be an advantage when it comes to process
large data sets with limited capabilities, or can authorise the processing of bigger data sets which were not processable earlier.
Diamonds in Figure 9 show the peakmemory usages measured for the real-world foam data set that is presented in Section 3.1.

Circles show, for their part, the peak memory usages on artificial foams generated using the DN-CT-SCAN model61, described
in section 3.1.3, with random inclusions following a statistical distribution similar to that of the cells of the real-world foam
(right of Figure 8). It can be seen that the trends are the same as for the artificially generated foam, indicating that the streaming
strategy is likely also effective on real-world foam data.
It should be noted, though, that the earlier mentioned limitation of the streaming capability of the proposed image analysis

with respect to the maximum cell size drives the peak memory usage. For instance, if a cell extends across the entire foam
sample, the proposed streaming capability will be of no use for reducing the peak memory usage. However, for the purpose of
reconstructing foam geometries, the cases of cells extending across the whole foam sample can be considered quite exceptional.
Especially, this case should arise less frequently with larger foam samples, for which the usage of streaming can be useful.

3https://kernelnewbies.org/Linux_3.14

https://kernelnewbies.org/Linux_3.14
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TABLE 1 Sizes in pixels, number of cells andminimumRAM (assuming 8 bytes per voxel) needed for storing data for artificially
generated honeycomb 3D foams images. Last three columns: measured peak memory usages for watershed and the proposed
image analysis procedure with and without streaming

.

Cube side (voxels) Nb. of cells Min. RAM (GB) Watershed (GB) Proposed (GB) Proposed, streaming (GB)

150 120 0.03 0.1 0.05 0.07
300 390 0.2 0.7 0.27 0.17
600 1430 1.6 5.7 2.2 0.8
800 3094 3.8 13.4 5.3 2.0
1200 10,500 12.9 45.1 16.4 4.3
1800 34,410 43.5 > 64.0 59.9 14.9

FIGURE 9 Peak memory usages in GB on a set of artificially generated honeycomb foams with constant cell size. In blue:
watershed (as implemented in the ITK library69). In red and black: proposed image analysis with and without streaming, respec-
tively. Discontinuous lines show the global trends for each method. Diamonds show the peak memory usages for each method
on the real-world data set presented in Section 3.1. Circles show the peak memory usages on artificial foam data sets generated
by random inclusions using the DN-CT-SCAN model61 described in section 3.1.3.

3 APPLICATION TO FOAM RECONSTRUCTION

3.1 Open foam
3.1.1 Data acquisition
A cubic aluminium foam (AlSi7Mg0.3) with an edge length of 15 × 15 × 15mm3 and a pore size of 20 pores per inch (ppi)
was purchased from Celltec Material GmbH, Dresden, Germany. X–ray computed tomography – performed at the Fraunhofer
Institute for Non-destructive Testing (IZFP), Saarbrücken, Germany – was used to determine the real microstructure of the foam.
The scans were performed with a resolution of 1984 × 1984 pixels per layer and a voxel size of 12�m. From the raw scanned
images, a set of 673 2D-images with a resolution of 711 × 711 pixels each has been extracted (Figure 10).
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FIGURE 10 3D–image extracted from raw CT-scans of a cubic aluminium foam.

TABLE 2 Parameters used in the image analysis of the CT-scan data presented in Section 3.1.

Parameter Value Description

Nr 10 Radius of the neighbouring region for testing local maxima candidates.
� 10−5 Hessian threshold for selecting local maxima.
� 1.5 Gaussian standard deviation used for the convolution kernel.
� 0.45 Relative intersection volume threshold.
Δ� 10◦ Azimuthal angle increment for discretising ellipsoids.

3.1.2 Image analysis step
The above set of described images contains void boundary regions with no struts at all. Therefore a subsample made of 613 ×
598 × 621 voxels was extracted in order to keep only the relevant data. From this subsample, ellipsoids were generated with the
procedure presented in Section 2.2. Table 2 gives the parameters that were used. In this subsample each voxel is of length≈ 24�m
in all the directions. Figure 11 shows the ellipsoids obtained in a sub-region cropped, for visualisation purposes, between the
127th and the 484th voxels in each direction. From the images, it can be noticed that one cell corresponds unequivocally to one
ellipsoid. Quantitatively, if feature voxels represent the struts (in red in the images), 69% of the non-feature voxels (respectively
only 0.3% of the feature voxels) are located inside the ellipsoids; indicating that the ellipsoids indeed fit the cells and do not
cross the struts. Figure 12 shows the surfaces obtained from the polyhedra associated to the parent ellipsoids.
Growing auxiliary ellipsoids allows obtaining a much better fit of the cells as shown in Figure 13. Indeed, 96% of the non-

feature voxels are now located inside at least one ellipsoid, while still only 0.3% of the feature voxels are located inside an
ellipsoid. However, this better fit comes at the expense of optimising a much larger number of ellipsoids (the number of auxiliary
ellipsoids grows linearly with the number of parent ellipsoids). Nevertheless, this is not an issue for the algorithm of R. Deits et
al.78 as only the number of associated optimisation problems will grow and not their dimensions.
In what follows two different geometrical models are used for reconstructing the geometry of a foam and are compared against

the experimental image data. Both of these models use, as starting point, the ellipsoids and/or their associated polyhedra obtained
from the proposed image analysis procedure given in Section 2.2.

3.1.3 Reconstruction using the DN-CT-SCAN model
In61, the authors have developed a method to extract open foammorphologies from inclusions packings using distance functions
as described in60. In this first model, the reconstruction of the geometry uses the set of ellipsoids that have been generated
previously. The ellipsoids can then be used as the initial packing to extract distance functions that can then be treated to obtain
open foam RVEs. This method presents the advantage of using experimental information to improve the fidelity.
As described in60, nearest neighbour distance functions,DNk(x) in a point x, are defined as the distance from the considered

point to the k-th nearest inclusion. Figure 14 illustrates some nearest neighbour distance functions on a spherical packing. This
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FIGURE 11 Surfaces of the parent ellipsoids (grey) obtained by the proposed image analysis steps and “struts” voxels extracted
from the raw CT-scans showed for visual comparison (red). Cropped views of the 613×598×621 set for visualisation purposes.

FIGURE 12 Surfaces of the polyhedra (grey) obtained by the proposed image analysis steps and “struts” voxels extracted from
the raw CT-scans showed for visual comparison (red). Cropped views of the 613 × 598 × 621 set for visualisation purposes.

step ensures that the distance functions are not affected by the boundary inclusions. The distance functions are then used to
extract the modified “Plateau" function,

OP (x) =
(DN3(x) +DN2(x))

2
−DN1(x) (3)
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FIGURE 13 Surfaces of the auxiliary ellipsoids (grey) obtained by the proposed image analysis steps and “struts” voxels
extracted from the raw CT-scans showed for visual comparison (red). Cropped views of the 613×598×621 set for visualisation
purposes.

FIGURE 14 Functions (a) DN1, (b) DN2, and (c) DN3.

as described in61, where DN1(x), DN2(x) and DN3(x) are the 1st, 2nd and 3rd neighbour distance functions respectively. The
“Plateau" function enables the extraction of the 3-sided struts.
The evaluation of the nearest distance field did not bring particular difficulty when starting from a sphere packing as in61.

However, in the present case, it is possible that the ellipsoids used as reference and their associated polyhedra intersect. In
that case, this distance field DNk is not monotonically evolving in the intersection region. This problem can be avoided by
introducing an offset to the ellipsoid surface. In87, the authors have built Ad-hoc level set functions using previously computed
distance fields. Similar Ad-hoc level set functions can be built around the ellipsoids that can then be manipulated to remove
residual interpenetrations by introducing a gap between two selected ellipsoid based inclusions (see Figure 15).
The distance field associated to an inclusion i, denoted asDSi, is defined as the signed distance field which is negative inside

the inclusion and positive outside. The distance fields, DSi and DSj , resulting from two inclusions i and j, can be used to
determine their mutual intersection volume as

max(DSi(x), DSj(x)) < 0, ∀i ≠ j. (4)

The minimum distance to every inclusion other than inclusion i, DOi(x), is given by

DOi(x) = min(DSj(x) ∶ ∀i ≠ j), (5)
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FIGURE 15 (a) Ellipsoids obtained by processing the CT-scan; (b) Post-processing of ellipsoids to avoid residual interpenetra-
tion using the method described in87.

and an ad-hoc level set function , Oi(x), can be then extracted as follows

Oi(x) = max(DSi(x), (DSi(x) −DOi(x))). (6)

The necessary gap can be introduced as an offset, c, such that

Og
i (x) = max(DSi(x), (DSi(x) −DOi(x)) + c), (7)

with the zero level of Og
i resulting in the necessary inclusion surface of the inclusion i.

The ellipsoids can also be replaced by the polyhedra as the basis inclusion considering that the polyhedra are closer to the foam
geometry. Indeed, as described in78, polyhedra are defined by the interior region delimited by oriented planes. These planes are
determined via the boundaries of the struts and tangents to the surfaces of the associated ellipsoids. Given that the polyhedra
always contain their associated ellipsoid but not any strut, they are closer to the foam geometry than ellipsoids. The distance
fields for the polyhedra can be similarly generated as for the ellipsoids.
The ellipsoids and polyhedra obtained from the CT-scan in Section 2.2 have the problem of boundary effect due to insufficient

information at the boundaries to extract statistically representative inclusions. In order to analyse RVEs that are similar in size to
those that were tested experimentally, it is possible to continue the process of adding inclusions using random sequential addition
(RSA), as described in88. The distance fields obtained previously ensure that the new spherical inclusions are statistically valid
to extract open foam morphologies61. Once the RSA process is complete, an open foam morphology can be extracted using the
computed distance fields.
For both packings (ellipsoids and polyhedra), the obtained porosity is around 93.5%which is very similar to that of the original

foam of 93%. Thus, the relative densities of the two samples are considered close enough. The obtained RVE mesh was refined
as explained in88 and a tetrahedral mesh was extracted using the Tetgen software89. Figure 16 shows the Hausdorff distances,
computed using the software Meshlab90 with 500.000 sample points, between the extracted RVEs and the thresholded CT-scan
image for both ellipsoid and polyhedral packing. It can be seen, that the polyhedral packing leads to a better representation for
the DN-CT-SCANmodel. The Hausdorff distance between the reconstructed geometry and the struts is 1.48mm (corresponding
to a relative maximum error of 9.9%) when using the ellipsoid packing, while it reduces to 0.89mm (corresponding to a relative
maximum error of 5.9%) with the polyhedral packing. For the polyhedral packing, it can be seen that for a statistically validated
representation of the actual foam, the extracted RVE is very close in the reproduction of the various morphological features.

3.1.4 Reconstruction using the Ellipsoidal Model
In this second model, the reconstruction of the geometry uses the set of parent and auxiliary ellipsoids that have been generated
previously in Section 2.2. The procedure for reconstructing the geometry from the set of ellipsoids is conceptually simple. First,
all ellipsoids (parent and auxiliary) are discretised to a set of points and associated normals. Then this set of points and normals
is used for generating a closed triangulated surface using a Poisson surface reconstruction. Finally, this triangulated surface is
meshed using the GMSH software68. What follows describes the process in details.
First the iso-surfaces of the parent and auxiliary ellipsoids are discretised into a set of points and associated normals using

the same discretisation technique as in step 6 of Section 2.2. The angle increment Δ� is described in Section 2.2 and depicted in
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FIGURE 16 Visual representation of the Hausdorff distance in mm between the CT-scan image and the meshes extracted using
DN-CT-SCAN. (a) Use of ellipsoidal packing. (b) Use of polyhedral packing.

Figures 17-a and-b. Using this technique ensures that the set of points is approximatively homogeneous.Moreover, the ellipsoid’s
iso-surfaces ISOparam on which the points lie can be chosen so that the porosity of the final reconstructed geometry matches
as much as possible the measured porosity of the foam. One may notice that the auxiliary ellipsoids already closely fit the real
foam geometry. As a consequence, this parameter usually does not need to be fine tuned and can generally be kept at its default
value ISOparam = 1.0; which corresponds to the ellipsoid’s surfaces. Then, points associated to a given ellipsoid Ei, but located
strictly inside a different ellipsoid Ej (w.r.t. the considered iso-surface) are discarded. This ensures only surface points and
associated normals are kept, even if the ellipsoids are intersecting (Figure 17-c).
However, at the boundaries there is insufficient information to extract statistically representative ellipsoids. In order to avoid

spurious reconstruction effects a subset of suitable surface points is determined from the set of surface points as follows. First,
clipping planes are applied in order to discard points too close to the boundaries (Figure 17-d). Second, “holes” created by the
clipping planes in the set of points are filled by adding new points with a similar density as the density of the whole set of surface
points (Figures 17-e and-f). Associated normals to the new points are simply set as the corresponding normals of each clipping
plane.
Finally, in order to obtain the reconstructed geometry of the foam from the set of suitable points and normals, a Poisson surface

reconstruction is performed67 using the eponymous CGAL package https://doc.cgal.org/latest/Poisson_surface_reconstruction_
3. At each point the Poisson surface reconstructionmethod requires an associated normal. For a given point its normal is obtained
as the local normal of its associated ellipsoid at that point position. Figure 18 shows the set of suitable points extracted from
the data described in Section 3.1, using an azimuthal angle increment Δ� = 10◦. The Poisson surface reconstruction algorithm
provided in the CGAL package can be tuned via three parameters (see Table 3). These three parameters, denoted �, Ts and, Sa
control the quality and refinement of the mesh which is obtained from the discretised ellipsoids. They are directly related to the
parameters of the CGAL function poisson_surface_reconstruction_delaunay.
Ultimately, a B-REP of the surface geometry is then obtained as a “geo” file describing vertices positions, edges and faces

relations that can be used by the GMSH software68. The advantage of having a meshable B-REP is that the 3D generated mesh
can be, to some extent, “tuned” for satisfying some precise needs. For instance, the 3D generated mesh can be locally refined
where needed. Moreover, the GSMH software easily allows associating several geometries together via boolean operations. For
instance, one may consider to unite the surface geometry with a rectangular plate and conduct some thermal simulations with
a dedicated solver. Figure 19 shows an extracted mesh compared to the threshold CT-scan images. It can be seen that the 3D
mesh closely reproduces the different morphological characteristics of the foam, although the obtained porosity of 90.2% is quite
different from the experimental 93% porosity. For the Ellipsoidal Model this difference, as suggested by the Hausdorff distance
in Figure 19, is due to the fact that the ellipsoidal model seems to accumulate more matter than needed where struts meet. This
problem could probably be alleviated by discretising the circumscribing auxiliary polyhedra instead of theirs associated auxiliary
ellipsoids. Indeed, as each polyhedron contains its corresponding ellipsoid, the obtained porosity can only increase and sharp
features should be better reconstructed. However, in any case, it should be noted that, despite the fact that the DN-CT-SCAN

https://doc.cgal.org/latest/Poisson_surface_reconstruction_3
https://doc.cgal.org/latest/Poisson_surface_reconstruction_3
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FIGURE 17 Schematics of the reconstruction of the geometry from the ellipsoids obtained in Section 2.2. (a) Obtained ellipsoids
from Section 2.2. (b) Discretised ellipsoids. (c) Only points strictly not inside ellipsoids are kept. (d) Application of clipping
planes for discarding points too close from boundaries. (e) Set of points with “holes”. (f) “Holes” filled.

FIGURE 18 View inside the set of points extracted from the data described in Section 3.1.

TABLE 3 Parameters used in the geometric reconstruction of the CT-scan data presented in Section 3.1 for the Ellipsoidal
Model.

Parameter Value Description

� 30◦ Minimum triangle angle.
Ts 600.0 Maximum triangle size w.r.t. point set average spacing.
Sa 0.75 Surface approximation error w.r.t. point set average spacing.
ISOparam 1.0 Iso-surface parameter on which lie the extracted points.
Δ� 10◦ Azimuthal angle increment for discretising ellipsoids.

model using polyhedral packing presents a better porosity value than the Ellipsoidal model, both models present very similar
structures and Hausdorff distances as it can observed in Figures 16-b and 19.
It is worth noting that the Ellipsoidal Model is also able to reconstruct local features of the microstructure such as the typical

tendency of struts to be thicker near their vertices than at their centre16. But this has also the capability to reproduce small
defects as illustrated in Figure 20 without the need of some dedicated parametrisation.
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FIGURE 19 Visual representation of the Hausdorff distance in mm between the CT-scan image and the meshes extracted using
Ellipsoidal Model.

FIGURE 20 (a) Presence of a defect (spike) visible on the upper left-hand side of a 3D CT–scan image of a strut. (b)
Reproduction of this defect by the Ellipsoidal Model.

3.1.5 Summarising algorithm
In order to give a global insight of the whole reconstruction process, algorithm 1 briefly summarises all the preceding steps from
the raw 3D-CT image to the final surface geometry.

Algorithm 1 Ellipsoidal Model summarising algorithm
Input: 3D CT-scan image I of a foam.
Output: Surface geometry G of the foam.
1. IT ← threshold(I)
2. ID ← distance transform(IT )
3. IDopt ← distance processing(ID), optional
4. Imax ← local maxima from ID(opt)
5. Eparent ← parent ellipsoids seeded from Imax and with obstacles from IT .
6. Eaux ← auxiliary ellipsoids seeded from Eparents and with obstacles from IT and artificial obstacles Eparents.

7.

{

P , N⃗
}

← points and associated normals from discretisations
of Eparent and Eaux which do not lie strictly inside any ellipsoid.

8.
{

P , N⃗
}

← update with points and normals on boundaries

9. G ← Poisson surface reconstruction using
{

P , N⃗
}
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FIGURE 21 Meshed RVEs used for the simulations and generated from: (a) DN-CT-SCAN model using ellipsoids, (b) DN-
CT-SCAN model using polyhedra, (c) Ellipsoidal Model. Around ∽ 100.000 nodes and ∽ 70.000 tetrahedral elements were
used.

FIGURE 22 Experimental setup for the unixial compression test: top and bottom extremities molded into a small casting to
ensure a stiff and stable fixture. Sides were left free.

4 FEM SIMULATIONS: UNIAXIAL COMPRESSION TEST ON OPEN FOAM SAMPLE

In order to demonstrate the ability of the CT scan-based RVE generation to reproduce the structural properties of open foams
by both the DN-CT-SCAN and the Ellipsoidal Model, finite element simulations have been conducted using the generated
meshes obtained from the industrial aluminium open foam sample presented in section 3.1. More precisely, three meshes have
been considered: two using the DN-CT-SCAN model, respectively obtained from the parent ellipsoids and associated polyhe-
dra (Figure 21-a and-b), and one using the Ellipsoidal Model (Figure 21-c). In all cases, the considered RVEs have sizes of
approximatively 10 × 10 × 10mm3 and contain around 25 pores.
Simulations using these three RVEs were conducted using the finite element procedures proposed in91,92 and have been

qualitatively compared against experimental measurements of an uniaxial compression reported in66.

4.1 Experimental data
The mechanical behaviour of the cubic sample of aluminium foam described in Section 3.1 were investigated by uniaxial com-
pression tests using an ElectroPulsTM E10000 universal testing machine of Instron Ltd., Pfungstadt, Germany. A displacement
control using a quasi-static strain rate of 5.10−3 s−1 was applied for each test. The top and bottom extremities of the studied sam-
ple were molded into a small casting to generate plane parallel plates as force transmission points for the compression tests (see
Figure 22). The Wood’s alloy guarantees a gentle molding and demolding, providing a stiff and stable fixture at the same time.
These requirements cannot be adequately met by polymer resins. The boundaries orthogonal to the compression directions were
left free.
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TABLE 4 Averaged struts material properties identified for the isotropic hardening law used for the simulations.

Material property Value (MPa) Description

E 3968.12 Young’s modulus.
�0 46.35 Initial yield stress.
Hiso 214.61 Linear hardening.

4.2 Material properties
Simulations were carried out using for the struts a linear hardening hyperelastic-based J2-elasto-plastic material law applied for
large strains (see Appendix A in Nguyen et al.91 for details), with the isotropic hardening law given in equation 8.

�0y
(

�̄pl
)

= �0 +Hiso�̄
pl (8)

Where �̄pl is the equivalent plastic strain.
Struts material properties required to parametrise the material law were identified in66, using an inverse identification pro-

cedure based on compression tests of single pores. As the provided values tends to vary from one pore to another, averaged
material properties have been considered. Table 4 reports the material properties used for the simulations.

4.3 Boundary conditions
In order to understand the numerical response of the RVEs, several boundary conditions were tested. This was required by the fact
that the three RVEs extracted from the CT-scan data are rather small compared to the samples on which experimental measure-
ments were conducted. Namely, for each RVE, three sets of boundary conditions were considered (see Figure 23): enforcement
of free boundary conditions which are a simple uniaxial compression, mixed boundary conditions which are obtained by impos-
ing an uniaxial load while constraining struts extremities to lie in common planes, and periodic boundary conditions using a
5th-order Lagrangian polynomial based interpolation93.
More precisely, struts nodes in contact with the top plane were constrained to vertically follow its displacement, while they

were free to move in the horizontal directions. Similarly, struts nodes in contact with the bottom plane were vertically constrained
by it, while free to move in the horizontal directions. However, in order to avoid rigid body motion, two nodes in contact with
the bottom plane were constrained as follows. The first one had also its x and y coordinates fixed, while the second one has its
x coordinate fixed.
The free boundary conditions had no other imposed conditions, and struts extremities not in contact with the planes were free

to move. For the mixed boundary conditions, struts extremities located on a given lateral side were constrained to move within
the same vertical plane.
Finally, for the periodic boundary conditions, displacements of struts extremities from one lateral side were constrained in

terms of the displacement of the struts extremities located on the corresponding opposite side following an interpolation method
as described in92 to constrain periodic boundary conditions for non-periodic meshes. For these different kinds of boundary
conditions, uniaxial tension can be obtained by selecting the components of the macroscopic scale deformation gradient which
are enforced during the constrained resolution of the RVE, see details in Section 3.5 of paper94.

4.4 Comparison of simulations against experimental data
4.4.1 Periodic boundary conditions
Simulations of uniaxial compression were conducted on the three considered RVEs showed in Figure 21 using periodic boundary
conditions with a 5th-order Lagrangian polynomial based interpolation93. Figures 24(a,b) report on the red curves the (relative)
strain-stress curves obtained from the simulations for each RVE along the compression direction. From this figure, some over-
stiffness can be observed with respect to the experimental data in the obtained curves. As shown in93, the obtained strain-stress
curves using Lagrangian polynomial enforced periodic boundary conditions show a convergence behaviour with higher degrees
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FIGURE 23 Tested boundary conditions for a simple uniaxial compression: (a) free boundary conditions, (b) mixed bound-
ary conditions (uniaxial load while ensuring struts extremities lie in common planes), (c) periodic boundary conditions using
Lagrangian polynomial interpolation93.

FIGURE 24 (a) Simulations of a uniaxial compression test on an open cubic sample of aluminium foam (see Section 3.1) with
periodic boundary conditions (red curves), free boundary conditions (blue curves) and mixed boundary conditions (magenta
curves); using ≈ 70.000 tetrahedra in all the cases. Obtained (relative) strain-stress curves using the three generated RVEs
presented in Figure 21, against experimental measurements (grey area). (b) Zoom of Figure (a).

of interpolation. In order to investigate if the origin of the observed over-stiffness is due to the use of a too small interpolation
degree, a convergence study of the strain-stress curves with respect to the interpolation degree was conducted. From this study it
has been observed that the choice of the interpolation degree cannot explain the observed discrepancies between the simulations
and the experimental data. Especially, the obtained initial slopes in the linear deformation regime are very similar for all the
tested interpolation degrees and does not comply with the experimental measurements. Therefore, it has been concluded that
the enforcement of periodic boundary conditions adds extra constraints on the deformation of the struts and cannot be realistic
for the considered RVEs because of their reduced sizes and the non-periodicity of their geometry.

4.4.2 Free boundary conditions
As the enforcement of periodic boundary conditions discussed in section 4.4.1 leads to an over-stiffness behaviour, one can
release them and just consider the three RVEs with free lateral boundaries. Figures 24(a,b) report on the blue curves the obtained
strain-stress curves for the three considered RVEs when imposing a simple uniaxial compression. It can be observed that, for this
case, the result presents some over-softness with respect to experimental data. Though the initial slopes in the linear deformation
regime for all three considered RVEs are within the experimental scattering, the free boundary conditions induce unrealistic
deformations as compared to the other boundary conditions and to what can be expected in an embedded body (Figure 25).
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FIGURE 25 Simulations of uniaxial compression tests on an open cubic aluminium foam (see Section 3.1) using the RVE
generated by the EllipsoidalModel for different boundary conditions. (a) Free, (b) mixed and (c) periodic. The vonMises stresses
are plotted on the 30% deformed RVE.

4.4.3 Mixed boundary conditions
From the previous sections 4.4.1 and 4.4.2, the periodic and free boundary conditions induce, respectively, over-stiffness and
over-softness in the simulated behaviour of all three considered RVEs. Figure 24-b reports on the magenta curves the strain-
stress curves obtained with the considered RVEs. It can be seen that the mixed boundary conditions avoid imposing artificial
constraints on the struts and that the computed strain-stress curves exhibit a comparable behaviour as observed experimentally.
Indeed, the initial slope in the linear deformation regime is rather well reproduced for the polyhedra-based DN-CT-SCAN

model and the Ellipsoidal Model (which present very similar geometrical features, contrary to the quite different ellipsoid-based
DN-CT-SCAN model), though they display plastic deformation quite early compared to the experimental results. Moreover,
as can be seen in Figure 24-a, the plateau regime is rather well reproduced by polyhedra-based DN-CT-SCAN model and the
Ellipsoidal Model (magenta curves). At high relative strains, around 60% and beyond, struts begins to pile-up against each other
and a so-called densification regime is experimentally observed as a fast stress increase occurs for small deformation increments.
Here, the densification regime was not reproduced by the FEM model as this one allowed the struts to interpenetrate, thus
preventing any struts stacking.
It should be noted that the RVEs generated by the DN-CT-SCAN model did in general not allow to compute deformations

beyond 30%, since the presence of narrow and/or high curvature regions cause the presence of bad-shaped mesh elements,
which, in turn, prevented the FEM simulations to continue due to these elements exhibiting negative Jacobians when deformed.
A solution to this issue was proposed in88 by optimising meshes using the Persson-Strang analogy, and might be considered in
the future for improving the meshing of the DN-CT-SCAN model.

4.4.4 Discussion: numerical convergence
Strain-stress simulations results presented in Figure 24 were produced using order-2 tetrahedral meshes containing approxi-
mately 70.000 tetrahedra. In order to ensure that convergence was indeed obtained, additional simulations with an increasing
number of tetrahedra were conducted.
As the Ellipsoidal Model is able to provide a surface geometry, it was easy to extract several meshes with an increasing

number of tetrahedra from it by using the Gmsh68 software. Figure 26 shows the obtained strain-stress curves for four different
meshes containing 42.740 up to 430.001 tetrahedra. It can be observed from Figure 26 and Table 5 that the differences between
the strain-stress curves from the mesh using 70.704 tetrahedra to the finest mesh and for all three boundary conditions can be
considered low (i.e. under 10% relative difference at a relative strain of 20%).
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FIGURE 26 Simulations of a uniaxial compression test on an open cubic sample of aluminium foam (see Section 3.1), using
the geometry provided by the Ellipsoidal Model, with the three considered boundary conditions, using order-2 meshes with
different numbers of tetrahedra.

TABLE 5 Relative differences between the computed strain-stress curves obtained at a relative strain of 20% using different
meshes computed from the geometry provided from the Ellipsoidal Model. The differences were computed using a reference
mesh consisting in 430.001 tetrahedra.

Boundary conditions 42.740 tets. 70.704 tets. 150.304 tets.

Free 11.43% 5.45% 3.3%
Mixed 10.4% 6.5% 2.9%
Periodic 13.0% 7.8% 4.1%

5 CONCLUSION AND PERSPECTIVES

In this contribution two models for the reconstruction of the geometry of foams from 3D CT–scan images were presented: the
DN-CT-SCAN model and the Ellipsoidal Model.
Both models rely on a first step consisting into an image analysis of 3D CT–scan images. The image analysis stage provides

the models with uniquely fitted ellipsoids and associated polyhedra to identified cells. This image analysis step avoids using
computationally expensive algorithm such as the watershed and the H–maxima transform. Instead, it relies on the detection of
local maxima of the distance transform of the images, and then on the individual constrained growth and clustering of ellipsoids.
This procedure allows processing slice by slice (a.k.a. streaming) huge 3D CT–scan images which cannot be loaded into the
available RAM (with the limitation that the minimum slice thickness is governed by the maximum cell size into that slice).
Alternatively, it is also possible to parallelise the image analysis among multiple cores each with a limited amount of available
memory. The effectiveness of this streaming process has been demonstrated in section 2.4 for both artificial and real–world 3D
CT–scan images of foams. Furthermore, this image analysis step can be used by other reconstruction models by providing them
cell identifications as points, ellipsoids and/or associated polyhedra.
Regarding the accuracy of the reconstruction by both models, section 3 has shown that they can faithfully reproduce the

microstructure of the considered foam. Besides, the Ellipsoidal model is also able to reproduce any local feature visible in the
3D CT–scan images without the need of any additional parametrisation or additional optimisation procedure. Eventually, this
model provides a boundary representation (B-REP) which offers more flexibility than 3D meshes for FEMmodels. For instance
for adding some external geometries using boolean operations for the aim of satisfying any specific needs or study.
Concerning the use of the reconstructed geometries by both models inside FEM simulations, section 4 illustrates that the

geometries can indeed be successfully used in such simulations for assessing the mechanical behaviour of foams; with a good
qualitative agreement with respect to experimental data.
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About possible improvements, the streaming part of the image analysis step can be further improved by considering blocks
instead of slices in 3D CT–scan images. The Ellipsoidal Model currently uses the discretised auxiliary ellipsoids and a standard
Poisson surface reconstruction algorithm for reconstruction the geometry. Improvements on both counts can be performed by
using the discretised associated auxiliary polyhedra to the auxiliary ellipsoids for the first, and some more advanced Poisson
surface reconstructions taking into account sharp edges for the second as proposed in95.
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