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When excitable media are submitted to appropriate time dependent boundary conditions, a standing wave-
like pattern can be observed in the system, as shown in recent experiments. In the present analysis, the physical
mechanism explaining the occurrence of such space-time patterns is shown to be a competition between Ohmic
diffusion and an action potential propagation across the system, coupled with the existence of refractory states
for excitable media.
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I. INTRODUCTION

Excitable systems have become standard models to de-
scribe the heart electrical activity and it is well known that a
large variety of structured and ordered dynamical behaviors
can be observed in such spatially extended excitable systems.
It is the purpose of the present work to study one of these
behaviors, namely the occurrence of a kind of standing wave
when the system is periodically forced at its boundaries.

Usually standing waves appear in linear systems as a re-
sult of the superposition of two counter propagating waves.
An important characteristic of these patterns is the occur-
rence of spatial nodes, where the amplitude of the time os-
cillations vanishes. Moreover, for such linear standing
waves, the oscillations of the different spatial points are al-
ways in phase. Excitable systems are instead described by
highly nonlinear equations with no superposition principle.
Moreover, the interaction of nonlinear waves is such that two
colliding pulses usually annihilate, even if crossing is also
possible in some cases �3�. For these reasons, a completely
different concept of “standing wave” must be introduced in
excitable media. In the following, we will consider that
“standing waves” in excitable systems are defined by the
occurrence of “nodes” at which the amplitude of the time
oscillations has a local spatial minimum which can be differ-
ent from zero. We will also see that such standing waves
usually do not give rise to in-phase oscillations of the sys-
tem.

Standing waves in excitable systems were recently dis-
covered in experiments carried out on an isolated rabbit heart
�1�. Two ring shaped electrodes were fixed at the top and
bottom of the heart and it was observed that when an alter-
native electric field of sufficient strength is applied between
these electrodes, a dynamical behavior looking like a stand-
ing wave can appear in the myocardium. The experiments
also suggested that these standing waves can be in close
relation with fibrillation in the heart. Indeed, when the am-

plitude of the forcing is too weak to induce standing waves,
fibrillation was usually observed when the electrical forcing
is terminated, while no such behavior is displayed when the
electrical field was high enough to generate the standing
waves. For this reason, a detailed analysis of standing waves
in excitable media is of primary importance in order to better
understand the mechanism of cardiac defibrillation.

In Ref. �1�, the authors also show that numerical simula-
tions of the so-called “tridomain” model can provide dy-
namical solutions similar to the experimentally observed
standing waves. In particular, the numerical study shows that
the standing waves have a unique node in a one-dimensional
�1D� geometry while a two-node solution can be displayed
when a spatially nonhomogeneous two-dimensional system
is considered, in agreement with their observations.

Recently, a first theoretical analysis of standing waves in
cardiac muscle was proposed in Ref. �2�. Numerical simula-
tions with the FitzHugh-Nagumo and the Luo-Rudy models
are reported which show that standing waves in excitable
media are completely general phenomena whose study do
not require the tridomain model. It is also claimed in that
work that the nodes of the standing waves are similar to the
points in the core of a rotating vortex where the amplitude
goes to zero. However, no proof of this suggestion is pro-
vided in the text and the authors concede in the conclusion
section that further analysis is still needed to decide whether
their approach can explain the observations. Finally, the au-
thors emphasize interesting analogies with solutions of gen-
eral Ginzburg-Landau equations and with different physical
phenomena described by these equations.

In the present work, we concentrate on the physical origin
of standing waves in excitable media, which are a truly sur-
prising nonlinear behavior. We propose a detailed analysis of
the physical mechanism explaining the occurrence of stand-
ing waves in excitable media. The principle of this mecha-
nism rests on an interplay between Ohmic diffusion, the
propagation of action potentials �pulse propagation�, and the
existence of refractory states.

The study of the mechanism is presented in the next sec-
tion. Then, a comparison with previous works and the con-
clusion are given in Sec. III.*Electronic address: PC.Dauby@ulg.ac.be

PHYSICAL REVIEW E 73, 021908 �2006�

1539-3755/2006/73�2�/021908�5�/$23.00 ©2006 The American Physical Society021908-1

http://dx.doi.org/10.1103/PhysRevE.73.021908


II. MECHANISM OF STANDING WAVES

Since all the different mathematical models considered in
Refs. �1,2� show the occurrence of standing waves, the phe-
nomenon can be considered as generic. For this reason, only
the simplest qualitative FitzHugh-Nagumo model will be
used in this paper to illustrate our point. Moreover, only a 1D
approach will be considered since the mechanism we will
underscore is one dimensional in essence. To describe the
heart as an excitable medium, we thus use the following
equations corresponding to the well-known FitzHugh-
Nagumo model �4� in a one-dimensional situation:

�tu = D�x
2u + A2�u − Um��u − Us��UM − u� − v , �1�

�tv = ��u − gv� , �2�

where u is the membrane potential, v is a �slow� gating vari-
able, D is the diffusion coefficient, and A, Um, Us, UM, g, and
� are constants. The external stimulation of the system is
introduced thanks to the boundary conditions. In this work, a
sinusoidal variation of the potential is imposed at the “left”
�x=0� and “right” �x=L� boundaries of the 1D domain of
length L, with a phase lag equal to �: u�x=0, t�=U sin �t
and u�x=L , t�=U sin��t+��, where U and f = P−1=� /2�
are the amplitude and frequency of the forcing �P is the
period�. The numerical resolution of these equations was car-
ried out using the Crank-Nicholson method. Except other-
wise stated, the values of the parameters used in the calcu-
lations are the following: D=1, A=1, Um=0, Us=0.1, UM
=1, g=2.5, and �=0.01 �due to the qualitative nature of the
FitzHugh-Nagumo model, the units remain arbitrary�. The
rest state of the system u=0, v=0 is then stable and will be
used as an initial condition for all calculations. Note also that
the transient behavior of the system �a few periods of the
excitation� is never represented in the results described be-
low.

We have already mentioned that only strong enough alter-
nating electric fields were able to generate standing waves in
experiments �1�. As preliminary numerical simulations, we
have checked that the mathematical FitzHugh-Nagumo
model also displays this property and we have even shown
more generally that in a semi-infinite 1D system, the ampli-
tude of a sinusoidal forcing at the boundary must be larger
than some critical value in order to generate an action poten-
tial which actually propagates across the domain. If the am-
plitude is smaller than this threshold, a perturbation is gen-
erated close to the border but no propagation is initiated. The
solid curve in Fig. 1 is a plot of this critical value Uc of the
forcing potential as a function of the frequency f . To obtain
these results numerically, L was fixed to a large value �L
=50�, a sinusoidal potential was used on the left boundary
while a no-flux condition was introduced at x=L. It is worth
noting that the curve Uc�f� displays a minimum for some
frequency. Moreover, it is interesting to note that the period
P corresponding to this minimum is more or less equal to the
duration of an excitation, i.e., the time needed for an excited
cell to return to its rest state. We can also see that for large
values of f , no propagation can be initiated, whatever the
value of U: indeed, if too fast transitions from negative to

positive values are imposed to the potential on the boundary,
the medium close to the border, and whose potential has been
brought to negative values has no time enough to recover
and is still in a refractory state when positive values of u
could induce the propagation of a new pulse. For those large
values of f , however, it is possible to determine a critical
U2/1 above which a pulse can be initiated one time out of
two. In Fig. 1, this critical U2/1 is plotted with dashed lines.
In the following, the amplitude of the forcing U will always
be fixed at 1, since for this value propagation is possible for
a large range of frequencies. Moreover, due to the steepness
of the right part of the solid curve in Fig. 1, a further increase
of U would not enlarge much the frequency range allowing
propagation.

Consider now the mechanism giving rise to standing
waves in excitable media and let us describe how the com-
petition between the propagation of action potentials, or
pulse propagation, and Ohmic diffusion within the medium
can lead to the occurrence of nodes. Imagine first that a
negative electrical potential is imposed at a boundary. This
forcing can be considered as a perturbation of the system
with respect to its rest state. Due to Ohmic diffusion, the
cells adjacent to the boundary will also be brought to a nega-
tive potential but no excitation will be induced in the neigh-
borhood of the border of the domain. For this reason, the
perturbation imposed at the boundary will propagate towards
the opposite side by Ohmic diffusion only. The velocity of
such a diffusive process is known to be a decreasing function
of time and can be estimated by v����D / t�. Consider now
that a positive potential is imposed on a boundary. The
Ohmic diffusion just described is, of course, still active but a
propagating pulse can also be generated, whose motion is a
combined effect of diffusion and excitability. For fixed val-
ues of the parameters of the model, the velocity vP of the
pulse in an infinite domain is a constant. This velocity can be
estimated by analytical formulas in the case of the FitzHugh-
Nagumo model �4� but can also be determined more pre-
cisely by numerically integrating Eqs. �1� and �2�. In finite
domains, the pulse velocity vP is a bit smaller, due to the
presence of the boundaries. The order of magnitude of this
velocity was estimated by tracking the motion of a pulse
along the x axis in a domain with L=25 and for f =0.008. For
the values of the parameters given above, we found the value
vP=0.3957 �12% smaller than in an infinite domain� which is
used in the rest of the paper. It is then interesting to notice

FIG. 1. Critical value Uc of the boundary condition allowing
propagation of a pulse against the frequency f of the forcing �solid
line�. The dashed line corresponds to the threshold U2/1 allowing
the propagation of one pulse every two excitations.
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that because of the dependence of v� with respect to time,
the diffusion velocity on short time and length scales is
larger than the velocity vP of the pulse. For this reason, the
propagation of a positive perturbation of u is mainly diffu-
sive over small distances. On the other hand, excitability and
pulse propagation with constant velocity become dominant
for larger time intervals or distances.

The formation of nodes in small domains can then be
understood as follows. In the first half period of the external
forcing, a positive potential is imposed on the left, while u is
negative on the right. The perturbations imposed on the two
boundaries propagate in the medium and collide somewhere
in the domain. Since L is small, the time scale is too short for
a pulse to propagate from the left and both perturbations are
transported by diffusion, with the same velocity v�

���D / t�. The collision thus occurs in the middle of the
domain, where u keeps its rest value 0. Of course, the con-
clusion is the same for the second half period of the forcing
and a minimum appears at the center of the domain in the
envelope curve of Fig. 2�a� �left�. This node is characterized

by an amplitude of oscillations which remains equal to zero.
It is possible to estimate the maximum length L� for which
such a node exists. This length can be defined by the fact that
the time �P= �L� /2� /vP needed by a pulse to arrive at the
center is equal to the time �d= �L�

2 /4� /D which is necessary
for a perturbation to be transported by diffusion to the center
of the domain. One thus gets L�=2D /vP�4.4. It is worth
noting that this result is independent of the frequency f of the
forcing and numerical integrations of the equations confirm
these results, by displaying a node of vanishing amplitude
for L smaller than the value given above, whatever the fre-
quency of the forcing.

If the length of the domain gets larger than L�, the posi-
tive perturbations move towards the opposite side using
pulse propagation, which is in this case faster than diffusion.
Consider then the motion of the “front,” which we define as
the place x in the domain where u=0 �long dashes in Fig. 2
�right��. During the first half period, the position of the front
goes through a maximum, that will be denoted fL, which is
larger than L /2. Similarly, during the second half period, the

FIG. 2. Snapshots �left col-
umn� and corresponding space-
time contour plots �right column�
describing the evolution of the po-
tential u for f =0.008. In the con-
tour plots, the isolines with u
=0, ±0.15, ±0.3, ±0.6 are repre-
sented, dotted lines are used for
negative values, and long dashes
for u=0 �“front”�. From top
downwards, the different pictures
correspond, respectively, to L=2
�a�, 6 �b�, 12 �c�, Lcn=15.73 �d�,
and 18 �e� and Lnn=24.73 �f�.
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maximum penetration of the front from the right has coordi-
nate fR�L /2. Consequently, the node, which is the mini-
mum of the envelope curves in Fig. 2 �left�, is always located
in the center of the domain and has intrinsically a nonzero
amplitude: indeed, it is only in the limiting case of L�L�

that this amplitude vanishes, as we have seen it above. The
occurrence of nodes with a nonzero amplitude thus makes
our point of view quite different from that presented in Ref.
�2�, where the nodes are related to a zero amplitude for the
oscillations. Another consequence of the true propagation of
pulses as soon as L�L� is the fact that the different spatial
points of the domain do not oscillate in phase �Fig. 2 �left��,
which makes standing waves in excitable media quite differ-
ent from the usual linear standing waves.

It is also useful to introduce the following interpretation
of the appearance of nodes. We can, in fact, consider that
nodes are displayed because the propagation of each pulse is
stopped when the front encounters a refractory region. This
refractory region can be induced by diffusion of the negative
potentials imposed on the opposite side �Figs. 2�a� and 2�b��,
or it can also consist in the refractory tail of the previous
pulse coming from the other boundary �Figs. 2�c� and 2�d��.

Another important phenomenon appears when the width
of the domain is progressively increased. For L larger than
some critical value Lcn �index “cn” stands for “central node”�
the node begins to move off the center �either to the right or
to the left, depending on the initial conditions�. The appear-
ance of such a noncentral node is due to the interaction of a
pulse arriving at a boundary with the next pulse generated at
that boundary. When L �larger than L�� remains rather small,
all pulses are stopped by the refractory zone generated by the
negative diffusing potential at the opposite boundary �Fig.
2�b��. If L is increased, a pulse can also meet the refractory
tail of the previous wave and stop anyway �Figs. 2�c� and
2�d��. In both cases, however, it is interesting to note that the
amplitude of the pulse arriving close to a refractory zone will
decrease, due to the interaction with the negative u in front
of it. It is also important to understand that if L is rather
small, a pulse coming from the left, for instance, will have
completely disappeared before the next pulse starts to propa-
gate from the right. For this reason, the pulse from the left
has no influence on the departure of the next pulse from the
right. The critical length Lcn associated with the occurrence
of a noncentral node is defined by the fact that a vanishingly
small positive perturbation arrives at the opposite boundary
precisely when the potential imposed at that boundary goes
from negative to positive values, which means that the exci-
tation of the next pulse is just beginning at that time �Fig.
2�d��. For larger L, a small collision will occur since a small
pulse, with a nonzero amplitude, will perturb the birth of the
next wave and slightly delay its departure. Moreover, the
new pulse will have to face the refractory tail of the previous
one and will stop prematurely. The symmetry between the
pulses coming from the two sides of the domain is then
broken and a noncentral node appears �Fig. 2�e��. In Fig. 3,
the critical length Lcn is plotted as a function of the frequency
of the forcing. The curve was numerically obtained by deter-
mining for each f the largest L giving rise to a central node.
However, for not too large frequencies, the variations of Lcn
can be theoretically explained as follows. Assuming that the

origin of the vanishingly small pulse arriving at the right
border is the maximum of the potential imposed on the left
border, the time needed by this pulse to cross the domain is
of order P /4. If the period of the forcing is increased by 	P,
then the change in the critical length allowing a noncentral
node will be of order 	Lcn=vP	P /4 and one can thus write
Lcn�vPP /4=vP / �4f�. This theoretical determination of the
critical length is also represented in Fig. 3 and it is seen that
the agreement with the numerical results is very good for
small f . For large frequencies, the period of the forcing be-
comes smaller than the duration of an excitation and, as al-
ready discussed in relation with Fig. 1, more complex inter-
actions between successive pulses can occur and make our
simple model nonvalid.

When the length of the domain is increased further from
Lcn, the node progressively moves from the center towards
one of the boundaries. Eventually, for L larger than some
critical Lnn �“nn” stands for “no node”�, the node completely
disappears. Indeed, if the domain is large enough, the motion
of a pulse is not affected by the negative potential imposed
far in front of it. Its amplitude is thus constant during the
motion and for an appropriate length Lnn, its arrival at the
opposite boundary is exactly in phase with the condition im-
posed on that boundary for the potential u. This critical
length Lnn can also be seen as the minimum length for a full
collision between the arriving pulse and the next nascent
one, which is, in fact, completely stopped before leaving the
boundary. An estimate of this critical length is easily ob-
tained by considering the distance covered by the pulse in
half a period. One gets Lnn=vPP /2=vP / �2f�. This curve is
also represented in Fig. 3 and the space-time evolution of the
potential u for this critical length is given in Fig. 2, f , where
no node is displayed. Let us mention that when L is larger
than Lnn, the collision between the pulses coming from the
two boundaries occurs somewhere in the domain and the two
action potentials annihilate each other, as expected.

III. DISCUSSION AND CONCLUSION

In the first theoretical analysis of standing waves men-
tioned above �2�, the authors propose that the nodes of the
standing waves are similar to the points in the core of a
rotating vortex where the amplitude goes to zero. However,
only analogies are proposed and no genuine mechanism is

FIG. 3. Critical lengths Lcn and Lnn in terms of the frequency f
of the forcing. The curve Lcn�vP / �4f� is also given �and is such
that the theoretical value for f =0.008 is equal to the result obtained
numerically�.
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proposed to explain the phenomenon. In the present paper,
the mechanism giving rise to standing waves in excitable
media is clearly underscored, and is shown to be based on
the competition between diffusion and propagation. We have
also seen that the amplitude of the oscillations at a node is
usually not zero, which makes the comparison with the ro-
tating vortex referred to above not valid in most situations.
Indeed, it is only in the limiting and very special case of a
vanishingly small length L that the amplitude at a node tends
to zero. From this point of view, the present work, in which
domains of any length are studied, is also more general than
the analysis presented in Ref. �2�. Moreover, it is interesting
to note that the experimental results presented in Ref. �1�
clearly show the occurrence of nodes with nonzero ampli-
tudes. For this reason, a theoretical analysis may not be re-
stricted to small L and the description of standing waves in
larger domains is also essential to understand the experi-
ments.

As a conclusion, let us briefly summarize our point. We
have defined standing waves in excitable media by the oc-
currence of spatial “nodes” in the space-time behavior of the
system, i.e., the occurrence of points where the amplitude of
the time oscillations has a local spatial minimum �possibly
different from zero�. These standing waves were analyzed in
detail and a mechanism was proposed to explain thoroughly

the occurrence of such patterns. We have shown that a com-
petition between the diffusive propagation of perturbations
and pulse propagation, coupled with the existence of refrac-
tory states for excitable media, accounts for the standing
waves that had been observed experimentally. It was also
shown that the behavior of the excitable medium depends
crucially on the dimension of the domain. Three new critical
lengths were underscored in 1D domains and their physical
interpretations were discussed. The first �L�� is the limit for
pure diffusive propagation of the electrical potential. The
second �Lcn� is the maximum length allowing a central node
while the last one �Lnn� is the absolute limit allowing a node
in the system. Numerical simulations with the FitzHugh-
Nagumo model were used as illustrations but the results are
general since the physical phenomena on which they are
based are not restricted to this model.
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