Validation of a virtual framework for public speaking training

7th International XR Conference 27-29 April 2022 Lisbon

ETIENNE Elodie a

LECLERCQ Anne-Lisebcd

REMACLE Angélique b

SCHYNS Michaëla

^aQuantOM, HEC Liège, University of Liège ^b Département de Logopédie, Université de Liège ^c Unité de Recherche Enfances ^d Clinique Psychologique et Logopédique de l'Université de Liège

Our lab

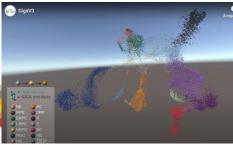
SIG AR/VR Lab (Digital Business)

- Researchers.
 - XR
 - Al (optimization)
 - New technologies (Digital Twins)
- 3D Artists
- Tech Art
- Animators

Serious games: training, research, society services

http://www.sig.hec.uliege.be/





Introduction

From Metaverse to Eduverse

- Imaginary world
- Multi-users
- Public

- Imaginary world for education: Lectures rooms, training rooms, meeting rooms, simulations rooms, ...
- Multi-users (teachers, students, experts,
 Al helpers...)
- « Controlled access »
- (No NFT at this stage)

How to improve feeling of presence and social interactions in VR?

How to improve presence and interactions?

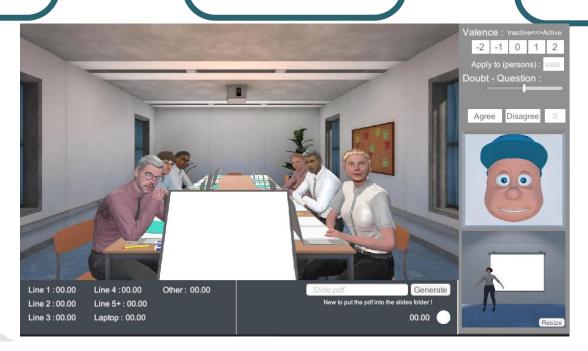
« Metaverse opportunities: Enhance social experiences and interactions »

T. Jung

Definitions

Valence: corresponds to how positively or negatively the attendee (avatar in our context) feels toward the speaker (with VR headset) or the presentation

Arousal: audience member's level of alertness

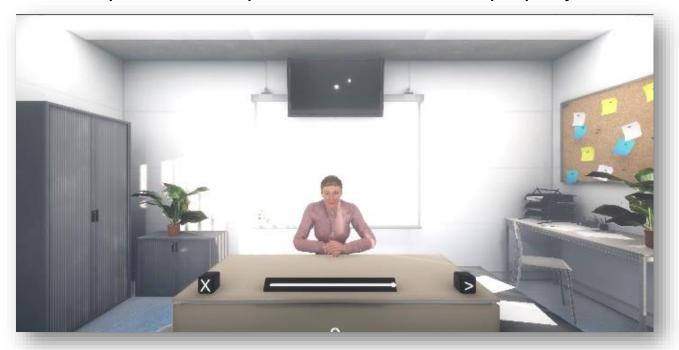

Project: 3-step process

Creation of an interactive audience

Voice and Speech analysis with Statistics, NLP, ML and DL approaches

Public speaking training in virtual reality

Aims



Key elements

- Avatars must react appropriatively to what the speaker says
- The speaker must perceived the reaction properly

Creation of a library of (AI) animated avatars

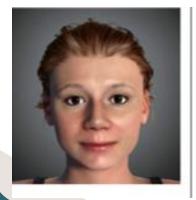
Virtual environment for public speaking training with an interactive and challenging audience

- To understand how some attitudes of a virtual audience are perceived in <u>Virtual Reality</u> (valence arousal)
- To study quality of graphism used
- To study quality of headset used

Experiment

Avatars used

Sketched models



Photorealistic models

Headsets used

Low-end headset

- Basic quality
- Affordable
- Portability (smartphone and headset)
- No knowledge needed

High-end headset

- High quality
- Expensive (headset, computer)
- Heavy material
- Technical knowledge needed

Attitudes:

Postures and hands:

- P1: Backward posture Arms crossed
- P2: Backward posture –Arms stand (elbows on the table with hands crossed)
- P3: Backward posture Arms behind the head
- P4: Upright posture Hand on hand (hands on the table, one on top of the other)
- P5: Upright posture Hands together (hands crossed on the table)
- P6: Upright posture Hands separated in front
- P7: Forward posture Hands together
- P8: Forward posture Arms stand (elbows on the table with hands crossed)
- P9: Froward posture Arms crossed

Facial expressions:

- F1: None
- F2: Smiling
- F3: Frowning
- F4: Eyebrows raised

Head movements:

H1: None

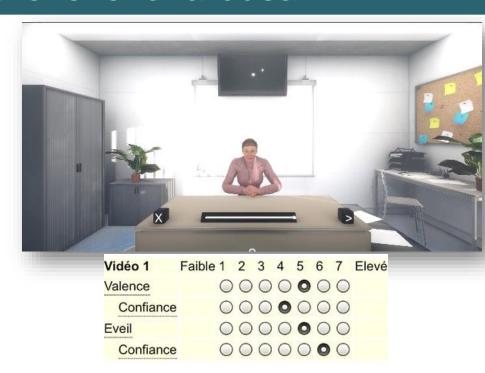
H2: Nod

H3: Shake

H4: Questioning (head tilted at 45 degrees)

144 possible combinations

40 attitudes


C 1	G 0	α ο	C 4	α -	C 0	a =	G 0	G 0	G 10
Seq. 1	Seq. 2	Seq. 3	Seq. 4	Seq. 5	Seq. 6	Seq. 7	Seq. 8	Seq. 9	Seq. 10
P1F3H4	P3F4H2	P7F2H2	P7F2H4	P7F3H3	P7F4H3	P7F4H4	P9F1H2	P9F2H3	P9F3H3
Seq. 11	Seq. 12	Seq. 13	Seq. 14	Seq. 15	Seq. 16	Seq. 17	Seq. 18	Seq. 19	Seq. 20
P2F2H3	P2F4H2	P3F3H3	P3F4H3	P4F4H1	P4F4H3	P5F3H1	P7F3H1	P8F4H1	P9F1H3
Seq. 21	Seq. 22	Seq. 23	Seq. 24	Seq. 25	Seq. 26	Seq. 27	Seq. 28	Seq. 29	Seq. 30
P2F1H2	P2F4H4	P3F1H2	P3F3H2	P3F4H4	P4F1H2	P5F1H4	P6F3H4	P7F1H1	P7F1H2
Seq. 31	Seq. 32	Seq. 33	Seq. 34	Seq. 35	Seq. 36	Seq. 37	Seq. 38	Seq. 39	Seq. 40
P1F3H1	P2F4H3	P3F2H3	P3F4H1	P4F1H3	P4F2H2	P6F3H3	P7F1H4	P7F4H3	P8F3H4

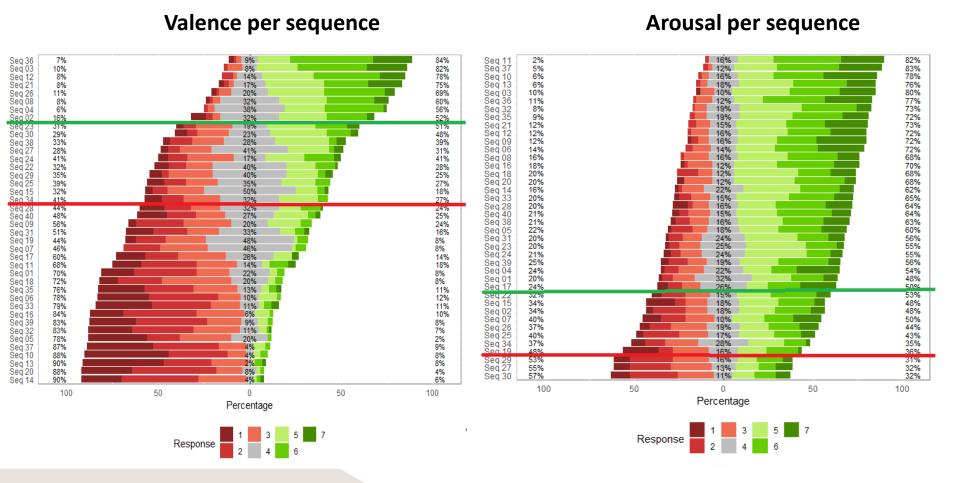
Emotional valence and the level of arousal in VR

- 125 participants
- 40 sequences of attitudes were tested
- 7-point Likert scale
- Gatineau Presence Questionnaire

GPQ

- Feeling of presence
 - Level of realism
- Level of artificiality
- Spatial awareness

Results



Results for the sequences: Check how the attitudes are perceived in VR

- Analysis of the level of arousal and valence at a gesture level
- Analysis of the level of arousal and valence for the combinations

Library of animated avatars correspoding to some level of valence and arousal

Table 7: Sequences per level of valence and arousal

	NI	N11	D
	Negative valence	Neutral valence	Positive valence
Low level of arousal	Ø	Seq. 27: P5F1H4	Ø
		Seq. 29: P7F1H1)
		Seq. 30: P7F1H2	
Neutral arousal	Seq. 07: P7H4H4	Seq. 15: P4F4H1	Seq. 02: P3F4H2
	Seq. 19: P8F4H1	Seq. 22: P2F4H4	Seq. 26: P4F1H2
		Seq. 25: P3F4H4	
		Seq. 34: P3F4H1	
High level of arousal	Seq. 01: P1F3H4	Seq. 23: P3F1H2	Seq. 03: P7F2H:
	Seq. 05: P7F3H3	Seq. 24: P3F3H2	Seq. 04: P7F2H
	Seq. 06: P7F4H3	Seq. 38: P7F1H4	Seq. 08: P9F1H
	Seq. 09: P9F2H3		Seq. 12: P2F4H
	Seq. 10: P9F3H3		Seq. 21: P2F1H
	Seq. 11: P2F2H3		Seq. 36: P4F2H
	Seq. 13: P3F3H3		
	Seq. 14: P3F4H3		
	Seq. 16: P4F4H3		
	Seq. 17: P5F3H1		
	Seq. 18: P7F3H1		
	Seq. 20: P9F1H3		
	Seq. 28: P6F3H4		
	Seq. 31: P1F3H1		
	Seq. 32: P2F4H3	/	
	Seq. 33: P2F2H3	/	
	Seq. 35: P4F1H3/		
	Seq. 37: P6F3H3		
	Seq. 39: P7F4H3		
	Sec. 40: P8F3H4		

Conclusions

- Creation of a library of animated avatars associated with some levels of arousal and valence to be used in a VR training environment.
- Photorealistic avatars improved the confidence level
- High-end headset improved the quality of immersion but low-end headset can be used for this purpose (similar results)

Next steps:

- Detection of emotions
- Autonomous audience
- Training environment

Thank you!

Elodie ETIENNE

HEC-Uliège

elodie.etienne@uliege.be

http://www.sig.hec.uliege.be/

