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a b s t r a c t

We give a construction of a multifractal process with prescribed Hölder exponents
starting from the Lévy–Ciesielski construction of a Brownian motion. We also show that
this method preserves the law of the iterated logarithm.
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1. Introduction

A locally bounded function f belongs to the pointwise Hölder space Λα(t0) (with α ≥ 0 and t0 ∈ R) if there exist a
onstant C and a polynomial Pt0 of degree less than α such that |f (t) − Pt0 (t)| < C |t − t0|α , in a neighborhood of t0. The
ölder exponent of f at t0 is defined as hf (t0) = sup{α ≥ 0 : f ∈ Λα(t0)}.
For any t ∈ R, the sample path of a Brownian motion belongs to Λ1/2−ε(t) almost surely for any ε > 0. More precisely,

f B denotes a Brownian motion, the Khinchin law of the iterated logarithm (Khintchine, 1924) states that for every t ∈ R,
here exists a positive random variable C such that

|Bt+h − Bt | ≤ C |h|1/2
√
log log |h|−1

for h small enough on an event of probability 1.
In this letter, we start from the Lévy–Ciesielski construction of a Brownian motion to build a multifractal process with

prescribed Hölder exponents. Given a function H : [0, 1] → [0, 1] satisfying some conditions, we shape a process BH on
0, 1] such that, on an event of probability 1, hBH (t) = H(t) for any t . Moreover, BH still satisfies the law of the iterated
ogarithm.

This construction was originally proposed in Kleyntssens (2019), where a multifractal formalism based on the wavelet
ecomposition is designed to detect the law of the iterated logarithm. This process was preferred over others (see Ayache
nd Bertrand, 2010 for example) to test the efficiency of such a formalism because one needed to efficiently numerically
enerate a large amount of signals satisfying the law of the iterated logarithm without using wavelets (in order to avoid
sing the same functions to both generate and analyze the realizations of the process). The authors suppose that replacing
he Schauder functions by wavelets should lead to similar results. However, using a compactly supported piecewise linear
asis allows to easily produce numerical realizations at a speed that can be hardly rivaled.
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. The Lévy–Ciesielski construction

Here, we present the decomposition of the Brownian motion in the Schauder basis.

efinition 1. Let us set F0(t) = t1[0,1](t) + 1(1,+∞)(t) and for any (j, k) ∈ N × {0, . . . , 2j
− 1},

Fj,k(t) =

⎧⎨⎩ t − k2−j if t ∈ [k2−j, k2−j
+ 2−(j+1)

]

−t + (k + 1)2−j if t ∈ [k2−j
+ 2−(j+1), (k + 1)2−j

]

0 else
.

hese functions are called the Schauder functions.

emark 1. These functions first appear in the work of Faber (1910) as indefinite integrals of the Haar system. The general
onstruction was carried out by Schauder (1928).

The following result binds the regularity of a function to the decay rate of its coefficients in the Schauder basis (Daoudi
t al., 1998).

roposition 1. We have the following properties:

1. Let (aj,k)(j,k)∈N×{0,...,2j−1} be a real sequence, a0 ∈ R and ε ∈ (0, 1/2). If maxk∈{0,...,2j−1} |aj,k| = O(2jε) as j → +∞, then
the function f defined by

t ↦→ a0F0(t) +

+∞∑
j=0

2j−1∑
k=0

aj,k2j/2Fj,k(t) (1)

is uniformly absolutely-convergent on [0, 1]. Besides, f is a real continuous function such that f (0) = 0.
2. Any continuous function f from [0, 1] to R such that f (0) = 0 can be written in the form (1). Besides, if f ∈ Λα(x0) then

there exists a constant C > 0 such that |aj,k2−j/2
| ≤ C(2−j

+ |k2−j
− x0|)α for any (j, k) ∈ N × {0, . . . , 2j

− 1}.

The next theorem gives the decomposition of the Brownian motion in the Schauder basis (see Bhattacharya and
Waymire (2016)), which will be the starting point of our construction.

Theorem 2. Let (Zj,k)(j,k)∈N×{0,...,2j−1} be a sequence of independent real-valued N (0, 1) Gaussian random variables defined on
the probability space Ω . Then, there exists an event Ω∗

⊂ Ω of probability 1 such that, for any ω ∈ Ω∗, the function B·(ω)
defined by

B.(ω) : t ↦→ Z0(ω)F0(t) +

+∞∑
j=0

2j−1∑
k=0

Zj,k(ω)2j/2Fj,k(t) (2)

is uniformly absolutely-convergent on [0, 1]. Besides, the process B = {Bt}t is a Brownian motion.

3. From the Brownian motion to a multifractal process

Let us now define a process with a prescribed local regularity by modifying formula (2).
Let us denote by HK the set of the functions from [0, 1] to the compact K which are the lower limit of a sequence of

continuous functions. Lemma 2 of Daoudi et al. (1998) implies that for any H ∈ HK , there exists a sequence (Qj)j∈N of
olynomials such that{

H(t) = lim inf
j→+∞

Qj(t) ∀t ∈ [0, 1]

∥Q ′

j ∥∞ ≤ j ∀j ∈ N
, (3)

here Q ′

j is the derivative of Qj. We have a similar result if one replaces the lower limit by a limit in the definition of HK .
n this case, the set is denoted by HK and the lower limit in relation (3) becomes a limit.

First, let us recall the following classical lemma on the standard Gaussian distribution (see Chatterjee (2014) for
xample).

emma 3. Let Z be an arbitrary real-valued N (0, 1) Gaussian random variable. Then, for any x > 0, we have

1
√
2π

x
x2 + 1

e−x2/2
≤ P(Z > x) ≤

1
√
2π

1
x
e−x2/2.

This leads to the main result of this section.
2
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heorem 4. Let K be a compact of (−1/2, 1/2), H ∈ HK and (Qj)j∈N be a sequence of polynomials satisfying Relation (3). For
ny (j, k) ∈ N× {0, . . . , 2j

− 1}, set Hj,k = Qj(k/2j), let (Zj,k)(j,k)∈N×{0,...,2j−1} be a sequence of independent real-valued N (0, 1)
aussian random variables defined on the probability space Ω and let us define

BH
t (ω) = Z0(ω)F0(t) +

+∞∑
j=0

2j−1∑
k=0

2−jHj,kZj,k(ω)2j/2Fj,k(t). (4)

hen, there exists an event Ω∗
⊂ Ω of probability 1 such that we have the following properties:

1. For ω ∈ Ω∗, the function t ↦→ BH
t (ω) is a continuous function defined on [0, 1].

2. For ω ∈ Ω∗, we have hBH. (ω)(t) = 1/2 + H(t) for any t ∈ [0, 1].
3. If there exists C > 0 such that

H(t) − Qj(t) ≤ Cj−1, (5)

on [0, 1] for any j ∈ N, then there exists a positive random variable C ′ independent of t such that, for any ω ∈ Ω∗,

|BH
t+h(ω) − BH

t (ω)| ≤ C ′(ω)2C
|h|1/2+H(t)

√
log |h|−1,

for any h in a neighborhood of 0.

Proof. First, Relation (3) implies that, for any ε′ > 0, there exists J ∈ N such that for any j ≥ J and for any
∈ [k2−j, (k + 1)2−j), one has

H(t) − Hj,k = H(t) − Qj(t) + Qj(t) − Qj(k2−j) ≤ ε′/2 + j2−j
≤ ε′. (6)

One thus gets inf K − ε′
≤ Hj,k and thus

2−jHj,k ≤ 2−j inf K2jε′

. (7)

Let us prove the first point of the theorem. Let ε ∈ (0, 1/2) and choose a constant C > 0. Let us define

Aj = {w ∈ Ω : max
k∈{0,...,2j−1}

|Zj,k(ω)| > C2j(ε−ε′
+inf K )

}.

One has

P(Aj) ≤

2j−1∑
k=0

P({w ∈ Ω : |Zj,k(ω)| > C2j(ε−ε′
+inf K )

})

≤ 2jP({|Z | > C2j(ε−ε′
+inf K )

}),

where Z ∼ N (0, 1). Using Lemma 3, one has

P(Aj) ≤

√
2

πC2 2
j(1−(ε−ε′

+inf K ))e−(C222j(ε−ε′+inf K ))/2.

Since inf K ∈ (−1/2, 1/2), there exists ε ∈ (0, 1/2) such that ε − ε′
+ inf K > 0 for ε′ small enough. In this case,∑

+∞

j=0 P(Aj) < +∞. It follows from the Borel–Cantelli lemma that P
(⋂

J∈N
⋃

j≥J Aj
)

= 0.
Hence, the event

Ω∗
=

⋃
J∈N

⋂
j≥J

{ω : max
k∈{0,...,2j−1}

2−jHj,k |Zj,k(ω)| ≤ C2jε
}

has a probability equal to 1. The first point of the theorem is thus proved, thanks to Proposition 1.
Now, let us prove that hf (t) ≥ 1/2+H(t). The third point is a particular case of this reasoning. From the Borel–Cantelli

lemma, for a constant C > 0 large enough, the event
⋃

J∈N
⋂

j≥J{ω : maxk∈{0,...,2j−1} |Zj,k(ω)| ≤ C
√
j} has probability 1. Let

be a element of this event; there thus exists J ∈ N such that for any j ≥ J ,

|Zj,k| ≤ C
√
j, (8)

for any k ∈ {0, . . . , 2j
− 1}. Let t ∈ [0, 1], ε′ > 0 and suppose that J is large enough in order for Inequality (6) to be

satisfied. Let h be a real number such that t, t + h ∈ [k2−(J+1), (k + 1)2−(J+1)) for some k ∈ {0, . . . , 2J+1
− 1} and let l > J

be such that 2−l < |h| ≤ 2−l+1. By construction, for any j ≤ l, there exists a unique kj such that t, t+h ∈ [kj2−j, (kj+1)2−j).
One has

|BH
t+h − BH

t | ≤ Z0|h| + CJ |h| (9)

+

l−1∑
2−jHj,kj |Zj,kj |2

j/2
|Fj,kj (t + h) − Fj,kj (t)| (10)
j=J+1

3
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+∞∑
j=l

2j−1∑
k=0

2−jHj,k |Zj,k|2j/2
|Fj,k(t + h) − Fj,k(t)|, (11)

or some constant CJ depending only on J .
By eventually reducing h, we can suppose that the terms in the right-hand side of (9) are smaller than C |h|1/2+sup K

log |h|−1
≤ C |h|1/2+H(t)

√
log |h|−1, for some constant C > 0 independent of t and h.

Using Inequality (6) and since the supports of functions Fj,kj are included in [kj2−j, (kj + 1)2−j
], each term in (10) is

maller than

|h|
l−1∑

j=J+1

2j(1/2−Hj,k) max
k∈{0,...,2j−1}

|Zj,k(w)| ≤ C |h|
l∑

j=J+1

2j(1/2−H(t)+ε′)
√
j

≤ C ′
|h|2l(1/2−H(t)+ε′)

√
l (12)

≤ C ′
|h|1/2+H(t)−ε′

√
log |h|−1,

here C ′ > 0 is a constant that does not depend on t or l. The last inequality is true by definition of l.
For any j ≥ l, there exist unique kj and k′

j such that t ∈ [kj2−j, (kj + 1)2−j) and t + h ∈ [k′

j2
−j, (k′

j + 1)2−j). Since
|Fj,k| ≤ 2−j−1, the terms in (11) are smaller than

+∞∑
j=l

2−j/2 max
k∈{0,...,2j−1}

|Zj,kj |(2
−jHj,kj + 2

−jHj,k′j )

≤ C ′′2−l/2(2−lHl,kl + 2
−jHl,k′l )

√
l

≤ C ′′2−l(1/2+H(t)−ε′)
√
l, (13)

here C ′′ > 0 is a constant independent of t and l. The last inequality is obtained by remarking that k′

l ∈ {kl−1, kl, kl+1}.
Since the terms in (11) are smaller than C ′′

|h|1/2+H(t)−ε′
√
log |h|−1, there exists a constant C ′′′ independent of t such that

or any ε′ > 0, one has

|BH
t+h − BH

t | ≤ C ′′′
|h|1/2+H(t)−ε′

√
log |h|−1.

e deduce that hf (t) ≥ 1/2 + H(t). Now, using hypothesis (5), we obtain H(t) − Hl,kl ≤ (C + 1)l−1. We can directly take
′
= (C + 1)l−1 in Inequalities (12) and (13) to obtain the third point of the theorem.
To conclude, it remains to prove that hf (t) ≤ 1/2 + H(t). Using Relations (3), for any J ∈ N and for any ε > 0 there

xists jJ ≥ J such that

QjJ (t) ≤ H(t) + ε and |HjJ ,k − QjJ (t)| ≤ jJ2−jJ ≤ ε.

esides, the Borel–Cantelli lemma applied to the independent events

AjJ = {ω : |ZjJ ,kjJ (ω)| > 2−εjJ }

mplies that, almost surely, for any J ∈ N, there exist J ′ > J such that |ZjJ′ ,kjJ′ | > 2−εjJ′ . We thus have

2
−jJ′HjJ′ ,k |ZjJ′ ,k|2

−jJ′ /2 ≥ 2−jJ′ (jJ′2
−jJ′ +ε+H(t)+1/2)

|ZjJ′ ,k|

> 2−jJ′ (1/2+H(t)+3ε)
.

We can conclude using point (2) of Proposition 1. □

The next proposition studies the local regularity of the process BH . We first need a lemma from Meyer et al. (1999),
Ayache and Taqqu (2003), Ayache and Bertrand (2010).

Lemma 5. Let (Zj,k)(j,k)∈N×{0,...,2j−1} be a sequence of independent real-valued N (0, 1) Gaussian random variables defined on
the probability space Ω . There exists an event Ω∗ of probability 1 and a positive random variable C of finite moment of every
order such that, for all ω ∈ Ω∗, the inequality

|Zj,k(w)| ≤ C(ω)
√
log(3 + j + |k|)

olds for any (j, k) ∈ N × {0, . . . , 2j
− 1}.

emark 2. The proof of this lemma relies on the use of a bijection from N to N2 in order to index the variables on N
and then apply the Borel–Cantelli lemma). We will implicitly choose an indexation more suited to our problem in the
ext proof.
4
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roposition 6. Under Hypothesis (5), there exist an event Ω∗
⊂ Ω of probability 1 and a positive random variable C such

that, for any ω ∈ Ω∗ and for almost every t ∈ [0, 1],

|BH
t+h(ω) − BH

t (ω)| ≤ C(ω)|h|1/2+H(t)
√
log log |h|−1,

or any h small enough.

roof. We will use the same notations as in the proof of previous theorem. Let us fix t ∈ [0, 1] and recall that for any j ∈ J ,
there exists a unique kj ∈ {0, . . . , 2j

− 1} such that t ∈ [kj2−j, (kj + 1)2−j). That being said, Lemma 5 insures the existence
of a positive random variable Ct (of finite moment of every order) such that the inequality |Zj,k| ≤ Ct

√
log(3 + j + |k − kj|)

olds almost surely for (j, k) ∈ N × {0, . . . , 2j
− 1} (this inequality has to be compared with (8)).

Using the same argument as in the previous proof, we obtain that for any t ∈ [0, 1], there exists almost surely a
constant C > 0 (depending on ω), such that

|BH
t+h − BH

t | ≤ C |h|1/2+H(t)
√
log log |h|−1,

for any h small enough. Fubini’s theorem allows to conclude. □
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