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In this paper, we develop an application of the importance
equation (which is an adjoint equation of the radiosity equa-
tion) in the case of isothermal, diffuse surfaces. We recall
the formulation of the radiosity equation, in function of the
nature of the boundary condition (either known temperature
or fixed radiative heat flux). We define the importance as the
quantity dual to radiosity. We explain how these equations
can be used after the resolution of a radiative heat transfer
situation, as a post processing step, to establish the accuracy
of each individual radiative link between the active faces of
a tri-dimensional surface geometrical model.

1 Background
In order to design the thermal control system of a space

mission, the thermal engineer often uses dedicated software.
As the radiative component can be predominant, software
is very often based on Monte Carlo ray tracing to compute
the energy exchanges between the surfaces which compose
the geometrical model, as well as the heat fluxes from the
heat sources to the spacecraft and the evacuation of heat to
the deep space. The accuracy of Monte Carlo ray tracing is
function of the number of traced rays; this number of rays is
left to the discretion of the engineer. A bad estimate may lead
to an unacceptable error or an unnecessary computation load.
In this paper, we propose a way to compute the energy error
associated with each surface. It allows us to identify the less
accurate surfaces, which could require additional rays to be
traced. It is a first step to a statistical accuracy control, which
could automatically compute the number of rays to achieve
the required level of accuracy.
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2 Introduction
The energy balance of a radiative situation can be com-

puted by solving a set of equations, based on radiosity. The
propagation of radiosity through the geometrical model is
governed by a transport operator T , based on geometrical
view factors.

Using a stochastic ray tracing algorithm to compute the
view factors, a discrete approximation to the exact transport
operator is obtained. A geometrical error can be computed
for each individual view factor. This error is purely geomet-
rical and does not take into account the energy exchanges
through the model.

The purpose of this paper is to present a method based
on the notion of importance and adjoint equations of the ra-
diosity system to establish an energy measure of the error
induced by the radiative computation. Based on a first mea-
sure of the geometrical error (which affects the view factors),
the adjoint equations can be used to obtain a measure of the
energy error, which affects heat transfer.

The notion of importance has first been defined in im-
age synthesis, to accelerate the generation of realistic im-
ages where light experiences multi-reflections [1]. Impor-
tance is used to identify the radiative interactions which have
the highest impact on the distribution of light, as it is seen
from the observer (i.e. a pinhole camera, the eye, a radiome-
ter).

In radiative heat transfer, there is no such view-
dependent aspect; each surface has influence on all other
surfaces, either by direct or indirect radiation. However, the
characterization of important radiative interactions is of great
interest for the thermal engineer. Contrary to classical ap-
plications in image synthesis, which aim to accelerate the
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generation of pictures, the notions of importance and adjoint
equations are extended in radiative heat transfer in order to
give a measure of the energy error induced by the radiative
solution.

The computation of an energy error, obtained after the
resolution of the radiosity equation and the determination of
heat fluxes and temperatures, is an innovative development
in the field of radiative heat transfer; it could yield a clear
improvement for software dedicated to space thermal engi-
neering. In this work, for reasons of simplicity, we only con-
sider diffuse, isothermal patches, characterized by constant
emittance ε and diffuse reflectance ρ.

3 Importance
The notion of importance has been intensively used in

rendering in order to accelerate the generation of realistic im-
ages [2]. The approach is based on two dual physical quan-
tities: radiosity and importance. The distributions of these
two quantities are governed by a radiative transport opera-
tor T which is based on the notion of view factors.

3.1 View factors and geometrical error
In radiative heat transfer, the exchanges of energy are

governed by an adimensional number called view factor. The
diffuse view factor Fi− j is defined as the fraction of the ra-
diative energy diffusely emitted by a patch Pi which directly
strikes a patch Pj:

Fi− j =
1
Ai

∫
Ai

∫
A j

cos(θi)cos(θ j)
πs2

i− j
Vi− jdA jdAi (1)

where the point dAi on the patch Pi is located by the vec-
tor −→si ; −−→si− j = −→s j −−→si is the vector joining the point dAi
and a point dA j on the patch Pj; θi is the angle between the
vector −−→si− j and the local normal −→ni of the surface Ai at the
point dAi; Vi− j is the visibility function, equal to 1 when the
two points −→si and −→s j can see each other, equal to 0 other-
wise. This last factor is responsible for discontinuities of the
kernel when it is integrated on the surface A j. This increases
the difficulty of the computation.

A way to compute view factors is stochastic ray tracing.
It is a robust and reliable method, which can be used in order
to model a large panel of surface phenomenons, such as re-
flection and transmission, as well as volume phenomenons,
such as diffusion. In this work, we only consider diffuse
reflection but the extension to specular reflection and other
surface phenomenons will be considered in further work.

Another advantage of stochastic ray tracing is that the
accuracy of the random process can be defined by two pa-
rameters: the maximum relative error ε and the confidence
interval α. In function of the configuration (i.e. the view fac-
tor), the necessary number of rays can be established in order
to compute the view factor within the desired accuracy [3].
This is a measure of the geometrical error which affects the
view factors.

In this work, we used the stratified hemisphere method
to generate the direction of the rays, to compute the view fac-
tors. This method is characterized by a convergence superior
to the classical one [4]: the relative error is inversely propor-
tional to N

3
4 , where N is the total number of rays traced from

patch Pi. In this case, the absolute error associated with the
view factor Fi− j is given by the following relation:

∆Fi− j = εFi− j = erf−1(α)
√

2d

N
3
4

(2)

where erf−1 refers to the inverse of the error function, and
d is a geometrical parameter, studied in [5]. If the Monte
Carlo method is used in this paper (because it easily gives a
measure of the geometrical error), the notions of importance
and adjoint equations developed in this paper are not limited
to this method and can be used with any other method for the
computation of the view factors.

The computation of the view factors is the most time
consuming step of the thermal solution. We can also assess
that it is the main source of errors in the complete solution.
Therefore, the impact of this error on the thermal results has
to be estimated. This is the purpose of this paper.

3.2 Radiosity equation
In this Section, the expression of the radiosity equation

is recalled, taking into account the boundary conditions. The
thermal radiosity Ji of a surface i is defined as the sum of
the self-emitted flux εiEb,i, and the diffuse reflection of the
incoming radiation Hi [6]:

Ji = εiEb,i +ρiHi (3)

Following [6], the radiative balance of the thermal
model can be expressed by the following set of equations,
based on the radiosities J j and the previously defined view
factors Fi− j:

qi

εi
= Eb,i−

N

∑
j=1

Fi− jJ j−H0,i ∀i ∈ [1,N] (4)

The radiative heat flux qi, the self-emitted power Eb,i
and the radiosity Ji of a patch Pi are linked by the following
relation:

qi

εi
=

1
1− εi

(Eb,i− Ji) (5)

For each patch Pi, two expressions can be obtained,
in function of the nature of the boundary condition. Let
us assume that the temperatures of the n first patches are
known while the corresponding heat fluxes are unknown. On
the other hand, the radiative heat fluxes of the N − n other
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patches are fixed, and their temperatures have to be com-
puted. For each patch, relations (4) and (5) are combined to
remove the unknown quantity. The following relations are
obtained:

Ji = εiEb,i +ρiH0,i +ρi

N

∑
j=1

Fi− jJ j ∀i ∈ [1,n] (6)

Ji = qi +H0,i +
N

∑
j=1

Fi− jJ j ∀i ∈ [n+1,N] (7)

The set of radiosity equations can be rewritten as fol-
lows:

T J = S (8)

where the matrix T is called the transport operator and
is equal to:

T =



1−ρ1F1−1 . . . −ρ1F1−n . . . −ρ1F1−N
...

. . .
...

. . .
...

−ρnFn−1 . . . 1−ρnFn−n . . . −ρnFn−N
−Fn+1−1 . . . −Fn+1−n . . . −Fn+1−N

...
. . .

...
. . .

...
−FN−1 . . . −FN−n . . . 1−FN−N


(9)

The thermal source S is based on the boundary condi-
tions and the external irradiation; this vector is assumed to
be exact. Relation (8) will be referred as the thermal radios-
ity equation.

Transport operator T is a discrete approximation of the
real, continuous transport operator. It is a matrix of real
numbers; this implies that T ∗ = T T . For the patches with
fixed heat flux, the diffuse reflectance does not appear ex-
plicitly. At the level of the transport operator, these surfaces
can be considered as ideal, diffuse reflectors, associated with
a reflectance equal to 100% (of course, once the thermal ra-
diosities have been computed, the real emittances have to be
used with equation (5) to obtain the corresponding absolute
temperatures). In order to homogenize the expression of the
transport operator, a fictive model is defined, where the dif-
fuse reflectances of the patches with fixed heat flux are set
to 100%. If ρ∗ denotes the new vector of diffuse reflectance,
the transport operator is based on the view factor matrix F :

T = IN−ρ
∗F (10)

where IN denotes the identity matrix of rank N.

3.3 Adjoint equation and definition of importance
In this work, the adjoint equations are used to measure

the radiative error induced by the approximation of the trans-
port operator T . A quantity, dual to radiosity, noted I, and

called importance, is defined by the following relation [7]:

T ∗I = R (11)

where the operator T ∗ is the adjoint of the transport operator
T , and R is the initial importance.

In radiative heat transfer, each point dAi of each patch Pi
must be considered for the solution of the radiative situation.
If each point is associated with an unit initial importance, the
initial importance Ri of patch Pi is equal to its area Ai:

Ri = Ai ∀i ∈ [1,N] (12)

Importance could be seen as the dual quantity of radia-
tive heat flux, transported like heat flux but in the opposite
direction, in a fictive model where the surfaces with fixed
heat flux are characterized by a diffuse reflectance of 100%.
ρ∗ denoting the reflectance vector of this fictive model, the
distribution of importance is governed by the following rela-
tion:

Ii = Ai +
N

∑
j=1

ρ
∗
jFj−iI j (13)

3.4 Inner product and duality
On the basis of the radiosity- and initial importance-

vectors, we can compute the following inner product, ini-
tially defined in image synthesis [7], where each individual
term represents the radiative energy emitted by a patch Pi [2]:

v(J) = RT J =
(
T T I

)T
J = IT T J = IT S (14)

This relation highlights the duality of radiosity and im-
portance. v(J) is called the global radiative energy.

3.5 Error analysis
The geometrical model has been discretized into N

patches, i.e. into N surfaces of finite area. In our algorithm,
the view factors are computed by stochastic ray tracing. As
the number of rays is limited, the view factors are approxi-
mated. An error measure can be derived for each single view
factor [3,4]. This error measure is only geometrical; it is not
representative of the energy error. Here, a way to derive such
an error measure is presented. Let T̃ be the approximation
of the transport operator T , obtained by ray tracing:

T̃ = T +∆T (15)

The error is assumed to be due to the view factors only.
Each term T̃i− j of the transport operator is affected by an er-
ror−ρ∗i ∆Fi− j, where ρ∗ refers to the reflectance of the fictive
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model. The thermal radiosity, computed by equation (8), is
also approximated:

J̃ = J +∆J (16)

It is an acceptable hypothesis to suppose that the source
term S is exactly known. Equation (8) then yields the follow-
ing relation:

T̃ J̃ = S (17)

By combining equations (15) and (17), the following ex-
pression is obtained, where the operator is the exact transport
operator T and where the source term is perturbed by a quan-
tity ∆T J̃:

T J̃ = S−∆T J̃ (18)

The energy error is defined thanks to the v-function:

v(J− J̃) = RT (J− J̃) = RT J−RT J̃ = IT S− IT T J̃ = IT
∆T J̃
(19)

The quantity IT ∆T J̃ is the error introduced in the global ra-
diative energy v(J) by the approximation of the transport op-
erator T and the radiosities J̃. The importance is obtained by
solving equation (13). As importance is also affected by the
approximation of the transport operator, ĨT ∆T J̃ is used as
the approximation of IT ∆T J̃. Equation (19) is a double sum
on all the surfaces which compose the geometrical model.
A particular term Ĩi∆Ti− j J̃ j = Ĩiρ

∗
i ∆Fi− j J̃ j corresponds to the

error characterizing the energy link from surface j to sur-
face i. This expression allows us to establish a measure
of the error induced by the approximation of the transport
term Ti− j. From the expression of the transport operator (10),
supposing that the error is linked to the computation of the
view factors, each term Ti− j of the transport operator is af-
fected by an error −ρ∗i ∆Fi− j.

4 Application
The method has been used to solve the case of a solar

collector with diffuse surfaces, inspired from [6]. The geo-
metrical configuration is shown in Figure 1. The boundary
conditions are given in Figure 2. The collector is character-
ized by an emittance of 80% and a diffuse reflectance of 20%
while the mirror’s emittance is 10% and the mirror’s diffuse
reflectance is equal to 90%. The geometrical model is associ-
ated with a finite element mesh [8], as it has been developed
in the framework of the thesis [5].

4.1 View factors
The first step consists in computing the view factors (see

Figure 3). This is done by a ray tracing process based on the
stratified hemisphere method [4], accelerated with the para-
metric method [9]. If a two-node model is considered, the
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Fig. 1. Geometrical configuration.
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Fig. 2. Boundary conditions.

obtained view factor matrix is given as follows (number 1
refers to the collector, number 2 is the mirror):

F =
[

0 0.1910
0.2547 0

]
(20)

Fig. 3. View factors.

The absolute errors (estimated by the stratified hemi-
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sphere method [4]) affecting the view factors are given as
follows:

δF1−2 = 1.60110−3
δF2−1 = 1.78310−3 (21)

4.2 Temperatures and radiative heat fluxes
The second step consists in solving the radiative thermal

problem, given a set of boundary conditions. The computed
temperatures are displayed in Figure 4 while the heat fluxes
are given in Figure 5.

Fig. 4. Temperature distribution.

Fig. 5. Heat flux distribution.

4.3 Thermal radiosities
Based on the temperatures and the thermal heat fluxes,

relation (5) is used to compute the corresponding thermal
radiosities (see Figure 6). This is the third step of the error
computation process.

4.4 Importance
The last quantity to compute is the importance. The ini-

tial importance vector is defined by the area of the elements.

Fig. 6. Radiosity distribution.

Fig. 7. Surface importance.

In function of the view factors and the surface thermo-optical
properties, we obtain the distribution of importance given in
Figure 7 (the displayed quantity is in fact the importance per
unit area). This surface importance is always larger than (or
equal to) unity.

4.5 Error measure
On the basis of the stratified hemisphere method [4], we

are able to compute the absolute error affecting the view fac-
tors between the two surfaces (equation (21)). This abso-
lute error is introduced in the expression of the energy error.
This error has to be compared with the radiative energy v(J),
which is equal to 1143.8W . The relative energy errors as-
sociated with each link are given as follows, by the quantity
δQi− j

∣∣
ε
= ĨiρiδFi− j J̃ j.

The relative errors affecting the energy exchanges be-
tween the surfaces are:

δQ1−2|ε = 1.966710−4
δQ2−1|ε = 8.246410−4 (22)

The surface associated with large view factor error is not
necessarily associated with the largest radiative error. The
geometrical errors which characterize view factors have to
be weighted by the radiosity of the surfaces, the importance
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and reflectance. The radiosities of the two surfaces are simi-
lar, as well as their importance. The geometrical error char-
acterizing the view factors are also of the same magnitude.
In this problem, the main radiative link is from the mirror to
the collector, because of the larger reflectance of the mirror.
The weak reflectance of the collector reduces the impact of
the other link on the radiative energy v(J). Due to this con-
sideration, it appears that the link ”mirror-to-collector” has
to be carefully computed during the ray tracing process. The
computation effort has to be focused on this link.

5 Conclusions and perspectives
In this paper, we have established the basis of a formula-

tion using the adjoint equations for radiosity and importance,
which can be used in a post process step in order to estimate
the error characterizing each radiative link in a 3D geomet-
rical model. The adjoint equations are not used to acceler-
ate the computation of the radiative equilibrium, as is done
in rendering, but to yield guarantees on the accuracy of the
thermal results. Nevertheless, a first, coarse temperature dis-
tribution should allow us to estimate the thermal radiosities
and to use the full potential of the adjoint equations, such
as an active control of the radiative error. This active con-
trol of the accuracy could be used during the computation of
the view factors in order to accelerate this time-consuming
process.

In this document, we limit ourselves to diffuse, isother-
mal surfaces. A next step could be to include specular and
glossy reflection, as well as non-isothermal surfaces.

The introduction of other modes of heat transfer should
also be addressed. If the thermal situation is essentially gov-
erned by heat radiation, the approach presented in this paper
is valid. If conduction is introduced, it alters the temperature
distribution and then the radiosity distribution. If the prob-
lem is mainly governed by conduction, our approach is no
longer valid. A careful study should establishes the validity
of our error measure when conductive heat transfer is also
present.
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