
May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Computing Convex Hulls by Automata Iteration∗

François Cantin†

Institut Montefiore

Université de Liège, 4000 Liège, Belgium

cantin@montefiore.ulg.ac.be

Axel Legay‡

Computer Science Department,

Carnegie Mellon University, Pittsburgh, PA,

alegay@cs.cmu.edu

Pierre Wolper§

Institut Montefiore

Université de Liège, 4000 Liège, Belgium

pw@montefiore.ulg.ac.be

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

This paper considers the problem of computing the real convex hull of a finite set of n-
dimensional integer vectors. The starting point is a finite-automaton representation of the

initial set of vectors. The proposed method consists in computing a sequence of automata
representing approximations of the convex hull and using extrapolation techniques to
compute the limit of this sequence. The convex hull can then be directly computed from
this limit in the form of an automaton-based representation of the corresponding set of
real vectors. The technique is quite general and has been implemented.

Keywords: Convex Hull, Büchi Automata, (ω-)Regular Model Checking

1. Introduction

Automata-based representations for sets of integer and real vectors have been a

subject of growing interest in recent years [1, 3, 12, 21, 24]. While usually not op-

∗A preliminary version of this paper appeared in the Proceedings of the 13th International Con-

ference on Implementation and Application of Automata.
†This author is supported by a F.R.I.A grant.
‡This author was supported by a F.R.I.A. grant, and by the EU network of excellence ARTIST 2.
He is now supported by a B.A.E.F grant.
§This author is supported by the FRFC project “centre fédéré en vérification” funded by the
Belgian National Science Fundation (FNRS) under grant nr. 2.4530.02.

1

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

2 François Cantin, Axel Legay, Pierre Wolper

timal for specific problems, they provide much stronger generality and canonicity

than other representations. For instance, in this context, combining real and integer

constraints is very simple once the right framework has been set up [4]. The benefit

of using automata-based representations for arithmetic sets could be even greater

if one could, whenever appropriate, freely move between this and other represen-

tations such as explicit constraints. Going from constraints to automata has long

been successfully studied [9, 2, 7], but going in the other direction is substantially

more difficult. Nevertheless, it has been shown that it is possible [22] to construct

constraint formulas from automata representing sets of integer vectors and that,

under some restrictions, this can be done quite effectively [18].

One case of the automata to formulas transformation that is not well handled

though is that of finite sets of integer vectors. Indeed, imagine that a finite set of

integers is represented by constraints and that an automaton representing this set is

built from these. Since the set is finite, the automaton lacks the structure needed to

construct the constraints defining the represented set [18, 22]. One is thus stuck with

the automaton or with an enumerative representation of the set it defines, which

is far from satisfactory. The work presented here was motivated by this problem

with the idea of solving it along the following lines. The first step is to compute,

as an automaton, a minimal dense set of real-vectors that contains the finite set of

integers. On this automaton, techniques similar to those of [18, 22] could then be

applied to obtain constraintsa.

This paper proposes a solution for the first step in the form of a purely automata-

based technique for computing the real convex hull (i.e., the convex hull over the real

numbers) of a finite automaton-represented finite set of integers. Note that, beyond

the motivation outlined above, this is also a worthwhile challenge of independent

interest in the area of automata-based representations. Of course even when being

interpreted over the integers, the constraints defining the real convex hull of a non

convex set of integer vectors will over approximate this set. However, in many

applications of automata-based representations such as model checking (see [14] for

an example), this over approximation is known to be of interest and should not be

seen as a drawbacks of our approach.

In simple terms, our approach proceeds as follows. We start with an automata-

based representation of a finite set of integer vectors. We then repeatedly apply a

transformation to this automaton that adds to the set the vectors that are mid-way

between those it includes. This yields an infinite sequence of automata-represented

sets. The limit of this infinite sequence is then computed as an automaton, using

the extrapolation-based techniques of [5]. This limit is not quite the convex closure

since we prove that it will only contain convex combinations of the initial vectors

with coefficients that are multiples of a negative power of 2. This limit thus needs

to be “completed” in order to obtain the convex hull and we show that this can be

done by computing its topological closure. Bar a technical point due to the fact that

aDeveloping such techniques is an open problem.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 3

some reals have two encodings in our framework, the computation of the topological

closure is quite an easy step. This being done, the closure is obtained.

The extrapolation-based techniques of [5], which have so far only been applied

in the context of “regular model checking” [8], are semi-algorithms that tackle the

undecidable problem of computing the limit of an infinite sequence by extrapolating

finite prefixes of the sequence. For the procedure above to work correctly, we thus

depend on the result of the extrapolation being exact, which is not guaranteed a

priori. Nevertheless, this can be checked as described in [5], but one interesting twist

is that checking safety (enough is obtained) can be done much more easily (and just

as correctly) after computing the topological closure. This is due to the fact that

taking the topological closure yields an automaton that falls within an easier to

handle class. Checking preciseness (nothing is added) with the techniques of [5] is

probably not practical (see [19]), but in the present situation one can exploit the

properties of the extrapolation and make this check just as simple as the safety

check.

Our approach has been implemented and the implementation has actually served

as a guide to hone our results. The implementation has been tested and performs

well, within the bounds allowed by the automata manipulations needed for the com-

putation of the limit of the sequence of approximations. We certainly do not claim

to outperform more traditional methods when they apply: our goal is to establish

the basis of a different approach with interesting characteristics, performance gains

are not part of our initial agenda. Also note that complexity analysis would not

yield useful information since, at the heart of our approach, lies the extrapolation

procedure which is only a semi-algorithm. Finally, we mention that our approach

extends to infinite sets under some restrictions.

Related Work Computing convex hulls is of course a well studied problem of

independent interest. There are quite a few known techniques for computing convex

hulls of a set of vectors in a non automata-theoretic setting. Among these one

finds a long series of algorithms specialized to the 2D and 3D case and widely

used and studied in computational geometry. Algorithms for the general case (any

dimensions) have also been studied [11]. All those algorithms, which are generally

more efficient than an automata-based approach, require an enumeration of the set,

which we avoid here.

In [13], Finkel and Leroux show that the convex hull of a (possibly infinite) set of

integer vectors represented by a regular expression (and hence also an automaton) is

a computable polyhedron. The paper gives a concise existence proof of an algorithm,

but does not discuss the applicability of the method and implementation issues. Also

note that the given algorithm computes the topological closure of the convex hull,

hence side stepping one of the problems of dealing with infinite sets we discuss

in Section 6. Finally, the algorithm goes from a regular expression to a polyhedron

represented by rays, which does not conform to our goal of staying within automata-

based representations. Thus, while from a theoretical point of view this result is in

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

4 François Cantin, Axel Legay, Pierre Wolper

some ways more general than what is presented in this paper, it is quite orthogonal

to our goal of exploring applications of automata based computations on arithmetic

sets.

In very recent work [23], Leroux showed that the closed convex hull of a set of

reals that can be represented by an infinite-word automaton is rational polyhedral.

In [23], Leroux also proposed an algorithm to compute the constraints defining this

convex hull. This seems to be quite a promising approach, though notice that it is

again the closure of the convex hull that is computed. The approach works by re-

ducing the problem to a data-flow analysis problem to be solved on the automaton

graph. Solving this data-flow analysis problem has some similarity with our au-

tomata sequence extrapolation step and exploring the link between the two would

certainly be interesting future work.

2. Automata-theoretic background

2.1. Automata on infinite words

An infinite word (or ω-word) w over an alphabet Σ is a mapping w : N → Σ from the

natural numbers to Σ. The length-k prefix of an infinite word w, i.e. the finite-word

w(0), w(1), . . . , w(k − 1) will be denoted by pref k(w).

A Büchi automaton on infinite words is a five-tuple A = (Q,Σ, δ, q0, F), where

Q is a finite set of states, Σ is the input alphabet, δ : Q × Σ → 2Q is a transition

function (δ : Q × Σ → Q if the automaton is deterministic), q0 is the initial state,

and F is a set of accepting states. A run π of a Büchi automaton A = (Q,Σ, δ, q0, F)

on an ω-word w is a mapping π : N → Q such that π(0) = q0 and for all i ≥ 0,

π(i + 1) ∈ δ(π(i), w(i)) (nondeterministic automata) or π(i + 1) = δ(π(i), w(i))

(deterministic automata). Let inf (π) be the set of states that occur infinitely often

in a run π. A run π is said to be accepting if inf (π) ∩ F 6= ∅. An ω-word w is

accepted by a Büchi automaton if that automaton has some accepting run on w.

The language Lω(A) of infinite words defined by a Büchi automaton A is the set of

ω-words it accepts.

A co-Büchi automaton is defined exactly as a Büchi automaton except that its

accepting runs are those for which inf (π) ∩ F = ∅.
We will also use the notion of weak automata [28]. For a Büchi automaton

A = (Q,Σ, δ, q0, F) to be weak, there has to be a partition of its state set Q into

disjoint subsets Q1, . . . , Qm such that for each of the Qi either Qi ⊆ F or Qi∩F = ∅;
and there is a partial order ≤ on the sets Q1, . . . , Qm such that for every q ∈ Qi

and q′ ∈ Qj for which, for some a ∈ Σ, q′ ∈ δ(q, a) (q′ = δ(q, a) in the deterministic

case), Qj ≤ Qi. Roughly speaking, a weak automaton is thus a Büchi automaton

such that each of the strongly connected components of its graph contains either

only accepting or only non-accepting states.

Not all omega-regular languages can be accepted by weak deterministic Büchi

automata, nor even by weak nondeterministic automata [28]. However, there are

algorithmic advantages to working with weak automata. Indeed, weak determinis-

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 5

tic automata can be complemented simply by inverting their accepting and non-

accepting states, while the complementation operation for Büchi automata requires

intricate algorithms that not only are worst-case exponential, but are also hard to

implement and optimize [30]. There exists an easy to implement determinization

procedure for weak automata [27, 16], which produces Büchi automata that are de-

terministic, but not necessarily weak. The procedure is exponential in the size of

the automaton.

Nevertheless, if the represented language can be accepted by a weak determinis-

tic automaton, the result of the determinization procedure will be inherently weak

according to the definition of [4] and thus easily transformed into a weak automaton.

Definition 1. A Büchi automaton is inherently weak if none of the reachable

strongly connected components of its transition graph contain both accepting (visit-

ing at least one accepting state) and non-accepting (not visiting any accepting state)

cycles.

This property yields a pragmatic approach for staying, when at all possible, within

the realm of deterministic weak Büchi automata. Indeed, we start with sets rep-

resented by such automata and being weak deterministic is preserved by union,

intersection, synchronous product, and complementation. If a projection is needed,

the result is determinized by the procedure proposed in [27, 16]. Then, either the

result is inherently weak and we can proceed, or it is not and we are then confronted

to a set that cannot be represented by a weak deterministic automaton.

Finally, a major advantage of weak deterministic Büchi automata is that they admit

a minimal form, which is unique up to isomorphism [25].

2.2. Automata-based representations of sets of integers and reals

In this section, we briefly introduce the representation of sets of integer and real

vectors by finite automata. Details are only given for the case of real vectors, the

case of integer vectors being a simplification of the former where automata on finite

words replace automata on infinite words. A survey on this topic can be found in [7].

In order to make a finite automaton recognize numbers, one needs to establish a

mapping between these and words. Our encoding scheme corresponds to the usual

notation for reals and relies on an arbitrary integer base r > 1. We encode a number

x in base r, most significant digit first, by words of the form wI ⋆ wF , where wI

encodes the integer part xI of x as a finite word over {0, . . . , r − 1}, the special

symbol “⋆” is a separator, and wF encodes the fractional part xF of x as an infinite

word over {0, . . . , r−1}. Negative numbers are represented by their r’s complement.

The length p of |wI |, which we refer to as the integer-part length of w, is not fixed

but must be large enough for −rp−1 ≤ xI < rp−1 to hold.

According to this scheme, each number has an infinite number of encodings, since

their integer-part length can be increased unboundedly. In addition, the rational

numbers whose denominator has only prime factors that are also factors of r have

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

6 François Cantin, Axel Legay, Pierre Wolper

two distinct encodings with the same integer-part length. For example, in base

10, the number 11/2 has the encodings 005 ⋆ 5(0)ω and 005 ⋆ 4(9)ω, “ ω” denoting

infinite repetition. We call these respectively the high and low encodings and refer

collectively to them as dual encodings.

To encode a vector of real numbers, we represent each of its components by words

of identical integer-part length. This length can be chosen arbitrarily, provided that

it is sufficient for encoding the vector component with the highest magnitude. An

encoding of a vector x ∈ Rn can indifferently be viewed either as a n-tuple of words

of identical integer-part length over the alphabet {0, . . . , r − 1, ⋆}, or as a single

word w over the alphabet {0, . . . , r − 1}n ∪ {⋆}.

Example 2. In base 2, the vector (−2, 12.3) can be encoded as

(11110 ⋆ 0ω, 01100 ⋆ 01[1001]ω)

or as the word

(1, 0)(1, 1)(1, 1)(1, 0)(0, 0) ⋆ (0, 0)(0, 1)[(0, 1)(0, 0)(0, 0)(0, 1)]ω .

Using an alphabet of size rn is clearly going to be problematic as soon as n

starts to grow. The solution proposed in [4, 31] is to read the digits of the various

components of the vector serially, in a round robin way, thus reducing the alphabet

size to the size of the base r. This scheme is referred as the serial encoding as

opposed to the simultaneous encoding in which the alphabet consists of tuples of

digits.

Example 3. Using the serial encoding, the vector (−2, 12.3) can be encoded in base

2 as

1011111000 ⋆ 0001[01000001]ω.

Implementations obviously use the serial encoding, but the simultaneous encod-

ing is convenient for presentation and proof purposes. The set of all the encodings

of a vector v ∈ Rn is denoted by W (v,n). This definition directly generalizes to

sets of vectors. We use W −1 (w ,n) to denote the unique vector v ∈ Rn such that

w ∈ W (v,n).

Real vectors being encoded by infinite words, a set of vectors can be represented

by an infinite-word automaton accepting the corresponding encodings. Since a real

vector has an infinite number of possible encodings, we have to choose which of

these the automata will recognize. A natural choice is to accept all encodings. This

leads to the following definition.

Definition 4. Let n > 0 and r > 1 be integers. A base-r n-dimension Real Vector

Automaton (RVA) is a Büchi automaton A automaton such that

• Every word accepted by A is an encoding in base r of a vector in Rn, and

• For every vector x ∈ Rn, A accepts either all the encodings of x in base r,

or none of them.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 7

10

110

12

1

0 1
1

0

2

0

4

1

15 0

3

1

6

0 0

1

01

7

*

8
1

0

9

*

130

141

1

0

1

0

0

1

Fig. 1. An RVA for x2 = x1 + 1/2.

A RVA is said to represent the set of vectors encoded by the words that belong

to its accepted language. The set of fractional states of a RVA A, denoted by QA
F ,

is the subset of Q that contains all the states of A that can be reached after having

followed a transition labeled by ⋆.

The expressive power of RVAs has been studied in [6] and corresponds exactly

to linear arithmetic over the reals and integers, i.e., 〈R,+,≤, Z〉 (where Z is a

predicate that is true if and only if its argument is an integer), extended with a

special base-dependent predicate Vr that can check the value of the digit appearing

in a given position. Concretely, given a base r, Vr enrichs 〈R,+,≤, Z〉 with the

multiplication by a power of r. If Vr is not used or if the sets represented are finite,

RVAs can always be constructed to be weak deterministic automata [4]. In other

situations, we have to check whether the resulting automaton is inherently weak.

Using the algorithms described in [4], a RVA that represents a finite set can always

be constructed to be a weak deterministic automaton. If not explicitly mentioned,

we assume that the RVAs we manipulate are minimal weak deterministic Büchi

automata. Also, since our implementation works with a base 2 representation, we

will present all our results in this context, knowing that they can be generalized

to other bases (see Section 6.2). Finally, it is worth mentioning that operations on

sets (union, intersection, Cartesian product, complementation, projection) directly

extend to operations on RVA [7] (example : The RVA that represented the union of

two sets represented by two RVAs is the union of the two automata).

Example 5. The Büchi automaton in Figure 1 is a serialized RVA representing all

the encodings in base 2 of vectors that are solution to the equation x2 = x1 + 1/2.

The initial state of the automaton is colored in gray and the accepting states are

surrounded by a double circle. The set of fractional states of the automaton is given

by {0, 1, 2, 3, 4, 5, 6}.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

8 François Cantin, Axel Legay, Pierre Wolper

3. Convex hulls and topological concepts

We recall a few notations and definitions that are used throughout the paper. Let

Z, Q, and R be respectively the sets of integer, rational, and real numbers, respec-

tively. Let Zn, Qn , and Rn denote the usual n-dimensional Euclidean vector spaces.

Vectors are written in boldface, e.g. x, and scalars without emphasis, e.g. a. The

ith component of a vector x ∈ Rn is denoted by x[i]. We say that a set E ⊆ Rn is

convex if and only if for each x1,x2 ∈ E, we have {αx1+(1−α)x2 | α ∈ [0, 1]} ⊆ E.

We will also use the following usual definitions.

Definition 6. Given a set E ⊆ Rn, the convex hull of E is the set Conv(E) ⊆ Rn

defined by

Conv(E) = {x | ∃x1, . . . ,xk ∈ E,∃λ1, . . . , λk ∈ [0, 1] : x =

k
∑

i=1

λixi ∧
k
∑

i=1

λi = 1}

The Euclidean distance between two vectors x,x′ ∈ Rn, denoted by |x − x′| is

the real number
√

∑n

i=1(x[i] − x′[i])2. The open ball centered in x ∈ Rn with a

radius ǫ > 0 is the subset B(x,ǫ) = {x′ | |x − x′| < ǫ}. A set E ⊆ Rn is said to be

open if for any x ∈ E there exists ǫ > 0 such that B(x,ǫ) ⊆ E . A closed set E is

a subset of Rn such that Rn \ E is an open set. A compact set in Rn is a bounded

(contained in a ball of finite radius) and closed set. We use the concept of topological

closure of a set.

Definition 7. Given a set E ⊆ Rn, the topological closure TC (E) of E is the

smallest closed set that contains E.

When dealing with infinite words, we will be working with the topology on words

induced by the distance defined by

d(w,w′) =

{

1
|common(w,w′)|+1 if w 6= w′

0 if w = w′,

where common(w,w′) denotes the longest common prefix of w and w′. Notice that,

among words that validly encode vectors, words that are topologically close encode

vectors that are close according to the Euclidean distance, the reverse also being

true except for the cases where dual encodings can appear.

4. Computing convex hulls

In this section, we describe a technique to compute the convex hull over Rn of a

finite set E = {x1,x2, . . . ,xk} defined over Zn.

The technique proceeds by constructing a sequence of approximations of the convex

hull by adding the vectors that are mid-way between those obtained so far. This is

quite an obvious way to proceed, but in order to exploit it, we need to formalize its

exact properties. We use the following definitions.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 9

Definition 8. The median sequence of E is the infinite sequence E0, E1, E2, . . .

such that (1) E0 = E and (2) Ei+1 = Ei ∪ {(x1 + x2)/2 | x1,x2 ∈ Ei} for each

i ∈ N.

The limit of the median sequence of E, denoted by E∗, is defined by
⋃∞

i=0 Ei. It is

easy to see that each vector v of E∗ is also a vector of Conv(E). However, E∗ is not

the complete convex hull, but can be characterized using the following definition.

Definition 9. The 2-chopped convex hull of a finite subset E = {x1,x2, . . . ,xk} of

Zn is the maximal subset Conv2∗(E) of Conv(E), where for each v ∈ Conv2∗(E),

v =
∑k

i=1 λixi with λi ∈ [0, 1],
∑k

i=1 λi = 1, and λi = ki

2mi
for ki,mi ∈ N and

i ∈ [1, . . . , k].

Theorem 10. For any finite subset E = {x1,x2, . . . ,xk} of Zn, the limit of its

median sequence and its 2-chopped convex hull coincide, i.e E∗ = Conv2∗(E).

Proof. A 2-term t of E ⊂ Rn is either a vector of E, or an expression of the form

(t1 + t2)/2, where t1 and t2 are both a 2-term. The depth of t, denoted by d(t), is

0 if t ∈ E, and max (d(t1), d(t2)) + 1 otherwise.

We first prove E∗ ⊂ Conv2∗(E). By construction, each vector v ∈ E∗ can be

expressed as a 2-term of E. Moreover, it is easily proved by induction on its depth

that a 2-term t can be rewritten as an expression of the form

e = a1x1 + · · · + akxk

with ∀(1 ≤ i ≤ k) [(0 ≤ ai≤1) ∧ (∃(ki,mi ∈ N) (ai = ki

2mi
))] and

∑k

i=1 ai = 1.

We now prove Conv2∗(E) ⊂ E∗. Similarly, it is not difficult to see that each

vector of Conv2∗(E) can be rewritten as a 2-term of E. Moreover, a 2-term of depth

i is, by construction, included in all Ej for j ≥ i.

Even though the 2-chopped convex hull of a set E is not quite its real convex

hull, it contains vectors that are arbitrarily close to any element of the full convex

closure. This is proved in Lemma 12, which is based on the following result.

Lemma 11. Consider E = {x1, . . . ,xk}, a finite set of vectors of Rn. Let v =
∑k

i=1 λixi, v′ =
∑k

i=1 λ′
ixi, and xmax = max i,j(|xi[j]|) with i ∈ [1, k] and j ∈

[1, n]. For each ǫ > 0, if ∀(1 ≤ i ≤ k) (|λi − λ′
i| ≤ ǫi) with ǫi > 0 and such that

∑k

i=1 ǫi ≤ ǫ√
nxmax

, then |v − v′| ≤ ǫ.

Proof. We have the following development.

(∀(1≤i≤k)∃(ǫi > 0) (|λi − λ′
i| ≤ ǫi)) ∧ (

k
∑

i=1

ǫi ≤
ǫ√

n xmax

))

⇔
k
∑

i=1

|λi − λ′
i| ≤

ǫ√
n xmax

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

10 François Cantin, Axel Legay, Pierre Wolper

⇔

√

√

√

√

(

k
∑

i=1

|λi − λ′
i|
)2

≤ ǫ√
n xmax

⇔ √
n xmax

√

(|λ1 − λ′
1| + · · · + |λk − λ′

k|)2 ≤ ǫ

⇔
√

nx2
max (|λ1 − λ′

1| + · · · + |λk − λ′
k|)2 ≤ ǫ

⇔
√

n (|λ1 − λ′
1|xmax + · · · + |λk − λ′

k|xmax)2 ≤ ǫ

⇔ [(|λ1 − λ′
1|xmax + · · · + |λk − λ′

k|xmax)2 + · · ·
+ (|λ1 − λ′

1|xmax + · · · + |λk − λ′
k|xmax)2]

1

2 ≤ ǫ. (1)

By Minkowski inequality [26], for all 1≤ i≤n, we have

|(λ1 − λ′
1)x1[i] + . . . + (λk − λ′

k)xk[i]| ≤ |λ1 − λ′
1|xmax + . . . + |λk − λ′

k|xmax.

Therefore, from (1) we deduce that

[((λ1 − λ′
1)x1[1] + · · · + (λk − λ′

k)xk[1])2 + · · ·
+ ((λ1 − λ′

1)x1[n] + · · · + (λk − λ′
k)xk[n])2]

1

2 ≤ ǫ

⇔ [((λ1x1[1] + · · · + λkxk[1]) − (λ′
1x1[1] + · · · + λ′

kxk[1]))2 + · · ·
+ ((λ1x1[n] + · · · + λkxk[n]) − (λ′

1x1[n] + · · · + λ′
kxk[n]))2]

1

2 ≤ ǫ

⇔
√

(v[1] − v[1]′)2 + · · · + (v[n] − v[n]′)2 ≤ ǫ
⇔ |v − v′| ≤ ǫ.

Lemma 12. For each v ∈ Conv(E) and ǫ > 0, there exists v′ ∈ Conv2∗(E) such

that |v − v′| ≤ ǫ.

Proof. We define xmax = max i,j(|xi[j]|), with i ∈ [1, k] and j ∈ [1, n]. For each v ∈
Conv(E) and each ǫ > 0, we build a vector v′ ∈ Conv2∗(E) with |v− v′| ≤ ǫ. This

amounts to assign a value to each λ′
i. This assignation is direct if v ∈ Conv2∗(E).

Assume now that v 6∈ Conv2∗(E). By hypothesis, we have

• v =
∑k

i=1 λixi, where
∑k

i=1 λi = 1 and ∀(1 ≤ i ≤ k) (λi ≥ 0).

• v′ =
∑k

i=1 λ′
ixi, where

∑k

i=1 λ′
i = 1 and ∀(1 ≤ i ≤ k) [(λ′

i ≥ 0)

∧∃(ki,mi ∈ N)(λ′
i = ki

2mi
)].

By Lemma 11, if ∀(1 ≤ i ≤ k)∃(ǫi > 0) (|λi − λ′
i| ≤ ǫi) where

∑k

i=1 ǫi ≤ ǫ√
nxmax

,

then |v − v′| ≤ ǫ.

Assume l ∈ N such that k 2−l ≤ ǫ√
nxmax

. For each 1≤ i≤ k, we define λi1 by trun-

cating the binary encoding of λi after the l first bits of its fractional part. It is easy

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 11

to see that ∀(1≤ i≤ k) |λi − λi1 | ≤ 2−l. For each 1≤ i≤ k, let λi2 = λi − λi1 ≤ 2−l.

Since
∑k

i=1 λi1 is a multiple of 2−l,
∑k

i=1 λi2 = 1 −∑k

i=1 λi1 is also a multiple of

2−l.

Let d =
P

k

i=1
λi2

2−l . Since ∀(1 ≤ i ≤ k)λi2 ≤ 2−l, we have d ≤ k. For each (1 ≤ i ≤ k),

we define λ′
i as follows:

λ′
i =

{

λi1 + 2−l if 1 ≤ i ≤ d,

λi1 otherwise.

We have

• ∀(d < i ≤ k) (|λi − λ′
i|) ≤ 2−l, and

• ∀(1 ≤ i ≤ d) (|λi − λ′
i|) ≤ |λi − (λi + 2−l)| = 2−l.

Consequently, ∀(1 ≤ i ≤ k) (|λi − λ′
i|) ≤ 2−l and, by Lemma 11, |v − v′| ≤ ǫ.

To conclude, observe that we have the following.

• ∀(1≤ i≤ k) ∃(ki,mi ∈ N) (λ′
i = ki

2mi
),

• ∑k

i=1 λ′
i =

∑k

i=1 λi1 + d 2−l =
∑k

i=1 λi1 +
∑k

i=1 λi2 = 1, and

• ∀(1 ≤ i ≤ k)(λ′
i ≥ λi1 ≥ 0)

From Lemma 12 it follows that the convex hull of E is included in the topological

closure of its 2-chopped hull. The following theorem states that these two sets

coincide.

Theorem 13. For any finite subset E = {x1,x2, . . . ,xk} of Zn, we have that

TC (Conv2∗(E)) = Conv(E).

Proof. By Lemma 12, we have that Conv(E) ⊆ TC (Conv2∗(E)). We can also

show that TC (Conv2∗(E)) ⊆ Conv(E). Indeed, we have TC (Conv2∗(E)) ⊆
TC (Conv(E)) ⊆ Conv(E). The first inclusion holds because Conv2∗(E) ⊆
Conv(E) and, for any E1, E2 ∈ Rn, E1 ⊆ E2 ⇒TC (E1) ⊆ TC (E2). The sec-

ond inclusion holds because the convex hull of a finite subset of Rn is always a

closed set.

Computing the real convex hull of a finite set of integer vectors can thus be

reduced to compute the topological closure of the limit of its median sequence. We

now investigate how to compute Conv2∗(E) and TC (E) for a set E represented by

a RVA.

5. Algorithmic issues

We consider a finite subset E = {x1,x2, . . . ,xk} of Zn that is represented by a

(weak deterministic) RVA AE . Our goal is to compute a RVA that represents the

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

12 François Cantin, Axel Legay, Pierre Wolper

convex hull over Rn of E. According to the results in Section 4, this can be done by

computing a RVA AE∗ representing the limit E∗ of the median sequence of E, and

then computing a RVA representing the topological closure of E∗. We now show

how these two problems can be tackled by automata-based algorithms. In the rest

of this section, the RVA that represents the i-th element of the median sequence of

E is denoted by Ai
E .

5.1. Computing a RVA for the 2-chopped Hull

5.1.1. Computing the elements of the median sequence

We notice that since E is finite and represented by a weak deterministic RVA, each

element in its median sequence can also be represented an automaton in this class.

Indeed, from Definition 8 it is easy to see that computing a RVA for the set Ei+1

from a RVA that represents the set Ei can be done with the following operations:

Cartesian product, projection, union, and intersection. As discussed in Section 2 and

in [4] these operations keep us within the sets representable by weak deterministic

RVA.

5.1.2. Computing the limit of the median sequence

Computing AE∗ amounts to computing the limit of an infinite sequence of weak de-

terministic automata. To finitely compute this limit, we obviously need some form

of “speed-up” technique. We will use the extrapolation-based technique proposed

in [5] and detailed in [19]. A rough description of the technique is as follows. The

technique proceeds by comparing successive automata in a prefix of the sequence,

trying to identify the difference between these in the form of an “increment”, and

extrapolating the repetition of this increment by adding nonaccepting strongly con-

nected component to the last automaton of the prefix. If the extrapolation is cor-

rect, then the limit is computed, else, one has to lengthen the prefix and restart

the extrapolation process. Checking correctness of the extrapolation is a non trivial

procedure whose description is, for technical reasons, postponed to Section 5.3. The

technique has been implemented in a tool called T(O)RMC [29, 20]. The tool relies

on the LASH package [17] for automata manipulation procedures, but implements

the specific algorithms given in [5].

It is worth mentioning that the automata produced by T(O)RMC are weak,

but not necessarily deterministic [5]. Furthermore, if one tries to determinize these

automata, one might end up combining accepting and non accepting connected

componentsb, which leads to an automaton that is not weak. This situation actually

occurred systematically in our experiment, which is not surprising since the 2-

chopped convex hull of a set of integer vectors is not definable in 〈R,+,≤, Z〉 and

thus falls outside the guaranteed reach of weak deterministic automata given in [4].

bThis can only occurs because the extrapolation procedure adds non accepting strongly connected
components that correspond to the repetition of the increment.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 13

We conclude the section with the following observations.

• An extrapolation makes sense in the context of the convex hull computa-

tion, only if the increments are detected among the fractional states of the

automaton. Indeed, an increment in the fractional part leads to a denser

set, as required, whereas an increment in the integer part would lead to

adding an unlimited number of new integer values, which cannot be needed

for computing the convex hull of a finite set. Thus, we will only allow

T(O)RMC to extrapolate within the fractional part of the automaton.

• There is no guarantee that T(O)RMC will produce a result since the general

problem of computing the limit of a sequence of automata is undecidable.

An interesting open question is whether termination can be guaranteed in

the specific case of the convex hull computation we are considering.

• As discussed in [19], the operations performed for computing an extrapo-

lation from a finite sequence of automata can be done in time linear in the

size of the sets of states of the automata in the sequence.

5.2. Computing the topological closure of a RVA-represented set

In this section, we explicitely consider RVAs that may not be weak deterministic.

Consider a set E ⊆ Rn represented by a RVA AE . Our goal is to compute a RVA

ATC (E) that represents the topological closure of E. The intuition behind the com-

putation is that we need to add to the language accepted by AE , all words that

are arbitrarily close to words of this language. This is fairly straightforward to do

since we only need to add words that have arbitrarily long common prefixes with

accepted words. A simple step to do this is to make accepting all states of the frac-

tional part of the automaton. Of course, this will compute the topological closure

within the topology on infinite words, but this also almost computes the vector

Euclidean topological closure as it is shown by the following result.

Theorem 14. Let AE be a RVA representing a vector set E. Let AE be AE with

all states of its fractional part from which an accepting state is reachable made

accepting. For each vector v ∈ Rn, W (v,n)∩L(AE) 6= ∅ if and only if v ∈ TC (E).

Proof. We prove the two directions of the equivalence.

(1) We first show that each word that belongs to the language of AE is the encoding

of a vector that is in the topological closure of E. Indeed, it is easy to see that

∀(w ∈ L(AE))∀(k ∈ N)∃(w′ ∈ L(AE))(pref k (w) = pref k (w ′)),

which implies the definition of the topological closure

∀(v ∈ W −1 (L(AE),n))∀(ǫ > 0)∃(v′ ∈ W −1 (L(AE),n))(|v − v′| ≤ ǫ).

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

14 François Cantin, Axel Legay, Pierre Wolper

(2) We now show that for each vector v ∈ Rn, if v ∈ TC (E), then W (v,n) ∩
L(AE) 6= ∅.
By definition of the topological closure, we have

∀(ǫ > 0)∃(v′ ∈ E) (|v − v′|≤ǫ).

It is easy to see that there exists w ∈ W (v,n) such that

∀(k ∈ N)∃(v′ ∈ E,w′ ∈ W (v′,n) ⊆ L(AE)) (pref k (w) = pref k (w ′)),

and we can thus conclude that w ∈ L(AE).

Theorem 14 guarantees that AE contains at least one encoding for each vector

in TC (E). However the automaton AE is not necessarily ATC (E). Indeed, there is

no guarantee that AE will contain all the encodings of each vector included in the

topological closure. This is illustrated with the following example.

Example 15. Assume that AE is the RVA representing the 2-chopped hull of the

set E = {(0, 0), (6, 3)}. Here, AE is not a proper RVA. Indeed, the vector (2, 1)

belongs to the topological closure of AE, but the set 0∗01000⋆(01)ω that corresponds

to the high encoding of 2 and the low encoding of 1 is never added.

For each vector v ∈ TC (E), AE thus contains at least one combination of the

encodings of each component. In fact, since the abstraction always occurs in the

fractional part, it is easy to see that all other combinations that can be obtained

by increasing/decreasing the length of the integer-part of the encoding of each

component of v are also included. In this context, missing combinations can easily

be added by automata-based operations [10], including projection after which an

exponential determinization step is needed.

5.3. Correctness criterion

After having constructed the extrapolation A∗
E of a finite sequence Ai1

E , Ai2
E , . . . ,

Ail

E of automata representing elements in the median sequence of a set E, it remains

to check whether it accurately corresponds to what we really intend to compute, i.e.,

AE∗ . This is done by first checking that the extrapolation is safe, in the sense that

it captures all words accepted by AE∗ (L(AE∗) ⊆ L(A∗
E)), and then checking that

it is precise, i.e., that it accepts no more words than AE∗ (L(A∗
E) ⊆ L(AE∗)). To

lighten the presentation, we will often use the notations and operations defined for

sets of vectors directly on the automata that represent them. As an example, given

a RVA A, Conv(A) is an RVA that represents the convex hull of the set represented

by A.

5.3.1. Safety

We first investigate how to check whether A∗
E is safe. The idea is simply to perform

one more mid-point adding step on A∗
E and to check that this does not change the

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 15

accepted language. Given a set E, let C2(E) be the set {y | y = (x1 + x2)/2 |
x1,x2 ∈ E}. We have the following theorem.

Theorem 16. Let A∗
E and AE∗ be the RVAs that represent the extrapolation of

a median automata sequence for a set E and the actual limit of this sequence,

respectively. Assume that E is represented by the RVA AE. We have that, if

L(C2(A
∗
E)) ⊆ L(A∗

E), then L(AE∗) ⊆ L(A∗
E).

Proof. Recall that L(AE∗) =
⋃

i L(Ai
E), where Ai

E is the RVA representing

the i-th elment in the median sequence of origin E. We show that for each i,

L(Ai
E) ⊆ L(A∗

E). The base case, i.e., L(A0
E) ⊆ L(A∗

E), holds by hypothesis.

Suppose now that i > 0 and that the result holds for any k < i. We have that

L(Ai
E) ⊆ L(C2(A

i−1
E)) ⊆ L(C2(A

∗
E)) ⊆ L(A∗

E).

The required computation step is thus to check that L(C2(A
∗
E)) ⊆ L(A∗

E). This

is simple except for the fact that, the result of the extrapolation is representable by

an automaton which is weak but not necessarily deterministic (see Section 5.1), and

hence testing inclusion requires to complement a Büchi automaton. The problem can

be solved by first applying the topological closure step to A∗
E and then performing

the safety check given by Theorem 16. We have the following result.

Theorem 17. Let A∗
E and AE∗ be the RVAs that represent the extrapolation of a

median automata sequence for a set E and the actual limit of this sequence, respec-

tively. If L(C2(TC (A∗
E

))) ⊆ L(TC (A∗
E

)), then L(TC (AE∗)) = L(Conv(AE)) ⊆
L(TC (A∗

E
)).

The advantage of computing the topological closure before performing the safety

check is that the strongly connected components added by T(O)RM are made uni-

formly accepting by the procedure that computes the topological closure. This en-

sures that we only need to complement weak deterministic automata.

5.3.2. Preciseness

Checking preciseness could be performed with the techniques proposed in [5, 19].

However, this solution which involves complex data-structures is computationally

demanding and not really practical [19]. In the present situation, one can however

propose a much more efficient scheme that exploits the properties of the extrapola-

tion. We use the following definition.

Definition 18. Let E ⊆ Rn be a convex set. The set of extreme points of E, denoted

S(E), is defined as {x ∈ E | (¬∃(x1,x2) ∈ E)(x1 6= x2 ∧ x = (x1 + x2)/2)}.

By extension we will also use the notation S(A) on automata representing vector

sets. We will also use the following theorem.

Theorem 19. (Krein-Milman [15]) Let E ⊆ Rn be a compact convex set. The set

E is the convex hull of its set of extreme points.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

16 François Cantin, Axel Legay, Pierre Wolper

We now present our preciseness check. Instead of checking whether L(A∗
E) ⊆

L(AE∗), we check L(TC (A∗
E

)) ⊆ L(Conv(AE)). This is enough to ensure that

we do not compute an overapproximation of the hull. We first observe that if the

extrapolation of the limit of the median sequence of a set is safe, then its topological

closure is a compact convex set.

Lemma 20. Let TC (A∗
E

) be the RVA that represents the topological closure of a

safe extrapolation of the limit of the median sequence of a finite set E ⊆ Zn. The

set represented by TC (A∗
E

) is a compact convex set.

Proof. The fact that TC (A∗
E

) is convex is a direct consequence of Theorem 17. The

set TC (A∗
E

) is closed by construction. Finally, the fact that TC (A∗
E

) is bounded

follows from the fact that the extrapolation step only modifies the fractional part

of the RVA.

We then have the following theorem.

Theorem 21. Let A∗
E be a RVA that represents a safe extrapolation of the limit of

the median sequence of a finite set of integer vectors represented by the RVA AE.

If L(S(TC (A∗
E

))) ⊆ L(AE), then L(TC (A∗
E

)) ⊆ L(Conv(AE)).

Proof. If L(S(TC (A∗
E

))) ⊆ L(AE), then L(Conv(S (TC (A∗
E

)))) ⊆ L(Conv(AE)).

By Lemma 20, we have that TC (A∗
E

) is a compact convex set. We can apply

Krein-Milman’s theorem and obtain that L(TC (A∗
E

)) = L(Conv(S (TC (A∗
E

)))) ⊆
L(Conv(AE)).

To check the preciseness of a RVA A∗
E that represents a safe extrapolation of the

limit of the median sequence of a finite set E ⊆ Zn, we first compute a RVA

TC (A∗
E

) for the topological closure of the set represented by A∗
E . We then compute

an automaton for S(TC (A∗
E

)), which is easily done by computing the difference

between TC (A∗
E

) and C2(TC (A∗
E

)). Finally, one checks whether the language of

the resulting automaton is included in the one of AE . As for the safety case, all

complementation operations are only applied to weak deterministic Büchi automata.

6. Observations

6.1. Infinite Sets

It is worth mentioning that our results do not extend to the computation of the

real convex hull of an infinite set of integer vectors. Indeed, by relying on the

computation of a topological closure, our methodology produces convex hulls which

are closed sets. However there are infinite sets of integer vectors whose convex hull

is not closed.

Example 22. Consider the infinite set E given by {(x, y) ∈ Z2 | (y = x + 1) ∧
(y≥ 0)} ∪ {(0, 0)}. The convex hull of E is given by Conv(E) = {(x, y) ∈ R2 |

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 17

(y≤x+1) ∧ (y≥ 0) ∧ (y >x)}, which is not a closed set. If we apply our technique

to E, we will obtain the set {(x, y) ∈ R2 | (y≤x + 1) ∧ (y≥ 0) ∧ (y≥x)}, that is a

convex overapproximation of Conv(E).

Observe also that, in the present context, we cannot check for the preciseness

of the extrapolation with the technique proposed in Section 5.3. Indeed, this check

relies on Krein-Milman’s theorem, which only applies to bounded sets.

As a conclusion, when working with infinite sets, the best we can propose is a

convex overapproximation of the real convex hull.

6.2. Other Bases

We have already mentioned that the definition of the median sequence and the

encoding of real numbers in base 2 are linked. We have noticed that when working

in a base r > 2 T(O)RMC was not able to detect increments. This may be ex-

plained as follows. We can observe that in base 2, any word in the language of an

automaton that represents an element in the median sequence can be obtained by

adding an incrementc to one of the accepting words of the RVA representing the

previous element in the sequence. However, when applying the construction given

in Definition 8 in a base r > 2, we cannot make the same observation. This may

explain why increments do not appear between the automata of the sequence. The

solution is to generalize the construction of the successive elements of the median

sequence in such a way that the base is taken into account. For this we propose to

use the following computation.

Ei+1 = Ei ∪ {(x1 + (r − 1)x2)/r | x1,x2 ∈ Ei}
∪ {(2x1 + (r − 2)x2)/r | x1,x2 ∈ Ei}
∪ . . . ∪ {((r − 1)x1 + x2)/r | x1,x2 ∈ Ei}

One can then easily adapt the definition of the 2-chopped convex hull as well as all

the results presented in Sections 4 and 5.

6.3. From Integers to Reals

While the theory developed in Section 4 is still sound, T(O)RMC does not seem

to be able to detect increments when starting from a set that contains non integer

numbers. Being able to handle such cases is a direction for future research.

7. A brief note on the experimental results

The approach presented in this paper has been tested on several examples using a

prototype implementation that relies on T(O)RMC.

cAn increment between two words w1 and w2 is a finite word wI such that w1 = w11w12 and
w2 = w11wIw12.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

18 François Cantin, Axel Legay, Pierre Wolper

Finite convex polytopes in Zn

Vertices |AE | |Ai
E | |AConv(E)|

(1), (2) 7 9 7

(-1,7), (5,-6) 28 290 104

(-13,1), (11,0) 40 354 142

(0,2), (0,4), (2,6), (4,4), (4,2) 54 78 58

(0,0,0), (3,3,2) 63 110 100

(1,1,1), (3,3,2), (2,2,4) 86 286 127

(-1,0,-1), (-1,2,-1), (0,1,-1), (0,1,1) 72 205 97

Table 1. Convex hull for finite convex polytopes in Z
n.

In Table 1 we give examples in which the initial set is the set of points in Zn

within a finite convex polytope described by its vertices. We give the number of

states of the RVA that represents each of those sets (first column), of the RVA that

represents the largest element in their median sequence (second column), and of the

RVA that represents their convex hull (third column). The same information is given

for the difference/union of finite convex polytopes in Zn in Table 2 (the polytope

with vertices v1, . . . vk being denoted by [v1, . . . , vk]). Table 3 gives results for sets

described by a the enumeration of their members. Finally, Table 4, presents some

of the results we obtained by applying our technique to infinite sets. We compared

those results with a directly computed RVA representing the convex hull of the

initial set, and observed that they coincide when the convex hull is a closed set.

This means that we did not encounter situations where T(O)RMC produced a safe

but not precise extrapolation.

All those examples were handled in less than a minute. We observed that the

efficiency of the technique decreases when the dimension of the set increases. This

is not surprising since computing the elements of the median sequence of a set over

Rn requires to compute and determinize RVAs representing sets over R2n+1. This

clearly should be fixed to make the approach more practical and, fortunately, [12]

shows a promising way of doing thisd. We also observed that the determinization

steps involved in the computation of the successive element of the median sequence

are quite costly. We hope to improve the efficiency of those steps by adapting the

so called “dominance principle” of [5].

Acknowledgement

We thank Pierre Mathonet and Michel Rigo from the mathematics department of

the University of Liège for answering many questions related to this work. We are

dBefore being able to apply the results in [12] to our problem, we would first have to propose

an extrapolation theory for the representation suggested in [12]. One potential difficulty is that
increment isomporphism might not be conserved by the ”don’t cares” introduced in [12].

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 19

Non convex sets in Zn

Description |AE | |Ai
E | |AConv(E)|

[(0,0), (4,4), (8,0)] \ [(4,0), (4,2), (6,0)] 65 97 61

[(0,0), (3,3), (6,3), (6,0)] ∪ [(6,0), (6,3), (9,6), (9,0)] 62 174 73

[(0,0,0), (0,2,0), (0,2,2), (3,0,0), (3,2,0), (3,2,2)] ∪
[(0,0,0), (0,2,0), (0,0,2), (3,0,0), (3,2,0), (3,0,2)]

170 283 160

[(-1,0,-1), (-1,2,-1), (0,1,-1), (0,1,1)] ∪
[(-1,0,3), (-1,2,3), (0,1,3), (0,1,1)]

96 337 134

[(0,0,0), (0,3,0), (3,0,0), (3,3,0), (0,0,5), (0,3,5),

(3,0,5), (3,3,5)] \
[(1,1,0), (1,2,0), (2,1,0), (2,2,0), (1,1,5), (1,2,5),

(2,2,5), (2,1,5)]

218 265 184

[(0,3,0), (0,4,0), (3,3,0), (3,4,0), (0,0,3), (3,0,3),

(3,7,3), (0,7,3)] \
[(1,0,1), (1,0,2), (2,0,2), (2,0,1), (1,7,1), (2,7,1),

(1,7,2), (2,7,2)]

227 334 219

Table 2. Convex hull for the difference/union between of finite convex polytopes in in Z
n.

Sets of points

Points of the set |AE | |Ai
E | |AConv(E)|

(0,0), (6,3) 27 97 39

(0,0), (3,3), (4,3) 31 314 61

(0,0), (3,3), (6,3), (9,6), (9,0) 42 686 73

(1,1,1), (3,2,1), (2,2,4) 64 370 137

(0,0,0), (0,2,0), (0,0,2), (0,2,2), (0,1,1), (3,0,0),

(3,2,0), (3,0,2), (3,1,1), (3,2,2)

126 556 160

Table 3. Convex hull for finite sets of points.

also grateful to Felix Klaedtke of ETH Zurich for providing insightful comments

that have helped improving this work. Finally, we thank Jérôme Leroux of Labri

Bordeaux for answering many email questions about his work.

References

[1] C. Bartzis and T. Bultan. Construction of efficient bdds for bounded arithmetic
constraints. In Proc of TACAS, volume 2619 of LNCS, pages 394–408. Springer,
2003.

[2] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. Collection des
publications de la Faculté des Sciences Appliquées de l’Université de Liège, Liège,
Belgium, 1999.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

20 François Cantin, Axel Legay, Pierre Wolper

Infinite sets

Description |AE | |Ai
E | |AConv(E)|

(y = x ∪ y = −x) ∩ y ≥ 0 23 44 25

(y = x + 1 ∪ {(0, 0)}) ∩ y ≥ 0 29 69 28

x ≥ 1 ∩ x ≤ 2 ∩ y ≥ 0 ∩ y ≤ 1 ∩ z ≥ 1 79 133 78

(−2x + z ≤ 1 ∩ x − y ≤ −1 ∩ x + y ≤ 1) ∪
(−2x − z ≤ −1 ∩ x − y ≤ −1 ∩ x + y ≤ 1)

159 159 44

−2x + z ≤ 1 ∩ x − y ≤ −1 ∩ x + y ≤ 1 114 180 119

(x − y ≤ 0 ∩ −x − y ≤ 0) ∪
(−x + y ≤ 0 ∩ x + y ≤ 0)

36 36 4

Table 4. Convex hull for infinite sets.

[3] B. Boigelot and F. Herbreteau. The power of hybrid acceleration. In Proc of CAV,
volume 4144 of LNCS, pages 438–451. Springer, 2006.

[4] B. Boigelot, S. Jodogne, and P. Wolper. An effective decision procedure for linear
arithmetic over the integers and reals. ACM Transactions on Computational Logic,
6(3):614–633, 2005.

[5] B. Boigelot, A. Legay, and P. Wolper. Omega-regular model checking. In Proc of

TACAS, volume 2988 of LNCS, pages 561–575. Springer, 2004.
[6] B. Boigelot, S. Rassart, and P. Wolper. On the expressiveness of real and integer

arithmetic automata (extended abstract). In Proc of ICALP, volume 1443 of LNCS,
pages 152–163. Springer, 1998.

[7] B. Boigelot and P. Wolper. Representing arithmetic constraints with finite automata:
An overview. In Proc of ICLP, volume 2401 of LNCS, pages 1–19. Springer, 2002.

[8] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In Proc

of CAV, volume 1855 of LNCS, pages 403–418. Springer-Verlag, 2000.
[9] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite

automata. In Proc of ICALP, volume 1059 of LNCS, pages 30–43. Springer, 1996.
[10] F. Cantin. Techniques d’extrapolation d’automates: Application au calcul de la fer-

meture convexe. Master’s thesis, University of Liège, Belgium, 2007.
[11] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete &

Computational Geometry, 10:377–409, 1993.
[12] J. Eisinger and F. Klaedtke. Don’t care words with an application to the automata-

based approach for real addition. In Proc of CAV, volume 4144 of LNCS, pages 67–80.
Springer, 2006.

[13] A. Finkel and J. Leroux. The convex hull of a regular set of integer vectors is poly-
hedral and effectively computable. Information Processing Letter, 96(1):30–35, 2005.

[14] N. Halbwachs, Y. Proy, and P. Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

[15] M. Krein and D. Milman. On the extreme points of regularly convex sets. Studia

Mathematica, 9:133–138, 1940.
[16] O. Kupferman and M. Vardi. Weak alternating automata are not that weak. In Proc.

5th Israeli Symposium on Theory of Computing and Systems, pages 147–158, Ramat-
Gan, Israel, 1997. IEEE Computer Society Press.

[17] The Liège Automata-based Symbolic Handler (LASH). Available at
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

May 23, 2009 10:13 WSPC/INSTRUCTION FILE paper

Computing Convex Hulls by Automata Iteration 21

[18] L. Latour. From automata to formulas: Convex integer polyhedra. In Proc of LICS,
pages 120–129. IEEE Computer Society, 2004.

[19] A. Legay. Generic Techniques for the Verification of Infinite-state Systems. Collection
des publications de la Faculté des Sciences Appliquées de l’Université de Liège, Liège,
Belgium, 2007. Available at
http://www.montefiore.ulg.ac.be/~legay/papers/index.

[20] A. Legay. T(O)RMC: A tool for (omega)-regular model checking. In Proc of CAV08,
LNCS, pages 548–551. Springer, 2008.

[21] J. Leroux. Algorithmique de la vérification des systèmes à compteurs. Approximation

et accélération. Implémentation de l’outil FAST. PhD thesis, LSV Cachan, France,
2004.

[22] J. Leroux. A polynomial time presburger criterion and synthesis for number decision
diagrams. In Proc of LICS, pages 147–156. IEEE Computer Society, 2005.

[23] J. Leroux. Convex hull of arithmetic automata. In Proc of SAS08, LNCS, pages 47–61.
Springer, 2008.

[24] J. Leroux and G. Sutre. Flat counter automata almost everywhere! In Proc of ATVA,
volume 3707 of LNCS, pages 489–503. Springer, 2005.

[25] C. Löding. Efficient minimization of deterministic weak ω−automata. Information

Processing Letters, 79(3):105–109, 2001.
[26] H. Minkowski. Geometrie der zahlen. Bulletin of American Mathematical Society,

21(3):131–132, 1914.
[27] S. Miyano and T. Hayashi. Alternating finite automata on omega-words. Theoretical

Computer Science, 32:321–330, 1984.
[28] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic

theory of the tree and its complexity. In Proc of ICALP, pages 275–283, Rennes,
1986. Springer-Verlag.

[29] The T(O)RMC toolset. Available at
http://www.montefiore.ulg.ac.be/~legay/TORMC/index-tormc.html.

[30] M. Vardi. The Büchi complementation saga. In Proc of STACS, volume 4393 of LNCS,
pages 12–22. Springer, 2007.

[31] P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In Proc of TACAS, volume 1785 of LNCS, pages 1–19. Springer, 2000.

