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Abstract

This paper presents a novel approach to optimize the design of planaamisolk with revolute joints
for function-generation or path synthesis. The proposed method id loasthe use of an extensible-link
mechanism model whose strain energy is minimized to find the optimal rigid desigs.emables us to
get rid of assembling constraints and the use of natural coordinates th@kebjective function simpler.
The optimization strategy is divided into two stages: the first one relies on myt@steal optimizations
and provides hot starting point for the second stage which involves aWNatiables and all the energy
contributions. The question of finding the global optimum is reviewed. Idstassimple algorithm is
proposed to explore the design space and to find several local optima avhaih the designer may choose
the best one taking other criteria into account (e.g. stiffness, collisioa,.si3. Two applications are
presented to illustrate the whole process.

1 Introduction

Optimization of complex multibody systems represents a real present intévagtwith the increasing
development of computer resources. This is particularly true considelasgd-loop mechanisms whose
assembling constraints represents a particular issue when evolving the aptmiarocess strategy. A few
solutions have been proposed to deal with them [13]. For example, theralifive suggested to penalize
properly the objective function using the conditioning of the assemblingti@onts Jacobian matrix [4].
Another well-known approach in path synthesis is to deform the mechanisjecs to a perfect following of
the desired path [8, 1, 2]. From this point of view, the path-following dibjjedecomes a trivial optimization
constraint while the deformation energy is the actual objective to minimize. efdret the mechanism
assembles at best each time the optimization process computes the objectiemfunc

In optimal design synthesis, a second issue consists in the choice ofrtiadifon to describe the geometry of
the mechanism. Among the different possibilities, one can mention the common ne$&tiwe coordinates
in real form [3, 6, 10] or in complex form [16]. This formalism has the aabage to limit the number of
assembling constraints but introduces trigonometric functions involvinglangariables: it enhances the
non-linearity of the problem and makes the optimization more complex. The usatural — or point —
coordinates is also wide-spread [8, 1, 2, 11, 7]. In comparison wittiveleoordinates, natural coordinates
involve additional algebraic constraints. However, these equations onlyist in linear and/or distance
functions. This coordinate system is thus well suited to the use of gradisedloptimization techniques
such as least squares methods.

The proposed method tries to combine these two features: extensible-linlammals and natural coordi-
nates. The first one enables to solve the problem of non-assembly whded¢bed one greatly simplifies
the type of objective function. The associated optimization strategy is diuidedwo parts. The first one



is based on the minimization of the deformation energy over the followed pati @] result of these first
multiple partial optimizations is then used as starting point for the second part. Thetotdghstrain energy,

i.e. the sum of all th@artial energy functions, is optimized not only with respect to some point coordinate
but also to the design parameters themselves [1].

Afterwards, this improvement has enabled to outline an important issue in mechaptimization: different
local optima starting from different initial parameters. The choice of the optimeghanism among these
local optima relies on other design constraints which may be more difficult to wenamd not taken into
account in the original problem. Since it is interesting for the designer o &ee compare some of the best
mechanisms (i.e. local optima), an exploration strategy of the design spao@@sed to 'unearth’ most of
the possible optima.

Different kinds of requirements may be encountered in dimensional misohssynthesis: path or function
generation, body guidance, or mixed problems. Most applications aopeén synthesis problems [13, 3, 6,
10, 16, 12, 18] and the four-bar mechanism will constitute a basic examfite fiollowing. More realistic
applications of function-generation synthesis will also be given basetth@mckerman steering linkage
problem: a four-bar and then a six-bar synthesis [20, 15, 19].

The paper is organized as follows. In Section 2, the general optimizatudigon is modeled and formu-
lated using the four-bar mechanism as example: the objective function isamdlthe sensitivity analysis
is performed. In Section 3, the optimization strategy is developed. Secti@sénis a more realistic appli-
cation of function generation synthesis for the four-bar Ackermaniatgbnkage. Section 5 deals with the
guestion of finding the global optimum following by a new method to explore thiggdespace. Before some
conclusions and prospects in Section 7, a more complete application to optinizesa steering linkage is

presented to illustrate the concepts in Section 6.

2 Problem formulation

Let us consider the well-known planar example of a four-bar mechantighvas to follow a desired path
(see dotted line in Fig. 1.a). In order to make the mechanism exactly followka gath, the four-bar is
modeled with extensible links which replace the rigid bars and triangle by fiegspwith stiffness:; and
natural lengthg,, j = 1...5 (see Fig. 1.b).
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a. Rigid mechanism. .. b. ...modeled by a extensible-link mechanism

Figure 1: Model adaptation of four-bar mechanism for path synthesis

The desired path is discretized imbpoints, leading taVv different configurations of the mechanism. When
it moves, the different points) . . . P, composing the mechanism have different behaviétsand P, stay
fixed to the groundpP; follows exactly theN points composing the path al and P, are free to reach the
equilibrium. All these points can thus be arranged into three groups:

e thestaticpoints Py, Py;



e thetrackingpoint Ps;

e thefloatingpoints Py, P.

Their absolute coordinates are saved respectively in the following westarandf. As the tracking point

and the floating points may have different coordinates for each coafignrt andf are referenced by the
indexs:: t; andf;, 7 =1...N.

Grouping the natural lengtlis in the column vectol and the stiffness parameteérson the diagonal of the
stiffness matrixiK, we define the total strain energy as a scalar cost function:

E(S,tl,...,tN,fl,.. fN,l K
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where index; stands for the'” configuration of the mechanism adg is a column vector containing the
five distanced;ﬁ computed between each pair of linked points. For the moment, the only knoameters
are the2 NV x 2 coordinates of the floating points. The stiffness paramétgraay be chosen by the user.
They play the role of weights in the sum of all the contributions to the total gnévigaking a bar stiffer
increases its relative importance in the cost function but this possibility isseat in the following. After
these considerations, the optimization problem is stated as follows:
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where the actual design parameterssagndl. This constitutes an obvious non-linear least squares opti-
mization problem. Defined that way, the problem remains difficult to solverefbee, two propositions are
given below to improve the homogeneity of the problem and to avoid multiple trimogiggurations.

Firstly, let us remark that the actual design parametersstttea points coordinates and the natural length
1, appear in different terms of the cost function. This makes the costifundifferently sensitive to both
of them. We propose to transform each static point coordinates into thehlangths of two springs (see
Fig. 2). In this way, a new floating point is insertedfinthe vectors is appended to the vectband two
new stiffness parameters are added to the diagonal of mKtriXNote that the corresponding functions
d(s, t;, f;) become actually the two coordinate values which are not always positiigintroduces so-
called orientedsprings according to the sign of their natural lengths. But this has neeqaesce on the
energy formulation (1). For example, replacistatic point (xo, yo) of Fig. 2 would create two additional
contributions to the total energy;k, (z — 20)? and 3k, (y — yo)*. Thanks to this transformation, all the
design parameters may be grouped into the same viector
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Figure 2: New model of static points

The second proposition relates to the three springs composing the tridgndte, Ps. Fixing the pointsP;
and P, two stable positions remain fd?s: above or below thé’, — P, line. To remove the ambiguity, the
use oforientedsprings (see above) is proposed to locate univogilglyith respect ta?; andP. Thus, the
two springsP; — Ps3 and P, — P5 are replaced by tworthogonal orientedsprings as shown in Fig. 3. In



this example, both contributions of spring®nd4 are replaced by%ka(a — ag)? and%kb(b — bo)?, with
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Figure 3: New model of triangle element
Finally, taking both propositions into account, the total cost function (19ies:
B (6t b £ LK) = 25 (@ 1) R (@) ®
) ) ) ) b b 2 1:1 )
leading to the following rearranged optimization problem:
1 - AT ~ [~ -
min =3 [d (6, £) — 1] K[d(t,£) 1), (4)
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where the tilde symbol stands for both modifications described above.réspanding configuration of the
four-bar model is illustrated in Fig. 4. Let us note the size of the differentars for this simple four-bar
example: 9 components In8 in f; and 2 int;. Therefore, for theV configurations9 + & « N optimization
variables have to be taken into account for the problem (4), which maydie a
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Figure 4: One configuration of the four-bar model for path synthesis

In problem (4), two kinds of optimization variables are now consideredidf;, i = 1... N. The gradients
of the total energy function with respect to both these vectors are gien b

OF ad” (t;,£) ~ r~ .
of TK [d(ti,fz‘)—l] 5)

N
?’:—gﬁﬁm@—ﬂ (6)




Let us point out that (5) only depends on theconfiguration if the design parametdrare fixed. This may
greatly simplify the optimization problem and is the basis of the first part of opttioizatrategy described
in the next Section.

3 Optimization strategy

The optimization strategy is divided into two subsequent parts. Its algorithwolilart is sketched in Fig. 5.
The first part is inspired from [6] who proposed to minimize the deviatioraohesariable dimensions over a
cycle and to update the mean value after each cycle. The main differeneds tiee use of natural coordinates
instead of relative coordinates which make the objective function far nmmdinear due to trigonometric
functions.

Initialization

Multiple
i=1 partial
optimizations

mln% (a (tl,fl) — I)TK (a (tl,f2> — i)

End

Figure 5: Partial and total synthesis flowchart

Starting from given values of the design parameletise algorithm begins minimizing the total energy with
respect to thé;. This is equivalent to solving/ partial optimization problems because fhare independent
andl is constant:
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After one optimization cycle over th&¥ configurations begins the second part of the algorithm. It consists in
atotal optimization process of problem (4) that involves all the floating points ¢oatels and all the design

parameters. To help the optimizer, this process uses the results of thafiras ot starting points for the
f;.



As explained in Section 2, the number of optimization parameters may incrgadly (8.9.9 + 8N = 169
variables for the four-bar mechanism wifti = 20 synthesis points) if the mechanism and/or the path
get more complex. As the parameter space is larger, a more robust optimizgtiathaen is needed. For
instance, the so-called dog-leg algorithm [14]: this trust-region method asvedd-known and useful to
solve systems of nonlinear equations.

4 Application to four-bar steering linkage synthesis

This Section presents an interesting application of function generationesysithThe goal is to optimize
steering linkage of vehicles. In the first subsection, the function to genés established from the Ack-
ermann condition. Secondly, the proposed optimization strategy is applied syrheesis of a four-bar
steering linkage.

4.1 The Ackermann condition
One of the main requirements of the steering mechanism of a vehicle is to give stettrable wheels a

correlated turning, ensuring that the intersection point of their axis liesemextension of the rear wheel
axis (pointP in Fig. 6). The Ackermann relation [22] of correct turning is:

l
cot d, — cot §; = T (8)

whered, andJ; are the outer and inner wheel angles respectivas/the track width and. the wheelbase
of the vehicle. Only the track width-wheelbase ratio influences this Ackenrsgering relation.
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Figure 6: The Ackermann condition

4.2 Four-bar steering linkage synthesis

The modeling of the four-bar steering linkage is worked out accordingetouiles depicted in Section 2. To
satisfy the Ackermann condition (8), the correlated path-following of theelhenters are imposed while
the inner wheel angle takes 40 different values between 0 and the maxiseenirig. 7). Also observe in
the Figure that the static points are not transformed into floating points ketizeys do not belong to the
design parameters. These parameters consists a priori in three natgthkle:, b andl. However, the

problem symmetry reduces their number to only two (exgandb) because = HPOP5H — 2a. Remark



that the function is penalized around the origin of the design space to dagidar configurations of the
mechanism. The objective function (3) is extended here as follows:

{ E it | PP > o
Eeyt = ’ (9)
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where the threshold valug,,;,, is a chosen realistic minimum distance (elg,, = 10 cm).

k!

Figure 7: Model adaptation of four-bar linkage for function-generasignthesis

As for the "total” synthesis algorithm, it is observed that the optimization psotes/ reach one of both local
optima [19, 5]. Starting from different initial parameters, it is sometimes hagiligss where it converges.
Fig. 8 shows that running the algorithm from initial points located on a unifbi#tmg-7 grid, these processes
lead to 47 relevant optimization results. Among the latter — symbolized by non‘ddcdahd 'x’ —, 11 of
them converge to one local optimum — symbolized by bald-' while the 36 others reach another one —
symbolized by bold¢’ — which is actually the global one. The optimization method does not alwais yie
the global optimum.
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Figure 8: Optimization of the steering linkage from different starting points

a b Energy Max error RMS error
[cm] [cm] J] [deg] [deg]
Leading| -4.40 8.98 A8-10~"7 0.71 0.28
Trailing | 3.90 -9.21 101-1076 0.80 0.32

Table 1: Two best four-bar Ackermann steering linkages

The two best linkages are drawn in Fig. 9: a trailing one and a leading dm&ir §teering error functions
are plotted in Fig. 10 which represents the deviation of the outer wheel aitgleespect to the Ackermann
condition when the inner wheel turns frobf to 40°. The numerical results are shown in Table 1. It is
interesting to remark that the optimum energy value is linked to the steering #redleading linkage has
the smallest total deformation and also the smallest steering error. Nevssthibkesmall difference between
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Figure 9: Two local optima found for the four-bar steering synthesis
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Figure 10: Steering error of both optimum linkages

both mechanisms performances does not justify the selection of one inthadther: an additional design
criterion has to be introduced to choose between both local optima.

5 Exploration of the design space

Regarding the example of the previous Section, it is observed that the opttmipeocess does not always
reach the unigue global optimum according to the chosen starting point. vdgvitemay be interesting to
propose several local optima to the designer. The first Subsectioritissa simple novel method to explore
the entire parameters space in order to find local optima. In the secondcBuhswe explain a possible
method to choose the final best mechanism. Both Subsections are illustratedaipplitation of the next
section.

5.1 Exploration with the nucleation method

The first idea to explore the design space could be to perform multiple optinmizaticesses starting from
different uniformly-distributed initial points. A two-point-width uniform gridig 11.a) is used first and
refined thereafter by adding a new points between each segment: thidgsrathree-point-width grid
(Fig 11.b). Continuing the refinement this way, this enables us to reuse tingutation of the previous
grid (gray points) as shown in the following of Fig 11. However, it becowesy time-consuming since the
number of optimization processes exponentially increases (see sedanthauf Table 2). A new method
called nucleationis thus proposed to cope with this drawback.

This original method takes its inspiration from the nucleation process ofatnysmterials. Its algorithm
flowchart is sketched in Fig. 12. The key idea is to create and make nuigstals growing from best
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Figure 11: Refinement of the starting points grid

locations on a given grid. These best locations are subsequentlynchitkeespect to the value of objective
function. The growth of the nuclei is stopped when they reach otherirardiee design space boundary.

Generates
over grid

]

Sorte
1

7=

Add to
best germ

New
germ

End

Figure 12:Nucleationalgorithm flowchart

Practically, this algorithm, sketched in Fig. 12, begins with the discretizatioreof/tiole design space into
a grid of equally-spaced points. The objective functéis computed over the grid and these points are
sorted according to their objective value. In our case, this objective istalestrain energy (7). Then, each
point of this sorted list is scanned to classify it: if all its neighbors are free,not yet scanned and with
worse objective values, a new nucleus is created with the point and itshoeggtotherwise, it is added to
the nucleus of its best neighbor. All these operations are made until tHe iidtas fully scanned. The final
result is the grouping of all the points around different nuclei.

Taking the simple example of Fig. 13, a 3x3 grid is explored. The integer nurepeesent the value
of the energy in each point. Five iterations are needed to group the 9 .pdihis two first iterations
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Figure 13:Nucleationalgorithm example

(Fig. 13.a and 13.b) create the two first nuclei around points of eneegy@ 2. The considered neighbors,
inside the boundaries, are located up, down, left and right from theercpaint. In iteration 3 (Fig. 13.c),
point 7 is added to the nucleus of its best neighbor (point 3). In the sayeuwiat 8 is added to the nucleus
of point 3 and point 9 to the nucleus of point 4 (Fig. 13.d and 13.e). Tl donfiguration with two nuclei
is illustrated in Fig. 13.e.

-b[m]

-a[m]

Figure 14: Four-bar steering example withicleationalgorithm

If the four-bar steering linkage synthesis is now considered witmtldeationalgorithm, four nuclei are
obtained using only the partial minimization (7) as shown in Fig. 14. Thanks tddbisique, the total
optimization (4) may be run only 4 times instead of 49 (see Section 4.2) to obtaindHedat optima.

5.2 Final choice among the local optima

Once the design space is explored to form nuclei, the total synthesis miaysteging from the best can-
didate of each nucleus. This provides us many local optima with respect toittimum deformation.
Thereafter, a last design optimization step has to be performed to find thenBohanism. This last crite-
rion is applied on the correspondirigid mechanisms and is obviously different from the one used to create



the nuclei. Concerning the steering linkage synthesisntiideationprocess is based on the minimum de-
formation energy (7). However, the last objective will be the actualistgerror of the rigid mechanism (as
shown in Fig. 10 for the four-bar linkage) or even a more practical ¢ibgeto choose the best candidate (see

the end of Section 6). It is therefore computed by simulation of the rigid mé&hanstead of the extensible
one. This is illustrated in the next Section.

6 Application to six-bar steering linkage synthesis

The goal of this application is the same as for the four-bar steering linddgemain difference consists in
the model complexity. The four-bar was parameterized with only two dimensigables. Here, the six-bar
model, sketched in Fig. 15, is composed of five design parametefs &, [, y — which are reduced to four
because of the symmetry [20]. For examplecan be expressed in termsafb, I> andy:

zlzw‘f —a)2+<b—y>2 (10)

Kils + Kinly
Figure 15: Model adaptation of six-bar steering linkage

Applying thenucleationmethod to group the points on a given grid is particularly more relevant faixhe

bar than the four-bar linkage as shown in Table 2. Let us remember thatitkesationprocess has enabled
us to reduce the number of total synthesis from 49 — 7x7 grid — to 4 rurtkddour-bar (See Section 5.1
and Fig. 14). In the case of the six-bar, this reduction factgf2"Ls — increases with the size grid and can

nuclei

reach 294 for a 17-point-width grid, comparedifiy 4 = 12 for the four-bar. This represents a considerable
gain of CPU-time.

Grid | Number of Number of Reduction Number of
width points nuclei factor local optima
2 pts 16 1 16 1
3 pts 81 2 41 2
5 pts 625 13 48 6
9 pts 6561 48 137 12
17 pts 83521 284 294 9

Table 2: Numerical results of the design space exploration of six-bargekgnucleationmethod

Starting from the best candidate of each nucleus, the total optimization (4)frmed. The number of
local optima is observed in 2. Theucleationprocess applied on the most refined grid highlights 9 local
optimum mechanisms. As previously explained, before the selection of theret@snt local optimum,
the optimization has to be refined with respect to the steering error as expiaiedtion 5.2. This last
objective is computed by simulating the steering behavior of the corresppridid mechanism as already

shown in Fig. 10. The final candidates resulting from this optimization refineare reported in Table 3
and sketched in Fig. 16.



a b lo Y Energy Max error RMS error  Mean dev.
[m  [m] [m] [m] [J] [deg] [deg] [% of center]
(@]-099 0.09 1.33 0.100 B-10~"'? 0.0015 0.0003 >100 %
(b)| 0.89 -0.46 137 0.101 712-10° 0.0024 0.0005 >100 %
()| 0.09 -0.12 1.21 0.095 @1 -107% 0.0220 0.0031 >100 %
(d)| -0.83 -053 128 0.108 ™-10"%  0.0685 0.0151 >100 %
(e)| -0.09 0.20 1.08 -0.104 48.107% 0.1026 0.0335 >100 %
(f) | -0.06 0.08 1.11 0.093 16-107%  0.3215 0.1232 45 %
(9 | 0.09 -0.04 1.34 -0.099 2-107% 0.3659 0.1245 >100 %
(hy | -0.11 0.09 061 0.601 11-107%  0.5977 0.1923 2%
() | 0.09 0.04 075 -0.953 24.-107™ 0.5647 0.1718 37 %

Table 3: The nine local optima after optimization refinement

Compared with the results of the four-bar steering linkage in Fig. 10, allitteelocal optima improve both
the maximum and the RMS steering errors. Moreover, these values amafidist it could be interesting
to add a more practical criterion. A robustness criterion is proposedetigtisity analysis of the steering
error with respect to the optimum design parameters. A perturbation of 0.5 minich could correspond
to absolute precision machining — is chosen for each of the four dimensidraso for all combination of
them. The steering error cost function is thus computed 16 times around®ehnine optima. In the last
column of Table 3, the mean deviation of the objective over the 16 neighbeasb optimum is represented.
This may give a basis for the last decision of the designer. Undeniablyyanismn (h) is the most robust in
the sensitivity sense. However, the designer could choose mechahisetéuse it is more compact than
(h) or (i). All these considerations obviously depend on the way eatgrion is taken into account by the
designer.

7 Conclusion and prospects

Based on a strain energy approach of extensible-link mechanisms couihielde use of natural coordinates,
an original optimization method has been developed to solve path synthefimation generation problems
of planar mechanisms. Divided into two stages, the method tries first to find gfadting points with
multiple partial optimizations and then uses them ifiull synthesis of the mechanism. It seems efficient
but does not guarantee to obtain the global optimum as it was illustrated viauhedr steering linkage
application.

Following that observation, the question of finding the global optimum has tee&ewed and extended with
the exploration of the design space to find the most of local optima. To awsticreomical’ CPU time, a
simple method inspired from crystals nucleation has been proposed to thediesign space into nuclei
centered on local optima. Starting from the latter, the optimization has beerdefimd a last criterion
applied to choose the final mechanism.

In terms of prospects, our effort will concentrate on developing otkploeation strategies of the design
space. The comparison of these different strategies and their resultsewilseful to validate them. It
could be also interesting to classify the different local optima based onatifféypes of criteria. We also
intend to extend the method further to topologies with prismatic joints or to three-giomah mechanisms.
Extending the application field is also an interesting prospect: other kinemégictiobs instead of path or
function-generator synthesis or even dynamical ones could be investigéhe more challenging issue of
topology optimization of mechanisms could be tackled on the basis of this wodtyiimg for example an
additional higher-level optimization process as proposed by [17], ttmapng simultaneously the topology
and the dimensions of mechanisms as developped by [21], or [9] forgeahration problems using truss
representation.
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Figure 16: The nine local optima after optimization refinement
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