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Abstract
This paper presents a novel approach to optimize the design of planar mechanisms with revolute joints
for function-generation or path synthesis. The proposed method is based on the use of an extensible-link
mechanism model whose strain energy is minimized to find the optimal rigid design. This enables us to
get rid of assembling constraints and the use of natural coordinates makesthe objective function simpler.
The optimization strategy is divided into two stages: the first one relies on multiplepartial optimizations
and provides hot starting point for the second stage which involves all thevariables and all the energy
contributions. The question of finding the global optimum is reviewed. Instead, a simple algorithm is
proposed to explore the design space and to find several local optima among which the designer may choose
the best one taking other criteria into account (e.g. stiffness, collision, size,. . . ). Two applications are
presented to illustrate the whole process.

1 Introduction

Optimization of complex multibody systems represents a real present interest along with the increasing
development of computer resources. This is particularly true consideringclosed-loop mechanisms whose
assembling constraints represents a particular issue when evolving the optimization process strategy. A few
solutions have been proposed to deal with them [13]. For example, the authors have suggested to penalize
properly the objective function using the conditioning of the assembling constraints Jacobian matrix [4].
Another well-known approach in path synthesis is to deform the mechanism subject to a perfect following of
the desired path [8, 1, 2]. From this point of view, the path-following objective becomes a trivial optimization
constraint while the deformation energy is the actual objective to minimize. Therefore, the mechanism
assembles at best each time the optimization process computes the objective function.

In optimal design synthesis, a second issue consists in the choice of the formalism to describe the geometry of
the mechanism. Among the different possibilities, one can mention the common use of relative coordinates
in real form [3, 6, 10] or in complex form [16]. This formalism has the advantage to limit the number of
assembling constraints but introduces trigonometric functions involving angular variables: it enhances the
non-linearity of the problem and makes the optimization more complex. The use ofnatural – or point –
coordinates is also wide-spread [8, 1, 2, 11, 7]. In comparison with relative coordinates, natural coordinates
involve additional algebraic constraints. However, these equations only consist in linear and/or distance
functions. This coordinate system is thus well suited to the use of gradient-based optimization techniques
such as least squares methods.

The proposed method tries to combine these two features: extensible-link mechanisms and natural coordi-
nates. The first one enables to solve the problem of non-assembly while thesecond one greatly simplifies
the type of objective function. The associated optimization strategy is dividedinto two parts. The first one



is based on the minimization of the deformation energy over the followed path [6]. The result of these first
multiplepartial optimizations is then used as starting point for the second part. Then, thetotal strain energy,
i.e. the sum of all thepartial energy functions, is optimized not only with respect to some point coordinates
but also to the design parameters themselves [1].

Afterwards, this improvement has enabled to outline an important issue in mechanism optimization: different
local optima starting from different initial parameters. The choice of the optimal mechanism among these
local optima relies on other design constraints which may be more difficult to compute and not taken into
account in the original problem. Since it is interesting for the designer to keep and compare some of the best
mechanisms (i.e. local optima), an exploration strategy of the design space is proposed to ’unearth’ most of
the possible optima.

Different kinds of requirements may be encountered in dimensional mechanisms synthesis: path or function
generation, body guidance, or mixed problems. Most applications concern path synthesis problems [13, 3, 6,
10, 16, 12, 18] and the four-bar mechanism will constitute a basic example inthe following. More realistic
applications of function-generation synthesis will also be given based onthe Ackerman steering linkage
problem: a four-bar and then a six-bar synthesis [20, 15, 19].

The paper is organized as follows. In Section 2, the general optimization problem is modeled and formu-
lated using the four-bar mechanism as example: the objective function is buildand the sensitivity analysis
is performed. In Section 3, the optimization strategy is developed. Section 4 presents a more realistic appli-
cation of function generation synthesis for the four-bar Ackerman steering linkage. Section 5 deals with the
question of finding the global optimum following by a new method to explore the design space. Before some
conclusions and prospects in Section 7, a more complete application to optimize a six-bar steering linkage is
presented to illustrate the concepts in Section 6.

2 Problem formulation

Let us consider the well-known planar example of a four-bar mechanism which has to follow a desired path
(see dotted line in Fig. 1.a). In order to make the mechanism exactly follow the given path, the four-bar is
modeled with extensible links which replace the rigid bars and triangle by five springs with stiffnesskj and
natural lengthslj , j = 1 . . . 5 (see Fig. 1.b).

→

a. Rigid mechanism. . . b. . . . modeled by a extensible-link mechanism

Figure 1: Model adaptation of four-bar mechanism for path synthesis

The desired path is discretized intoN points, leading toN different configurations of the mechanism. When
it moves, the different pointsP0 . . . P4 composing the mechanism have different behaviors:P0 andP4 stay
fixed to the ground,P3 follows exactly theN points composing the path andP1 andP2 are free to reach the
equilibrium. All these points can thus be arranged into three groups:

• thestaticpointsP0, P4;



• thetrackingpointP3;

• thefloatingpointsP1, P2.

Their absolute coordinates are saved respectively in the following vectors: s, t andf . As the tracking point
and the floating points may have different coordinates for each configuration,t andf are referenced by the
indexi: ti andfi, i = 1 . . . N .
Grouping the natural lengthslj in the column vectorl and the stiffness parameterskj on the diagonal of the
stiffness matrixK, we define the total strain energy as a scalar cost function:

E (s, t1, . . . , tN , f1, . . . , fN , l,K) =
1

2

N
∑

i=1

(di − l)T
K (di − l) , (1)

where indexi stands for theith configuration of the mechanism anddi is a column vector containing the
five distancedi

j computed between each pair of linked points. For the moment, the only known parameters
are the2N ∗ 2 coordinates of the floating points. The stiffness parameterskj may be chosen by the user.
They play the role of weights in the sum of all the contributions to the total energy. Making a bar stiffer
increases its relative importance in the cost function but this possibility is not used in the following. After
these considerations, the optimization problem is stated as follows:

min
s,f1,...,fN ,l

1

2

N
∑

i=1

[d (s, ti, fi) − l]T K [d (s, ti, fi) − l] , (2)

where the actual design parameters ares and l. This constitutes an obvious non-linear least squares opti-
mization problem. Defined that way, the problem remains difficult to solve. Therefore, two propositions are
given below to improve the homogeneity of the problem and to avoid multiple triangleconfigurations.

Firstly, let us remark that the actual design parameters, thestaticpoints coordinatess and the natural length
l, appear in different terms of the cost function. This makes the cost function differently sensitive to both
of them. We propose to transform each static point coordinates into the natural lengths of two springs (see
Fig. 2). In this way, a new floating point is inserted inf , the vectors is appended to the vectorl and two
new stiffness parameters are added to the diagonal of matrixK. Note that the corresponding functions
d(s, ti, fi) become actually the two coordinate values which are not always positive: this introduces so-
calledorientedsprings according to the sign of their natural lengths. But this has no consequence on the
energy formulation (1). For example, replacingstatic point (x0, y0) of Fig. 2 would create two additional
contributions to the total energy:1

2
kx(x − x0)

2 and 1
2
ky(y − y0)

2. Thanks to this transformation, all the
design parameters may be grouped into the same vectorl.

→

Figure 2: New model of static points

The second proposition relates to the three springs composing the triangleP1, P2, P3. Fixing the pointsP1

andP2, two stable positions remain forP3: above or below theP1 − P2 line. To remove the ambiguity, the
use oforientedsprings (see above) is proposed to locate univoquelyP3 with respect toP1 andP2. Thus, the
two springsP1 − P3 andP2 − P3 are replaced by twoorthogonal orientedsprings as shown in Fig. 3. In



this example, both contributions of springs3 and4 are replaced by:1
2
ka(a − a0)

2 and 1
2
kb(b − b0)

2, with

a =
−−−→
P1P2·

−−−→
P1P3

∥

∥

∥

−−−→
P1P2

∥

∥

∥

andb =
−−−→
P1P2×

−−−→
P1P3

∥

∥

∥

−−−→
P1P2

∥

∥

∥

· ẑ.

→

Figure 3: New model of triangle element

Finally, taking both propositions into account, the total cost function (1) becomes:

E
(

t1, . . . , tN , f1, . . . , fN , l̃, K̃
)

=
1

2

N
∑

i=1

(

d̃i − l̃

)T
K̃

(

d̃i − l̃

)

, (3)

leading to the following rearranged optimization problem:

min
f1,...,fN ,̃l

1

2

N
∑

i=1

[

d̃ (ti, fi) − l̃

]T
K̃

[

d̃ (ti, fi) − l̃

]

, (4)

where the tilde symbol stands for both modifications described above. A corresponding configuration of the
four-bar model is illustrated in Fig. 4. Let us note the size of the different vectors for this simple four-bar
example: 9 components iñl, 8 in fi and 2 inti. Therefore, for theN configurations,9 + 8 ∗ N optimization
variables have to be taken into account for the problem (4), which may be alot.

Figure 4: One configuration of the four-bar model for path synthesis

In problem (4), two kinds of optimization variables are now considered:l̃ andfi, i = 1 . . . N . The gradients
of the total energy function with respect to both these vectors are given by:

∂E

∂fi
=

∂d̃
T (ti, fi)

∂fi
K̃

[

d̃ (ti, fi) − l̃

]

(5)

∂E

∂ l̃
= −

N
∑

i=1

K̃

[

d̃ (ti, fi) − l̃

]

(6)



Let us point out that (5) only depends on theith configuration if the design parametersl̃ are fixed. This may
greatly simplify the optimization problem and is the basis of the first part of optimization strategy described
in the next Section.

3 Optimization strategy

The optimization strategy is divided into two subsequent parts. Its algorithm flowchart is sketched in Fig. 5.
The first part is inspired from [6] who proposed to minimize the deviation of each variable dimensions over a
cycle and to update the mean value after each cycle. The main difference here is the use of natural coordinates
instead of relative coordinates which make the objective function far more non-linear due to trigonometric
functions.
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Figure 5: Partial and total synthesis flowchart

Starting from given values of the design parametersl̃, the algorithm begins minimizing the total energy with
respect to thefi. This is equivalent to solvingN partial optimization problems because thefi are independent
and̃l is constant:

min
f1,...,fN

1
2

N
∑

i=1

[

d̃ (ti, fi) − l̃

]T
K̃

[

d̃ (ti, fi) − l̃

]

⇔
N
∑

i=1

min
fi

1
2

[

d̃ (ti, fi) − l̃

]T
K̃

[

d̃ (ti, fi) − l̃

]

(7)

After one optimization cycle over theN configurations begins the second part of the algorithm. It consists in
a total optimization process of problem (4) that involves all the floating points coordinates and all the design
parameters. To help the optimizer, this process uses the results of the first part as hot starting points for the
fi.



As explained in Section 2, the number of optimization parameters may increase rapidly (e.g.9 + 8N = 169
variables for the four-bar mechanism withN = 20 synthesis points) if the mechanism and/or the path
get more complex. As the parameter space is larger, a more robust optimization algorithm is needed. For
instance, the so-called dog-leg algorithm [14]: this trust-region method is also well-known and useful to
solve systems of nonlinear equations.

4 Application to four-bar steering linkage synthesis

This Section presents an interesting application of function generation synthesis. The goal is to optimize
steering linkage of vehicles. In the first subsection, the function to generate is established from the Ack-
ermann condition. Secondly, the proposed optimization strategy is applied to thesynthesis of a four-bar
steering linkage.

4.1 The Ackermann condition

One of the main requirements of the steering mechanism of a vehicle is to give to the steerable wheels a
correlated turning, ensuring that the intersection point of their axis lies on the extension of the rear wheel
axis (pointP in Fig. 6). The Ackermann relation [22] of correct turning is:

cot δo − cot δi =
l

L
, (8)

whereδo andδi are the outer and inner wheel angles respectively,l is the track width andL the wheelbase
of the vehicle. Only the track width-wheelbase ratio influences this Ackermann steering relation.

Figure 6: The Ackermann condition

4.2 Four-bar steering linkage synthesis

The modeling of the four-bar steering linkage is worked out according to the rules depicted in Section 2. To
satisfy the Ackermann condition (8), the correlated path-following of the wheel centers are imposed while
the inner wheel angle takes 40 different values between 0 and the maximum (see Fig. 7). Also observe in
the Figure that the static points are not transformed into floating points because they do not belong to the
design parameters. These parameters consists a priori in three natural lengths: a, b and l. However, the
problem symmetry reduces their number to only two (e.g.a andb) becausel =

∥

∥

∥

−−−→
P0P5

∥

∥

∥ − 2a. Remark



that the function is penalized around the origin of the design space to avoid singular configurations of the
mechanism. The objective function (3) is extended here as follows:

Eext =







E if
∥

∥

∥

−−−→
P0P2

∥

∥

∥ ≥ dmin

1
2

(∥

∥

∥

−−−→
P0P2

∥

∥

∥ − dmin

)2
if

∥

∥

∥

−−−→
P0P2

∥

∥

∥ < dmin

, (9)

where the threshold valuedmin is a chosen realistic minimum distance (e.g.dmin = 10 cm).

→

Figure 7: Model adaptation of four-bar linkage for function-generation synthesis

As for the ”total” synthesis algorithm, it is observed that the optimization process may reach one of both local
optima [19, 5]. Starting from different initial parameters, it is sometimes hard toguess where it converges.
Fig. 8 shows that running the algorithm from initial points located on a uniform7-by-7 grid, these processes
lead to 47 relevant optimization results. Among the latter – symbolized by non-bold’o’ and ’x’ –, 11 of
them converge to one local optimum – symbolized by bold ’x’ – while the 36 others reach another one –
symbolized by bold ’o’ – which is actually the global one. The optimization method does not always yield
the global optimum.

Figure 8: Optimization of the steering linkage from different starting points

a b Energy Max error RMS error
[cm] [cm] [J] [deg] [deg]

Leading -4.40 8.98 7.98 · 10−7 0.71 0.28
Trailing 3.90 -9.21 1.01 · 10−6 0.80 0.32

Table 1: Two best four-bar Ackermann steering linkages

The two best linkages are drawn in Fig. 9: a trailing one and a leading one. Their steering error functions
are plotted in Fig. 10 which represents the deviation of the outer wheel anglewith respect to the Ackermann
condition when the inner wheel turns from0◦ to 40◦. The numerical results are shown in Table 1. It is
interesting to remark that the optimum energy value is linked to the steering error: the leading linkage has
the smallest total deformation and also the smallest steering error. Nevertheless, the small difference between



Leading linkage Trailing linkage

Figure 9: Two local optima found for the four-bar steering synthesis
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Figure 10: Steering error of both optimum linkages

both mechanisms performances does not justify the selection of one instead of the other: an additional design
criterion has to be introduced to choose between both local optima.

5 Exploration of the design space

Regarding the example of the previous Section, it is observed that the optimization process does not always
reach the unique global optimum according to the chosen starting point. However, it may be interesting to
propose several local optima to the designer. The first Subsection describes a simple novel method to explore
the entire parameters space in order to find local optima. In the second Subsection, we explain a possible
method to choose the final best mechanism. Both Subsections are illustrated in the application of the next
section.

5.1 Exploration with the nucleation method

The first idea to explore the design space could be to perform multiple optimization processes starting from
different uniformly-distributed initial points. A two-point-width uniform grid (Fig 11.a) is used first and
refined thereafter by adding a new points between each segment: this provides a three-point-width grid
(Fig 11.b). Continuing the refinement this way, this enables us to reuse the computation of the previous
grid (gray points) as shown in the following of Fig 11. However, it becomesvery time-consuming since the
number of optimization processes exponentially increases (see second column of Table 2). A new method
called ’nucleation’ is thus proposed to cope with this drawback.

This original method takes its inspiration from the nucleation process of crystal materials. Its algorithm
flowchart is sketched in Fig. 12. The key idea is to create and make nucleuscrystals growing from best



(a) 2x2−grid (b) 3x3−grid (c) 5x5−grid (d) 9x9−grid

Figure 11: Refinement of the starting points grid

locations on a given grid. These best locations are subsequently chosen with respect to the value of objective
function. The growth of the nuclei is stopped when they reach other nuclei or the design space boundary.
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Figure 12:Nucleationalgorithm flowchart

Practically, this algorithm, sketched in Fig. 12, begins with the discretization of the whole design space into
a grid of equally-spaced points. The objective functione is computed over the grid and these points are
sorted according to their objective value. In our case, this objective is thetotal strain energy (7). Then, each
point of this sorted list is scanned to classify it: if all its neighbors are free,i.e. not yet scanned and with
worse objective values, a new nucleus is created with the point and its neighbors; otherwise, it is added to
the nucleus of its best neighbor. All these operations are made until the whole list is fully scanned. The final
result is the grouping of all the points around different nuclei.

Taking the simple example of Fig. 13, a 3x3 grid is explored. The integer number represent the value
of the energy in each point. Five iterations are needed to group the 9 points. The two first iterations



Figure 13:Nucleationalgorithm example

(Fig. 13.a and 13.b) create the two first nuclei around points of energy 1and 2. The considered neighbors,
inside the boundaries, are located up, down, left and right from the center point. In iteration 3 (Fig. 13.c),
point 7 is added to the nucleus of its best neighbor (point 3). In the same way, point 8 is added to the nucleus
of point 3 and point 9 to the nucleus of point 4 (Fig. 13.d and 13.e). The final configuration with two nuclei
is illustrated in Fig. 13.e.

Figure 14: Four-bar steering example withnucleationalgorithm

If the four-bar steering linkage synthesis is now considered with thenucleationalgorithm, four nuclei are
obtained using only the partial minimization (7) as shown in Fig. 14. Thanks to thistechnique, the total
optimization (4) may be run only 4 times instead of 49 (see Section 4.2) to obtain the two local optima.

5.2 Final choice among the local optima

Once the design space is explored to form nuclei, the total synthesis may begin starting from the best can-
didate of each nucleus. This provides us many local optima with respect to theminimum deformation.
Thereafter, a last design optimization step has to be performed to find the final mechanism. This last crite-
rion is applied on the correspondingrigid mechanisms and is obviously different from the one used to create



the nuclei. Concerning the steering linkage synthesis, thenucleationprocess is based on the minimum de-
formation energy (7). However, the last objective will be the actual steering error of the rigid mechanism (as
shown in Fig. 10 for the four-bar linkage) or even a more practical objective to choose the best candidate (see
the end of Section 6). It is therefore computed by simulation of the rigid mechanism instead of the extensible
one. This is illustrated in the next Section.

6 Application to six-bar steering linkage synthesis

The goal of this application is the same as for the four-bar steering linkage.The main difference consists in
the model complexity. The four-bar was parameterized with only two dimension variables. Here, the six-bar
model, sketched in Fig. 15, is composed of five design parameters –a, b, l1, l2, y – which are reduced to four
because of the symmetry [20]. For example,l1 can be expressed in terms ofa, b, l2 andy:

l1 =

√

(

l − l2
2

− a

)2

+ (b − y)2 (10)

→

Figure 15: Model adaptation of six-bar steering linkage

Applying thenucleationmethod to group the points on a given grid is particularly more relevant for thesix-
bar than the four-bar linkage as shown in Table 2. Let us remember that thenucleationprocess has enabled
us to reduce the number of total synthesis from 49 – 7x7 grid – to 4 runs forthe four-bar (See Section 5.1
and Fig. 14). In the case of the six-bar, this reduction factor –#points

#nuclei
– increases with the size grid and can

reach 294 for a 17-point-width grid, compared to49/4 = 12 for the four-bar. This represents a considerable
gain of CPU-time.

Grid Number of Number of Reduction Number of
width points nuclei factor local optima
2 pts 16 1 16 1
3 pts 81 2 41 2
5 pts 625 13 48 6
9 pts 6561 48 137 12

17 pts 83521 284 294 9

Table 2: Numerical results of the design space exploration of six-bar linkage bynucleationmethod

Starting from the best candidate of each nucleus, the total optimization (4) is performed. The number of
local optima is observed in 2. Thenucleationprocess applied on the most refined grid highlights 9 local
optimum mechanisms. As previously explained, before the selection of the mostrelevant local optimum,
the optimization has to be refined with respect to the steering error as explainedin Section 5.2. This last
objective is computed by simulating the steering behavior of the corresponding rigid mechanism as already
shown in Fig. 10. The final candidates resulting from this optimization refinement are reported in Table 3
and sketched in Fig. 16.



a b l2 y Energy Max error RMS error Mean dev.
[m] [m] [m] [m] [J] [deg] [deg] [% of center]

(a) -0.99 0.09 1.33 0.100 6.78 · 10−12 0.0015 0.0003 >100 %
(b) 0.89 -0.46 1.37 0.101 1.72 · 10−11 0.0024 0.0005 >100 %
(c) 0.09 -0.12 1.21 0.095 2.01 · 10−08 0.0220 0.0031 >100 %
(d) -0.83 -0.53 1.28 0.108 2.10 · 10−09 0.0685 0.0151 >100 %
(e) -0.09 0.20 1.08 -0.104 4.48 · 10−08 0.1026 0.0335 >100 %
(f) -0.06 0.08 1.11 0.093 1.56 · 10−05 0.3215 0.1232 45 %
(g) 0.09 -0.04 1.34 -0.099 9.20 · 10−06 0.3659 0.1245 >100 %
(h) -0.11 0.09 0.61 0.601 1.11 · 10−06 0.5977 0.1923 2 %
(i) 0.09 0.04 0.75 -0.953 2.34 · 10−04 0.5647 0.1718 37 %

Table 3: The nine local optima after optimization refinement

Compared with the results of the four-bar steering linkage in Fig. 10, all the nine local optima improve both
the maximum and the RMS steering errors. Moreover, these values are so small that it could be interesting
to add a more practical criterion. A robustness criterion is proposed: the sensitivity analysis of the steering
error with respect to the optimum design parameters. A perturbation of 0.5 mm –which could correspond
to absolute precision machining – is chosen for each of the four dimensions and also for all combination of
them. The steering error cost function is thus computed 16 times around eachof the nine optima. In the last
column of Table 3, the mean deviation of the objective over the 16 neighbors of each optimum is represented.
This may give a basis for the last decision of the designer. Undeniably, mechanism (h) is the most robust in
the sensitivity sense. However, the designer could choose mechanism (f) because it is more compact than
(h) or (i). All these considerations obviously depend on the way each criterion is taken into account by the
designer.

7 Conclusion and prospects

Based on a strain energy approach of extensible-link mechanisms coupledwith the use of natural coordinates,
an original optimization method has been developed to solve path synthesis andfunction generation problems
of planar mechanisms. Divided into two stages, the method tries first to find good starting points with
multiple partial optimizations and then uses them in afull synthesis of the mechanism. It seems efficient
but does not guarantee to obtain the global optimum as it was illustrated via the four-bar steering linkage
application.

Following that observation, the question of finding the global optimum has been reviewed and extended with
the exploration of the design space to find the most of local optima. To avoid ’astronomical’ CPU time, a
simple method inspired from crystals nucleation has been proposed to dividethe design space into nuclei
centered on local optima. Starting from the latter, the optimization has been refined and a last criterion
applied to choose the final mechanism.

In terms of prospects, our effort will concentrate on developing other exploration strategies of the design
space. The comparison of these different strategies and their results willbe useful to validate them. It
could be also interesting to classify the different local optima based on different types of criteria. We also
intend to extend the method further to topologies with prismatic joints or to three-dimensional mechanisms.
Extending the application field is also an interesting prospect: other kinematic objectives instead of path or
function-generator synthesis or even dynamical ones could be investigated. The more challenging issue of
topology optimization of mechanisms could be tackled on the basis of this work, involving for example an
additional higher-level optimization process as proposed by [17], or optimizing simultaneously the topology
and the dimensions of mechanisms as developped by [21], or [9] for path-generation problems using truss
representation.
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Figure 16: The nine local optima after optimization refinement
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