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ABSTRACT

This paper tackles the complex problem of anoptimal
power flow(OPF) by theinterior point method(IPM).
Two interior point algorithms are presented and com-
pared, namely the pure primal-dual and the predictor-
corrector respectively. Among various OPF objectives,
emphasis is put on two classical ones: the maximization
of loadability limit and the minimization of the amount
of load curtailment. Illustrative examples on three test
systems ranging from 60 to 300 buses are provided.

1 INTRODUCTION

Since the early 60’s [1] the Optimal Power Flow (OPF)
problem has become progressively an indispensable tool
in power systems planning, operational planning and
real-time operation, and that whatever the electricity mar-
ket environment: liberalized or not [2].
The OPF is stated in its general form as a nonlinear,
non-convex, large-scale, static optimization problem with
both continuous and discrete variables. It aims at op-
timizing some objective by acting on available control
means while satisfying network power flow equations,
physical and operational constraints. Among various
OPF objectives, we focus on this paper on two classical
ones: the maximization of power system loadability [12]
and the minimization of amount of load shedding [11].
Both are very valuable piece of information for the trans-
mission system operator (TSO).
The pre- and post-contingency loadability limit (and mar-
gin) indicates how far the system is from voltage collapse
or from violating some operating constraints (e.g. branch
currents, bus voltage magnitudes). The simplest method
for determining a loadability limit consists inrepeated
load flows, performed for increasing values of the system
stress, until either divergence is met or some operating
constraints are violated. Avoiding the uncertainty of load
flow divergence, thecontinuation power flow[10] allows
to trace the solution path passing through the loadability
limit, while the quasi-steady state simulationevaluates
the sought limit by a dynamic ramp stress increase [14].
Optimization methods, on the other hand, directly ob-
tain the limit as the solution of an optimization problem
whose objective is to maximize asystem stress[12, 17].
Optimization methods have the advantage over the three
other approaches that they can also maximize a loadabil-
ity limit by optimally adjusting control means.
In an emergency situation (when following a load in-
crease and/or a contingency the system losses its equilib-

rium point and/or some operating limits are significantly
exceeded), the minimum amount of load shedding pin-
points where and how much load to curtail in order to re-
store either an equilibrium point of the system and/or to
remove operational constraints violations [11]. Whereas
the determination of minimal load shedding for removing
thermal overloads or raise small voltages is rather simple
as long as the system is voltage stable, it becomes a very
challenging problem in a voltage unstable scenario [9].
Restoring system feasibility in a voltage unstable sce-
nario may be tackled either by dynamic simulation [13]
or by static optimization [11].
The Interior Point Method (IPM) [3] is the most fashion-
able approach of the OPF problem due to its speed of
convergence and ease handling of inequality constraints
by logarithmic barrier functions [11, 12, 15].
In this paper we compare two interior point (IP) based
algorithms, namely the pure primal-dual and the primal-
dual predictor-corrector, called for the sake of brevity in
the remaining of the paper PD and PC respectively.
The paper is organized as follows. The section 2 in-
troduces the OPF problems. Section 3 offers a short
overview of both PD and PC algorithms. Section 4 pro-
vides some numerical results while some conclusion are
drawn in Section 5.

2 OPTIMAL POWER FLOW FORMULATIONS

2.1 Maximum Loadability Problem

The loadability limits (and margins) considered in this
paper rely on the definition of asystem stress. The latter
consists in changes in bus power injections which weaken
the system by: increasing power transfers over relatively
long distances, drawing on reactive power reserves, in-
creasing branch currents or lowering voltage magnitudes.
The most common stress consists in a load increase com-
pensated by generators according to some scheme.
A loadability limit corresponds to the maximum value of
stress that the system can withstand such that all specified
operating constraints are satisfied. A loadability margin
represents the difference of stress between the loadability
limit and base case.
The determination of maximum loadability of a power
system problem can be formally formulated as follows:

maxS (1)

subject to: Pg − (1 + S)P0
ℓ − P(x) = 0 (2)

Qg − (1 + S)Q0
ℓ − Q(x) = 0 (3)

h ≤ h(x) ≤ h (4)



whereS is a scalar (system stress),x is a vector en-
compassing control variables and state variables,Pg and
Qg are the vectors of buses generated active and reactive
powers,P0

ℓ andQ0
ℓ are the base case vectors of active and

reactive loads, andP(x), Q(x) are the vectors of power
injections. Equality constraints (2) and (3) involve nodal
active and reactive power balance equations. Inequality
constraints (4) comprise minimal (h) and maximal (h)
operational limits of: branch current, voltage magnitude,
active power generator output, reactive power generator
output, variable ratio of transformer, shunt reactance, etc.
Note that, if no control means are used the result of this
optimization problem is just the loadability limit (and
margin) for the given stress, while if one allows playing
on control means onemaximizesthe loadability margin.
Although our method can take into account more general
situations, for the sake of presentation simplicity, we as-
sumed in (1-4) that: (i) loads are increased under constant
power factor at each bus and (ii) the load increase is per-
formed proportionally with the base case consumption.
A loadability limit computed with the above static model
(1-4) corresponds to a voltage stability limit, a thermal
limit, a voltage magnitude limit or any combination of
them. As regards voltage stability limit two types can be
distinguished: aSaddle-Node Bifurcation(SNB) [7, 9] or
a Breaking-Point(BP) [8]. At an SNB the JacobianJ of
load flow equations (2) and (3) is singular, i.e.detJ = 0,
or equivalentlyJ has a zero eigenvalue. A BP is a point
where some generators switch between automatic voltage
regulator control and overexcitation limiter control and
an eigenvalue ofJ “jumps” from a negative to a positive
value. At a BPJ is nonsingular.

2.2 Minimum Load Shedding Problem

At a first glance, the problem of determining the mini-
mum load shedding in an infeasible state of a power sys-
tem can be also stated as (1-4), in some sense these two
objectives can be seen as duals. The minimal load curtail-
ment main purpose is however different. More precisely,
it concerns the most effective locations for shedding in
order to restore system feasibility, and not all loads par-
ticipating at stress as in (1-4). Ideally, the number of lo-
cations where load curtailment is applied should be small
such that the TSO can implement it when needed.
The minimum load shedding problem is formulated as:

min (φ e)TP0
ℓ (5)

subject to: Pg − (1− φ)P0
ℓ − P(x) = 0 (6)

Qg − (1 − φ)Q0
ℓ − Q(x) = 0 (7)

φ ≤ φ ≤ φ (8)

h ≤ h(x) ≤ h (9)

where1 is a diagonal matrix of ones,e = [1, ..., 1]T , φ

is a diagonal matrix of loads curtailment fraction,φ and
φ are diagonal matrix of minimum and maximum allow-
able fractions of load shedding (φ

ii
= 0 andφii ≤ 1 if

there is a load at busi, andφii = 0 otherwise), the other

elements of this formulation having the same meaning as
in (1-4).
Note that, the objective (5) can easily be changed into
minimizing the price of the amount of load shedding by
incorporating appropriate load curtailment prices, as in
congestion management procedures.

3 INTERIOR POINT ALGORITHMS

3.1 Pure Primal-Dual Interior Point Algorithm

OPF formulations (1-4) and (5-9) can be compactly writ-
ten as a general nonlinear programming problem:

min f(x) (10)

subject to : g(x) = 0 (11)

h ≤ h(x) ≤ h (12)

where dimension of unknowns vectorx, and functions
g(x) andh(x) aren, m andp respectively.
IPM transforms the original inequality constrained op-
timization problem into an equality constrained one by
adding first slack variables to inequality constraints and
then incorporating non-negativity conditions of slacks to
the objective function as logarithmic barrier terms. The
perturbedKarush-Kuhn-Tucker (KKT) first order neces-
sary optimality conditions of the resulted problem are [3]:

F(y) =

















−µe + S Π

−µe + S Π
−h(x) + h + s

h(x) − h + s

−g(x)

∇f(x) − JgλT
− Jh(π − π)T

















= 0 (13)

whereS, S are diagonal matrix of slack variables, andΠ,
Π are their corresponding diagonal matrix of dual vari-
ables,s, s are vectors of slack variables,π, π are their
corresponding vectors of dual variables,µ is abarrier pa-
rameter, e = [1, ..., 1]T , ∇f(x) is the gradient off , Jg

is the Jacobian ofg(x), Jh is the Jacobian ofh(x), λ is
the vector of Lagrange multipliers associated to equality
constraints (11) andy = [s s π π λ x]T .
The vectorsx, s ands are calledprimal variables, while
the vectorsλ, π andπ are calleddual variables.
The perturbed KKT optimality conditions (13) are solved
by Newton method. Let us remark that at the heart of
IPM is the theorem [3], which proves that asµ tends to
zero, the solutionx(µ) approachesx⋆, the solution of the
problem. The goal is therefore not to solve completely
this nonlinear system for a given value ofµ, but to solve
it approximately and then diminishing the value ofµ, and
that iteratively until convergence is reached.
The outline of the PD algorithm is as follows:

1. Initialize y0, taking care that slack variables and
their corresponding dual variables are strictly pos-
itive (s0, s0, π0, π0) > 0. Choseµ0 > 0.



2. Solve the linear system of equations:

H(yk) ∆yk = −F(yk) (14)

whereH is the Hessian matrix of KKT optimality
conditions.

3. Determine the step size lengthαk ∈ (0, 1] such that
(sk+1, sk+1, πk+1, πk+1) > 0. Update solution:

yk+1 = yk + αk∆yk (15)

4. Compute the barrier parameterµk+1:

µk+1 = σk ρk

2p
(16)

whereρk = (sk)T πk + (sk)T πk is calledcomple-
mentarity gap, and usuallyσk = 0.2.

5. Check convergence. Optimal solution is found
when: primal feasibility, dual feasibility, com-
plementarity gap and objective function variation
from an iteration to the next fall below some toler-
ances [11, 12, 15]. Otherwise go back to 2.

3.2 Primal-Dual Predictor-Corrector Algorithm

We now briefly describe the PC algorithm which belongs
to the family of higher-order IP methods [4, 5]. The aim
of these methods is to yield an improved search direction
by incorporating higher-order information into (14), and
that with little additional computational effort.
Now instead of updating iteratively the unknown vector
y as in the Newton method, we merely introduce the new
pointyk+1 = yk + ∆y directly into the Newton system
(14), obtaining:
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µe − S Π − ∆S∆Π
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(17)

What differs with respect to the Newton system (14) are
the∆ terms from the right-hand side. Observe that this
system cannot be solved directly because the higher-order
terms in (17) are not known in advance. Merhotra pro-
poses a two steps procedure involving apredictorand a
correctorsteps, which we describe in the sequel [4].

3.2.1 The Predictor Step

The predictor step objective is two-fold: to approximate
higher-order terms in (17) and to dynamically estimate
the barrier parameterµ. To this purpose one solves the
system (17) for theaffine-scalingdirection, obtained by

neglecting in its right-hand side the higher-order terms
andµ, that is:
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Next the affine complementarity gapρk
p is estimated:

ρk
p = (sk

p + αk
p∆sp)

T (πk
p + αk

p∆πp) +

(sk
p + αk

p∆sp)
T (πk

p + αk
p∆πp)

whereαk
p is the step length which would be taken along

the affine scaling direction if the latter was used.
Finally, an estimateµk

p for µk+1 is obtained from:

µk
p = min
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ρk
p

ρk

)2

, 0.2







ρk
p

2p
(18)

The aim of this adaptive scheme is to significantly reduce
µk+1 when a large decrease in complementarity gap from
affine direction is obtained (ρk

p ≪ ρk) and to slightly re-
duce it otherwise.

3.2.2 The Corrector Step

The actual Newton step is finally computed from:
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It is valuable to remark that the predictor-corrector pro-
cedure involves at every iteration the solution of two lin-
ear systems of equations with different right-hand sides
while relying on the same matrix factorization (done on
the predictor step). The extra computational burden with
respect to the PD algorithm is only one solution of the
corrector system of equations with the matrix already fac-
torized and the additional test to computeµk

p. Generally,
this increase of elapsed time per iteration is largely offset
by a reduction of the overall computing time, thanks to a
diminution of iterations count.

4 NUMERICAL RESULTS

In this section we present some numerical results of two
OPF applications while comparing both PD and PC al-
gorithms performance. The OPF has been coded in C++
and runs under Cygwin or Linux environments. It has
been tested on three test systems, namely a 60 bus sys-
tem which is a modified variant of the Nordic32 system,



and the popular IEEE118 and IEEE300 systems. A sum-
mary of these test systems is given in Table 1, wherenn,
ng, nc, nb, nl, nt, no, andns are the number of: buses,
generators, loads, branches, lines, all transformers, vari-
able ratio transformers and shunts. All tests have been
done on a PC Pentium IV of 1.7-GHz and 512-Mb RAM.
The convergence tolerances are the same as in [6].

Table 1: Test systems summary
system nn ng nc nb nl nt no ns

Nordic32 60 23 22 81 57 31 4 12
IEEE118 118 54 91 186 175 11 9 14
IEEE300 300 69 198 411 282 129 50 14

4.1 Maximization of Power System Loadability

We now focus on the determination of maximum load-
ability. We assume a homothetical load increase, i.e. all
loads are increased proportionally with their base case
consumptions, covered by the slack generator only.
Computation of the maximum loadability is carried out
for four different cases. The results relative of these cases
are given in Tables 2, 3 and 4. Thus, Table 2 displays
the number of iterations to convergence for both PD and
PC algorithms, Table 3 provides the value of the objec-
tive function (the maximal loadability margin), while Ta-
ble 4 shows the number total of binding constraints at
optimum.

Table 2: Number of iterations to convergence

case A case B case C case D
system PD PC PD PC PD PC PD PC

Nordic32 18 12 22 11 19 11 19 11
IEEE118 40 19 21 17 21 15 21 15
IEEE300 37 21 35 18 46 17 41 18

Table 3: Value of the objective

maximum loadability margin (MW)
system case A case B case C case D

Nordic32 1031.4 637.6 537.8 410.4
IEEE118 4029.2 2103.2 1119.1 1119.1
IEEE300 922.8 451.7 445.9 338.1

Table 4: Total number of active constraints at optimum

total number of active constraints
system case A case B case C case D

Nordic32 33 27 28 29
IEEE118 48 70 58 58
IEEE300 81 95 95 92

Case A. The control variables are generators voltage,
variables ratio of LTC transformers, shunts reactance and
slack generator active output. The equality constraints are
the bus active and reactive power flow equations (2) and
(3). The inequality constraints include limits on trans-
former variable ratio, shunt susceptance and generators
voltage magnitudes only (4). The latter are allowed to
vary between 0.95 and 1.05 pu.
The maximal loadability limit corresponds to an SNB,
minimal voltages at that point being as low as 0.852 pu

(for Cigre32 system), 0.838 pu (for IEEE118 system) and
0.812 pu (for IEEE300 system). Obviously, most active
constraints stem from generators voltage being at its max-
imal limit because the higher the generator voltage, the
larger the maximal loadability margin.
By way of comparison we also computed the basic load-
ability margin. The latter was obtained without the help
of available control means and by neglecting all opera-
tional inequality constraints (4). The unknowns of the
problem (1-3) are therefore the bus voltages (angle and
magnitude) and the stress value only. Loadability mar-
gins are 39% (for Cigre32 system), 16% (for IEEE118
system) and 8% (for IEEE300 system) less than the val-
ues of Table 3 which emphasizes the positive impact of
control means on loadability margin. In other words, the
larger the number of control variables allowed, the higher
the value of the maximal loadability margin. The load-
ability limits obtained also correspond to an SNB.
Case B. With respect to the case A we add reactive out-
put limits for generators while keeping the same control
variables. As expected, one obtains a smaller maximum
loadability margin as in the case A because, for the same
control variables allowed, the larger the number of con-
straints the lower the maximal loadability margin. The
maximal loadability point is again an SNB, while 5, 21
and 29 generators reach their maximum reactive capabil-
ity for the Cigre32, IEEE118 and IEEE300 systems. Note
that in all tests carried out we have not encountered an BP
limit point.
Case C. We additionally include bounds on voltage mag-
nitudes (0.95 and 1.05 pu) also for all buses other than
generators while keeping the same set of controls. Obvi-
ously, the maximal loadability margins are lower than in
the previous case. Some voltages reaching their minimal
bound prevent to obtain a higher margin.
Case D. We finally add current constraints for all
branches while playing on the same control means. Ob-
serve that for the IEEE118 system adding thermal con-
straints does not influence the value of the maximal load-
ability margin since no such constraint is active at opti-
mum. Conversely, the margin decreases for the Cigre32
and IEEE300 systems where one and respectively two
branches current constraints are active at optimum, and
that together with few voltage magnitudes being at their
minimal bound.
For comparison purposes, under the same assumptions as
in the case C, we relax significantly bounds on voltage
magnitudes at all buses which are now (0.90 and 1.10 pu)
instead of (0.95 and 1.05 pu). Generally, the larger the
bounds on voltage magnitudes, the higher the total num-
ber of constraints active at optimum, as illustrated in Ta-
ble 5. In this table columns labeled with I (resp. II) cor-
respond to the case C experiment (resp. the new case)
columnsV , Qg, r and b show the number of active
constraints corresponding to voltages, reactive power of
generators and shunt reactance respectively. Obviously,
maximum loadability margins significantly increase with



85%, 106% and 30% for Cigre32, IEEE118 and IEEE300
systems, which shows that the objective is very sensitive
to the choice of these bounds.

Table 5: Number and type of active constraints for different bounds on
voltage magnitudes

system V Qg r b total
I II I II I I I II I II

Nordic32 17 14 5 5 0 0 6 7 28 26
IEEE118 27 25 21 31 0 1 10 13 58 70
IEEE300 57 62 29 30 4 3 5 5 95 100

As regards the IP algorithms performance to solve this
highly nonlinear problem, the PC one is very robust in all
cases, while the PD one converges very slowly in some
cases (see Table 2). This behaviour is attributed to a poor
centrality of iterations at some iterations [5].
Concerning the initial value of the barrier parameter, best
results were obtained whenµ0 ∈ [1, 100] for the PD al-
gorithm andµ0 ∈ [0.1, 10] for the PC one.

4.2 Minimization of Amount of Load Shedding

We now concentrate on minimizing the amount of load
shedding in an infeasible power system situation such
that an equilibrium point is restored. We assume that load
shedding is done under constant power factor at each bus
but results will only be presented in terms of MW. Max-
imum allowable fraction of load shedding is of10% at
each load bus.
The test systems are driven to infeasible states as follows.
For all the systems we first compute the loadability limit
(corresponds to an SNB) by running the OPF with re-
laxed reactive power limits of generators while freezing
all control means. At this limit, one simulates a harmful
contingency, for Cigre32 and IEEE118 systems, while in-
creasing all loads with still 5% beyond the SNB for the
IEEE300 system.
Four cases are analyzed in the sequel in order to evalu-
ate the impact of various control variables on the objec-
tive. Results relative to these experiments are provided
Tables 6, 7 and 8. Thus, Table 6 presents the number of
iterations to convergence of both algorithms under study,
Table 7 displays the value of the objective, while Table 8
shows the number total of binding constraints at optimum
(nac) as well as the number of load curtailed (nls).

Table 6: Number of iterations to convergence

case E case F case G case H
system PD PC PD PC PD PC PD PC

Nordic32 12 8 13 8 25 11 20 12
IEEE118 17 11 16 12 47 10 15 18
IEEE300 13 9 19 12 20 13 18

Table 7: Value of the objective

minimal load shedding(MW)
system case E case F case G case H

Nordic32 501.7 352.5 349.3 151.4
IEEE118 107.3 105.7 0.0 0.0
IEEE300 1128.6 1125.0 1078.8 900.8

Table 8: Total number of binding constraints at optimum (nac) and
number of load curtailed (nls)

case E case F case G case H
system nac nls nac nls nac nls nac nls

Nordic32 20 14 32 9 32 9 48 5
IEEE118 88 17 94 17 91 0 91 0
IEEE300 175 108 183 91 196 88 253 80

Case E. The control variables are loads consumptions
and slack generator active output. The equality con-
straints are the bus active and reactive power balance (6
and 7). The inequality constraints include limits on load
curtailment fraction only (8). After curtailing some loads
(e.g. 17 loads out of the total of 91 for the IEEE118 sys-
tem, see Table 8) an equilibrium point is restored. The
latter corresponds to an SNB for all systems, fact which
holds true at least as long as constraints on reactive limits
or generators, voltage magnitudes and branch current are
neglected.
Case F. With respect to the previous case, we now more-
over allow shunts reactance as control variable and take
into account their relative constraints (included into 9).
As expected, the higher the number of controls available,
the lower the value of the objective (see Table 7). Never-
theless, except of the Cigre32 system, the effect of shunts
under the minimal amount of load shedded is marginal.
Of course, this effect depends on the contingency applies
as well as the shunt location. Obviously, the higher the
number of controls available, the larger the number of
load curtailed and the higher the number of active con-
straints (see Table 8).
Case G. Comparatively with case F we also allow con-
trollable ratio of transformers as control variable and add
their relative constraints (9) to the optimization problem.
This slightly decreases the value of objective for Cigre32
and IEEE300 systems. Conversely, the infeasibility is
completely solved in the IEEE118 system and that with-
out shedding load, a system equilibrium point close to the
SNB being restored.
Case H. We finally add generators voltages as control
variables and consider their respective constraints (9).
Objectives are more (Cigre32 system) or less (IEEE300)
improved while the number of loads curtailed decrease
again.
As a general remark, the optimization algorithm tends
to put the whole curtailment effort on the most efficient
loads and, by consequence, at the optimum some loads
are curtailed at maximum, others are not curtailed at all,
while very few ones (generally one) are lying in between
bounds.
Now we briefly present some results for the Cigre32 sys-
tem only. So far we have requested only that load shed-
ding to ensure an equilibrium point when the system is
in an infeasible state. In order to obtain meaningful op-
erating points and not just voltage stability limits one can
add to the problem other operational constraints. Let thus
consider the case H and to moreover request that all gen-
erators have their reactive output between limits. Note



that at the solution of case D, 10 generators exceed their
maximal reactive capability. To solve this case, 9 loads
are curtailed of a total value of 305.8 MW, i.e. 154.4 MW
more than for the case H (see Table 7). PD (resp. PC)
algorithm converges in 17 (resp. 13) iterations while 4
generators attain their maximal reactive capability at op-
timum. At this point, one branch is overloaded while
three others are very close to their maximal admissible
currents. Adding all branch constraints to the problem
and running the OPF again yield an overall load shed-
ding of 321.2 MW distributed over the same 9 loads. PD
(resp. PC) algorithm converges in 25 (resp. 12) itera-
tions while, at optimum, the same 4 generators maximal
reactive power limit are active as well as a branch cur-
rent. Note finally that both algorithms can successfully
deal with more severe branch overload situations.
PC algorithm performs very well also for this (very) non-
linear problem. On the other hand, the PD fails to solve a
case (case H for the IEEE300 system, see Table 6), while
converging very slowly in the case G for the IEEE118
system.
As regards the initial value of the barrier parameter, best
results were obtained whenµ0 ∈ [1, 10] for the PD algo-
rithm andµ0 ∈ [0.1, 1] for the PC one.
CPU time. Table 9 provides a sample of CPU time (in
seconds) for both algorithms when studying cases D and
F. The CPU time concerns the optimization process only
except of processing data and display of results.

Table 9: Sample of CPU time and iterations number for PD and PC
algorithms

CPU time iterations
case D case F case D case F

system PD PC PD PC PD PC PD PC
Nordic32 0.59 0.45 0.23 0.18 19 11 13 8
IEEE118 1.33 1.07 0.62 0.52 21 15 16 12
IEEE300 4.82 2.78 1.26 0.96 41 18 19 12

Clearly, the PC algorithm outperforms the PD one in
terms of both CPU time and iterations count.

5 CONCLUSION

This paper has presented two interior point method based
OPF applications, namely the maximization of power
system loadability and the minimization of the amount
of load shedding, while comparing the performances of
PD and PC algorithms on three test systems of reason-
able size.
Our experience with these two algorithms confirms other
results from the literature, that is, most of the time the
PC algorithm outperforms the PD one in terms of CPU
time (and thereby iterations count), both converging to
the same optimum. Due to the high nonlinearity of the
OPF problems studied some failures or very slow con-
vergence of the PD algorithm have sometimes been ob-
served. On the other hand, the PC algorithm proved very
robust in all cases studied.

Both algorithms can rather easily handle problems when
a significant number of active constraints is active at op-
timum. Admittedly, the number of binding constraints at
optimum may slightly increase the number of iterations
to convergence, feature which is more pronounced for the
PD algorithm. It is noteworthy that the number of itera-
tions to convergence is little sensitive to the size of the
system.
We finally mention that the versatileness of our OPF was
also revealed when testing other two typical objectives,
namely the minimization of the generation cost and the
minimization of transmission active power losses [6]. For
these problems both algorithms behave extremely well,
the PC one slightly outperforming the PD one.
For the time being our approach of loadability limit com-
putation and minimal load shedding can be carried out for
a specified system topology at a time. A future extension
of this approach concerns the handling of contingencies
for both objectives, as in asecurity constrainedOPF.
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