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ABSTRACT

This paper analyzes the ability of theMultiple Centrality
Corrections(MCC) interior point algorithm to solve vari-
ous classicaloptimal power flow(OPF) variants, namely:
the minimization of generation cost, the minimization of
active power losses, the maximization of power system
loadability and the minimization of the amount of load
curtailment. The performances of the MCC approach
are assessed with respect to the predictor-corrector al-
gorithm, which is widely recognized as the best interior
point method based optimizer to date. Illustrative exam-
ples on three test systems up to 300 buses are provided.

1 INTRODUCTION

Since the early 60’s [1] the Optimal Power Flow (OPF)
problem has become progressively an indispensable tool
in power systems planning, operational planning and
real-time operation, and that whatever the electricity mar-
ket environment: liberalized or not [2].
The OPF is stated in its general form as a nonlinear,
non-convex, large-scale, static optimization problem with
both continuous and discrete variables. It aims at op-
timizing some objective by acting on available control
means while satisfying network power flow equations,
physical and operational constraints.
The Interior Point Method (IPM) [3] is a very appeal-
ing approach to the OPF problem due to its speed of
convergence and ease of handling inequality constraints
by logarithmic barrier functions [14, 8, 9]. Another ad-
vantage of this method is that a strictly feasible initial
point is not required. On the other hand, the main draw-
back of the IPM stems from the fact that slack variables
and their corresponding dual variables must remain pos-
itive at every iteration, which may drastically shorten
the Newton step length(s). This is especially the case
of the pure Primal-Dual (PD) algorithm. Two classes
of methods mainly aiming to overcome this flaw can be
distinguished: higher-order IPMs(e.g. the predictor-
corrector [4], multiple predictor-corrector [6], multiple
centrality corrections [5]) andnon-interior point methods
(e.g. the unlimited point algorithm [11], the complemen-
tarity method [12]).
The Multiple Centrality Corrections (MCC) algorithm
belongs to the class of higher-order interior-point meth-
ods. The latter rely on the observation that the factor-
ization of the Hessian matrix is, by far, the most ex-
pensive computational task of an interior-point algorithm

iteration. Indeed, in most power system applications,
the Hessian factorization takes much more time than the
backward/forward solution of the already factorized lin-
ear system [14, 9]. The aim of these methods is hence to
draw maximum of profit from the factorized matrix, with
little additional computational effort. Practically, they
solve one or more extra linear system(s), based on the
same factorized matrix, expecting thereby to yield an im-
proved search direction. Obviously, higher-order meth-
ods are of interest as long as they are able to reduce the
computational time with respect to the pure primal-dual
algorithm.
The MCC algorithm was initially proposed by Gondzio
for linear programming [5]. Then, it was successfully ap-
plied also to solve nonlinear programming problems such
as: the minimization of active power losses [13, 10], the
maximization of power system loadability and the min-
imization of the amount of load shedding [10], respec-
tively. The MCC algorithm is motivated by the Gondzio’s
observation that the convergence of an interior-point al-
gorithm is worsened by a large discrepancy between com-
plementarity products at an iteration. The MCC algo-
rithm is based on the belief that the closer the point to
be optimized to the central path, the larger step length(s)
can be taken afterwards. The aim of the MCC approach
is twofold: (i) to increase the step length in both primal
and dual spaces at the current iteration and (ii) to improve
the centrality of the next iteration.
In this paper we extensively explore the ability of the
MCC algorithm to solve various OPF variants while
comparing its performance to the Mehrotra’s Predictor-
Corrector (PC) algorithm, which is widely recognized as
the best IPM-based optimizer.
The paper is organized as follows. Section 2 intro-
duces very briefly the OPF problem. Section 3 offers an
overview of the MCC algorithm. Section 4 provides nu-
merical results while conclusions are drawn in section 5.

2 OPTIMAL POWER FLOW STATEMENT

An OPF can be compactly formulated as a general non-
linear programming problem:

min f(x) (1)

subject to : g(x) = 0 (2)

h ≤ h(x) ≤ h (3)

wherex is an n-dimensional vector that encompasses
both control and state variables,f is a scalar function that



represents the optimization goal,g is anm-dimensional
vector of functions that involve mainly bus active and re-
active power balance equations,h is ap-dimensional vec-
tor that comprises functional (e.g. branch current) and
simple variables (e.g. voltage magnitude, active and reac-
tive generator powers, variable ratio of transformer, shunt
reactance), (h) and (h) are lower and upper bound vec-
tors corresponding to operational and physical limits of
the power system.

3 MULTIPLE CENTRALITY CORRECTIONS
ALGORITHM

3.1 Obtaining the Optimality Conditions

Let us consider the general nonlinear programming prob-
lem (1-3). One first add slack variables to inequality con-
straints, transforming them into equality constraints:

min f(x)

subject to : g(x) = 0

h(x)− h− s = 0

−h(x) + h− s = 0

s, s ≥ 0

where the vectorsx, s = [s1, . . . , sp]
T and s =

[s1, . . . , sp]
T are calledprimal variables.

Slack variablessi andsi (i = 1, . . . , p) are added to the
objective function as logarithmic barrier terms, resulting
the following equality constrained optimization problem:

min f(x)− µ

p
∑

i=1

(ln si + ln si)

subject to : g(x) = 0

h(x) − h− s = 0

−h(x) + h− s = 0

where µ is a positive scalar calledbarrier parameter
which is gradually decreased to zero as iteration pro-
gresses.
The Lagrangian of the above equality constrained opti-
mization problem is:

Lµ(y) = f(x)− µ

p
∑

i=1

(ln si + ln si)− λ
T
g(x)

−π
T (h(x) − h− s)− π

T (−h(x) + h− s)

where the vectors of Lagrange multipliersλ, π andπ are
calleddual variablesandy = [s s π π λ x]T .
The perturbedKarush-Kuhn-Tucker (KKT) first order
necessary optimality conditions of the resulting problem
are [3]:
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= 0 (4)

where S, S are diagonal matrices of slack variables,
e = [1, ..., 1]T , ∇f(x) is the gradient off , Jg is the
Jacobian ofg(x) andJh is the Jacobian ofh(x).

3.2 Solving the KKT Optimality Conditions

The perturbed KKT optimality conditions (4) can be
solved by the Newton method. Let us remark that at the
heart of IPM is the theorem [3], which proves that asµ
tends to zero, the solutionx(µ) approachesx⋆, the so-
lution of the problem (1-3). The goal is therefore not to
solve completely this nonlinear system for a given value
of µ, but to solve it approximately and then diminishing
the value ofµ iteratively until convergence is reached.
MCC algorithm consists of apredictor and acorrector
step as in the Mehrotra’s predictor-corrector procedure.
The predictor step is responsible for the optimization, i.e.
reducing the primal and dual infeasibilities and the com-
plementarity gap. The corrector step is responsible for
improving centrality as well as for keeping the current
iterate away from the feasibility boundary.

3.2.1 The Predictor Step

The predictor step objective is to dynamically estimate
the barrier parameterµ. To this purpose one solves the
system (4) for theaffine-scalingdirection, obtained by
neglectingµ in its right-hand side, that is:
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whereH is the second derivatives Hessian matrix.
Next the affine complementarity gapρaf is computed:

ρaf = (saf + αaf∆saf )T (πaf + αaf∆πaf ) +

(saf + αaf∆saf )T (πaf + αaf∆πaf )

whereαaf ∈ (0, 1] is the step length which would be
taken along the affine scaling direction if the latter was
used.
Finally, the barrier parameter for the next iteration is es-
timated from:

µaf = min

{

(

ρaf

ρ

)2

, 0.2

}

ρaf

2p

whereρ = sT
π + sT

π denotes the complementarity gap
at the current iterate.
The goal of this adaptive scheme is to significantly reduce
the barrier parameter when a large decrease in comple-
mentarity gap from affine direction is obtained (ρaf ≪ ρ)
and to slightly reduce it otherwise.



3.2.2 The Corrector Step

The aim of this step is to compute a corrector direction
∆yco such that: (i) a larger step size can be taken for
the composite direction∆y = ∆yaf + ∆yco and (ii) all
complementarity products are driven in a vicinity of the
central path.
We describe in the sequel the procedure to accomplish
these objectives. Let us assume that we propose to in-
crease the step lengthαaf to:

α̃ = min(αaf + δα, 1)

whereδα is the desired improvement of the step length.
The empirical observation that the two goals: improving
centrality and increasing the step size might be contra-
dictory, especially for large values ofδα, constrains to
use small values forδα (very oftenδα ∈ [0.1, 0.2]) [5].
Let y be the solution at the current iteration. Obviously,
wheneverαaf < 1 at thetrial point

ỹ = y + α̃∆yaf

some slack variables and/or their corresponding
dual variables violate strictly positivity conditions
(s, s, π, π) > 0. The corrector term∆yco has thus
to offset for these negative terms as well as to drive the
trial point in the neighbourhood of the central path. To
this end atargetclose to the central path must be defined.
Because the most natural such target, the analytic center
µafe is usually unreachable, for practical purposes, we
require instead that all complementarity products belong
to the interval[βminµaf , βmaxµaf ]. Typical values for
βmin andβmax are:βmin = 0.1 andβmax = 10.
Next, one computes the complementarity products at the

trial point: ṽ = S̃ π̃ and z̃ = S̃ π̃. Then one iden-
tifies components of̃v and z̃ that do not belong to the
interval[βminµaf , βmaxµaf ], calledoutlier complemen-
tarity products. The corrector step effort focuses in cor-
recting the outliers only in order to improve the cen-
trality of the next iterate. Vectors of complementarity
productsṽ and z̃ are projected to a hypercubeH =
[βminµaf , βmaxµaf ]2p to define the target:

vt
i =







βminµaf , if ṽi < βminµaf

βmaxµaf , if ṽi > βmaxµaf

ṽi, otherwise

zt
i =







βminµaf , if z̃i < βminµaf

βmaxµaf , if z̃i > βmaxµaf

z̃i, otherwise

Finally, the corrector direction∆yco is obtained as the
solution of the following linear system:
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where the nonzero components of the right-hand-side
correspond to the outlier complementarity products only.
The new search direction can now be obtained:

∆y = ∆yaf + ∆yco

Then, the actual step lengthα is computed so as to
preserve non-negativity conditions and variables are up-
dated:

y← y + α∆y

The corrector step can be applied a desired number of
times. In such a case, the current corrector becomes the
predictor for a new corrector, that is

∆yaf ← ∆yaf + ∆yco and αaf ← α

3.3 Some Implementation Issues of MCC Algorithm

For the sake of facilitating the presentation, we have con-
sidered a common step lengthα for updating both primal
and dual variables. Our experience showed, however, that
the MCC algorithm behaves better when applying sepa-
rate step lengths in primal and dual spaces.
As regards the choice of the desired improvement of the
step sizeδα, two solutions are proposed: either the use of
a constant valueδα = 0.1 [5, 13], or the use of an adap-
tive value according to the formulaδα = (1 − αaf )/K
while imposing additionally thatδα not be smaller than
0.1 or greater than 0.2 [13, 10]. In order to reduce the
number of centrality corrections computed at an iteration
while aiming to obtain the largest increase in the step size
we suggest to setδα = 0.2. We have found that this
setting offers better convergence performances in terms
of CPU time and iterations number than the above men-
tioned proposals. We have not encountered any conver-
gence trouble caused by this “optimistic” setting.
In our implementation we compute a new centrality cor-
rection only if it improves considerably the step lengths.
To this end, we allow the computation of a new central-
ity correction only if the gain in step length is superior to
εα = 0.03. In contrast, according to other authors, even
as small value asεα = 0.01 may be accepted [5, 13].
The most challenging problem of the MCC algorithm is
the choice of the maximal number of corrections allowed
K, as the objective is not only to reduce the number of
iterations comparatively to the PC algorithm but also to
save some CPU time. To this respect some heuristics are
proposed [5, 13]. Their idea is to solve first a set of prob-
lems by progressively increasing the maximal number of
corrections allowedK (going from 1 to 10, for instance).
Results are then gathered together and let nbiterK

MCC and
nbiterPC be the number of iterations needed to converge
for the MCC and PC algorithm, respectively. When deal-
ing with a new problem,K is established automatically
as follows. One counts at the first iteration the elapsed
time of the Hessian factorization (f ) and of the back-
ward/forward solution of the linear system (s), respec-



tively. After computing the ratiorf/s = f/s, K is cho-
sen such that [5]:

nbiterKMCC

nbiterPC

[

1 +
K

(rf/s + 2)

]

< 1

Note, finally, that the algorithms performance in terms of
the CPU time may be somewhat dependent to the solver
used for the solution of the linear system of equations.

4 NUMERICAL RESULTS

In this section we present numerical results of four OPF
applications while comparing both MCC and PC algo-
rithms performance. The OPF has been coded in C++
and runs under Cygwin or Linux environments. It has
been tested on three test systems, namely a 60 bus sys-
tem which is a modified variant of the Nordic32 system,
and the popular IEEE118 and IEEE300 systems. A sum-
mary of these test systems is given in Table 1, wherenn,
ng, nc, nb, nl, nt, no, andns are the number of: buses,
generators, loads, branches, lines, all transformers, vari-
able ratio transformers and shunts.

Table 1: Test systems summary
system nn ng nc nb nl nt no ns

Nordic32 60 23 22 81 57 31 4 12
IEEE118 118 54 91 186 175 11 9 14
IEEE300 300 69 198 411 282 129 50 14

All tests have been performed on a PC Pentium IV of
1.7-GHz and 512-Mb RAM. The MCC algorithm runs
with the following parameters:βmin = 0.1, βmax = 10,
δα = 0.2 and εα = 0.03. For the sake of illustration
of how the MCC algorithm works we set, before of each
OPF run, the maximum number allowed of corrections al-
lowedK. The latter is let to vary fromK = 1 to K = 8,
by a step of 1.
The convergence tolerances are set to10−4 for the primal
feasibility and the scaled dual feasibility, and10−6 for
the scaled complementarity gap and the scaled objective
function variation from an iteration to the next [7].

4.1 Minimizing Overall Cost of Generation

We first focus on minimizing, by means of a full OPF, the
overall cost of generators active output. The control vari-
ables used are: the active and reactive power of genera-
tors, controllable transformers ratio and shunt reactances.
The equality constraints are the bus active and reactive
power flow equations. The inequality constraints include
bounds on all above mentioned control variables as well
as limits on voltage magnitudes and branch currents.
Table 2 displays the number of iterations to convergence
as well as the CPU times1 (in seconds) for the MCC
algorithm with different values of maximal number of
corrections allowed. For comparison purposes this table
also contains the information relative to the PC algorithm
(marked in bold), which is considered the benchmark,
and the PD one.

Table 2: Number of iterations to convergence and CPU times

interior point Nordic32 IEEE118 IEEE300
algorithm iters time iters time iters time

MCC (K = 1) 20 0.92 16 1.13 20 3.10
MCC (K = 2) 16 0.79 14 1.09 16 2.82
MCC (K = 3) 14 0.77 13 1.06 14 2.50
MCC (K = 4) 12 0.69 11 0.97 13 2.35
MCC (K = 5) 12 0.71 11 0.99 12 2.23
MCC (K = 6) 12 0.72 10 0.90 12 2.28
MCC (K = 7) 12 0.74 10 0.92 11 2.16
MCC (K = 8) 12 0.75 10 0.94 11 2.20

PC 13 0.61 11 0.80 15 2.33
PD 21 0.82 18 1.10 23 3.02

Table 3 shows the number and the type of binding con-
straints at optimum, wherePg, Qg, I, V , r andb reffer
to constraints relative to generator active power, gener-
ator reactive power, branch current, bus voltage magni-
tude, controllable transformer ratio and shunt reactance,
respectively.

Table 3: Number and type of active constraints

active constraints
system Pg Qg I V r b total

Nordic32 15 1 5 26 0 4 51
IEEE118 3 8 3 25 0 5 44
IEEE300 3 26 4 59 3 2 97

Expectedly, for the MCC algorithm, the higher the value
of K, the less the number of iterations. Recall that the
computation of a new centrality correction at an itera-
tion is allowed only if it leads to a significant improve-
ment of step lengths. Consequently, a distinction should
be made between the maximal number of corrections al-
lowedK and the actual number of corrections at an iter-
ation, which is less or equal toK.
Note that the MCC algorithm leads to a reduction of num-
ber of iterations with respect to the PC algorithm for the
Nordic32 system (whenK ≥ 4), for the IEEE118 system
(whenK ≥ 6) and for IEEE300 system (whenK ≥ 3).
On the other hand, except of the IEEE300 system (for
5 ≤ K ≤ 8), this reduction of iterations count does not
translate in a CPU time saving.
An interesting comparison can be made between the PC
and the MCC algorithm run withK = 1. In such case the
computational effort per iteration of both algorithms is al-
most the same. Observe that, for all systems, when using
a single corrector only the PC algorithm clearly outper-
forms the MCC one. For this OPF variant the use of the
MCC algorithm is of interest for higher values ofK.
One can also remark that, for all the test systems used,
the MCC algorithm withK ≥ 2 converges faster and
takes a less number of iterations than the pure PD algo-
rithm. This observation holds true also for most of the
OPF variants studied hereafter.

1CPU time concerns the optimization process only except of processing data and print of results



4.2 Minimizing Active Power Losses

We now deal with the minimization of transmission ac-
tive power losses, counted as the sum of active losses over
all branches of the system. The control variables consid-
ered are: slack generator active power, generators reac-
tive power, controllable transformers ratio and shunt re-
actance. The equality constraints involve the buses power
balance. The inequality constraints concern bounds on:
slack generator active power, generators reactive power,
voltage magnitudes, transformer with controllable ratio
and shunt reactance. Voltage magnitudes are allowed to
vary between 0.95 pu and 1.05 pu in all buses.
Table 4 provides the number of iterations to convergence
and the CPU times for the MCC, PC and PD algorithms,
while Table 5 shows the number and the type of binding
constraints at optimum.

Table 4: Number of iterations to convergence and CPU times

interior-point Nordic32 IEEE118 IEEE300
algorithm iters time iters time iters time

MCC (K = 1) 9 0.29 11 0.61 18 2.14
MCC (K = 2) 7 0.25 10 0.59 13 1.66
MCC (K = 3) 7 0.25 9 0.58 11 1.52
MCC (K = 4) 6 0.24 8 0.54 11 1.55
MCC (K = 5) 6 0.24 7 0.52 10 1.48
MCC (K = 6) 6 0.25 7 0.53 10 1.52
MCC (K = 7) 6 0.25 7 0.54 10 1.52
MCC (K = 8) 6 0.25 7 0.55 10 1.52

PC 8 0.26 10 0.58 12 1.44
PD 11 0.31 13 0.62 16 1.63

Table 5: Number and type of active constraints

active constraints
system V Qg r b total

Nordic32 21 0 0 4 25
IEEE118 15 12 0 4 31
IEEE300 60 23 1 4 88

The active losses at optimum are: 151.74 MW for the
Nordic32 system, 116.52 MW for the IEEE118 system
and 386.6 MW for the IEEE300 system, respectively, that
is, of 7.90%, 12.31%, and5.37% less than in the base
case for the Nordic32, IEEE118 and IEEE300 system,
respectively.
The MCC algorithms compares favorably with the PC
one, for the Nordic32 system (whenK ≥ 2) and for the
IEEE118 system (whenK ≥ 3), in terms of both iter-
ations count and CPU time. On the other hand, for the
IEEE300 system, despite of the smaller number of iter-
ations needed to converge for the MCC algorithm (for
3 ≤ K ≤ 8), the PC algorithm is slightly faster for all
values ofK.
Note that, the number of iterations and CPU times do not
change for the Nordic32 system (when6 ≤ K ≤ 8) and
for IEEE300 system (when6 ≤ K ≤ 8) despite of the
increase ofK. This is due to fact that the computed step
length improvement is lower thanδα = 0.03 which for-
bids the computation of new centrality corrections.

4.3 Maximizing Power System Loadability

We now focus on the determination of the maximum
loadability of a power system. We assume that all loads
are increased proportionally with their base case con-
sumptions, covered by the slack generator only. We con-
sider the following control variables: generators reactive
power, variable ratio of controllable transformers, shunts
reactance and slack generator active output. The equal-
ity constraints concern buses active and reactive balance.
The inequality constraints include limits on: generator re-
active power, transformer variable ratio, shunt reactance
and bus voltage magnitudes only. The latter are allowed
to vary between 0.95 pu and 1.05 pu.
Table 6 gives the number of iterations to convergence and
CPU times for the MCC, PC and PD algorithms, while
Table 7 shows the number and the type of binding con-
straints at optimum.

Table 6: Number of iterations to convergence and CPU times

interior-point Nordic32 IEEE118 IEEE300
algorithm iters time iters time iters time

MCC (K = 1) 13 0.42 div 23 3.25
MCC (K = 2) 10 0.35 div 20 2.96
MCC (K = 3) 10 0.36 div 17 2.71
MCC (K = 4) 9 0.33 div 15 2.52
MCC (K = 5) 9 0.34 div 15 2.59
MCC (K = 6) 9 0.35 div 14 2.46
MCC (K = 7) 9 0.36 div 14 2.48
MCC (K = 8) 8 0.33 div 14 2.49

PC 11 0.37 15 0.83 19 2.60
PD 19 0.48 21 0.99 47 4.65

Table 7: Number and type of active constraints

active constraints
system V Qg r b total

Nordic32 17 5 0 6 28
IEEE118 27 21 0 10 58
IEEE300 57 29 4 5 95

The maximum loadability margin is: 537.8 MW for the
Nordic32 system, 1119.1 MW for the IEEE118 system
and 445.9 MW for the IEEE300 system.
The MCC algorithm behaves better than the PC one for
the Nordic32 system (whenK ≥ 2) and for IEEE300
system (whenK ≥ 4) while the opposite happens for the
other values ofK. Note that, the MCC algorithm fails
inexplicably to optimize the IEEE118 system. We men-
tion, however, that such convergence problems have not
been experienced for other systems and/or OPF variants
and, therefore, this should not be taken as conclusive.

4.4 Minimizing the Amount of Load Shedding

We finally tackle the problem of minimizing the amount
of load shedding for an infeasible power system situation
such that an equilibrium point is restored. We assume
that at each load bus the load shedding is done under con-
stant power factor and not exceed10%. The slack gen-
erator compensates for the active power imbalance only.



The control variables used are: load consumptions, con-
trollable ratio of transformers, shunts reactance and slack
generator active output. The equality constraints involve
the buses power balance. The inequality constraints in-
clude limits on: the amount of bus load shedding (φ),
controllable transformer ratio and shunt reactance.
Table 8 displays the number of iterations to convergence
and CPU times for the MCC, PC and PD algorithms,
while Table 9 shows the number and the type of binding
constraints at optimum.

Table 8: Number of iterations to convergence and CPU times

interior-point Nordic32 IEEE118 IEEE300
algorithm iters time iters time iters time

MCC (K = 1) 12 0.26 8 0.44 14 1.25
MCC (K = 2) 11 0.23 8 0.45 12 1.14
MCC (K = 3) 10 0.21 7 0.42 11 1.12
MCC (K = 4) 10 0.22 7 0.43 11 1.13
MCC (K = 5) 10 0.23 6 0.39 10 1.08
MCC (K = 6) 10 0.24 6 0.39 9 1.02
MCC (K = 7) 10 0.25 6 0.39 9 1.04
MCC (K = 8) 10 0.26 6 0.39 9 1.04

PC 11 0.23 10 0.55 13 1.14
PD 25 0.44 47 1.98 20 1.47

Table 9: Number and type of active constraints

active constraints
system φ r b total

Nordic32 20 0 12 32
IEEE118 91 0 0 91
IEEE300 177 14 5 196

The overall load curtailed is 349.3 MW for the Nordic32
system, 1078.8 MW for IEEE300 system while no load
is shed for the IEEE118 system. The curtailment effort
is shared by 9 and 88 loads for the Nordic32 system and
IEEE300 system, respectively.
One can observe that for the IEEE118 and the IEEE300
systems the MCC algorithm clearly outperforms the PC
one for most values ofK, while for the Nordic32 system
their performances are very close.

5 CONCLUSION

This paper has presented and extensively tested the MCC
interior point algorithm on various OPF variants. The
results obtained suggest that the MCC algorithm is a
highly viable alternative to the successful PC algorithm.
The performances of the MCC algorithm emphasize once
more the importance of the centrality theory for the IPM.
Future work aims to find a heuristic scheme to automat-
ically chose the maximal number of corrections allowed
K for a given problem, in as much as the best value of
K shifts from an OPF variant to another and from a test
system to another. Nevertheless, choosing any value of
K ∈ [2, 6], generally provides very close performances
comparatively with the PC algorithm.
A natural extension of this work is the development of an
hybrid algorithm, in which the corrector step combines
both MCC and PC features, in order to take advantage of
their respective qualities, as reported in [10].
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