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ABSTRACT

The Stiffened Panel Method (SPM) is used to analyze
double-skinned cylindrical structures. Governing equations of
stiffened panels (sector plates and cylindrical shells) are obtained
by using the effective unitary force method, in which the main slab
is analyzed by the plate and shell theory, and the stiffeners are
replaced by the effective unitary forces. With this method, stiffened
panels can be analyzed exactly. For uniformly stiffened panels, the
governing differential equations are greatly simplified by spreading
the effective unitary forces over the panel. These simplified
equations and their solutions are presented in an unified form valid
for stiffened and unstiffened sector plates or cylindrical shells. In
this way, all the panels can be analyzed by the same model. A
double-skinned cylindrical structure composed of stiffened
cylindrical shells and sector plates is treated as an assembly of the
panels interconnected by the circumferential joints (nodes). Using
Single Fourier Series (SFS) expanded in the circumferential
direction, the general solutions of each panel for each SFS term are
developed, which depend on 8 unknowns (4 node displacements at
each end in the generator direction). An equation system on the
node displacements of the whole structure is formed with the
equilibrium equations at each node. This system is similar with
those of standard numerical methods, such as the Finite Element
Method (FEM). But, the dimension is much smaller. One single
stiffened panel simulated by FEM will need thousands of DOFs
(degree of freedom), while this method needs only 8 node
displacements. Moreover, it is an exact theoretical solution.

The unit load solutions for each SES term are defined as the
fundamental solutions of the structure. Simply supported boundary
conditions in the circumferential direction can be automatically
simulated by SFS expansion, while other boundary conditions in
the generator direction can vary arbitrarily. The global analysis of
the concerned structure is realized by the superposition of the
fundamental solutions for each SFS term. Additional boundary
loads may overcome the limitation to the simply supported
conditions in the circumferential direction. A package of
FORTRAN code named LBR4C has been compiled according to
the development. Both linear and nonlinear analyses can be
performed. Only linear analyses are presented in this paper.

Hengfeng WANG
ANAST, University of Liege, Belgium

1. INTRODUCTION

Structures composed of stiffened panels are widely used in
the modemn world, such as ships, aircraft, hydraulic gates, steel
bridges and so on. One of the methods to analyze this kind of
structures, named Stiffened Plate Method (SPM), was developed
by N. M. Dehousse 1961. The governing differential equations of
cylindrical shells with stiffeners in both generator and
circumferential directions were developed. By using the Single
Fourier Series expansion (abbreviated as SFS hereinafter) either in
the generator direction (coordinate x) or.in the circumferential
direction (coordinate @), the two-dimensional partial differential
equations are transferred into the ordinary ones, and exact
solutions are thus obtained. A computer program was compiled by
N. M. Dehousse and J.Deprez 1967, which ran on IBM 7040 for a
single stiffened plate panel. This is a great limitation, as most of the
structures can not be analyzed by only one stiffened panel.

Prismatic structures composed of stiffened cylindrical shells
and rectangular plates have been studied by Ph.Rigo 1989 with this
method (rectangular plates are simulated by cylindrical shells with
a small central angle). To design a prismatic structure, these
stiffened panels (shells and plates) are interconnected by the joints
along generator direction, and the SFS are expanded in the
generator direction (coordinate x).

The main advantage of the method developed by Ph.Rigo
concerns the discretization. “Panel” is the basic element of this
method. Exact solutions of each panel are obtained theoretically,
which depend on 4 end forces at each end in circumferential
direction (8 end forces for two ends). A structure composed of N
panels will have only 8*N unknowns (degree of freedom). It is
evidently much smaller than with FEM analysis. For example, for
FEM analysis of a single orthogonally stiffened plate panel, the
number of DOFs (degree of freedom) ranges from 1917 to 3289,
Hatzidakis, 1994. From this point of view, this method (Stiffened-
Panel-Method) for multi-panel structures may be also named
Finite-Panel-Method. Speed, simplicity and accuracy over mesh
modeling have been demonstrated by the computer program named
LBR4 with a large number of applications (Ph. Rigo 1992). This
success encourages the authors to make further study by using this
harmonic method. ’

This paper deals with a double-skinned cylindrical gate



proposed for the downstream gate of a high rise ship lock, shown
in Fig.1, Dehousse 1989. The gate can be treated as an assembly of
stiffened sector plates and cylindrical shells interconnected with
the joints in the circumferential direction, see Fig.2. For this gate,
the top, middle and bottom diaphragms are simulated with six
stiffened sector plates (P1, P4, P7, P10, P13 and P16). The
upstreamn and downstream skins are simulated with ten stiffened
cylindrical shells (P2, P5, P8, P11, P14 for upstream skin and P3,
P6, P9, P12, P15 for downstream skin). All together, sixteen
panels, see Fig.2, are involved with 12 nodes (joints). The vertical
diaphragms at ¢ = 0 and @ = ¢, imply a simply supported boundary
condition to the 16 studied panels.

Flane View

Fig.1 High Rise Ship Locks and Downstream Cylindrical Gate

~

Fig.2 Model of Stiffened Panel Method

For this kind of the structures, all the panels can use the same
coordinate @in the circumferential direction (see Fig.2, the
positive direction of the local coordinate x for each panel is shown
by an arrow, and the local coordinate z is selected so that a right
hand system, x-@-z, is formed). Therefore, the SFS are expanded in
the circumferential direction (coordinate ¢) instead of the generator

direction (coordinate x) for prismatic structures. The simply
supported boundary conditions in the circumferential direction of
the sector plates and the cylindrical shells are automatically
satisfied by SFS expansion. Boundary conditions in the generator
direction {x = x; and x = x;) may arbitrarily vary from case to case.
Unstiffened sector plates had been a traditional mechanical
research topic, especially for the lateral bending under external
loads. However, for stiffened sector plates, the governing
differential equations and their solutions have not yet been found
in the available references. They have to be developed in this

paper.

2. THEORY OF STIFFENED PANEL METHOD

The Stiffened Panel Method for curved structure is
introduced in this paper, as such kind of structures can be treated
as an assembly of stiffened sector plates and cylindrical shells, The
SFS has to be expanded in the circumferential direction instead of
the generator direction for prismatic structures. Theoretical
solutions of each panel are first developed. Then, the structure is
analyzed based on the connection among the panels.

2.1 SOLUTIONS OF STIFFENED PANELS

As one of the component of a structure or as a single panel
structure, a thin-walled panel is usually reinforced with stiffeners
because of strength or service requirements. In this research, as for
most of real applications, only orthogonally distributed stiffeners
are considered, which means that the stiffeners are arranged along
the coordinate lines. The stiffeners in x direction are defined as
stiffener x, and those in ¢ direction are defined as stiffener @. As
an example, one stiffened cylindrical shell (P3) and one stiffened
sector plate (P4) of the studied structure are shown in Fig.3.

The governing differential equations of both stiffened sector
plates and cylindrical shells can be obtained by using the effective
unitary force method, Hengfeng Wang 1997. Based on the
deformation of the main slab and the traditional beam theory,
interaction forces at the joint of the main slab with the stiffeners
are calculated on each stiffener. Adding these interaction forces
into the governing equations of unstiffened panels, the governing
differential equations of  stiffened panels are formed. For
uniformly stiffened panels (in which the stiffeners with identical
sections in the same direction are uniformly arranged over the
panel), these interaction forces can be spread over the panel if only
the global rigidity of the panel is concerned. In this way, the
governing differential equations of stiffened panels are greatly
simplified. For both sector plates and cylindrical shells, they can be
generalized as an unified form

a, by ¢| U -X
a2 b2 Cz AV y=<= Y (1)
a; by ¢ |[W zZ

Here U, V and W are defined as the displacements of the middle
surface of the main slab, and X, Y and Z stand for the external
distributed loads. The positive directions of both the displacements
and the external loads are the same as the local coordinates x-¢-z
respectively, see Fig.3.
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Fig.3 Stiffened Panels and Their Coordinates

In Eq.(1), al, a,... are the corresponding differential
operators, which vary with the shape of the studied panels and the
coordinate system. Taking a, as an example, for sector plate, it has
the form as

_ ¥ — -S- oot
a,U=D+ wx)U"+D-I-J—— (D+ %)%4__32;23__
X x* q

X
- § 0o
+ [L‘ED "%}UT
2 q° | x
For cylindrical shells, it takes the form as

a,U=(D+8, )U”"r-——l ;u D};]I—z_

Hereinafter, we use ?-(—-)— =() and 9(—2- =()°. It should be also
ax 29

noted that all the operators for cylindrical shells are linear

differential operators with constant coefficients, while those for

sector plates are the non-linear ones, in which the term of 1/x and

its power functions are included. This needs special treatment in

mathematics.

Other operators and the formulas for strains, stresses and
internal forces, which can be derived from the displacements, are
not listed in this paper. But, what has to be mentioned is that the
mechanical properties of the main slab and the stiffeners have been
considered as accurate as possible in those equations. Moreover,
simplifications have been made as less as possible. For instance,
Donnelle simplification is not considered in this development as it
is valid only for short shells. In this way, our theoretical solution is
characterized by less limitation to its applications. Exact solutions
can be also obtained for unstiffened panels. The related constants
are listed as follows:

D= I—E—}% main slab tension rigidity
E-&

= e ain slab bending rigidit
20— 5) g rigidity

For stiffener x and stiffener ¢, the constants are

1

@, =— [Bdo @, =— [Edw tension rigidity
Dx 0, D&P 0,

I =— [Eldo I, = L [E2*dw lateral bending
Dx @, D‘P (&)

Es*’d® in-plane bending

Ezdw symmetry properties

= 1 E 3 . R
Tx = Dx 12(1+p) (tf.x ! Lf.x + tw.x3 ' Lw.x) uniform torsion
— 1 E 3 3 : :
Ty = (trg ‘Lo +tyo -LW) uniform torsion

* D, 120+

Here, E is the modulus of elasticity, . Poisson’s ratio and & the
thickness of the main slab. D, and D, are the intervals of the
stiffener x and @ respectively (do not be confused with the
following displacement and force state vectors, {D,} and {Dg} ).
Note that, the in-plane bending rigidities of the stiffeners are
usually interpreted as that for non-uniform torsion or warping. It
means that the non-uniform torsion or warping of the stiffeners has
been considered in this development.

To describe the boundary conditions and to simplify the
following development, we define the displacement and force state
vectors related to section x and section @ as;

Displacement State Vector of Section x (8, rotation of section x)
m)=U v W 8,)

Force State Vector of Section x
Fo=(N, Ny R, M,)

Displacement State Vector of Section ¢ (8, rotation of section ¢)
Oy={U v W 8,)

Force State Vector of Section @
() =(Nq>x Ny R, Mw)

By using these state vectors, boundary conditions of the
studied panels can be easily presented. For instance, at boundary x
= X, it may be written as

=]}

Here, [Sx] is a constant matrix. Free boundary conditions



can be simulated by setting [Sx] equal to zero. Otherwise, if [Sx]

is big enough, clamped boundary conditions are automatically
simulated.

Direct solutions of Eq.(1) with given boundary conditions are
normally very difficult. If SFS is expanded in ¢ direction, we can
write the displacements as (only one term is presented here)

U, @ Ux)- Sin(?\.m(p)
V(x,0) } =4 V(x) Cos(A,¢) )]
IWEe) W(x)-Sin(A, @)

Consequently, the external loads are supposed to be given by

X(x,9)| [X(x)-Sin(A,9)
Y (x,0)p =1{Y(x) Cos(A, @) 3
Z(x,9) Z{x)-Sin(A,®)

with A, = r(::_n Substitution of Eq.(2) and Eq.(3) into Eq.(1) leads
o
an ordinary differential equation system.

a, b ¢ Ux) - X(x)
a, by cyl g V(x)p=4~Y(x) 4
a; by ¢y [W(x) Z(x)

Here, the operators are changed into those independent of ¢. For
cylindrical shells, these operators are linear ones with constant
coefficients. Therefore, the homogeneous solutions can be assumed
as

U, () (A
V,(x) b={B}-e¥
w, (0] |C

Here, A, B and C are non-zero constants. Substituting into the
homogeneous equations, i.e.

a, b ¢l {Up(x) 0
a, by ¢y |3 Vp(x) =40
a; by c3| [W,(x) 0

since the differential calculations will be in the form as
a, Uy (x) = a,(y) - Up(x) with a,(7), a polynomial function of ¥,
we have

a(y) b comn| {A] |0
a,{7) by (V) c(N|-4Bp=10
a;(7) bs(Y) o] |C) |0

Because A, B and C are non-zero constants, we obtain an
algebraical equation about ¥,

a () by (M
a,(y) by(y) ¢, (Ni=0
a;(Y) by (Y) (Y

Normally, eight complex roots are obtained as oy +/- i By, k= 1, 2,
3 and 4 (here “i” is the imaginary unit), which are defined as
eigenvalues. Then, the homogeneous solutions will be

Cos(B;x)
S =%{A, B.)Is| .e%x
W0=32(a; B[] {Sm(ﬁix)} e 5)
Where, C?S(Bix) -e™* is defined as the eigenfunction vector for
Sm(BiX)

each group of eigenvalues, (i = 1, 2, 3, 4). A; and B; are the
unknown constants of the homogeneous solutions. Total 8
unknown constants are involved. Sy(x) refers to the homogenous
solutions of the displacements, Uy(x), Vy(x) and Wy(x). Since other
elements can be derived from the displacements. Generally
speaking, Sy(x) stands for all the studied elements. And [S] is a
constant matrix, which changes from element to element. The

C .
?S(B’ O em vl
Sln(BiX)

greatly facilitates the calculation. For example, we have

d [CosBix)| ox | —Bi| [Cos(Bix)] oo
& |sin@0] " 7| o | \SinGx)

and

introduction of the eigenfunction vector, {

b

g S—

COS(Bix) %% . dx = Q; —Bi -l. Cos(ﬁix) .e%%
Sin@x)| "B, o sin@x) [ "

For sector plates, by using a transfer function t = In(x/g) (x
= ¢ at the middle of the plate ), Eq.(4) changes into

a

1 .
b —c
oM x Horum) [-x2xm
8, b, —¢, |- V() p=1-xY(t)
I W) x3-Z(t)
a; by ‘;"Cs

Here, the operators depend only on variable t with constant
coefficients. Therefore, the homogeneous solutions will be in the
form as

1

S A-et
U0 %
V() b={=B-e"

X
Wlt) C-e"

For the same reason as the cylindrical shells, we obtain the
homogeneous solutions as

C°S(B*‘)}-e"s‘ ©)

1 18]
Sn(i)~;;zl:(Ai B;)-[S] {Sin(ﬁit)

Note that a k constant is introduced for each element of the sector



plates. For instance, k = 0 for Wy(t), and k = 1 for Uy(t), Vi(t) and
so on. Considering that k=0 for all the elements of cylindrical
shells, Eq.(5) and Eq.(6) have obviously the same form. For
simplification, Eq.(5) and Eq.(6) may be rewritten in the unified
form.

8, (0 =8, ) -{a}

Here, {A} is defined as the unknown vector (in column, 8x1) of
the homogeneous solution. For both sector plates and cylindrical
shells, 8 unknowns are involved (for simplification, written in row)

(aA)=(A, B, A, B, A; B; A, B,)

And §h (x) is the basic function vector (1x8) of the homogeneous
solution. Taking the first two components of §h (x) as example,
for cylindrical shells, they are

(1 0)-[S]-{COS(B"‘)}-«:“"x and (0 1)-[8]-{C°S@*"’}.emx

Sin(B;x) Sin(B,x)

For sector plates, they are

i o) {s}-{c‘”“}‘”}% and (0 1)-[8}'{(:"5(ﬁ ‘”}-9—?—

Sin(B,t) SinB,t)| x

If the external loads in Eq.(4) are given by

1
X(x) Py P Py Py X
Y(X) = Pyl Pyz Py3 Py4 . xz
Z(X) le Pzz Pz3 Pz4 x3

we may write the particular solutions for both the sector plates and
cylindrical shells as

5, (x) =8, (0) -}

Here, §p(x) is the unit load solution vector (1x12) of the element

S(x), and {P} is a constant vector {12xI) of the external load
coefficients (written in row) as follows.

®=(r) @) @)
(Px)=(le sz Px3 Px4)

and{ ®) =, P, Py Pp)
(Pz)::(le PzZ P13 Pz4)

At last, the general solutions for both panels are obtained by the
combination of the homogeneous solution and the particular
solution of external loads, i.e. ‘

st = §, ) {a}+ G, (0)- 7} 0

Totally, 8 unknown homogeneous constants, {A}, are involved in
Eq.(7), which are determined by the connection of the panels of the
structure or the boundary conditions in section x. Based on the SFS

expansion in the circumferential direction, boundary ¢ is simply
supported.

2.2 FUNDAMENTAL SOLUTIONS OF THE STRUCTURE

By using the general solution of Eq.(7), at the departure end,
X = x;, and at the arrival end, X =x;, we have the displacement state
vector {D} and the force state vector {F} as

{D}l = [G]l : {A}‘*‘ [H]x {P}
{D}z = [G]z {A} + [H]z : {P } g
) =[o} - a)+ R -} ®
{}, =[al,-{A}+R], - {p}

Here, [G]; [Gl: [Q); [Q]; are constant matrices (4x8), and [H],
[H], [R]; [R], are constant matrices (4x12). In fact, 4 systems are
involved in Eq.(8), and each has 4 equations,

The first two equation systems in Eq.(8) lead a solution for
the homogeneous unknowns

{a}=[c]-{o}+ ]}
w0}

By this way, the general solutions of the studied panel, Eq.(7), will
depend on 8 node displacements {D} instead of {A}. Note that, for
a given panel, [G] and [H] are constant matrices of 8x8 and 8x12
respectively (do not be confused with [G]; [G]; and [H]; [H]; ).
Substituting {A} into the last two equation systems in Eq.(8)
results in ‘

{F}=[a]- io}+[R]- {p}

-l

Again, [Q] and [R] are 8x8 and 8x12 matrices, and different
from [Q], [QJ.and [R]; [R]; in Eq.(8).

Equation.(9) gives out the internal forces at the two end
sections of each panel. By the equilibrium equations at each node
of the structure where the panels are connected, the final system of
the structure is formed as

[a] {o}=[B] {P} (10)

It should be aware that, in Eq.(10), {D} stands for node
displacements of the whole structure, and (P} stands for all the
coefficients of the external loads on each panel. [A] and [B] are the
rigidity matrix and the load matrix of the structure. If the structure
is composed of M panels with N nodes, [A] is in 4Nx4N, and [B]
in 4Nx12M. Eq.(10) stands for a system with 4N equations. The
similar system obtained by FEM analysis will be much greater than
it.

In general, at some nodes, reaction forces from support
may be also included, which can be written as

{7}, =[], -0}, | (1n

Here [S]. stands for the rigidity matrix of the node. In the node
equilibrium equations(by which Eq.(10) is formed from Eq.(9) ),
{F}, should be also included together with the panel force {F} in
Eq.(9). By this means, the support conditions at each node can vary



arbitrarily.

It is clear that after solving the system of Eq.(10), the general
solutions of each panel are determined, For detailed studies of the
structure, the general solutions on each unit load coefficient (i.e.
setting Py1, Px2s Py Pras Pylv Pyz, P)/_;, Py4, Py Py P, Py =1
separately) are defined as the fundamental solution of the structure
for each SFS term. It can be seen that the fundamental solution

may be written as a vector (1x12M), Sg(x), by which the general
solution is in the form as

Sa ) =8:00) ., (12)

Here, {P}, has the same meaning as {P} in Eq.(10). The subscribe
“m” indicates the m™ term of SFS expansion.

2.3 SUPERPOSITION OF THE
SOLUTIONS

The usual loads in hydraulic and maritime engineering are
water pressures. For the studied panels, it is the lateral load Z. For
horizontally curved structures, it is independent of coordinate ¢
and uniform or linear in coordinate x, i.e.

FUNDAMENTAL

Z(x,p)=a+b-x

- ""4-(a+b-x). . (Zm—l)ﬂc‘
~m=x GmD.n Sm{i (p}

Py
Comparing with Eq.(2) and Eq.(3), we may use

A, =m-bm (13)

Pp

It means that only odd terms of the SFS expansion are valid. The
external load coefficients are

4.a 4:b
P, =—— = e 14
*T @m-1)-=n 47 @m-1)-7 (14
Other coefficients of the external loads are zero. Then, the final
solution will be given by

o

S(x,0) = E[SP,‘ (x)-Pyy +5p, (x)'Pzz]‘{

m=l

Cos(A,9)
Sinmmq»} 2

Here, SPu (x) and SPzz (X) stand for the fundamental

solutions of the external loads P,; and P, of the m™ SFS term. Sine
and cosine functions are selected with respect to the element.
Generally, the number of SFS terms are depended on the accuracy
expected as well as the forms of the external loads. For uniform
water pressure in coordinate ¢, a maximum of 13 terms is enough
to provide a high level of accuracy.

3. DOUBLE-SKINNED CYLINDRICAL GATE

3.1 DIMENSIONS

The gate is designed to support a maximum water pressure of
80m (water level difference between the upstream canal and the
downstream canal, see Fig.1). The chamber of the ship lock is 15m
wide, and the downstream tunnel is 12.5m high (with 5m water and
7.5m clearance). The length of the cylindrical gate in

circumferential direction is defined as L, and the thickness, D, is
the distance between upstream skin and downstream skin, see
Fig4.

Fig.4 Length and Thickness of the Gate

Therefore, we have

L-|_15 D 0
Sin(pg/2) 2| 7°

The calculation of L with @g from 0° to 180°and D=2, 3,4 m
respectively is shown in Fig.5.

L (m)
22 r

20 S
18 : /// - D=2m

/ ——D=3m

16 + >
" n..——-’_‘j:__/,./r/"/ - ——-D=4m
12 £
10 s -
0 30 60 90 120 150 180 (degree)

Fig.5 Variation of the Length with the Thickness and Central
Angle

It shows that the curved structure does not always increase the
length (except the changes of the boundary diaphragms and the
support arrangement). In this paper, we use D = 3 m, and the
central angle @ varies from Q° to 120°, Water pressure is acting on
the downstream skin. Downstream seal system (lateral seals, top
and bottom seals) is adopted.

3.2 MODEL OF THE STIFFENED PANEL METHOD

An assembly of 16 panels is employed to model this double
skinned gate, see Fig.2. The 16 panels are connected with 12 joints
(nodes). Therefore, the number of DOFs in Eq.(10) is only 48.
Each panel is reinforced with stiffeners in both generator and
circumferential directions. Typical panels are shown in Fig3
(panel 3: stiffened cylindrical shell under water pressure; panel 4:
stiffened sector plate, middle diaphragm). Detailed scantling of the
gate is not included in this paper. The vertical diaphragms at ¢ =0
and @ = @y are simulated with the simply supported boundary
conditions for each studied panel. Using SFS expansion in the



circumferential direction, this simply supported boundary
conditions are automatically satisfied. At the top and bottom seals,
the gate is supposed to be constrained against normal downward
displacements. This is simulated by the node rigidity in Eq.(11). As
a comparison, free seal conditions are also simulated by setting the
node rigidity in Eq.(11) being zero. Those two conditions are
referred as seal free and seal constrained conditions in the
following presentation.

3.3 DISPLACEMENTS AND STRESSES

Displacements and stresses are presented on the transverse
section for the two conditions: seal free and seal constrained. Two
extreme central angles, @y = 0° and @y = 120°, are presented for
comparison from Fig.6 to Fig.9). With respect to each panel, the
transverse stress is defined as the normal stress in the generator
direction, and the circumferential stress is in the circumferential
direction. The transverse displacements are the displacements
parallel to the transverse section, while the circumferential
displacements are those normal to the transverse section. For all
the computation cases of @ = 0°, 30°, 60°, 90° and 120° (with the
same scantling), the maximum values of the studied terms are listed
in Tab.1, in which Wiy, Visax » Oxemax @0d Oy are defined as the
maximum values of the transverse and circumferential
displacements, and the transverse and circumferential stresses
respectively.

Tab.1 Maximum Values of the Studied Terms

Seal Constrained

Do L Winae V max Oy o':t-mng

degree - m m m N/S?_ N/m
0 15.000 ]0.0146 10.0022 211 116
30 14.387 0.0140 10.0043 [213 114
60 14.137 {0.0140 [0.0064 |231 117
90 14.305 0.0142 10.0085 {264 149
120 14996 10.0138 0.0102 291 195

Seal Free
9 L Winax Viae | O | O

degree m m m N/m® ng?——
0 15.000 10.0238 10.0046 103 189
30 14387 10.0230 {0.0082 {90 209
60 14.137 10.0279 10.0143 |99 269
90 14,305 10.0467* |0.0306 162 416*
120 14996 ]0.1367* |0.1065* |378* 907*

* Values are not acceptable.

From Tab.1 and the figures (Fig.6 to Fig.9), it can be seen
that, in the seal free condition, the gate behaves like a curved box
beam. The circumferential stress is always greater than the
transverse stress. The stresses in the downstream skin are in
tension, and the stresses in the upstream skin are in compression,
While the circumferential stress and displacement, Gy.max and Vipy o'
increase greatly with the central angle @ , the transverse stress and
displacement, Gy.pmax and W, will first decrease with the central
angle ¢, because of the decrease of the length. Then, they increase
quickly because of the curvature and the increase of the length. In
the curved situation, the circumferential stresses in the middle
diaphragms are not linearly distributed (seal free, ¢y = 120° in
Fig.9), which means that for curved box beams, if the traditional
beam theory is used, the non-linearly distributed normal stress on
the web have to be considered. The famous effective width method
can only correct the shear lag effects on the flange (upstream and

downstream skins in this paper). In the case of @, = 120°, both the
stresses and displacements in the seal free condition are not
acceptable (the same scantling being the same for all the cases).
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Fig.6 Transverse Displacements of the Middle Section
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Fig.7 Circumferential Displacements of the Boundary Section
(9=0)
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Fig.8 Transverse Stresses of the Main Slab on the Middle Section
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When the seal constrained condition is considered, the
maximum transverse displacement, Wy, will not change too much
from @y = 0° to @ = 120° (from 0.0146m to 0.0138m). The
circumferential displacement, V., , increases from 0.0022m to
0.0102m, but the value is still acceptable. The stresses have the
same trends as V., . When the central angle changes from 0° to
120°, Oy max increases from 211 to 291 N/m?, while Oy.max iNCrEASES
from 116 to 195 N/m*.

It should be noted that, if the downstream tunnel of the ship
locks is too high (depends on navigation requirements), the
downstream gate may be designed into several independent
sections. In the practical working conditions, one is put above
another. In that case, seal free conditions may be much closer to

the real situations. Then for curved structures, more materials for
the gate will be needed to reduce the displacements and stresses.
Another economical solution may be to constrain the
circumferential displacement (V) at the two boundaries, ¢ =0 and
@o, by using special gate slots (see Fig.1). This alternative will be
studied in the future.

4. CONCLUSIONS

e The Stiffened Panel Method for curved structures is
developed and applied to design a double skinned cylindrical
gate for high rise ship locks with a water head of 80m. Only
48 DOFs (degrees of freedom) are needed, which clearly
demonstrate the advantages of this method.

¢ For large central angles, top and bottom seal constrained
conditions have to be considered in order to make both the
displacements and stresses are acceptable without increasing
the scantling. Otherwise, the circumferential displacements
may be constrained by specially designed gate slots at the
boundary, It will break the limitation to the simply supported
conditions automatically simulated by the SFS expansion in
the circumferential direction.
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