
An Algorithmic Approach for Checking Closure

Properties of Temporal Logic Specifications and

ω-Regular Languages

Doron Peled

Bell Laboratories, Lucent Technologies

700 Mountain Ave.

Murray Hill, NJ 07974-0636, USA

Thomas Wilke 1

Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

24098 Kiel, Germany

Pierre Wolper

Université de Liège

Institut Montefiore, B28

4000 Liège, Belgium

Preprint submitted to Elsevier Preprint 16 May 1997

In concurrency theory, there are several examples where the interleaved
model of concurrency can distinguish between execution sequences which
are not significantly different. One such example is sequences that dif-
fer from each other by stuttering, i. e., the number of times a state can
adjacently repeat. Another example is executions that differ only by the
ordering of independently executed events. Considering these sequences
as different is semantically rather meaningless. Nevertheless, specification
languages that are based on interleaving semantics, such as linear tem-
poral logic (LTL), can distinguish between them. This situation has led
to several attempts to define languages that cannot distinguish between
such equivalent sequences. In this paper, we take a different approach
to this problem: we develop algorithms for deciding if a property cannot
distinguish between equivalent sequences, i. e., is closed under the equiva-
lence relation. We focus on properties represented by regular languages,
ω-regular languages, or propositional LTL formulas and show that for
such properties there is a wide class of equivalence relations for which de-
termining closure is decidable, in fact is in PSPACE. Hence, checking the
closure of a specification is no more difficult than checking satisfiability of
a temporal formula. Among the closure properties we are able to handle,
one finds trace closedness, stutter closedness and projective closedness,
for all of which we are also able to prove a PSPACE lower bound. Being
able to check that a property is closed under an equivalence relation has
an immediate application in state-space exploration based verification. In-
deed, the knowledge that the specification does not distinguish between
equivalent execution sequences allows constructing a reduced state space
where it is sufficient that at least one sequence per equivalence class is
represented.

2

1 Introduction

In the total order model of concurrency, the atomic actions of the various
processes are interleaved into totally ordered executions. If two actions are
independent, they will be interleaved in both possible ways, but will appear in
each execution in a specific, though arbitrary, order. Distinguishing between
sequences that differ from each other only by the order of concurrently execu-
ted events is artificial and mostly meaningless. It is thus usual and useful to
group such sequences into equivalence classes. A well-known way of doing this
is the concept of traces due to Mazurkiewicz [10]: a trace is a set of interleaving
sequences that can be obtained from each other by successively commuting
independent adjacent actions. Traces are equivalence classes, and sequences
belonging to the same trace are said to be trace equivalent. Unfortunately,
most common specification languages, such as linear-time temporal logic [18]
(LTL), naturally allow the specification of properties that are not trace closed,
i. e., that can distinguish between trace equivalent sequences. One will usually
not specify such properties, but since they can be expressed, every property
should be treated as if it might not be trace closed. To work around this, seve-
ral attempts have been made in the past to define logics that can only define
trace-closed properties, e.g., ISTL [5,16], TrPTL [22], TLC [1], and recently
LTrL [23]. None of these logics is completely satisfying: they lack simplicity,
cannot express all relevant properties, or do not have a known elementary
decision procedure. A practical and complete solution to the problem has not
yet been given.

Another equivalence that is useful in studying concurrent systems is stutter
equivalence: a pair of sequences are considered to be equivalent if they differ in
at most the number of times a state may adjacently repeat [9]. Although next-
time operator free linear-time temporal logic formulas are naturally stutter
closed, i. e., cannot distinguish between stutter equivalent sequences, the use of
a next-time operator does not preclude stutter closure and can be convenient.
Finally, projective equivalence [13] is an extension of stutter equivalence that
requires stutter equivalence of various projections of a sequence.

One context in which knowing that a property is closed is valuable is that of
partial-order verification algorithms [26,4,30,14,15]. These algorithms proceed
by checking a property on a reduced state space obtained by only exploring
selected interleaving sequences. The reduction is based on the observation that
it is not necessary to explore different interleavings that vary from each other
only by the relative order of occurrence of independent (concurrent) transi-
tions. Since it is guaranteed that at least one sequence is selected out of each

1 Part of the research reported here was conducted while the author was visiting
DIMACS as part of the Special Year on Logic and Algorithms.

3

equivalence class for trace equivalence [14] or stuttering equivalence [26,15],
one needs to ensure that the checked property is closed with respect to the
equivalence relation exploited. If the property is not closed, one has to be
more restrictive as to which transitions can be viewed as independent, with
the consequence that a smaller reduction is obtained. Thus, being able to check
whether a property is closed for a given equivalence relation is important for
achieving good partial-order reductions. Furthermore, the same also applies
in the context of theorem proving based formal verification [5]. Finally, reco-
gnizing projective closedness can also be used for improving the effectiveness
of partial-order reduction [14,13]. Projective properties are also preserved by
sequential consistent [8] implementations of cache protocols [13].

In this paper, we study the problem of determining whether a property is
closed under various equivalence relations, including what we will call concur-
rency relations, namely, trace equivalence, stutter equivalence, and projective
equivalence [13]. We exhibit sufficient conditions that the equivalence relation
should satisfy in order for the problem to be decidable for regular and ω-regular
properties and hence also for linear-time temporal logic properties [27]. In the
case of regular languages, we only assume that the equivalence relation is ge-
nerated by a sequential relation [24], that is, by a relation ‘recognized’ by a
finite automaton; in the case of ω-regular languages, we assume that the equi-
valence relation is what we call a “piecewise extension” (see Definition 13) of
an equivalence relation on finite words generated by a sequential relation.

We first show how closure under an equivalence relation generated from a
sequential relation can be decided for finite word languages. We obtain a po-
lynomial time decision procedure for languages represented by deterministic
automata and show that the problem is in PSPACE when non-deterministic
automata are used as a representation. Furthermore, we obtain a matching
lower bound for each of the concurrency relations. Extending the decision
procedure to ω-regular languages is more difficult, but is achieved by using
the characterization of ω-regular languages in terms of congruences [2]. Fur-
thermore, the problem remains in PSPACE both for languages specified by
non-deterministic automata and by LTL formulas, with the matching lower
bound still holding for each of the concrete relations we consider.

Closure of ω-regular languages with respect to trace equivalence is also dealt
with in [3] and [11]. In the first paper, the authors prove that it is decidable
whether a regular ω-language is trace-closed. However, the decision procedure
that is suggested by their proof has worst-case space complexity at least ex-
ponential. In the independent work [11], it is shown that determining whether
an ω-regular language given by a so-called “I-diamond” Muller or Büchi au-
tomaton is trace-closed is PSPACE-complete. As I-diamond Büchi automata
are restricted Büchi automata, the hardness result from [11] is stronger than
what we prove. On the other hand, the PSPACE upper bound from [11] refers

4

only to I-diamond Büchi and Muller automata, which means it is weaker than
what we prove.

2 Concurrency Relations and the Closure Problem

We recall the notions of trace, stutter, and projective equivalence, which will
also be referred to as concurrency relations. We also introduce the notion of the
limit extension of an equivalence relation. This allows us to view the infinite
versions of the concurrency relations as uniform extensions of the correspon-
ding finite versions.

2.1 The Limit Extension of an Equivalence Relation

Throughout this paper, Σ stands for a finite alphabet and Σ∞ for Σ∗ ∪ Σω.
The prefix order on Σ∞ is denoted by <, and the first and last letter of a word
v ∈ Σ+ are denoted by fst(v) and lst(v), respectively.

Definition 1 (limit extension) The limit extension ∼lim ⊆ Σω × Σω of an
equivalence relation ∼ ⊆ Σ∗ × Σ∗ is defined by: α ∼lim β if and only if

– for every u ∈ Σ∗ such that u < α there exist v, v′ ∈ Σ∗ such that v < β and
uv′ ∼ v, and

– for every u ∈ Σ∗ such that u < β there exist v, v′ ∈ Σ∗ such that v < α and
uv′ ∼ v.

Recall that an equivalence relation ∼ on Σ∗ is called a congruence relation if
uv ∼ u′v′ whenever u ∼ u′ and v ∼ v′.

Lemma 2 If ∼ is a congruence relation on Σ∗, then ∼lim is an equivalence
relation on Σω.

PROOF. The relation ∼lim is a binary relation on Σω and obviously reflexive
and symmetric.

To show transitivity, assume α ∼lim β ∼lim γ and let u < α. By definition of
∼lim, there exist v < β and v′ such that uv′ ∼ v. On the other hand, since
β ∼lim γ, there exist w < γ and w′ such that vw′ ∼ w. Thus uv′w′ ∼ w, since
∼ is a congruence relation. Symmetrically, for u < γ we can find v, v′, w, w′

such that w < α and uv′w′ ∼ w. Hence α ∼lim γ. 2

5

2.2 Trace Equivalence

A dependency relation is a reflexive and symmetric relation D ⊆ Σ × Σ. The
pair (Σ, D) is also called a dependency graph.

For two words u, v ∈ Σ∗, write u
1
≡ v if there exist words w1, w2 and letters

a, b such that (a, b) 6∈ D, u = w1abw2 and v = w1baw2, i. e., if u is obtained
from v by exchanging the order of two adjacent independent letters. Let ≡ be

the reflexive and transitive closure of the relation
1
≡. We say that u and v are

trace equivalent [10] over (Σ, D) if u ≡ v. That is, u is trace equivalent to v
if u can be obtained from v by repeatedly commuting adjacent independent
letters.

Following [6], ω-words α and β are said to be trace equivalent if α ≡lim β.

2.3 Stutter Equivalence

The stutter removal operator ♮: Σ∞ 7→ Σ∞ maps every word x to the word
that is obtained from x by replacing every maximal finite substring of iden-
tical letters by a single copy of the letter. For instance, ♮(aabbbcaa) = abca,
♮(aabbbcω) = abcω, and ♮((aab)ω) = (ab)ω. Words x and y are said to be stutter
equivalent if ♮(x) = ♮(y).

Even though stutter equivalence is not defined as a limit extension, it could
actually be done so:

Lemma 3 Stutter equivalence over ω-words is the limit extension of stutter
equivalence over finite words.

PROOF. We have to show that if ∼ denotes stutter equivalence over finite
words, then ∼lim denotes stutter equivalence over ω-words.

Let α and β be ω-words, and let α = u1u2u3 . . . and β = v1v2v3 . . . be the
decompositions of α and β into maximal subwords of identical letters. In case
any of these decompositions should be finite, modify it so it becomes infinite,
by chopping the last factor into letters.

First, suppose α and β are stutter equivalent ω-words. Then ♮(ui) = ♮(vi) for
every i ≥ 0. Let u < α. Let n be such that u < u1 . . . un. Then there exists
v′ such that uv′ = u1 . . . un. On the other hand, u1 . . . un ∼ v1 . . . vn. Thus
uv′ ∼ v < β where v = v1 . . . vn. Symmetrically, if v < β, there exist u′ and u
such that vu′ ∼ u < α. Hence α ∼lim β.

6

Next, suppose α ∼lim β. For every n there exist v and v′ such that u1 . . . unv
′ ∼

v < β, which means ♮(u1 . . . unv
′) = ♮(v) < ♮(β), and therefore ♮(u1 . . . un) <

♮(β). Hence ♮(α) < ♮(β). Symmetrically, ♮(β) < ♮(α). Thus, ♮(α) = ♮(β), i. e.,
α and β are stutter equivalent. 2

2.4 Projective Equivalence

Projective equivalence [13] is the natural extension of stutter equivalence to
component alphabets. For simplicity in notation, the definitions and state-
ments below are for an alphabet with two components only but easily gene-
ralize to alphabets with any (but finite) number of components.

Let Σ1 and Σ2 be finite alphabets and Σ = Σ1 × Σ2. As usual, we identify
the elements of Σ∞ with elements of Σ∞

1 × Σ∞
2 in the natural way, e. g., we

identify (a1, b1)(a2, b2) with (a1a2, b1b2).

For each pair c = (a, b) ∈ Σ, let c|1 = a and c|2 = b. Accordingly, for each
word x = c1c2c3 . . . ∈ Σ∞, define x|i = c1|i c2|i c3|i . . ., i ∈ {1, 2}.

Words x and y are called projective equivalent if ♮(x|1) = ♮(y|1) and ♮(x|2) =
♮(y|2).

As with stutter equivalence, we obtain:

Lemma 4 Projective equivalence over ω-words is the limit extension of pro-
jective equivalence over finite words.

PROOF. We have to show that if ∼ denotes projective equivalence over finite
words, then ∼lim denotes projective equivalence over ω-words.

First, assume α and β are projective equivalent ω-words. Let u < α. Then
u|1 < α|1 and u|2 < α|2. Lemma 3 applied to α|1 and β|1 yields that there exist
v1 < β|1 and v′1 such that u|1v

′
1 and v1 are stutter equivalent. Similarly, there

exist v2 < β|2 and v′2 such that u|2v
′
2 and v2 are stutter equivalent. W. l. o. g.,

assume |v1| ≥ |v2|. Let w be such that |w| = |v1| − |v2| and v2w < β|2. Then
u|2v

′
2w ∼ v2w < β|2. Let a = lst(v′1), b = lst(v′2w), and define v′ and v to be

(v′1a
|v′

2
w|, v′2wb

|v′

1
|) and (v1, v2w), respectively. Then uv′ ∼ v < β. By symmetry,

we obtain α ∼lim β.

Next, assume α ∼lim β. Then α|1 and β|1 are equivalent with respect to the
limit extension of stutter equivalence. Accordingly, the same holds for α|2 and
β|2. Thus, by Lemma 3, ♮(α|1) = ♮(β|1) and ♮(α|2) = ♮(β|2), hence α and β
are projective equivalent. 2

7

2.5 The Closure Problem

Given an equivalence relation ∼ over a set M and a subset M ′ ⊆ M , we
say that M ′ is ∼-closed or closed under ∼ if M ′ is a union of equivalence
classes of ∼. In particular, we will say that a language is trace closed (with
respect to a given dependency alphabet), stutter closed, or projective closed
if it is closed under the corresponding trace, stutter, or projective equivalence
relation, respectively.

Given an alphabet Σ, a class L of languages of finite or ω-words over Σ, and
an equivalence relation ∼ on Σ∗ respectively Σω, the closure problem is to
determine whether a given language L ∈ L is ∼-closed.

The term ‘closure problem’ can be explained as follows. Given an equivalence
relation on Σ, the mapping L 7→ {x | ∃y (x ∼ y ∧ y ∈ L)} defines a closure
operator on the set of all languages over Σ. The closure problem is to determine
whether the closure of a given language L is L itself.

We are mainly interested in those closure problems where ∼ is one of the
concurrency relations and L is the class of regular or ω-regular languages,
or LTL-definable ω-languages. Recall that every LTL-definable ω-language is
ω-regular [29].

3 The Closure Problem for Finite Words

We prove that the closure problem is in PSPACE for the set of regular lan-
guages of finite words over a given alphabet Σ with respect to every equivalence
relation generated by a sequential relation (for a definition of sequential, see
below). The finite version of all the concurrency relations introduced in the
previous section are, in fact, generated by sequential relations, which means
their closure problems are in PSPACE. In addition, we show that for these
relations the closure problems are PSPACE-hard and hence obtain a tight
characterization.

3.1 The General Situation

Let $ be a letter not belonging to the alphabet Σ, write Σ$ for Σ ∪ {$} and
x ↓ Σ for the canonic projection Σ∞

$ → Σ∞ (the one erasing the letter $). For
a binary relation R on Σ∗, let R$ be the relation that, for (u, v) ∈ R, contains
(u $|v|−|u|, v) if |u| ≤ |v| and (u, v $|u|−|v|) otherwise. Note that any two words

8

that are related by R$ have the same length, and recall that we identify every
pair in R$ with a word over Σ$×Σ$, and R$ itself with a language over Σ$×Σ$.

Definition 5 ([24]) A binary relation R on Σ∗ is sequential if R$ (viewed as
a formal language over Σ$ × Σ$) is regular.

We say that an equivalence relation ∼ is generated by a relation
1
∼ if ∼ is

the reflexive, symmetric, transitive closure of
1
∼, i. e., if ∼ is the smallest

equivalence relation containing
1
∼.

The closure problem for an equivalence relation ∼ generated by a relation
1
∼

can be solved by looking only at
1
∼:

Lemma 6 Let L ⊆ Σ∗ and ∼ an equivalence relation on Σ∗ generated by a

symmetric relation
1
∼. Then L is not ∼-closed if and only if there exist words

u, v ∈ Σ∗ such that u
1
∼ v, u ∈ L, and v 6∈ L.

PROOF. For the non-trivial direction assume u ∈ L iff v ∈ L for all u and
v with u

1
∼ v. Let u′ and v′ be distinct words such that u′ ∼ v′. Then there

exist words u0, . . . , un such that u0 = u′, un = v′, and ui
1
∼ ui+1 for i < n.

As we have ui ∈ L iff ui+1 ∈ L, we obtain u0 ∈ L iff un ∈ L, hence u′ ∈ L iff
v′ ∈ L, i. e., L is ∼-closed. 2

Suppose
1
∼ from Lemma 6 is sequential and given by a deterministic finite

automaton C. Let A1 be a finite automaton over Σ$ × Σ$ accepting exactly
all words u with u|1 ∈ L$∗ and u|2 ∈ Σ∗$∗. Similarly, let A2 be an automa-
ton accepting exactly all words u with u|1 ∈ Σ∗$∗ and u|2 /∈ L$∗. Then, by
Lemma 6, L is ∼-closed if and only if

L(C × A1 × A2) = ∅ (1)

where × denotes automata-theoretic product.

This leads to the following result concerning the time complexity of the closure
problem.

Theorem 7 Let ∼ be an equivalence relation generated by a sequential rela-
tion, and consider the closure problem for ∼ with respect to languages repre-
sented by deterministic or non-deterministic finite automata.

(i) The closure problem is decidable in time O(|A|2) for deterministic auto-
mata.

9

(ii) The closure problem is decidable in time O(|A| 2|A|) for non-deterministic
automata.

Here, |A| stands for the size of an input automaton A.

PROOF. First note that w. l. o. g. we can assume that
1
∼ is symmetric, for

the symmetric closure of a sequential relation is sequential. Also, recall that
the emptiness problem for finite automata is solvable in linear time.

(i) Slight modifications of A yield deterministic automata A1 and A2 as spe-
cified above. Both A1 and A2 can be constructed in time O(|A|). Hence
C × A1 × A2 can be constructed in time O(|C| |A|2). Condition (1) can the-
refore be checked in time O(|C| |A|2), which is identical with O(|A|2), as C is
considered constant.

(ii) Slight modifications of A yield a non-deterministic automaton A1 and a
non-deterministic automaton A′

2 recognizing the complement of L(A2). De-
terminization (using the subset construction) and a following complemen-
tation (by complementing the final state set) of A′

2 lead to an automaton
A2 as desired. The construction of A1 and A2 can be carried out in time
O(|A|) and O(2|A|), respectively. Thus C × A1 × A2 can be constructed in
time O(|C| |A| 2|A|), hence (1) can be checked in time O(|A| 2|A|). 2

We obtain the following bound for the space complexity of the closure problem.

Theorem 8 Let ∼ be an equivalence relation generated by a sequential rela-
tion.

The closure problem for ∼ with respect to languages represented by non-deter-
ministic finite automata is in PSPACE.

PROOF. In general, the product automaton C×A1×A2 cannot be construc-
ted in space polynomial in O(|A|). It is, however, possible to check for its
emptiness within this complexity bound.

The state space of C × A1 × A2 (as described in the proof of Theorem 7,
part (ii)) is the Cartesian product of three state spaces of size O(1), O(|A|),
and O(2|A|). Each state of the product automaton can be represented in space
O(|A|). Moreover, given two states, one can determine in space O(|A|) whether
one is the successor of the other. The following non-deterministic algorithm
for checking the emptiness of C ×A1 ×A2 can thus be implemented in space
O(|A|):

10

1. let q be the initial state of C × A1 × A2

2. choose a state q′

3. if q′ is a successor of q, let q = q′, else halt (without accepting)
4. if q is final, accept, else goto 2

From Savitch’s theorem we can conclude that this can be done in deterministic
polynomial space as well. 2

3.2 Application to the Concurrency Relations

Returning to the concurrency relations presented in Sect. 2, it is enough to
show that each one of the three equivalence relations is generated by a se-
quential relation. Trace equivalence ≡ is already defined to be the transitive

closure of a sequential relation, namely
1
≡. Stutter equivalence is generated

by the sequential relation {(uav, uaav) | u, v ∈ Σ∗, a ∈ Σ}. For projective
equivalence, it is slightly more difficult to find the right representation:

Lemma 9 Projective equivalence is generated by the sequential relation that
relates

(i) u(a, b)v with u(a, b)(a, b)v,
(ii) u(a1, b1)(a1, b2)(a2, b3)v with u(a1, b1)(a2, b2)(a2, b3)v, and
(iii) u(a1, b1)(a2, b1)(a3, b2)v with u(a1, b1)(a2, b2)(a3, b2)v,

for u, v ∈ Σ∗, a1, a2, a3 ∈ Σ1, and b1, b2, b3 ∈ Σ2.

PROOF. Let ∼ denote the equivalence relation generated by the relation
defined in the lemma. Obviously, if u ∼ v then u and v are projective equiva-
lent. For the other direction, assume u and v are projective equivalent words.
We have to show u ∼ v. If one of the words is empty then so is the other
and there is nothing to show. So for the rest of the proof assume u and v are
non-empty. Let ui = u|i and vi = v|i for i = 1, 2. Since u and v are projective
equivalent, they end in the same letter, say (a, b). By (i), it is enough to show
u(a, b) ∼ v(a, b).

Using repeatedly (ii), we get

u(a, b) ∼ (♮(u1)a
|u1|−|♮(u1)|+1, u2b) .

Using repeatedly (iii), we see that the right hand side of this relation is ∼-
equivalent to

(♮(u1)a
|u1|−|♮(u1)|+1, ♮(u2)b

|u2|−|♮(u2)|+1) .

11

This, in turn, is ∼-equivalent to

(♮(u1)a
|v|+|u1|−|♮(u1)|+1, ♮(u2)b

|v|+|u2|−|♮(u2)|+1)

in view of (i). As we have |u1| = |u2| = |u|, we conclude

u(a, b) ∼ (♮(u1)a
|u|+|v|−|♮(u1)|+1, ♮(u2)b

|u|+|v|−|♮(u2)|+1) , (2)

and, by symmetry,

v(a, b) ∼ (♮(v1)a
|u|+|v|−|♮(v1)|+1, ♮(v2)b

|u|+|v|−|♮(v2)|+1) . (3)

Now notice that the right hand sides of (2) and (3) are identical, since ♮(u1) =
♮(v1) and ♮(u2) = ♮(v2) (recall that u and v are projective equivalent). 2

In view of Theorem 8, we have:

Corollary 10 The closure problem for trace, stutter, and projective equiva-
lence with respect to languages represented by non-deterministic finite auto-
mata is in PSPACE.

Next, we complete this result by proving a matching lower bound. We say that
a concurrency relation is non-trivial if the underlying alphabet Σ contains at
least two letters and, in case of trace equivalence, there is at least one pair of
independent letters.

Theorem 11 The closure problem for trace, stutter, and projective equiva-
lence (over non-trivial alphabets) with respect to languages represented by non-
deterministic finite automata is PSPACE-hard.

PROOF. Lemma 3.2.3. from [7] states that the problem of determining whe-
ther the intersection of languages recognized by deterministic finite automata
is empty is PSPACE-hard. By modifying the proof of the lemma in a straight-
forward way, one proves that for an arbitrary alphabet Σ with at least two
letters, say a and b, the following problem is PSPACE hard: given a non-
deterministic finite automaton A recognizing either Σ∗ or Σ∗ \ {u} for some
u ∈ abΣ∗, determine whether or not A recognizes Σ∗.

Now, assume (Σ, D) is a trace alphabet such that (a, b) /∈ D and A is an
automaton such that either L(A) = Σ∗ or L(A) = Σ∗ \{u} for some u ∈ abΣ∗.
Then L(A) = Σ∗ iff L(A) is trace closed. This means the identity function is a
reduction from the above problem to trace closedness. Hence, trace closedness
is PSPACE-hard. As one easily sees, the identity functions also reduces the
above problem to stutter closedness and projective closedness. 2

12

Corollary 12 The closure problem for trace, stutter, and projective equiva-
lence (over non-trivial alphabets) with respect to languages represented by non-
deterministic finite automata is PSPACE-complete.

Note that, in general, not every equivalence relation on Σ∗ is generated by
a sequential relation. Moreover, the ∼-closure of a regular language is not
necessarily regular again. Consider, for instance, the case where Σ = {a, b},
∼ is the trace equivalence relation with respect to the dependency alphabet
D = {(a, a), (b, b)}, and L is the regular language denoted by (ab)∗. In this
case, the ∼-closure of L is the set of words which have as many occurrences
of a as occurrences of b. But this language is not regular.

4 The Closure Problem for Infinite Words

We prove that the closure problem is decidable for regular languages of ω-
words with respect to a considerable number of equivalence relations, namely,
relations that are “piecewise extensions” (see next definition) of relations ge-
nerated by sequential relations. In fact, we show that the closure problem is in
PSPACE for such relations. The infinite versions of the concurrency relations
from Sect. 2 are among these relations.

4.1 Piecewise Extensions

Definition 13 (piecewise extension) Let ∼ be a binary relation on Σ∗.
The relations ∼ ω,∼ ω∗⊆ Σω × Σω are defined by:

(i) α ∼ ω β iff there exist decompositions α = u0u1u2 . . . and β = v0v1v2 . . .
such that ui ∼ vi for every i ≥ 0,

(ii) ∼ ω∗ is the transitive closure of ∼ ω.

The relation ∼ ω∗ is called the piecewise extension of ∼.

It is easy to see that by definition ∼ ω∗ is an equivalence relation, provided ∼
is reflexive and symmetric.

We write ≈L for the syntactic congruence of a language L ⊆ Σω [2]. It is the
relation over Σ∗ defined by: u ≈L v iff

xuyzω ∈ L↔ xvyzω ∈ L, and

x(uy)ω ∈ L↔ x(vy)ω ∈ L, where uy 6= ε and vy 6= ε
(4)

13

for x, y ∈ Σ∗ and z ∈ Σ+.

The following property of the syntactic congruence, which is an immediate
consequence of Lemma 2.2 in [2] and Proposition 2.3 in [12], is of interest to
us.

Proposition 14 ([2,12]) Let ∼ be a congruence relation on Σ∗ and L ⊆ Σω

an ω-regular language. Then L is closed under ∼ ω∗ if and only if ∼ ⊆ ≈L.

W.l.o.g. we thence assume that
1
∼ is reflexive and symmetric. If not, it can

easily be closed under reflexivity and symmetry, with the transitive closure of
the obtained relation being the same as the transitive closure of the original
one. We obtain:

Theorem 15 Let ∼ be a congruence relation on Σ∗ generated by a reflexive,

symmetric relation
1
∼ and L ⊆ Σω an ω-regular language. Then L is closed

under ∼ ω∗ if and only if L is closed under
1
∼ ω.

PROOF. For the non-trivial direction, assume L is not closed under ∼ ω∗.
Then, according to Proposition 14, there exists an equivalence class of ≈L

that is not closed under ∼. Hence, by Lemma 6, there are finite words u, v

such that u
1
∼ v but u 6≈L v. So there exist x, y, z such that xuyzω ∈ L and

xvyzω /∈ L, or x(uy)ω ∈ L and x(vy)ω /∈ L. But xuyzω 1
∼ ω xvyzω, as well as

x(uy)ω 1
∼ ω x(vy)ω. Thus, L is not

1
∼ ω-closed. 2

To obtain an algorithm for piecewise extensions we now argue as in Section 3.

Suppose
1
∼ from Theorem 13 is a sequential relation and C is an automaton

for
1
∼$. It is then easy to construct a Büchi automaton C ′ recognizing (

1
∼$)

ω.
Let A1 and A2 be Büchi automata over Σ$ × Σ$ such that (α, β) ∈ L(A1) iff
α ↓ Σ ∈ L and (α, β) ∈ L(A2) iff β ↓ Σ /∈ L. Then, by Theorem 15, L is
∼-closed iff

L(C ′ × A1 × A2) = ∅ (5)

where the product operation × is defined in the obvious way.

From this, we derive:

Theorem 16 Let ∼ be a congruence relation on Σ∗ that is generated by a
sequential relation. The closure problem for ∼ ω∗ with respect to languages
represented by Büchi automata is in PSPACE.

14

PROOF. The argument from the proof of Theorem 8 goes through with
minor modifications:

First, instead of C the automaton C ′ is used. Second, A2 is constructed
using Safra’s method [19]; a state of A2 can then be represented in space
O(|A| log |A|). Third, the algorithm is adapted as follows (in order to check
whether there is a computation q0, . . . , qi, . . . , qn such that q0 is initial, qi is
final, and qi = qn).

1. let q be the initial state of C ′ × A1 × A2

2. choose a state q′

3. if q′ is a successor of q, let q = q′, else halt (without accepting)
4. if q is final, goto 5 or 2, else goto 2
5. let qF = q
6. choose a state q′

7. if q′ is a successor of q, let q = q′, else halt (without accepting)
8. if q = qF , accept, else goto 6

This can be implemented by a non-deterministic and thus also by a determi-
nistic polyspace Turing machine.

Alternatively to Safra’s construction one can use the method introduced in
[21,28]. 2

4.2 Limit Extensions and Concurrency Relations

If we can now show that trace, stutter and projective equivalences are piecewise
extensions of congruence relations generated by sequential relations, we can
apply Theorem 16 to obtain the desired decidability and complexity results.

We first mention the following straightforward claim.

Lemma 17 If ∼ is a congruence relation, then ∼ ω∗ ⊆ ∼lim.

PROOF. Since ∼lim is transitive, we only need to show ∼ ω ⊆ ∼lim.

Suppose α ∼ ω β, say α = u0u1u2 . . . and β = v0v1v2 . . . such that ui ∼ vi for
i ≥ 0, and u < α. Let k be such that u < u0 . . . uk and let v′ be such that
uv′ = u0 . . . uk. Then uv′ ∼ v0 . . . vk, since ∼ is a congruence relation. 2

Definition 18 (flexible relation) Let g be a function Σ×Σ 7→ F , where F
is some finite set. A congruence relation ∼ is called flexible with respect to g
if the following conditions hold for all v, v′, w, w′ ∈ Σ+, a ∈ Σ:

15

(i) If v ∼ v′, vw ∼ v′w′ and g(lst(v), fst(w)) = g(lst(v′), fst(w′)), then w ∼
w′.

(ii) If v ∼ v′, then g(lst(v), a) = g(lst(v′), a).

If ∼ is flexible with respect to some function g, then we say that ∼ is flexible.

The definition of flexibility weakens the notion of left cancellativeness. The
latter requires that if v ∼ v′ and vw ∼ v′w′ then w ∼ w′. This does not hold
for the stuttering and projective equivalences. To see this, consider the case
where v = v′ = a, w = ab and w′ = b. What prevents left cancellativeness in
this case is that the boundary between v and w and that between v′ and w′

correspond to different cases: while lst(v) = fst(w), we have lst(v′) 6= fst(w′).
Juxtaposed, the first pair of letters belong to an adjacent repetition of the
same letter, while the second pair differs. There is a finite number of cases
for the boundary letters (two in this example), represented by the function
g. Condition (i) guarantees that if the boundary letters for the two pairs
belong to the same case, then w ∼ w′. This limits the way ab and aab can
be broken into pairs of equivalent components. Condition (ii) requires that
two equivalent words v, v′ would behave in the same way w.r.t. the same first
letter a.

Notice that if g is a constant function, then (ii) is trivial and (i) means that
∼ is left cancellative.

Let us first see that the concurrency relations are flexible.

Lemma 19 Each concurrency relation is flexible.

PROOF. As trace equivalence is known to be left cancellative, trace equiva-
lence is flexible with respect to any constant function.

For stutter equivalence, we take g: Σ×Σ → {same,different} with g(a, b) =
same if a = b and else different.

We have to show that conditions (i) and (ii) are satisfied. To do this, let ∼
denote stutter equivalence.

Let v, v′, w, w′ ∈ Σ+, a ∈ Σ.

(i) Suppose v ∼ v′ and vw ∼ v′w′. By way of contradiction, suppose lst(v) =
fst(w) and lst(v′) 6= fst(w′). Then ♮(vw) ∈ ♮(v)(Σ \ {fst(w)})Σ∗ and ♮(v′w′) ∈
♮(v′)fst(w′)Σ∗. This implies ♮(vw) 6= ♮(v′w′), as we have ♮(v) = ♮(v′)—a contra-
diction.

(ii) This is satisfied, because we have lst(u) = lst(u′) whenever u and u′ are

16

non-empty ∼-equivalent words.

For projective equivalence, we take a function g with a range that includes
four values, namely none, both, left and right, indicating which of the
components agree. We set

g((a, b), (c, d)) =

both if a = c and b = d,

none if a 6= c and b 6= d,

left if a = c and b 6= d,

right if a 6= c and b 6= d.

That this is a correct choice can be proved just as in the case of stutter
equivalence. 2

The following theorem, which is a generalization of a result for trace equiva-
lence in [3], gives the converse of Lemma 17 for flexible congruences.

Theorem 20 Let ∼ be a flexible congruence relation. Then ∼lim = ∼ ω∗.

PROOF. In view of Lemma 17, we only have to show ∼lim ⊆ ∼ ω∗. Let
∼ be flexible with respect to g. Assume α ∼lim β. We show that there are
decompositions α = u0u1u2 . . . and β = v0v1v2 . . . and an infinite sequence of
words w0, w1, w2 . . . such that u0 = w0, and

g(lst(w2j), fst(w2j+1)) = g(lst(uj), fst(uj+1)) (6)

and

vj ∼ w2jw2j+1 (7)

hold for j ≥ 0, and

g(lst(w2j−1), fst(w2j)) = g(lst(vj−1), fst(vj)) (8)

and

uj ∼ w2j−1w2j (9)

hold for j ≥ 1 (for a graphical illustration, see Figure 1). This implies α ∼ ω

w0w1w2 . . . ∼
ω β, which means α ∼ ω∗ β.

17

We give an inductive definition for the ui, vi, and wi. In step 2i + 1, we will
define vi and w2i+1; and in step 2i, we will define ui and w2i. This will be done
in such a way that

(*) after step 2i (i > 0), (6) and (7) hold for 0 ≤ j < i and (8) and (9) hold
for 1 ≤ j ≤ i, and

(**) after step 2i+ 1, (6) and (7) hold for 0 ≤ j ≤ i and (8) and (9) hold for
1 ≤ j ≤ i.

Notice that after step 2i (respectively 2i+ 1) the words vi (respectively ui+1)
are not yet defined; nevertheless, (6) (respectively (8)) make sense, as fst(ui+1)
(respectively fst(vi)) will have to be defined as the first letter of what re-
mains from α (respectively β) after removing the prefix u0 . . . ui (respectively
v0 . . . vi−1) which is already defined.

Step 0. We choose an arbitrary non-empty finite prefix u0 < α, and set w0 =
u0.

Step 2i+1. By assumption, see (*), (7) and (9), u0u1 . . . ui ∼ w0w1 . . . w2i where
u0u1 . . . ui < α, and v0v1 . . . vi−1 ∼ w0w1 . . . w2i−1 where v0v1 . . . vi−1 < β. Let
a ∈ Σ be such that u0u1 . . . uia < α, i. e., a is going to be fst(ui+1). Since
α ∼lim β, it follows from Definition 1 that there are finite non-empty strings y
and z, such that y < β and u0u1 . . . uiaz ∼ y. We choose y to be long enough
so that v0v1 . . . vi−1 is a proper prefix of it. (We can do so for the following
reason: let y be any string such that y < β, say β = yβ′, and u0u1 . . . uiaz ∼ y.
Then for every y′ < β′, we have yy′ < β and u0u1 . . . uiazy

′ ∼ yy′. Thus, we
can use yy′ instead of y, and yy′ can be made long enough.)

Let vi ∈ Σ+ be the word such that y = v0v1 . . . vi−1vi and set w2i+1 = az. We
now have to show that the new requirements are fulfilled, namely (6) and (7)
for j = i.

We have ui ∼ w2i−1w2i. So, by Definition 18, part (ii), we have g(lst(w2i), a) =
g(lst(ui), a). Also, fst(w2i+1) = a = fst(ui+1) (remember that ui+1 will only be
defined in the next step). Thus, g(lst(w2i), fst(w2i+1)) = g(lst(ui), fst(ui+1)),
which is (6) for j = i.

From (**), we get w0w1 . . . w2i+1 = w0 . . . w2iaz ∼ u0 . . . uiaz ∼ v0 . . . vi−1vi ∼
w0 . . . w2i−1vi. Also, w0 . . . w2i−1 ∼ v0 . . . vi−1. From Definition 18, part (i),
we can now conclude w2iw2i+1 ∼ vi, as we have g(lst(w2i−1), fst(w2i)) =
g(lst(vi−1), fst(vi)) by (9). Thus we have (7) for j = i.

Step 2i. We proceed symmetrically. 2

From Theorems 16 and 20, we can now conclude:

18

u1 u2 u3 u4

w8w7
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

w6

v1 v2
β =

α = u0

v3v0

w5w4w3w2w1w0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 1. Construction for Theorem 20

Corollary 21 Let ∼ be a flexible congruence relation generated by a sequen-
tial relation. The closure problem for the limit extension of ∼ with respect to
languages represented by Büchi automata is in PSPACE.

Since the finite version of each concurrency relation is a left-cancellative con-
gruence, and the infinite version of each concurrency relation is the limit ex-
tensions of its finite version, the previous corollary allows us to state:

Theorem 22 The closure problem for trace, stutter and projective equivalence
with respect to languages represented by Büchi automata is in PSPACE.

It is now straightforward to adapt the proof of Theorem 11 to obtain:

Theorem 23 The closure problem for trace, stutter and projective equivalence
with respect to languages represented by Büchi automata is PSPACE-hard.

5 The Closure Problem for LTL Properties

We now focus on the closure problem for languages defined by LTL formulas.
At first glance, this problem looks harder than the closure problem for lan-
guages represented by Büchi automata. For there is an inherent exponential
explosion in the conversion from LTL to Büchi automata [29]. However, we
show that for the class of equivalence relations we are interested in, the pro-
blem is still in PSPACE, even when the property is described using an LTL
formula.

Notice that a propositional LTL formula ϕ uses a set of propositions Γ and
that the corresponding alphabet of the language described by ϕ is Σ = 2Γ.
Notice also that projective closedness is defined with respect to a partition of
Γ into two sets of propositions, Γ1 and Γ2; the alphabets Σ1 and Σ2 are 2Γ1 and
2Γ2 , respectively, and every c ∈ Σ is identified with the letter (c ∩ Γ1, c ∩ Γ2)
from Σ1 × Σ2 (see [13]).

Theorem 24 Let ∼ be a congruence relation on Σ∗ that is generated by a

19

sequential relation. The closure problem for ∼ ω∗ with respect to languages
represented by LTL formulas is in PSPACE.

PROOF. Recall from [29] that every LTL formula ϕ can be translated into
an equivalent Büchi automaton of size O(2|ϕ|), each state of which can be
represented in space O(|ϕ|).

Let ϕ be a formula and L the language defined by ϕ. In order to determine
whether L is ∼ ω∗-closed we can proceed as in the previous section: we only
have to check (5). To do this we can follow the steps in the proof of Theorem 16.
There are, however, two modifications to be made: first, A1 is constructed
from ϕ using the construction from [29]; second, A2 is constructed from ¬ϕ
using the construction from [29]. Each state of the product automaton will be
representable in space O(|ϕ| + |ϕ|), which is identical with O(|ϕ|). The test
for emptiness (as explained at the end of the proof of Theorem 16) can thus
be implemented in polynomial space. 2

Theorem 25 The closure problem for trace, stutter, and projective equiva-
lence (over non-trivial alphabets) with respect to languages defined by LTL
formulas is PSPACE-hard.

PROOF. Let ∼ be an arbitrary non-trivial concurrency relation over Σ. We
will reduce the satisfiability problem for LTL formulas over Σ to the comple-
ment of the closure problem for ∼. This is enough, for LTL satisfiability is
PSPACE-complete [20] (for any non-trivial alphabet) and PSPACE is closed
under complementation.

Since ∼ is assumed to be a non-trivial concurrency relation, there exist a, b ∈ Σ
such that for every language L ⊆ Σ∗, the language abL is ∼-closed iff L = ∅.
(If ∼ denotes projective equivalence or stutter equivalence, it is enough to
choose a and b distinct; if ∼ denotes trace equivalence, one has to choose a
and b independent.)

Let ψ be the formula

ψ =
∧

p∈a

p ∧
∧

p∈Γ\a

¬p ∧©

∧

p∈b

p ∧
∧

p∈Γ\b

¬p

 ,

which defines abΣ∗.

Consider the function that maps a given LTL formula ϕ to η = ©© ϕ ∧ ψ.
Clearly, this mapping is computable in polynomial time. Thus to conclude the
proof, we only have to show that ϕ is satisfiable iff the set defined by η is not

20

∼-closed. But this is trivial, because by construction η defines the language
abL where L denotes the language defined by ψ. 2

6 Applications

6.1 The Context: Model Checking and Partial-Order Methods

Partial-order reduction methods is a generic name for a family of algorithms for
generating a reduced state space of a concurrent program [26,4,30,15]. They
are based on a modified depth-first search, where at each state in the search
only a subset of the transitions that can be taken (i. e., are enabled) are cho-
sen. The main observation behind these algorithms is that for most purposes,
there is no need to distinguish between program execution sequences that are
trace equivalent. Hence, a state space that includes at least one sequence per
equivalence class can replace the full state space of a program.

However, the reduced state spaces produced by partial-order methods cannot
be used without further precautions for model checking specifications given
as temporal logic formulas or as Büchi automata. Indeed these formalisms
can express properties that do distinguish between sequences that are trace
equivalent. The approaches proposed so far to solve this problem consist of
considering more transitions as being dependent, and hence reducing the size
of the trace equivalence classes. Concretely, correctness is ensured by being
pessimistic about which transitions need to considered dependent, e.g., one
adds dependencies among all transitions that can potentially affect the truth
of the checked property [26], or among subsets of such transitions, after ap-
plying some LTL rewriting rules [15]. Of course, this has the negative effect
of substantially limiting the reduction of the size of the state space that can
be achieved by partial-order methods.

The results of this paper offer an interesting alternative: check that the for-
mula to be verified is trace closed and use the partial-order technique without
any additional dependencies. Note that one can expect a well specified pro-
perty to be trace closed. If the property nevertheless turns out not to be trace
closed and really should be checked as such, one can use our algorithm to
guide the partial-order reduction algorithms as to which dependencies need to
be added in order for the property to be checked reliably. Indeed, when a pro-
perty is not trace closed, our algorithm produces a pair of independent actions
whose permutation causes a sequence satisfying the property to become one
that no longer satisfies it. By adding this pair of actions to the dependency
relation and repeating the procedure until the property is trace closed, one
obtains a minimal dependency relation for which partial-order methods check

21

the property reliably.

Checking for stutter equivalence is also important for similar applications.
For instance, in the partial-order reduction methods of [26,15], the reduction
algorithm guarantees to generate at least one execution sequence from each
stutter equivalence class. Hence, it is only usable for stutter-closed formulas.
In [26,15], this condition is enforced by restricting oneself to LTL formulas not
containing the next-time operator. The decision procedure we have developed
in this paper offers a more flexible alternative. Similarly, the reduction method
of [14] guarantees to generate at least one execution sequence for each trace
equivalence class and thus can benefit from a decision procedure that can
check whether the specification is trace closed.

6.2 Matching States and Transitions

We now turn to the problem of applying our decision procedure for checking
closure properties in the context of model checking. The difficulty is that the
decision procedures we have given assume that both the specification and the
equivalence relation for which closure is checked are expressed in terms of
the same set of atomic actions. However, in the context of model checking,
it is common to have a specification expressed in terms of Boolean proposi-
tions interpreted in states of the program whereas some equivalences among
computations, e.g., trace equivalence, are expressed in terms of transitions of
the program. We thus need to adapt our decision procedure to take this into
account.

Concretely, we have an LTL specification ϕ built over a set of atomic proposi-
tions Γ as well as a program P . The program P is defined by a set of states S,
a set of transitions ∆ ⊆ S×S, and an interpretation function v : S → Γ. The
problem is to determine whether the property ϕ is closed for P , i.e. whether
there are, or not, two sequences of transitions from ∆ that are equivalent with

respect to ∼ ω∗ (
1
∼ is a given sequential relation on transition sequences) and

that generate sequences of states for which the LTL formula ϕ has different
values.

Unfortunately, solving this problem exactly requires exploring the state space
of P since the possible effect of transitions on the truth values of state propo-
sitions can depend on which states are actually reachable. However, exploring
the state space of P would defeat the practical purpose of checking for closure,
which is precisely to allow the computation of a reduced state space. We thus
turn to an approximate solution and use a nondeterministic representation of
the relation between the sequence of transitions and the truth values of the
propositions in Γ. Concretely, for each transition τ ∈ ∆, we extract from the

22

program text a relation δ(τ) ⊆ 2Γ × 2Γ that represents all possible ways in
which the transition τ can affect the truth values of the propositions in Γ.
Furthermore, we say that a sequence σ ∈ (2Γ)ω conforms with a sequence of
transitions ρ ∈ ∆ω iff for each i > 0, (σ(i− 1), σ(i)) ∈ δ(ρ(i)). So, in practice
we will check whether there are two sequences of transitions from ∆ equiva-
lent with respect to ∼ ω∗ and for which there are conforming sequences from
(2Γ)ω on which the LTL formula ϕ has different values. We will call this no-
tion conformance closure. Notice that checking for conformance closure yields
a potentially pessimistic result since sequences conforming to a transition se-
quence are not necessarily possible. The advantage is that conformance closure
avoids any additional complexity linked to relating states and transitions as
shown by the following Theorem.

Theorem 26 Let ∆ be the set of transitions of a program P . Let ∼ be a
congruence relation on ∆∗ that is generated by a non-trivial sequential rela-

tion
1
∼. The conformance closure problem for ∼ ω∗ with respect to a property

expressed by a temporal logic formula ϕ is in PSPACE.

PROOF. We are thus given a temporal logic formula ϕ over a set of pro-
positions Γ and a program P , described by its set of transitions ∆ as well
as the relations δ(τ) ⊆ 2Γ × 2Γ describing the effect of the transitions on the
propositions in Γ.

To check for conformance closure, we build an automaton operating on infinite
words over the alphabet 2Γ ×∆×∆× 2Γ. An infinite word over this alphabet
can be viewed as a quadruple w = (σ1, ρ1, ρ2, σ2) where σ1, σ2 ∈ (2Γ)ω and
ρ1, ρ2 ∈ ∆ω. The automaton we build is obtained by taking the product of the
five following components.

(1) An automaton checking that σ1 ∈ L(ϕ) where L(ϕ) is the set of sequences
satisfying the formula ϕ.

(2) An automaton checking that σ2 ∈ L(ϕ).
(3) an automaton that checks that the input can be decomposed into infini-

tely many factors that are all elements of
1
∼$.

(4) An automaton that checks that ρ1 conforms with σ1.
(5) An automaton that checks that ρ2 conforms with σ2.

The automata (1) and (2) are exponential in the size of ϕ but can be built and
explored in PSPACE (see Theorem 16). The automaton (3) is of size linear in

the size of the automaton defining
1
∼$. The automata (4) and (5) are of size

|∆| × 2(2|Γ|), but can be built and explored using space polynomial in the size
of ∆ and Γ.

23

Note that, for trace equivalence, conformance closure is in fact PSPACE-
complete. Indeed, the hardness follows from the similar result established in
Theorem 25.

7 Conclusions

Being trace closed or stutter closed is a natural property of specifications for
concurrent systems. Yet, many specification languages can specify properties
that violate it, e.g., LTL and finite automata recognizable languages. We have
proposed an algorithm for a family of equivalence relations, including trace,
stutter and projective equivalence, which decides closedness for regular and
ω-regular languages, and LTL specifications. This allows exploiting the sim-
plicity of such languages, while using the decision procedure to restrict the
specifications to closed ones.

Furthermore, it is perfectly realistic to expect to be able to use our algorithm
in the context of verification tools that use partial-order state space reductions.
Indeed, it involves no other construction than those routinely used in model-
checking, and has the same complexity in terms of the LTL formula, namely
PSPACE-complete.

Acknowledgments

We are grateful to Anca Muscholl for pointing out a bug in the proof of Theo-
rem 20 in the conference version [17] of this paper, and to P. S. Thiagarajan
for sending us a preprint of [23].

References

[1] Alur, R., Peled, D., Penczek, W.: Model-checking of causality properties.
In Proc. 10th IEEE Symposium on Logic in Computer Science, San Diego,
California (1995) 90–100.

[2] Arnold, A.: A syntactic congruence for rational ω-languages. Theoretical
Computer Science 39 (1985) 333–335.

[3] Diekert, V., Gastin, P., Petit, A.: Rational and recognizable trace languages.
Information and Computation 116 (1995) 134–153.

24

[4] Godefroid, P.: Using partial orders to improve automatic verification methods.
In Proc. 2nd Workshop on Computer Aided Verification, New Brunswick, NJ.
Lect. Notes in Comput. Sci., vol. 531, Springer (1990) 176–185.

[5] Katz, S., Peled, D.: Verification of distributed programs using representative
interleaving sequences. Distributed Computing 6 (1992) 107–120.

[6] Kwiatkowska, M. Z.: Event fairness and non-interleaving concurrency. Formal
Aspects of Computing 1 (1989) 213–228.

[7] Kozen, D.: Lower bounds for natural proof systems. 18th IEEE Symposium on
Foundations of Computer Science, Providence, Rhode Island (1977) 254–266.

[8] Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers 28 (1979) 690–691.

[9] Lamport, L.: What good is temporal logic? In Proc. IFIP Congr. on
Information Processing, Elsevier (1983) 657–668.

[10] Mazurkiewicz, A.: Trace theory. In Proc. Advances in Petri Nets 1986, Bad
Honnef, Germany. Lect. Notes in Comput. Sci., vol. 255, Springer (1987) 279–
324.

[11] Muscholl, A.: Über die Erkennbarkeit unendlicher Spuren, doctoral thesis,
Stuttgart University, 1994. Appeared also as vol. 17 of Teubner-Texte zur
Informatik, Teubner, Stuttgart, Leipzig, 1996.

[12] Pécuchet, J.-P.: Etude Syntaxique des parties reconnaissable de mots infinis. In
Automata, Languages, and Programming: 13th Intern. Coll. Rennes, France.
Lect. Notes in Comput. Sci., vol. 226, Springer (1986) 294–303.

[13] Peled, D.: On projective and separable properties. In Proc. Colloquium on
Trees in Algebra and Programming, Edinburgh, Scotland. Lect. Notes in
Comput. Sci., vol. 787, Springer (1994) 291–307.

[14] Peled, D.: All from One, One from All: on Model Checking using
representatives, In Proc. 5th International Conference on Computer Aided
Verification, Elounda, Greece, Lect. Notes in Comput. Sci., vol. 697, Springer
(1993) 409–423.

[15] Peled, D.: Combining partial-order reductions with on-the-fly model-checking.
Formal Methods in System Design 8 (1996) 39–64.

[16] Peled, D., Pnueli, A.: Proving partial-order properties. Theoretical Computer
Science 126 (1994) 143–182.

[17] Peled, D., Wilke Th., Wolper P.: An Algorithmic Approach for Checking
Closure Properties of ω-Regular Languages. CONCUR’96, 7th International
Conference on Concurrency Theory, 1996, Pisa, Italy, Springer Verlag, Lect.
Notes in Comput. Sci., vol. 1119, Springer (1996) 596–610.

[18] Pnueli, A.: The temporal logic of programs. In Proc. 18th IEEE Symposium
on Foundation of Computer Science, Providence, Rhode Island (1977) 46–57.

25

[19] Safra, S.: On the complexity of ω-automata. In Proc. 29th Annual Symposium
on Foundations of Computer Science, White Plains, New York (1988) 319–327.

[20] Sistla, A. P., Clarke, E. M.: The complexity of propositional linear temporal
logics. Journal of the ACM 32 (1985) 733–749.

[21] Sistla, A. P., Vardi, M. Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science
49 (1987) 217–237.

[22] Thiagarajan, P. S.: A trace based extension of linear time temporal logic. In
Proc. 10th IEEE Symposium on Logic in Computer Science, Paris, France
(1994) 438–447.

[23] Thiagarajan, P. S., Walukiewicz, I.: An Expressively Complete Linear Time
Temporal Logic for Mazurkiewicz Traces. In Proc. 13th IEEE Symposium on
Logic in Computer Science, Warsaw, Poland (1997). To appear.

[24] Thomas, W.: Automata and quantifier hierarchies: formal properties of finite
automata and applications. In Proc. of LITP Spring School on Theoretical
Computer Science, J. E. Pin, ed. Lect. Notes in Comput. Sci., vol. 386, Springer
(1989) 104–119.

[25] Thomas, W.: Automata on infinite objects. In Handbook of Theoretical
Computer Science, vol. B, J. van Leeuwen, ed., Elsevier, Amsterdam (1990)
133–191.

[26] Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1 (1992) 297–322.

[27] Vardi, M. Y., Wolper, P.: Automata-theoretic techniques for modal logics of
programs. J. Comput. System Sci. 32 (1986) 182–221.

[28] Vardi, M. Y., Wolper, P.: Reasoning about infinite computations. Information
and Computation 115 (1994) 1–37.

[29] Wolper, P.: Temporal logic can be more expressive. Information and Control
56 (1983) 72–99.

[30] Wolper, P., Godefroid, P.: Partial-order methods for temporal verification.
In Proc. CONCUR, 4th Conference on Concurrency Theory, Hildesheim,
Germany. Lect. Notes in Comput. Sci., vol. 715, Springer (1993) 233–246.

26

