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Statistical cluster analysis

Suppose

X ∼ F arises from G1 or G2 with πi (F ) = IPF [X ∈ Gi ]

then

F is a mixture of two distributions

F = π1(F )F1 + π2(F )F2

with density f = π1(F )f1 + π2(F )f2.

Additional assumption : one dimension !
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The generalized 2-means clustering method

Aim of clustering : Find estimations C1(F ) and C2(F ) of
the two underlying groups.

The clusters’ centers (T1(F ), T2(F )) are solutions of

min
{t1,t2}⊂R

∫

Ω

(

inf
1≤j≤2

|x − tj |

)

dF (x)

for a suitable strictly increasing penalty function
Ω : R

+ → R
+.

Classical penalty functions :

Ω(x) = x2 → 2-means method

Ω(x) = x → 2-medoids method
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Classification rule

The classification rule is

RF (x) = Cj(F ) ⇔ Ω(|x − Tj(F )|) = min
1≤i≤2

Ω(|x − Ti (F )|)

The clusters are simply :

C1(F ) =] −∞, C (F )[

C2(F ) =]C (F ), +∞[

where C (F ) =
T1(F ) + T2(F )

2
is the cut-off point.

T1(F ) and T2(F ) are the generalized Ω-means of the
corresponding clusters.
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Optimality in classification

The error rate is defined as the probability to misclassify
data ;

A classification rule is optimal if the corresponding error
rate is minimal ;

The optimal classification rule is the Bayes rule (BR) :

x ∈ C1 ⇔ π1(F )f1(x) > π2(F )f2(x)

(Anderson, 1958) ;

The 2-means procedure is optimal under the model

FN = 0.5 N(µ1, σ
2) + 0.5 N(µ2, σ

2) with µ1 < µ2

(Qiu and Tamhane, 2007).
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Simulation settings (1)

FN = π1 N(−µ, 1) + (1 − π1) N(µ, 1) ;

m = 1000 simulations ;

Samples of size n ⇒ T1
k , T2

k , EERk (k = 1, . . . ,m)

⇒ EER =
1

m

m
∑

k=1

EERk ;

Fε = (1 − ε)FN + ε∆x with ε = 0.01 and x coming from
G1.
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Simulation results for π1 = 0.5 (1)

µ x ER of BR n EER
0% 1%

1 -4 0.1587 100 0.1618 0.1607
500 0.1590 0.1579
1000 0.1587 0.1574

1.5 -5 0.0668 100 0.0678 0.0676
500 0.0676 0.0669
1000 0.0671 0.0666
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Simulation results for π1 = 0.5 (1)

µ x ER of BR n EER
0% 1%

1 -4 0.1587 100 0.1618 0.1607
500 0.1590 0.1579
1000 0.1587 0.1574

1.5 -5 0.0668 100 0.0678 0.0676
500 0.0676 0.0669
1000 0.0671 0.0666
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Simulation settings (2)

FN = π1 N(−µ, 1) + (1 − π1) N(µ, 1) ;

m = 1000 simulations ;

Training samples of size n ⇒ T1
k , T2

k , EERk

(k = 1, . . . ,m) ;

Fε = (1 − ε)FN + ε∆x with ε = 0.01 and x coming from
G1 ;

Test sample of size N = 100000 ⇒ TERk (k = 1, . . . ,m)

⇒ TER =
1

m

m
∑

k=1

TERk .
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Simulation results for π1 = 0.5 (2)

µ x ER of BR n TER
0% 1%

1 -4 0.1587 100 0.1625 0.1632
500 0.1595 0.1597
1000 0.1604 0.1611

1.5 -5 0.0668 100 0.0697 0.0702
500 0.0676 0.0678
1000 0.0669 0.0672
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Formal definitions

Theoretical error rate : TER

• Training sample according to F : estimation of the rule

• Test sample according to Fm : evaluation of the rule

• In ideal circumstances : F = Fm

TER(F , Fm) =
2

∑

j=1

πj(Fm)IPFm
[RF (X ) 6= Cj(F )|Gj ]

Empirical error rate : EER

• Training sample according to F : estimation and

evaluation of the rule

EER(F , F ) =
2

∑

j=1

πj(F )IPF [RF (X ) 6= Cj(F )|Gj ]
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Formal definitions

Theoretical error rate : TER

• Training sample according to F : estimation of the rule

• Test sample according to Fm : evaluation of the rule

• In ideal circumstances : F = Fm

TER(F , Fm) =
2

∑

j=1

πj(Fm)IPFm
[RF (X ) 6= Cj(F )|Gj ]

Empirical error rate : EER

• Training sample according to F : estimation and

evaluation of the rule

EER(F , F ) =
2

∑

j=1

πj(F )IPF [RF (X ) 6= Cj(F )|Gj ]

In ideal circumstances, TER = EER.
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Under contamination (1)

Now, the training sample is contaminated by a mass ε at the
point x :

F → Fε = (1 − ε)F + ε∆x

Theoretical error rate :

TER(Fε, Fm) =
2

∑

j=1

πj(Fm)IPFm
[RFε

(X ) 6= Cj(Fε)|Gj ]

Empirical error rate :

EER(Fε, Fε) =
2

∑

j=1

πj(Fε)IPFε
[RFε

(X ) 6= Cj(Fε)|Gj ]



Impact of

contamina-

tion on

empirical and

theoretical

error rates in

classification

Classification
based on
clustering

TER vs EER

IF of the ER

Conclusions

Under contamination (2)

Under Fε = (1 − ε)F + ε∆x , one has

TER(Fε, Fm) =
2

∑

j=1

πj(Fm)IPFm
[RFε

(X ) 6= Cj(Fε)|Gj ]

= π1(Fm) {1 − Fm,1 (C (Fε))} + π2(Fm)Fm,2 (C (Fε))
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Under contamination (2)
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TER(Fε, Fm) =
2

∑

j=1

πj(Fm)IPFm
[RFε

(X ) 6= Cj(Fε)|Gj ]

= π1(Fm) {1 − Fm,1 (C (Fε))} + π2(Fm)Fm,2 (C (Fε))

EER(Fε, Fε) =
2

∑

j=1

πj(Fε)IPFε
[RFε

(X ) 6= Cj(Fε)|Gj ]

= π1(Fε) {1 − F1,ε (C (Fε))} + π2(Fε)F2,ε (C (Fε))



Impact of

contamina-

tion on

empirical and

theoretical

error rates in

classification

Classification
based on
clustering

TER vs EER

IF of the ER

Conclusions

Under contamination (2)

Under Fε = (1 − ε)F + ε∆x , one has

TER(Fε, Fm) =
2

∑

j=1

πj(Fm)IPFm
[RFε

(X ) 6= Cj(Fε)|Gj ]

= π1(Fm) {1 − Fm,1 (C (Fε))} + π2(Fm)Fm,2 (C (Fε))

EER(Fε, Fε) =
2

∑

j=1

πj(Fε)IPFε
[RFε

(X ) 6= Cj(Fε)|Gj ]

= π1(Fε) {1 − F1,ε (C (Fε))} + π2(Fε)F2,ε (C (Fε))



Impact of

contamina-

tion on

empirical and

theoretical

error rates in

classification

Classification
based on
clustering

TER vs EER

IF of the ER

Conclusions

πi(Fε) =? and Fi ,ε =?

Under Fε = (1 − ε)F + ε∆x , one has

πi (Fε) = IPFε
[X ∈ Gi ] = (1 − ε)πi (F ) + εI{x ∈ Gi}

Fi ,ε =

(

1 −
εI{x ∈ Gi}

πi (Fε)

)

Fi +
εI{x ∈ Gi}

πi (Fε)
∆x

⇒ Fε = π1(Fε)F1,ε + π2(Fε)F2,ε
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Graphs of TER and EER under contamination

Fm = FN ≡ 0.5 N(−1, 1) + 0.5 N(1, 1) an optimal model ;

Error rate of the Bayes rule : 0.1587 ;

The 2-means procedure ;

C (FN) = −1+1
2

= 0 ;

Fε = (1 − ε)Fm + ε∆x ;

x = −0.5 and ε varying ;

ε = 0.1 and x ∈ G1 varying.
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Theoretical error rate under contamination
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Empirical error rate under contamination
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TER vs EER : Influence function

TER(Fε, F ) ≈ TER(F , F ) + εIF(x ; TER, F )

EER(Fε, Fε) ≈ EER(F , F ) + εIF(x ; EER, F )

where IF(x ; ER, F ) =
∂

∂ε
ER((1 − ε)F + ε∆x)

∣

∣

∣

∣

ε=0

(under condition of existence).

Theoretical error rate :

TER(Fε, FN) ≥ TER(FN , FN) ⇒ IF(x ; TER, FN) ≡ 0

Empirical error rate : The IF of EER does not vanish!
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Influence function of the empirical error rate

Proposition

For all x 6= C (F ),

IF(x ; EER, F ) = −EER(F , F ) + I{x ∈ G1}

+ I{x ≤ C (F )}(1 − 2 I{x ∈ G1})

+
1

2
(IF(x ; T1, F ) + IF(x ; T2, F ))

{π2(F )f2(C (F )) − π1(F )f1(C (F ))}.

Expressions of IF(x ; T1, F ) and IF(x ; T2, F ) were computed by
García-Escudero and Gordaliza (1999).
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Representation of the IF of the EER
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IF of the EER under the optimal model

For all x 6= C (FN),

IF(x ; EER, FN) = −EER(FN , FN) + I{x ∈ G1}

+ I{x ≤ C (FN)}(1 − 2 I{x ∈ G1})

=

{

Φ(−µ1) − I{x < 0} if x ∈ G1

I{x < 0} − Φ(−µ2) if x ∈ G2

where Φ denotes the standard normal cumulative distribution
function.
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Representation under optimal model

FN = 0.5 N(−∆/2, 1) + 0.5 N(∆/2, 1)
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Conclusions

Under optimal generalized 2-means clustering rule,

when working with a single sample, contamination may
improve the quality of the clustering rule;

when working with two samples, contamination make
always the error rate on the test sample increase;

BUT when working with two samples, the property of the
clusters’centers obtained by a generalized 2-means
procedure is not true anymore on the test sample.
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Future researches

More than 1 dimension (work in progress) and more than 2
groups.

Generalized trimmed 2-means : for α ∈ [0, 1],
(T1(F ), T2(F )) are solution of

min
{A:F (A)=1−α}

min
{t1,t2}⊂R

∫

A

Ω

(

inf
1≤j≤2

|x − tj |

)

dF (x)

(Cuesta-Albertos, Gordaliza, and Matrán, 1997).

Nondecreasing penalty function, leading to a trimming
procedure because observations far away from the two
clusters’centers have the same Ω-distance from the centers.
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Thank you for your

attention!
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