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ABSTRACT

The P Cygni line profiles observed in the spectrum of broad absorption-line quasars, supernovae, etc., are
sometimes characterized by very large Doppler velocities. In order to interpret more accurately such profiles,
we have generalized the Sobolev theory for the transfer of line radiation to the case of the special relativity.

Considering spherically symmetric expanding envelopes, we first discuss the deformations suffered by the
surfaces of equal frequency when the velocities become comparable to that of light. For a single line formed in
an atmosphere with a monotonic velocity field, we note the possible appearance of distant interactions at very
large expansion velocities, a relativistic effect which may be of considerable importance when evaluating the
amplitude of radiative forces.

Following a probabilistic formalism, we subsequently establish the expression of the source function and
that of the line profile. We find that the relativistic P Cygni line profiles are significantly different from those
computed in the framework of the classical theory: for increasing values of the terminal wind velocity, the red
emission wing becomes definitely narrower than the blue one while the line center emission increases. These
modifications are mainly due to the redistribution of the scattered line photons in a frequency interval which
is no longer symmetrical, in accordance with the relativistic expression of the Doppler effect.

We finally study the first order moment of unsaturated P Cygni line profiles and show that, in the rela-
tivistic case, this moment is still directly proportional to the mass-loss rate. For the case of slightly and
strongly saturated line profiles, we compute the first-order moment curves of growth which, after normal-
ization, are also found to be little dependent on the relativistic corrections and very useful for the determi-

nation of mass-loss rates.

Subject headings: line profiles — quasars — radiative transfer — relativity — stars: supernovae

I. INTRODUCTION

P Cygni line profiles characterized by relativistic Doppler
velocities are currently observed in the spectrum of astronomi-
cal objects like, for instance, supernovae (Weiler and Sramek
1988) and broad absorption-line (BAL) quasars (Weymann
and Foltz 1983).

For extreme velocities (v > 0.2c), we naturally expect that
the classical theory will cease to provide an accurate descrip-
tion of the observed line profiles. This can be easily understood
by considering the Doppler effect which is essential in the for-
mation of P Cygni line profiles (Beals 1929, 1931). Its rela-
tivistic expression is significantly more complex than in the
low-velocity regime (see next section) and implies that the
absolute frequency shift of photons scattered by material
receding with a velocity v (redshift) is smaller than the shift
produced by material moving toward the observer at —uv
(blueshift). The red emission wing of relativistic P Cygni line
profiles will therefore be significantly narrower than the blue
one, an asymmetry which is not present in the classical limit
(see, e.g., the atlas of profiles due to Castor and Lamers 1979).

The aim of this paper is to derive the expression of line
profiles formed in a relativistically expanding atmosphere
assumed to be spherically symmetric and stationary. We
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restrict ourselves to the study of pure photon scattering by a
two-level atom with complete redistribution in the fluid frame.
In addition, we adopt the Sobolev approximation (Sobolev
1958, 1960) for the treatment of the radiative transfer. If the
very large velocities considered here are associated with simi-
larly large velocity gradients throughout the envelope, this
approximation is even more adequate than in cases describable
in the classical limit. Our approach is quite different of that of
Mihalas (1980) who uses the comoving-frame formalism to
study the transfer of the continuum radiation in relativistic
flows.

After briefly recalling the basic equations and notations
(§ 1I), we discuss in § III the modifications undergone by the
surfaces of equal frequency when the fluid velocity becomes
comparable to that of light. These surfaces are especially useful
in order to visualize the transfer of line photons through the
envelope. Following a probabilistic point of view, we derive in
§ IV the expression of transfer quantities such as the optical
depth, the escape probabilities and the source function. This
allows us to determine, in § V, the relativistic expression of a P
Cygni line profile. In § VI, we study the first order moment of
relativistic line profiles, a quantity which is particularly useful
for the determination of mass-loss rates. Numerical applica-
tions are presented in § VII. Finally, conclusions form the last
section.

Different formalisms based on the Sobolev approximation
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have been used to derive the classical expression of P Cygni
line profiles (Castor 1970; Lucy 1971; Surdej 1979). In this
paper, we follow the probabilistic approach developed by
Surdej which, as we shall see, is quite easy to generalize to the
relativistic case. We will frequently refer to Paper I (Surdej
1977) in which the classical escape probabilities and source
function are derived and to Papers II and III (Surdej 1979,
1982) where line profiles are discussed.

II. SOME BASIC EQUATIONS

If we apply to the photon four-momentum the Lorentz
transformation between a rest frame (observer’s frame) and a
frame moving at a constant velocity v (comoving or fluid
frame), it is easy to derive the well-known relations

vo = vi(l — pp), 1)
o = ﬁ : @
where
N
=2, @
Cc

1 = cos 0 being the angle-cosine describing the direction of the
photon propagation and v the frequency (Mihalas 1978). Both
1 and v are measured in the rest frame while quantities with the
suffix zero are measured in the comoving frame. As usual, ¢
represents the light velocity. We immediately see from equa-
tion (1)—the relativistic form of the Doppler effect—that the
absolute frequency shift | v, — v| depends on the sign of u for
velocities comparable to that of light. For 4 = 0, this shift is no
longer equal to zero.

Let us now consider the transformations for the opacity (a,),
the emissivity (e,) and the specific intensity (I,). As shown by
Thomas (1930), Mihalas (1978), and Mihalas and Mihalas
(1984), the requirement that independent observers in both rest
and comoving frames measure the same number of photon
events leads to the following relations:

v Vi
Y _ v 5
B ()]
va, = vo ol (6)

0

€, €
S =3, )]

v vi

where, again, all quantities with the suffix zero are measured in
the comoving frame. We also have the useful relations

vido = vidw, , 8)
vdvdw = vydvydo, , 9)

dw representing a solid angle element measured in the rest
frame.

III. THE SURFACES OF EQUAL FREQUENCY

Let us consider a spherically symmetric atmosphere expand-
ing around a central core of radius r,. The velocity of the flow
v(r)—r denoting the radial distance to the core—is supposed to
increase continuously from v,, the velocity at the surface of the
core, to v, the terminal velocity.
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If we assume that the fluid is populated by two-level (1=2)
atoms emitting photons at the comoving line center frequency
v{,, all photons seen by a rest-observer with a specified fre-
quency v are emitted from surfaces satisfying the relation (see
eq. [1])

vz = w1 — uf] . (10)

Solving this equation in r and u for different values of v pro-
vides us with the surfaces of equal frequency v. Strictly speaking,
these surfaces should be considered as thin shells because the
thermal velocities are not exactly equal to zero when compared
to the macroscopic velocity field. Now, if we define the dimen-
sionless frequency
v—1?

X=-—1 (11)
Vmax T€presenting the maximum frequency which corresponds
to the terminal velocity +v.,, we easily find that

o WA —pp) -1
VA+B)A—-B) -1’

where f, is equal to v,/c. So defined, the dimensionless fre-
quency X always satisfies the relation

[1-8
—-1<X< 2 = XR |
1+ 8, ®

from which we immediately notice that no photons of fre-
quencies X > X% are emitted toward the observer.

Adopting the velocity law o) = v, + (v, — v X1 — r./r),
representative of outward accelerating envelopes (see § VII), we
have computed surfaces of equal frequency X for different
values of §,,. Examples are illustrated in Figures la-1d. We
immediately see that, unlike in the classical case, the surfaces
strongly depend on the value of the terminal velocity and that
very unsymmetric parts of the atmosphere may contribute to
the frequencies X and — X.

It is also interesting to consider the surfaces of equal fre-
quency obtained for velocity laws of the type u(r) oc . Such
surfaces are illustrated in Figures 2a-—2d and show similar
deformations for increasing values of §_. But in addition, at
very high velocities, we see that photons emitted toward the
observer may intercept the same surface a second time and
consequently be reabsorbed. This corresponds to the appear-
ance of distant interactions in highly relativistic flows, a situ-
ation already known for the case of decelerated or
nonmonotonic flows (sée Rybicki and Hummer 1978 and
Paper II). It is clear that such interactions completely modify
the transfer of line radiation and may be of fundamental
importance when evaluating the amplitude of the radiative
forces. We should nevertheless note that these interactions are
only present for very high values of 8 and never for velocity
distributions of the type considered in § VII. We will therefore
not discuss in more detail this effect in the remainder of this
paper.

We emphasize that the strong and nonlinear dependence of
the surfaces of equal frequency upon 8, forces us to consider
the terminal velocity as a totally independent parameter when
computing line profiles.

(1) ’
Vmax — V12

12

13

IV. PHOTON ESCAPE PROBABILITY AND SOURCE FUNCTION

For the treatment of line transfer, we follow the probabilistic
approach (see Paper I). This approach is particularly inter-
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F1G. 1.—(a—d) Evolution of the surfaces of equal frequency X as a function of ., = 0.01 (a; see the classical case), (b) 0.2, (c) 0.5, and (d) 0.8 for a typical velocity
law (B of eq. [72]). The surfaces actually extend to infinity, although for presentation they have been limited by boxes of 80 x 80 in units of 7,. Let us also recall that
no photons are emitted at frequencies X > XX where X = (a) 1.0, (b) 0.82, (c) 0.58, and (d) 0.33.

esting in the relativistic case because we can easily manipulate
invariants; a probability being nothing else than a ratio of
photon numbers that is identical in both the rest and the co-
moving frames.

Since photon number must be carefully distinguished from
energy, we prefer to use hereafter quantities like I = I,/hv and
€) = ¢€,/hv, h denoting the Planck constant. The transform-
ation laws of such quantities are immediately derived from
equations (5)~7).

In order to define the useful transfer quantities (optical
depth, absorption, or escape probabilities, etc.), we set our-
selves in the rest frame where it is easier to follow the trajec-
tories of atoms as well as photons. While most of these
quantities are frame independent, it is often more convenient to
calculate them in the comoving frame where, for example, the
opacity and the emissivity are isotropic. Because the flow is
accelerated, we must consider transformations between the rest
frame and a series of frames which move at constant velocity,
coinciding instantaneously with the fluid at a selected point.

In addition to the Sobolev approximation which states that
most of the physical characteristics of the fluid can be con-
sidered as constant at some—small—distance scale (see the
§ IVa), we assume that the material advection is negligible.
Because this latter approximation is certainly not valid for

ultrarelativistic flows (f ~ 1}—due to the time dilatation the
distance traveled by a fluid element during the lifetime of an
excited atomic state may become comparable to the Sobolev
distance scale—we restrict our discussion to reasonable rela-
tivistic velocities (typically B, < 0.8) which, in any case,
encompass most of the existing observations.

a) Relativistic Expression of the Photon Escape Probability

Let us follow a photon emitted at a point s in the moving
fluid and seen, by a rest observer, at a frequency v and propa-
gating along a direction with abcissae s. This situation is illus-
trated schematically in Figure 3. This photon has a probability
dt, = a,(s)ds of being absorbed between s and s + ds and there-
fore a probability e™™ of leaving the envelope without any
absorption, the optical depth t, taking the form

@
, =1 a,ds.
SE

In order to easily calculate a,, we consider comoving frames
coinciding instantaneously with the fluid at each point s along
the trajectory. In these frames, the opacity can be expressed by

a0(8) = a2 Po(ve — ¥32) , (15)

(14)
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F1G. 2—(a-d) As in Fig. 1a—d, we see the evolution of the surfaces of equal frequency X as a function of 8, = (a) 0.01, (b) 0.2, (c) 0.8, and (d) 0.98 but for the
velocity law u(r)/v,, = r/r,,,, Where r,..., the maximum radial dimension of the envelope, is taken equal to 10r,. The values of XX are, respectively, (a) 1.0, (b) 0.82, ©
0.58, and (d) 0.10. The appearance of distant radiative interactions in the moving envelope are clearly visible on (d).

where af,(r) is the total opacity in the transition 1=2 and
®,(vo — vY,) the atomic absorption profile. This absorption
profile is assumed to be zero outside of the frequency interval

FiG. 3.—For a rest observer, a photon emitted at the point sg is seen to
travel along a direction with abcissae s. At each point of the trajectory, we can
associate a reference frame moving with a constant velocity v[r(s)] and coincid-
ing instantaneously with the fluid at this point.

[vo — Avo/2, vy + Avy/2]; the width Av, includes the Doppler
line broadening caused by thermal agitation, microturbulence,
etc. As usual, this profile is normalized by the relation

J(Do("o —viddvo=1.

The rest observer can transform expression (15) with the help
of relation (6) and write the optical depth

(16)

®y
T, = J LS) a2 2(5)@o(vo — v9,)ds .
SE v

Let us now estimate the probability that if a photon is

emitted at the point s (see Fig. 3), it is emitted in the frequency

interval [v, v + dv] and in the solid angle interval [w, » + dw].

This probability, while frame independent, is more convenient-

ly calculated in the comoving frame where we have assumed

complete redistribution in frequency and in direction. It takes
the simple form

17

Do — Vi) 220 (19)
where
V= vl — plse)Bisa] (19)
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dw, being the comoving solid angle corresponding to dw. The
mean probability that a photon emitted at s directly escapes
the atmosphere may therefore be written

too dow
pan=[ [ Teogs—taas .
Qo=4n J— 4n

In a very rapidly accelerating fluid, a photon of given fre-
quency can only be absorbed within a small region of the
envelope whose thickness AS(r, u) is directly related to the
absorption profile width Av, via the Doppler relation. The
approximation introduced by Sobolev (1958, 1960) consists in
assuming that both the physical and the kinematic fluid
properties, except for the fluid velocity, are constant along
spatial distances AS. It is adequate whenever the thickness AS
is very small compared to the envelope dimensions, i.e., if the
velocity gradient is high and if the absorption width Av, is
small enough. Using this approximation after changing in
equation (17) the variable of integration from s to v,, the
expression of the escape probability 81, reduces to

(20)

1—e ™ dw
1 0
= _— 21
bz J;lo=4n T12 4n @
and finally, with equation (8), to
+1 1 —e ™2 d/t
1 _ —c =
ﬁlZ - J‘_l Ty, 2’12 ’ (22)
where
0 -1
_%z (00
T =0t ( as) : (23)
n(r, W) =1 — pp) . 24
Differentiating equation (24), we easily obtain
Tealr, ) = 775
y (1 —up? ‘ 29)
(1 — Alu(p — B) + (1 — p*X1 — B*¥dInr/dIn ]|’
o, (dB\"t (1 —
o) = Tl = +1) = 22 (—ﬂ) Q=B e
vy \dr

The B!, and t,, expressions are more complex than in the
classical case (see Paper I). In particular, they are no longer
symmetric in y. This is illustrated in Figure 4 where we can
note that for relativistic velocities, the photon escape probabil-
ity (1 — e™*?)/7,, is much greater in the direction of motion
(u = +1) than in the opposite one (u = —1). Nevertheless, the
Sobolev optical depth 7,, can still be written with the general
and meaningful expression

af,
Ty = A_ AS N (27)

v
Av being the rest frequency interval corresponding to Av,. It is
important to recall that in the framework of the Sobolev
approximation, a photon of given frequency can only be scat-
tered within a very small region of the envelope before finally
escaping it. The line transfer may therefore be considered as
purely local and the Sobolev optical depth z,, is sufficient to
characterize the radiation-matter interactions at each point in
the envelope.

FORMATION OF P CYGNI LINE PROFILES 3N
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FiG. 4—The ratio 7, ,(r, #)/t7,(r) is represented here in a polar diagram for
different values of 8, (0.01, 0.2, 0.5, and 0.8). It is calculated at the distance
r = 5r, from the central core for a typical velocity law (B of eq. [72]). The
direction of motion is indicated. For z = cos 0 = 1, we have always 1,,/1}, =
1 while in the opposite direction (u = —1), this ratio depends strongly on the
valueof .

b) Relativistic Expression of the Source Function

To derive the expression of the source function we first need
to evaluate the mean intensity of the radiation field. This is
more easily done in the comoving frame where the process of
emission is isotropic. In this frame, we denote by J3° the mean
spgciﬁc intensity weighted on the line profile and divided by
hvi,.

J¥5° contains two major contributions: the first one is due to
photons issued from the central core (the distant contribution)
and the other one to photons locally scattered (the local
contribution). Let us first estimate the distant contribution
assuming that the core is emitting a continuum whose intensity
IY, measured by the rest observer, is constant over the line
profile and does not show any limb darkening effect. For this
observer, the intensity of the radiation emitted at a frequency v
by a point of the core surface and reaching another point
located in the envelope, is equal to INe ™™, 7, representing the
optical depth between the core surface and the considered
point in the envelope. Measured in the comoving frame which
coincides instantaneously with the fluid at this point, this
intensity is equal to n?I¥e ™, following equation (5) and
remembering that IY has also been divided by hv. Averaging
this quantity in the comoving frame over both the line absorp-
tion profile and the directions, we obtain the distant contribu-
tion to the mean intensity whose expression

+ ~ do
I J n*1Ye™*®(vy — v9,)dv, ) 2 (28)
Qo=4n J— (4

reduces, in the framework of the Sobolev approximation, to

1 — pt12
n J Lolds, 29
4w T12 AW
W denoting the geometrical dilution factor
1= (@r./N4/2.
The quantity
1 —e 2 dw L1 —e 24y
?z(r)=J ———=f — 5 60
anw T12 4n 1-2w T12 2
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represents the mean penetration probability of photons
emitted from the central core. It is important to note that in a
relativistically expanding envelope, 83, is no longer equal to
the mean probability that a photon escapes directly the
envelope and intercepts the central core. This latter probability
is in fact equal to (see eq. [22])

-(1-2wW) 1 —e ™12 d/‘t
L

The difference between escape and penetration mean probabil-
ities is simply due to different assumptions about the direc-
tional variation of the radiation field: for f!,, we assume the
isotropic emission in the local comoving frame and for 3, the
isotropic emission from the distant core in the rest frame.
Asides from the factor that incorporates the direction behavior
of the radiation field, the penetration and escape probabilities
for one direction are the same: (1 — e ~*12)/7,.

The local contribution to the mean intensity JY;° can be
evaluated following a similar reasoning (see also Paper I).
However since the Sobolev line transfer is purely local, the
photon input-output being controlled at each point in the
envelope by the probabilities 83, and 1, it is clear that in the
comoving frame this local contribution takes the same form as
in the classical approximation, i.e., $}3°(1 — B1,) which simply
represents the fraction of photons having not directly escaped
the envelope, SY:°(r) = €}3°/a?, denoting the source function
measured in the comoving frame. Combining these two contri-
butions, we may write

T = 81001 = Bia) + B 1Y . (32

Because we only consider the pure scattering of line photons,
we have also

€2y

-1 T12

JYP = sy (33)
and consequently
3
Sy =12 N (34)
ﬂ 12
As we shall see in § VII, the numerical values of SY;° only
slightly depend v, even if v, is relativistic. But, measured in
the rest frame, the source function SY,(r, ) = SY;°/5? is clearly
anisotropic for relativistic velocities, taking higher values along
the direction of motion.

V. RELATIVISTIC EXPRESSION OF THE LINE PROFILE FUNCTION

In deriving the expression of the line profile function
E(X)/E,, we first assume—as in Paper II—that the central core
is pointlike. This constitutes a reasonable approximation for
the case of accelerated flows, and it allows us to follow step by
step a photon emitted from the core with a better understand-
ing of the basic line formation mechanism as well as of the
relativistic effects. The expression of the line profile is subse-
quently, and quite easily, generalized to the case of a central
core with finite dimensions.

a) The Pointlike Core Approximation

Let us consider a photon emitted by a pointlike core along a
radial direction (u = +1) and with a dimensionless frequency
X'. In the framework of the Sobolev approximation, this
photon can only interact with the material at a given point
r(X’) in the envelope, fixed by the Doppler relation and the
velocity distribution f(r) characterizing the flow. We therefore

Vol. 361

only consider photons with frequencies X’ in the interval [— 1,
Xmin] corresponding to the distance interval [+ oo, r,], the
value of X,;, being found from equation (12) where we replace
Bby B. = v./cand u by +1.If absorbed at n(X"), this photon of
initial frequency X’ can escape the envelope along any direc-
tion with y in the interval [—1, +1], i.e., with a frequency X
suchthat X(u= +1) < X < X(u= —1)or

! 1 - ﬂ ’ R
X'<X< 154 X =X*,
This frequency interval [X’, X*] may be up to twice narrower
than in the classical case where it is equal to [X’, — X']. Let us
note that the variable set (X', X) is completely equivalent to the
set (r, 1) and it will be advantageously used in the remainder of
this paper.

The probability that this photon of frequency X’ could be
absorbed at the distance (X’) is simply equal to

P(X)=1—¢ "2, (36)

712(X’) denoting the radial optical depth defined by equation
(26). If absorbed, the photon has a probability

P(X") =(1 - By (37)

of undergoing n other local scatterings. It will finally escape the
envelope along directions toward the observer, i.e., within the
interval [u, p+ du] or similarly in the frequency interval
[X, X + dX], with a probability P,(X’, X)dX. Because we have
assumed complete redistribution in the comoving frame, this
latter probability is simply expressed by
11— 4dX

T, XR-X" (38)
712(X", X) denoting the Sobolev optical depth along the obser-
ver direction. The factor dX/(X® — X'), equal to duy/2 =
du/2n?, indicates that photons are uniformly reemitted in the
frequency interval [X’, X*]. Because this interval is narrower
than in the classical case, the probability dX/(X® — X’) that a
photon scattered at r(X’) is reemitted with a frequency between
X and X +dX may be significantly increased. Combining
these different probabilities, we derive the probability that a
photon emitted by the core at a frequency X’ escapes the
envelope toward the observer with a frequency in the interval
[X, X +dX] and after an arbitrary number of local scat-
terings:

(33)

P(X', X)dX =

P(X’, X)dX = Pa(X’)l: 1+ i P,,(X’)]P,,(X’, X)X (39)
n=1

which reduces to

1—e ™21 — g 12

PX', X) = .
=X % B,

(40)

Summing over all frequencies X’ contributing to the
observed frequency X, we immediately obtain the contribution
to the line profile due to the scattered line photons,

ES(X X
—u=J PX', X)dX',
E bd .

ini

(41)
c
assuming that the central core emits photons in constant
number over the frequency interval of interest. In absence of
limb darkening, E, is equal to nIY. The frequency interval

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990ApJ...361..367H

J. - 03617 Z367H)

R

DA

9t

No. 2, 1990

[ Xinr>» Xeup] may be found from relations (12), (13), and (35):
photons reaching the observer with a frequency X can only
originate, if X < 0, from scattering of photons with an initial
frequency X' in the interval [ — 1, min (X, X,;,)] and, if X > 0,
from the scattering of photons with a frequency X’ in the
interval [—1, min (X, X,;,)], where X. is solution of
wX,, X)=—1,ie, X. = —X/(1 + X — X/XR). Let us recall
that for frequencies X > X® there are no scattered photons
[ES(X)/E. = 0] so that the scattered contribution becomes
very asymmetrical for increasing values of §, .

Finally, the total line profile function E(X)/E, is obtained by
adding the contribution ES(X)/E, due to the scattered line
photons and the contribution E4(X)/E, due to photons reach-
ing directly the observer, this latter contribution being
expressed by

A
X
%—)=1—Pa(X) ifXSXmin’
EA(cx) 42
=== fX> X, .

(4

b) The Central Core with Finite Dimensions

For a central core having finite dimensions, one must con-
sider that back-scattered photons may strike it and that these
cannot reach the observer any longer. This is the well-known
occultation effect. In addition, photons originating from the
core are not only emitted along radial directions (4 = +1) but
also along inclined ones. We call this the inclination effect (see
Paper III).

Considering first the contribution ES(X)/E, due to scattered
photons, we take into account the occultation effect by repla-
cing, for positive X values, the frequency limit X;,, by X3, =
min (X, X,;) where X is solution of u/(X;, X)= —1

+ 2W[rX?)]. It is also clear that in equation (39), the factor
P,(X") must be replaced by a new quantity P,(X’') which
accounts for the fraction of photons emitted by the core along
nonradial directions. Recalling that P,(X")IY and 83, I¥ are,
respectively, proportional to the number of core photons
absorbed at r(X’) and to the number of core photons arriving
at r(X’), we have the relation

12X

PX)
= 43
P.X) ~ Biar/r. — 0) “3

which reduces to
PX") = B (X', (XME(X) (44)

where L = r/r.. The contribution due to scattered photons can
therefore be written

S, Xao B3. 1 — e~ 712 4I27

EX)_ ™ biloe ™ 40dn gy s
E, X Bi» Tty X'-X

By integrating over the core surface, we easily show (see Paper
III) that the contribution E4(X)/E, due to photons reaching

the observer without having suffered any scattering may be
generalized to

AX 1 ,
% -2 J ey dy X <X,
c 0 (46)
”
s _, ixsx,.

c
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where X' is solution of 1 — [1 — (X", X)]IX(X') = 3. In this
relation, the value of 7,, must be set to zero if no solution
of X' < X,,;, can be found. The frequency X, solution of
(X min» X&) = 0, is explicitly expressed by

X, = BaoX:'lin >
* L0 =B X + 117

where, for simplicity, we have introduced

0
Venax — V12 1+8
B, == = |/ ®_1. (48)
v(1)2 l_ﬂoo

It is interesting to note that photons with positive X fre-
quencies can be absorbed in the envelope. This relativistic
effect (X, = 0 in the classical limit) remains small and needs
high | X ;. | values in order to become significant. This effect is
implicitly included in the expression of the emission profile (eq.

[45]).

VI. THE FIRST-ORDER MOMENT OF UNSATURATED RELATIVISTIC
P CYGNI LINE PROFILES

0 @7

The first-order moment of a P Cygni line profile has been
introduced by Castor, Lutz, and Seaton (1981) as a powerful
tool for deriving mass-loss rates. Subsequent work by Surdej
(1982, 1983b) has shown that a unique linearity relation does
actually exist between the first-order moment of an unsatu-
rated line profile and the fractional mass-loss rate, irrespective
of various physical (opacity distribution, collisions, limb dark-
ening, etc.) and geometrical (velocity law, rotation, etc.) condi-
tions prevailing in the expanding envelope as well as of any
Sobolev-type approximations used for the transfer of line radi-
ation. In this section we investigate the behavior of the first-
order moment when the flow becomes relativistic.

The nth order moment of a line profile can be defined as

1 n+1 (+o E
Wy = <ﬁ> (# - 1)("(1’2 —Wdv, (49)
max ~ V12 J-—o ¢

an expression which, in terms of the dimensionless frequency
X, easily reduces to

WR = J ® %- 1]}(" X . (50)
-1 L

c

In the low-velocity regime, this definition of WZX is exactly
equivalent to that of Castor, Lutz, and Seaton (1981).

Let us now evaluate the first-order moment of unsaturated
line profiles considering first the pointlike core approximation.
Fo; :uch profiles, the first-order moment will be denoted by
WO,

a) The Pointlike Core Approximation

The expression of the moment W& can be easily obtained
by combining equations (41), (42), and (50). We nevertheless
prefer to follow a rather different approach which provides us
with a better understanding of the moment properties.

Up to now, we have evaluated the line profile expression by
summing at each frequency X the different fractions of line
photons reaching an observer after having undergone an arbi-
trary number of scatterings, i.e., we have considered the
envelope as a juxtaposition of surfaces of equal frequency X.
On the other hand, we can imagine the envelope as an
assembly of shells of radius X’ and thickness AX’. Because the
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Sobolev transfer is purely local, the line profile formed in the
whole envelope is nothing else than the sum of the profiles due
to such shells. The same applies for the moment W¥° and we
can write

(1

WEOX")dX’ representing the first-order moment of the profile
formed in the shell of radius X’ and thickness dX'. If
the envelope is optically thin, the profile due to a shell is
very simple (see Fig. 54) and the corresponding moment
WEOX")dX’ can be evaluated by simply summing up elemen-
tary surfaces. From Figure 5b, we obtain

Xmin
wre = [“whoooax,

WEOX)AX = 73, | X' | AX' — X’—'l,f f’; bd ')g—'
+ —;‘R’ f))(( X® XTR (52)
or
W) =, X 53
giving finally
Who = ijhzgz(x') & —x) — dax:. (54)

It is interesting to note that the detailed expression of the line
profile (egs. [41] and [42]) is not necessary in order to calcu-
late the moment W in the optically thin approximation. We
also clearly see that the difference between this expression and
the classical one (see Paper III) arises from the asymmetry of
the relativistic emission profile.

Let us now develop the expression of the optical depth
772(X") given by equation (26). Neglecting the stimulated emis-
sion correction, the opacity a}, may be written

HUTSEMEKERS AND SURDE]J

Vol. 361
or

ne?

9, =n, AE)N | — 2, 5
Qi =Ny (e)Nlot<mc>o 12 (56)

where N{ represents the number of atoms in the lower state 1
measured per unit of proper volume, f9, the oscillator
strength, A(el) the abundance of the element, n, the fractional
abundance of the element’s atoms which are in the lower state
and N{, the total number of nuclei measured per unit of proper
volume. The other quantities have their usual meaning. The
suffix zero reminds us that the relevant quantities are defined in
the comoving frame. If there is conservation of the total
nucleus number, the equation of continuity leads to the rela-
tion

47tr21)(r)(N 3)! ﬁM gmu)y = M > (57)
where M denotes the proper mass-loss rate, /t the mean atomic
weight of the nuclei and M2, the unit of atomic mass. The
Lorentz factor y appears in equation (57) because the volume
of a fluid element (oc1/N2,) is lower when measured in the
observer frame. Combining these relations with the definitions
of X, X', and L, we finally obtain

) (1Y 2dL
el = K ) B —xvax O
where
ne? Alel)
K}, = (ﬁ)o 1242 MO (59)
The moment W& can therefore be written
M (* dL
Wi =K}, B} £ "oz (60)

showing us that the linear relation between the mass-loss rate

o, = NO “_ez 19 (55) and the first-order moment of an unsaturated P Cygni line
12 N\me/),” 12’ profile still holds in the relativistic case.
S
E°(X) E(X).IXI
= Ec
R . 1 R
X"-X . IX'I s EX :
I oAy 7 Ay r oy
X R ‘31Rz X 151%‘”‘ X t_gﬂ xR
/// % I/X X' X -X\A » I/X -X
' % 0 . 1
-1 % 0 1[-1
/ X X
= +
< / ol
oo / S
’_}
/] \N
AX' A AX' B

F1G. 5.—The first figure (a) illustrates schematically the very simple line profile issued from an optically thin shell of radius X’ and thickness AX’ (AX" is in reality
much smaller than represented). Part of the photons emitted by the pointlike core are absorbed at the frequency X' and reemitted in the frequency interval [X’, X¥]
(see, e.g., eq. [35]). The material being optically thin, the area of the absorption part of the line profile is equal to ] ,(X")AX’. Because the photon number is conserved
and because the core is assumed pointlike, 7} ,(X")AX" also represents the area of the emission-line profile. Fig. (b) represents schematically the line profile multiplied
by | X |, as in the first-order moment definition (eq. [ 50]). This moment can be calculated by simply summing up the elementary surfaces (see text).
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b) The Central Core with Finite Dimensions

If we consider the finite dimensions of the central core, we
can write the first-order moment as
Xmin XR_ X’
wro= [, X om0

-1

where the factor Q(X’) mainly accounts for the part of the
scattered line photons which do not reach the observer due to
occultation by the core. The expression of Q(X’) is fairly
complex. It can be derived by replacing in the moment defini-
tion (50) the line profile by its expressions (45) and (46) where
we impose 7,, < 1. We find

1-B_ X\ x? S,(X))
N = 42 — = Ze w22/
QX)) 4L<2_Bw X,) [W i W25 (62)
where
1 1—-B_X
N = — I Pl
5X) B;[“’(l—BwX'>
1 1
*0-B.X, (-B, X')} » (©3)
with
1 1-8
P — — l—— 4
X, Bw[l (1 B°°X)1+(1——2W)ﬂ]’ )

R P N 1=B
chl_Bw[l a BwX)l_(l_ZW)ﬂ]. (65)

Let us recall that in the classical limit the factor Q(X") is simply
equal to 1 — W (see Paper III).
If we now replace 77, by its expression (58) and define

{¢ n,Q/E dL

®Q
f = L z dL , (67)
we obtain the useful relation
. (B ¢)*
M{n,) = wko — - (68)
! ! q K(x)z

This general relation allows the immediate determination of
mass-loss rates from the measurement of the moment W& of
unsaturated line profiles, if the average ionization fraction {n,)
is known. In principle, the normalization factor ¢° depends on
both f_, and the type of velocity law but, as we can see from
Table 1, this dependence is negligible for the considered

TABLE 1

THE FACTOR ¢° AS A FUNCTION OF
FOR THE THREE VELOCITY LAws

VELOCITY LAwW

8. A B c
001......... 089 089 089
020......... 089 089 089
050......... 089 088 086
080......... 088 086 081
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models. Thus, as in the classical limit, equation (68) holds
within a good approximation irrespective of the kind of veloc-
ity law chosen to represent the expanding atmosphere. In addi-
tion, the relative constancy of ¢° confirms the fact that the
moment WZ© constitutes a useful physical parameter.

If we now want to evaluate mass-loss rates from slightly or
strongly saturated profiles we have to use W& — WR0 dja-
grams. Such diagrams are constructed numerically in the next
section.

VII. NUMERICAL APPLICATIONS

We present here a few examples of typical source functions,
P Cygni line profiles and W& — WR9 diagrams computed
when the velocities become comparable to that of light.

In all these applications, we use the first-order moment W&-0
to parameterize the opacity. From equations (58) and (68), the
radial optical depth 17, can be written

2dL
r ___WR,O nl
12 =W ey X — XN (69)
or
111,0
T, = T(v/vy) , 70
127 enss (v/v5) (70)

7'(v/v,,) representing the dependence of the opacity distribution
as a function of v/v,. The factor {n,) is evaluated by making
equations (61) and (70) consistent. In the remainder, we adopt
the following opacity laws:

B Ty =1—v/vy,

0 Tl =1,

0O T/ve) =1 —v/v,)'"?,
© Ty =1 —v/,),

which are of the form t'(v/v,) = (1 — v/v,)". It is generally
considered that this type of opacity laws provides a good
description of the expanding atmospheres around early-type
stars (Castor and Lamers 1979; Garmany et al. 1981). We also
adopt the following velocity distributions:

(4)  oL)=0v, + (v, — 0Nl — 14/L),
(B) D(L) = vc + (voo - vc)(l - I/L) s

© L) =v,/1—(1—0pL)/L,

which are also thought to encompass most of the observed
velocity fields prevailing in expanding envelopes (Castor et al.
1975; Castor and Lamers 1979; Olson 1981 ; Olson and Ebbets
1981). The various combinations of the different opacity and
velocity laws lead to 12 distinct models. For consistency with
our previous papers, we shall label them in the form (4.6) for
example, where 4 denotes the type of velocity law and § the
type of opacity distribution. Finally, all our calculations have
been done using four values of £ : 0.01, 0.2, 0.5, and 0.8, the
first one corresponding to the classical limit. In all cases (except
for Figs.7g—7h), we also take 8,/f,, = 0.01.

The source function SY;° is illustrated in Figures 6a—b for
two different values of the parameter WX-®. As we can see, the
changes with 8, remain reasonably small.

Figures 7a-h illustrate typical P Cygni line profiles com-
puted from equations (45) and (46). We immediately notice that
the profiles now depend significantly on the value of the ter-

1)

™)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990ApJ...361..367H

J. 2 23617 J367HD

AR

[I9

376 HUTSEMEKERS AND SURDEJ

T
0 05

0.31

0.2 4

|
0 05 1
X'l

F1G. 6.—a-b) Examples of source functions S};° multiplied by I? to remove the main geometrical effect. They are computed for the B, values 0.01, 0.2, 0.5, and
0.8 and for the typical model (B.f). The parameter W%-° has been taken equal to () 1.0 and (b) 0.1.

minal velocity (while they do not in the classical theory) but
that rather high values of 8, are nevertheless needed in order
to cause severe modifications. These modifications—a short-
ening of the red emission wing accompanied by an increase of
the emission line intensity—are mainly due to the variation of
the radial opacity 7}, with f, (via the factor (n,) in eq. [70])
and to the redistribution of photons in a frequency interval
which gets narrower and more asymmetrical as B is
increased. This latter effect is definitely the dominant one, the
opacity changes with f, remaining small. In fact, (n,> does
not vary by more than a factor of 3 in the considered f, range
(see Table 3). We should also like to point out that for high
values of f, the maximum of the emission peak may appear
redshifted (Fig. 7h).

Let us now consider the W% — WX diagrams (see Fig. 8).
By simply reporting in such diagrams the measured moment
W?Z of an observed P Cygni line profile, we can derive the
parameter W and consequently, via equation (68), the frac-
tional mass-loss rate (or a lower limit if the line profile is
saturated). This method is especially useful for the analysis of
unresolved line profiles. For more details, we refer the reader to
our previous papers (Surdej 1983a; Hutsemékers and Surde;j
1987, 1989; Surdej and Hutsemékers 1990). In the present
application, we have computed line profiles for different values
of W% and via equation (50), their moment WX, The results
are reported in Figure 8a for two extreme models. The WX
— WE° curves show a clear dependence on g, especially for
high values of W{°, so that we need in principle one diagram
for each value of the terminal velocity. Again, this behavior is
mainly caused by the emission profile asymmetry. We can
nevertheless minimize this dependence by normalizing the
curves with respect to the asymptotic value W' of the

TABLE 2

CHARACTERISTICS OF THE RELATIVISTIC P CYGNI
LINE PROFILES COMPUTED FOR 8, VALUE
or 0.01, 0.2, 0.5, AND 0.8

Figure Model  W}° B /B
BS 1.0 0.01
BS 0.1 0.01
Cp 1.0 0.01
Be 1.0 0.01
BS 1.0 0.20
BB 1.0 0.90

© American Astronomical Society

moment calculated in the optically thick approximation, i.e.,
WE°— co0. The values of the moment W&* are reported in
Table 4 considering the different models. The normalized
curves, illustrated in Figure 8b, are definitely less affected by
the value of §, so that one diagram of this type may be suffi-
cient to evaluate mass-loss rates with a reasonable degree of
accuracy. Normalized diagrams computed for the twelve pos-
sible models are illustrated in Figures 9a-d. As in the classical
limit, the curves are mainly dependent on the opacity distribu-
tion.

VIII. DISCUSSION AND CONCLUSIONS

We have learned in the previous sections how it was impor-
tant to include the relativistic corrections in the radiative

TABLE 3

THE RATIO {1, }/<N; D 1aesica1 AS A FUNCTION
OF f§,, FOR THE DIFFERENT MODELS

B @
MODEL 0.2 0.5 0.8
AB coveiiiiiiinl 0.90 0.71 0.42
Ay coviiiiiiin 0.94 0.85 0.74
. W U 0.92 0.77 0.54
A€ cooeiiiiinnna.. 0.88 0.64 0.32
) ¥ B 0.90 0.71 043
By coviiiiiiiinnn 0.94 0.86 0.76
) X R 0.92 0.77 0.55
Be€ cccovnvnnnn.. 0.88 0.64 0.32
[OF IO 0.90 0.71 0.44
[0 0.95 0.87 0.80
[OF I 0.92 0.78 0.57
C€ covvvvvnnnnnnnn. 0.87 0.64 0.32

TABLE 4

log W% As A FUNCTION OF f FOR
THE THREE VELOCITY LAwS

VeLociTYy Law

B A B C
001......... —031  —032 —035
020......... —034 —036 —0.38
050......... —040 —042 —044
080......... —047 —049  —0.51
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FIG. 7.—(a-h) Examples of relativistic P Cygni line profiles computed for §_, values of 0.01, 0.2, 0.5, and 0.8. Their characteristics are given in Table 2. Figs. (b) and
(d) illustrate the absorption and emission components of the profiles shown in (a) and (c).
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FIG. 8.—(a-b) The first figure illustrates the behavior of the W¥ — W¥-° curves as a function of B, for two extreme models. As B, increases, the asymptotic limit
WP decreases. The same curves are illustrated in (b) but normalized by the moment W% whose values are given in Table 4.

transfer in order to calculate correctly the source and the line
profile functions for large values of § .

One of the most unexpected effects is certainly the appear-
ance of distant interactions in the envelope when the velocities
approach that of light. As in the case of decelerated flows (see
Surdej 1978), these interactions may be of great importance
when evaluating the amplitude of the radiative forces. Even if
they can be neglected most of the time for the type of velocity
laws considered here, they can be of much greater importance
for other velocity distributions, especially those characterized
by very high velocity gradients.

As we have seen, the P Cygni line profiles formed in rela-
tivistically expanding envelopes also suffer important modifi-
cations mainly due to the redistribution of photons in a
frequency interval whose asymmetry is directly related to the
relativistic expression of the Doppler effect. Before comparing

the relativistic profiles with the observed ones, it is necessary to
rebin the latter ones in a dimensionless frequency scale (X), the
asymmetry of the profiles being different on a wavelength scale
(i.e., the most extended wing becomes the red one?). Up to now,
the highest expansion velocities (0.2c) measured from the most
extended part of a P Cygni line profile have been reported from
the spectra of BAL quasars. For such velocities, the profile
modifications remain small compared to the classical case,
especially if we remember that other effects, like turbulence,
can alter the profiles to a larger extent (see the discussion by

2 More precisely, if we define the dimensionless wavelength Y =
—(A — 29 )/(Ain — A2,), equivalent to the dimensionless frequency X (eq. [11])
in the classical limit, we easily see that the line profile is formed in the wave-
length interval [—1, Y® = 1/X® ] which is greater than the frequency interval
given by eq. (13).
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Surdej and Hutsemékers 1987). Nevertheless, even for f, =
0.2, the relativistic corrections do reveal noticeable effects (see
Fig. 7).

In spite of the large differences seen for ., > 0.2, it is quite
surprising that the linear relation between the mass-loss rate
and the first-order moment of unsaturated line profiles still
holds in the relativistic case. This general relation is therefore
independent of many physical and geometrical approx-
imations. Also, the normalized W& — WR° diagrams only
slightly depend on the terminal velocity so that, if the adopted
models actually represent realistic physical conditions prevail-
ing in expanding atmospheres, they provide a powerful tool for
deriving mass-loss rates. This is especially true from a sta-
tistical point-of-view as well as in the context of the analysis of
unresolved line profiles.

HUTSEMEKERS AND SURDEJ

Throughout this paper, we have introduced limiting approx-
imations. One of the most restrictive is certainly the hypothesis
that the opacity and velocity laws representing the expanding
envelopes in the classical limit are still adequate in the rela-
tivistic case. Only a detailed dynamical analysis could check
this hypothesis which is as important as the effects of distant
interactions. Due to these approximations, this paper is
nothing more than a first step toward a better understanding of
the formation of P Cygni line profiles in relativistically expand-
ing atmospheres.

It is a pleasure to thank here the referee for his constructive
comments. Part of this work was done while D. H, was a
research assistant at the National Funds for Scientific
Research (FNRS, Li¢ge Institute of Astrophysics, Belgium).
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