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a b s t r a c t

A minimal cardiac model has been shown to accurately capture a wide range of car-

diovascular system dynamics commonly seen in the intensive care unit (ICU). However,

standard parameter identification methods for this model are highly non-linear and non-

convex, hindering real-time clinical application. An integral-based identification method

that transforms the problem into a linear, convex problem, has been previously developed,

but was only applied on continuous simulated data with random noise. This paper extends

the method to handle discrete sets of clinical data, unmodelled dynamics, a significantly

reduced data set theta requires only the minimum and maximum values of the pressure

in the aorta, pulmonary artery and the volumes in the ventricles. The importance of inte-

grals in the formulation for noise reduction is illustrated by demonstrating instability in the

identification using simple derivative-based approaches. The cardiovascular system (CVS)
Pulmonary embolism model and parameter identification method are then clinically validated on porcine data

for pulmonary embolism. Errors for the identified model are within 10% when re-simulated

and compared to clinical data. All identified parameter trends match clinically expected

changes. This work represents the first clinical validation of these models, methods and

approach to cardiovascular diagnosis in critical care.

use as a broader diagnostic tool for patients with unknown
1. Introduction

Cardiac disease state is highly patient specific and difficult to
accurately diagnose due to the limited measurements avail-
able. In addition, the body’s natural reflex responses try to
restore circulatory equilibrium, which can often mask the
underlying symptoms [1,2]. Successful diagnosis and treat-
ment often rely on the experience and intuition of clinical
staff. Thus, a physiological, identifiable and validated com-
puter model offers several potential advantages in diagnosis

and therapy selection, by aggregating diverse patient data into
a compact, patient specific, clinically relevant and potentially
real-time assessment of circulatory status.
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There are many CVS models in the literature ranging from
very complex finite element models [3–6] to relatively simpler
pressure volume approaches [7–9]. However, the focus is often
on only specific areas of CVS dysfunction. Although there are
full CVS models, patient-specific parameter optimization is
either not considered or restricted to small subsets of the
overall much larger parameter set (e.g.[10,11]). This restric-
tion to specific CVS aspects can dramatically limit the range
of CVS disturbances that can be detected, thus prohibiting
condition. For relatively larger, more complex system models
computational cost and feasibility can also become a major
issue.

erved.
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c o m p u t e r m e t h o d s a n d p r o g r a m

This research employs a physiologically validated minimal
odel [12–15] capable of capturing patient dynamics com-
only seen in an ICU, while using a relatively small number

f physiological variables. A highly efficient solution method
16] provides the necessary simplicity, flexibility and rapid for-
ard simulation that is required in a clinical environment.
n integral-based parameter identification method has been
lso been developed and shown, in simulation, to rapidly and
ccurately identify virtually the entire parameter set in the
resence of significant measurement noise [17]. However, a
elatively large measured data set was assumed, including
ontinuously measured pressure and flow waveforms. Such
easurements might not always be clinically available.
In this paper, the integral method is extended to allow

iscrete sets of clinical data and is shown to be robust to
nmodelled dynamics and measurement noise. The measure-
ents utilized are also reduced from prior work to a more

linically feasible set. The use of integrals in the formulation
s shown to be critical for stability, even with locally smoothed
urves, as compared to numerical derivative-based identifica-
ion approaches. The method is initially tested on simulations
f pulmonary embolism that capture all the physiologically
xpected responses. The CVS model and integral method are
hen clinically validated on a porcine model of pulmonary
mbolism.

. Methodology

.1. CVS model

he CVS model is a lumped parameter model [19], where
he left and right ventricle chambers are characterized by the
ow in and out of the chamber, the pressure up- and down-
tream and the resistances of the valves, and inertia of the
lood. An overview of the model is given in Fig. 1. To add
exibility and better match waveform shape as well as peak
alues, the model is extended from [19] to allow a slightly
on-linear pressure–volume relationship in the aorta and pul-

onary artery. The equations for the left ventricle are defined:

pcd = Vlv + Vrv (1)

ig. 1 – Minimal CVS model overview. The model is made up of e
eries. Each elastic chamber simulates the pressure–volume rela
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Ppcd = P0pcd · (e�pcd(Vpcd−V0pcd) − 1) (2)

Pperi = Ppcd + Pth (3)

Vlvf = Vlv − Vspt (4)

Plvf = dri L · Eeslvf · Vlvf + (1 − dri L) · P0lvf · (e�lvfVlvf − 1) (5)

Plv = Plvf + Pperi (6)

Ppu = Epu · Vpu + Pth (7)

V̇ao = Qav − Qsys (8)

Qsys = Pao − Pvc

Rsys
(9)

Pao = Eao · V
f
ao (10)

V̇lv = Qav − Qmt (11)

Q̇mt = H(H(Ppu − Plv) + H(Qmt)) · (Ppu − Plv − Rmt · Qmt)
Lmt

(12)

Q̇av = H(H(Plv − Pao) + H(Qav)) · (Plv − Pao − Rav · Qav)
Lav

(13)

where H is the Heaviside function, f is a non-linear factor rang-
ing from 0.8 to 1.4, and all other variables are as shown in
Fig. 1. Similar equations are used for the right ventricle and
pulmonary/systemic circulation. For a more detailed descrip-
tion see [19,16,12–14]. The parameter f in Eq. (10) provides more
flexibility to capture the shape and peak of Pao seen in clinical
data. Definitions of the parameters in the model are given in
Table 1.

2.1.1. Activation function
The electrical activation of the left and right ventricles are
described using a driver function and time varying elastance
to model cardiac muscle activation [19,7]. For clinical valida-

tion on the porcine data, separate driver functions are chosen
for the left and right ventricles:

driL = AL · e(−bL·(t−(period/cL))2) (14)

lastic chambers connected by resistors and conductors in
tionship in a particular area of the circulation.
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Table 1 – Abbreviations used in CVS model

Abbreviation Description

� Parameter in EDPVR
P0 Parameter in EDPVR
lv Left ventricle
rv Right ventricle
lvf Left ventricle free wall
rvf Right ventricle free wall
spt Septum
pcd Pericardium
V0 Volume at zero pressure
Vd Unstressed chamber volume
R Resistance
E Elastance
L Inertance
P Pressure
Q Flow
V Volume
mt Mitral valve
tc Tricuspid valve
av Aortic valve
pv Pulmonary valve
pul Pulmonary
sys Systemic
es End-systolic
Pao0 Initial pressure (Pao(0)) in arta
Ppa0 Initial pressure (Ppa(0)) in pulmonary artery
Pvc0 Initial pressure (Pvc(0)) in vena cava
Ppu0 Initial pressure (Ppu(0)) in pulmonary vein
Pth Intrathoracic pressure
EDPVR End-diastolic pressure–volume relationship

ESPVR End-systolic pressure–volume relationship
period Heartbeat period

driR = AR · e(−bR·(t−(period/cR))4) (15)

period = 1
heartrate

(16)
where AL = 1, bL = 2582.177, cL = 2.07 and AR = 1, bR =
91.5975, cR = 2.18 for the left (L) and right ventricles (R). The
drivers are shown in Fig. 2 for a period of 0.53 s, and are devel-
oped from scaling pressures for the porcine data.

Fig. 2 – Driver functions for ventricle activation. The drivers are s
ventricle.
n b i o m e d i c i n e 8 7 ( 2 0 0 7 ) 46–60

The use of two different driver functions is physiologically
justified, as the electric signal spreads differently in both ven-
tricles. More specifically, the cardiac activation pattern and
times have been clinically observed to differ between the
right and left ventricles [20,21]. The activation function is also
defined to change as a function of the heart period.

For human simulations the same driver function is used for
both ventricles and the septum volume, and is defined [7,19]:

dri = 1 · e(−80·(t−(period/2))2) (17)

Only one driver function is used mainly for simplicity, and
for an initial proof of concept on human parameters. How-
ever, note that for humans, in practice, the pressure–volume
relationship in the right ventricle is very difficult to measure
and thus there is no readily available data to obtain a driver
function. In the porcine case, the pressures in left and right
ventricles were available, thus two different generic driver
functions could be found. This enabled better matching to the
overall waveform shapes of the output signals.

2.1.2. Ventricular interaction
Ventricular interaction is an important dynamic [22,23] and is
included in the model. The septum volume is described by a
time-varying P–V relationship defined [7,19,14]:

Pspt = dri S · Eesspt(Vspt − Vdspt) + (1 − dri S)

·P0spt(e�spt(Vspt−V0spt) − 1) (18)

where the driver function dri S describing the activation of the
septum, is taken from [7,19,14]. The septum volume Vspt can
be determined analytically using the methods in [17]:

Vspt = a

b
(19)

with a and b defined:
a = (dri S · Eesspt · Vdspt + dri L · Eeslvf · Vlv − dri R · Eesrvf · Vrv

−(1 − dri S) · P0spt · (bspt e−�sptV0spt − 1) + (1 − dri L) · P0lvf

·(blvf e�lvfVlv − 1) − (1 − dri R) · P0rvf · (brvf e�rvfVrv − 1)) (20)

hown for a period of 0.53 s: (a) left ventricle; (b) right
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= (dri S · Eesspt − dri L · Eeslvf − dri R · Eesrvf

+(1 − dri S) · P0spt · aspt e−�sptV0spt − (1 − dri L) · P0lvf

·alvf e�lvfVlv + (1 − dri R) · P0rvf · arvf e�rvfVrv ) (21)

here aspt, alvf, arvf, bspt, blvf, brvf are defined:

1 = Vspt,old + �Vspt; x2 = Vspt,old − �Vspt (22)

aspt = e�sptx2 − e�sptx1

x2 − x1
; alvf = e�lvfx2 − e�lvfx1

x2 − x1
;

arvf = e�rvfx2 − e�rvfx1

x2 − x1
(23)

spt = e�sptx1 −
(

e�sptx2 − e�sptx1

x2 − x1
x1

)
(24)

lvf = e�lvfx1 −
(

e�lvfx2 − e�lvfx1

x2 − x1
x1

)
(25)

rvf = e�rvfx1 −
(

e�rvfx2 − e�rvfx1

x2 − x1
x1

)
(26)

nd Vspt,old is the Vspt in the previous time step and �Vspt =
.1 ml. Note that for the case of simulations of human dri L =
ri R = dri S.

.1.3. Reflex actions (human simulations)
he effect of CVS diseases on the cardiovascular system can be
ignificantly altered by the compensation from nervous sys-
em reflex mechanisms. Thus, reflex actions are included in
he CVS model for the pulmonary embolism simulation. It is
ssumed that vasoconstriction is proportional to a drop in
ulmonary artery pressure (Pao) and is modelled by increas-

ng the systemic vascular resistance (Rsys) by 34% for a drop
n average Pao from 100 to 80 mmHg. Other reflex mecha-
isms include venous constriction, increased heart rate (HR)
nd increased ventricular contractility [1,20]. Their activation
s also assumed to be proportional to the drop in the aver-
ge pressure in the aorta (Pao). The proportionality constants
re estimated based on clinically observed CVS hemodynamic
esponses reported in the literature [24–26]. More specifically,
R and ventricular contractility are increased by 80–120 beats
er minute and 67% whereas the venous dead space Vdvc is
ecreased by 35% respectively for a drop in average Pao to
0 mmHg. Fig. 3 shows how Rsys is varied as a function of �Pao.

.2. Integral-based parameter identification

o uniquely determine the parameters, the model equa-

ions are transformed using integrals. A previously designed
ntegral-based parameter identification method [17] is
xtended in this paper to rapidly identify the patient-
pecific parameters from limited discrete data. The assumed

Table 2 – Parameters used in CVS model

Parameters from literature or measured: Pth, period, �lvf, �rvf, �pcd, P0pcd, Ee

Optimized parameters: Lav, Lmt, Ltc, Lpv, Ees,lvf , P0lvf, Ees,rvf , P0rvf, V0pcd, Rav, R
Fig. 3 – Reflex action: varying Rsys as a function of �Pao.

measured data is the discrete minimum and maximum
values of the pressure in the aorta (Pao, max, Pao, min), pul-
monary artery (Ppa, max, Ppa, min), and the discrete maximum
and minimum volumes of the left and right ventricles
(Vlv, max, Vlv, min, Vrv, max, Vrv, min). Hence, unlike prior work [17],
no waveforms are required and there are 60% less measure-
ments (four total) required in this approach. The identified
parameters, and the parameters which are either measured
or taken from the literature are given in Table 2.

2.2.1. Scaling model outputs—discrete data
For discrete data, the waveforms are not known, therefore
the integral method of [17] cannot be directly applied. How-
ever, waveforms can be artificially generated by scaling a set
of previously calculated model outputs to best fit the maxi-
mum and minimum measured data values for the pressures
and volumes. The estimated signals between the discrete data
points are thus forced to have similar dynamics to the model,
hence minimizing modelling error. In return, significantly less
measurement and potentially fewer invasive catheters are
required.

The scaled signal, Signew, is obtained from a previously cal-
culated signal, Sigold, as follows:

Signew = a · Sigold + b (27)

a = (Sigm, max − Sigm, min)

(Sigs, max − Sigs, min)
(28)

b = (Sigs, max · Sigm, min − Sigm, max · Sigs, min)

(Sigs, max − Sigs, min)
(29)
where the subscript ‘s’ refers to simulated output and the sub-
script ‘m’ refers to measured data. For example, Fig. 4 shows
the pressure in the aorta (Pao) after scaling with a = 0.6832 and

s,spt , Vd,spt , V0spt, P0spt

mt, Rtc, Rpv, Pao0, Ppu0, Ppa0, Pvc0, Eao, Epa, Evc, Epu, Rsys, Rpul
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Fig. 4 – Simulated pulmonary embolism in human:
pressure in aorta (Pao) before and after scaling with

a = 0.6832 and b = 2.417, with the measured maximum
and minimum values denoted by a circle.

b = 2.417, with the measured maximum and minimum values
denoted by a circle.

2.2.2. Scaling model outputs—porcine data
For the porcine data continuous waveforms are measured in
Vlv, Vrv, Pao and Ppa. However, the same scaling approach can
be used to simplify the parameter identification. In particu-
lar, scaling effectively filters noise and unmodelled dynamics
from the data. The identification problem is thus restricted to
dynamics in the model. Note that the final comparison is still
made to the original data and this approach is only done to
minimize computational effort and complexity in the identi-
fication process. An example of scaling in this clinical porcine
case is shown in Fig. 5, for the pressure in the aorta (Pao) before

and after scaling, with a = 0.5871 and b = 6.7166.

However, matching only the maximum and minimum val-
ues has the limitation that the waveform shape may not be
precisely captured. For the porcine data, better matches to the

Fig. 5 – Porcine pulmonary embolism: pressure in aorta
(Pao) before and after scaling with a = 0.5871 and
b = 6.7166. The dotted line represents the measured,
clinical porcine data. The solid line represents the model
data before (upper panel) and after (lower panel) scaling.
n b i o m e d i c i n e 8 7 ( 2 0 0 7 ) 46–60

waveform shapes were obtained by introducing a slight non-
linearity into the pressure volume relationship in the aorta
and pulmonary artery, as defined by Eq. (10). A range of f
parameters ranging from 0.8 to 1.4 were tested, where each
time the integral method was applied. The f value producing
the best waveform match in the aorta and pulmonary artery
was chosen. Hence, more complexity could be readily added
to the model to better capture the observed dynamics with
minimal effect on computational time.

2.2.3. Integral identification problem formulation
Consider the left ventricle defined in Eqs. (8) and (13). Assume
that Qav, Qmt, Pao, Vlv, Vspt and Pperi are either measured or
estimated from measured data. Integrating Eq. (11) from teb

to t during ejection and from tfb to t during filling gives an
expression for Vlv(t) [17]:

Vlv(t) = Vlv(teb) −
∫ t

teb

Qav(t) dt, teb ≤ t ≤ tef (30)

Vlv(t) = Vlv(tfb) +
∫ t

tfb

Qmt(t) dt, tfb ≤ t ≤ tfe (31)

where teb is the beginning of ejection, and tfb is the begin-
ning of filling, tee stands for end-ejection and tfe for end-filling
respectively. For simplicity, Vdao = 0 and f = 1 in the following
equations.

Integrating Eq. (8) from 0 to t, solving for Vao(t), and then
using Eqs. (9) and (10) yields:

Pao(t) = Eao

(
Vao(0) +

∫ t

0

Qav(t) dt − 1
Rsys

∫ t

0

Pao(t) dt

− 1
Rsys

∫ t

0

Pvc(t) dt

)
(32)

Under the assumption that Pvc = Pvc0 is an unknown con-
stant, Eq. (32) can be rewritten:

Pao(t) = Pao0 + Eao

∫ t

0

Qav(t) dt + A1

∫ t

0

Pao(t) dt + A2t (33)

where A1 and A2 are defined:

A1 = − Eao

Rsys
, A2 = EaoPvc0

Rsys
(34)

The best linear least squares fit of Eq. (34) to the measured
pressure waveform Pao over one heart beat will determine Eao

and Rsys over that heart beat. Similarly, given an approxima-
tion to Vspt and Pperi in Eqs. (5), (12) and (13) can be integrated
across the filling and ejection stages respectively. A linear
least-squares optimization can then be similarly used to deter-
mine Rav, Rmt, Eeslvf and P0lvf. The right ventricle can be treated
similarly.

Given the pressure waveforms through the aorta and pul-
monary artery, the flows into and out of the left and right

ventricles, as well as their volumes, a system of linear equa-
tions can thus be defined for the full CVS model [17]:

A · −→x = −→
b (35)
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Fig. 6 – Flow chart of simulation and parameter
identification algorithm. As first step, a set of parameters is
used for an initial simulation, the data is then scaled to
match the measured data and identified. This process is
c o m p u t e r m e t h o d s a n d p r o g r a m

→x = (Lav, Lmt, Ltc, Lpv, Eeslvf, P0lvf, Eesrvf, P0rvf, V0pcd, Eao, Epa,

Evc, Epu, Rav, Rmt, Rtc, Rpv, Pao0, Ppu0, Ppa0, Pvc0, Rsys, Rpul)
T

(36)

ith −→x being the solution vector of the parameters to be iden-
ified, which can be found by linear least squares. More details
bout this integral method and parameter definitions can be
ound in [17,18].

Ventricular interaction is also included, however the vol-
me of the septum is not known and not directly measurable

n an ICU. As an initial approximation, this volume is set
o zero. The resulting parameters identified by the integral

ethod are then used to resimulate the model and produce
n approximation of the septum volume (Vspt). The parameter
dentification is then run a second time using this Vspt value,
roducing a modified set of identified parameters that better
ccount for ventricular interaction.

In this research, the parameters are identified for each
eriod of measured data during the porcine experiment of
ulmonary embolism. Thus, time varying changes from the

nitial healthy state to the fully diseased state are captured, as
ight be desired for a clinical system. Hence, model identifica-

ion can provide a potential means of monitoring CVS disease
tate in the highly dynamic critical care patient.

.2.4. Simulation using optimized parameters
ig. 6 shows the overall process of the simulation and
arameter identification algorithm. After the porcine-specific
arameters have been identified for a respective point in time,
hese parameters are then used to rerun the model simulation.
he simulated output is then compared to the clinical data.
owever, due to errors in the initial approximations of Vspt

nd the unmeasured flows (Qav, Qmt, Qpv, Qtc), and the process
f scaling output signals, parameter identification should be

terated to ensure optimal convergence. Fast convergence con-
istently occurred within 3–5 iterations in this study and is
topped when the relative error between model output and
linical data reaches a set tolerance.

. Results and discussion

.1. Simulated pulmonary embolism in human

he CVS model and previously identified human parame-
ers [17,12–14] are used to generate simulated pulmonary
mbolism data. Pulmonary embolism is caused by a blood
lot obstructing the pulmonary circulation and is simulated
y increasing the pulmonary resistance Rpul by 30% every 50
eart beats for a total of 300 heart beats. This gives an overall

ncrease in Rpul of 150%. To account for measurement noise,
hite Gaussian noise of 5% and 10% is added to the (simulated)
easurements for pressure in the aorta, pulmonary artery and

oth ventricle volumes.
During pulmonary embolism, blood is backing up in the
ight ventricle due to increased afterload. The overfilled right
entricle compresses the underfilled left ventricle and thus,
he right ventricle expansion index (RVEDV/LVEDV) increases
27,28]. Fig. 7 shows the true expansion index versus the
repeated until the simulation output is acceptable.

re-simulated expansion indexes obtained using the identi-
fied parameter sets from the simulated pulmonary embolism
experiment.

The left panels of Fig. 8 show the simulated pressure in the
left ventricle (Plv), the left ventricle volume (Vlv) and the pres-
sure in the aorta (Pao). In each case, 10% Gaussian white noise
is added to the pressure and volume signals, except for the
ventricular pressure (top panel) as it is not measured or used
in the analysis. Only the maximum and minimum values of
Pao and Vlv in the noise corrupted signals are used to iden-
tify the system parameters. The dotted lines in each panel are
the re-simulated signals generated with the identified param-
eter set. Similar results for the right ventricle are given in the
right panel. Although the pressure in left and right ventricles
is not known and not used during the parameter identification
process, the re-simulated data matches it very well.

Finally, Fig. 9 shows the identified pulmonary resistance
over the 300 heart beats. Increased pulmonary resistance is

the hallmark of pulmonary embolism. Here, it is consistently
detected with up to 10% random noise added.

The pressure–volume relationship for the left ventricle is
shown in Fig. 10 for 6 different points in time during the
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Fig. 7 – Right ventricle expansion index, RVEDV/LVEDV for
0%, 5% and 10% measurement noise added for simulated
human case. The true expansion index (solid line) is
shown versus the re-simulated expansion indexes (dashed
and dotted lines) as obtained using the identified

Fig. 9 – Identified pulmonary vascular resistance (Rpul) for
0%, 5% and 10% measurement noise added for simulated
human case. The solid line represents the true resistance
parameter sets from the simulated human pulmonary
embolism experiment.

pulmonary embolism experiment with 10% measurement
noise. The CVS identification method produces parameters,
which when re-simulated match the clinical data very closely
with average errors of 3.18 ± 1.79 mmHg (7.20%) and 3.81 ±
3.38 ml (4.67%) for the maximum and minimum pressures and
volumes respectively. These identification results are summa-
rized in Table 3, which also shows an accurately captured rise
in pulmonary resistance.

3.2. Integral versus derivative identification

approaches

Rather than formulating Eqs. (1)–(13) in terms of integrals [17]
a potentially simpler way is to directly substitute the mea-

Fig. 8 – Integral-based identification (ID): pressures and volumes
The upper panels shows the pressures in left/right ventricles (Plv

ventricles (Vlv, Vrv) and the lower panels show the pressure in ao
ventricle; (b) right ventricle.
and the dashed and dotted line the identified resistances.

sured or estimated data into Eqs. (1)–(13). This approach would
require differentiating the signals for Eqs. (8), (11), (12) and
(13). For the case of scaled signals, the local noise is effectively
removed and the signals are smooth suggesting that differen-
tiation may be suitable. A similar system of linear equations to
Eqs. (35) and (36) would be obtained without the initial condi-
tions Pao0, Ppa0, Pvc0 and Ppu0 which are essentially integration
constants.

However, although local measurement noise is removed
there is still modelling error that occurs from scaling the
signals. Specifically, a scaled waveform can only match the
maximum and minimum values of a measured signal and
will not necessarily have the same waveform shape. Fig. 11
shows an example where the scaled and measured pres-

sure and volume waveforms are superimposed. Note that
“measured” in this case refers to the model generated sig-
nal using pre-selected parameters that represent a “virtual”
patient.

, measured (m) vs. simulated (s) for simulated human case.
, Prv), the middle panels show the volumes in left/right
rta (Pao) and pulmonary artery (Ppa), respectively: (a) left
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Fig. 10 – Pressure–volume relationship for left ventricle during different stages of the simulated human pulmonary
e The
m me:

d
t
d
b
f
i
t
b

mbolism experiment with 10% measurement noise added.
easured data: (a) time: 0 s; (b) time: 35 s; (c) time: 70 s; (d) ti

Fig. 12 shows a comparison of the derivatives dPao/dt,
Ppa/dt and integrals

∫ t

0
Pao dt,

∫ t

0
Ppa dt for the scaled versus

rue signals. A similar comparison is made between dVlv/dt,
Vrv/dt and

∫ t

0
Vlv dt,

∫ t

0
Vrv dt in Fig. 13. Very large errors can

e seen in the differentiated signals, thus showing how dif-

erentiation amplifies the modelling error between the curves
n Fig. 11, even though the signals are locally smooth. In con-
rast, integration effectively reduces modelling error as shown
y the upper panels in Figs. 12 and 13. Figs. 14 and 15 fur-
solid lines represent model output and the dotted lines
105 s; (e) time: 140 s; (f) time: 175 s.

ther demonstrate the differences by displaying the percentage
errors for both methods, where the derivative-based approach
shows an effective instability.

The parameters identified by the derivative-based method
are then used to rerun the CVS model and produce pressure

and volume curves, for comparison to the measured (sim-
ulated) data. This process is repeated in all the measured
periods during the pulmonary embolism simulation experi-
ment. The results in Fig. 16 show significantly large errors
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Table 3 – Simulated human pulmonary embolism: mean model response errors and standard deviation for combined
maximum and minimum pressures and volumes

Noise (%) Pao Ppa Plv Prv

Pressures (mmHg) and error (%)
0 1.63 ± 0.89 (1.70) 1.28 ± 1.31 (4.92) 1.30 ± 1.56 (2.40) 0.76 ± 1.38 (4.17)
5 1.58 ± 0.83 (1.74) 2.01 ± 1.60 (7.74) 0.69 ± 0.75 (4.40) 1.39 ± 1.56 (9.01)

10 3.18 ± 1.79 (3.57) 2.72 ± 1.96 (9.33) 1.36 ± 1.63 (6.29) 1.76 ± 1.99 (9.62)

Noise (%) Vrv Vlv

Volumes (ml) and error (%)
0 1.72 ± 1.36 (2.46) 1.80 ± 2.08 (2.46)
5 2.07 ± 1.08 (3.36) 2.88 ± 2.34 (3.81)
10 2.50 ± 2.44 (4.64) 3.81 ± 3.38 (4.70)

Noise (%) 0 s 35 s 70 s 105 s 140 s 175 s

Rpul (mmHg s ml−1) and error (%)
0 0.15 (0.07) 0.19 (5.34) 0.25 (1.72) 0.31 (7.32) 0.41 (6.62) 0.58 (1.32)
5 0.14 (8.06) 0.19 (1.40) 0.25 (3.81) 0.32 (5.06) 0.38 (14.04) 0.48 (16.16)

10 0.15 (0.14) 0.20 (2.10) 0.24 (7.34) 0.30 (10.01) 0.37 (16.14) 0.48 (16.23)
True 0.15 0.20 0.26 0.34 0.44 0.57

The lower portion shows the value of pulmonary resistance, Rpul, with the true simulated value for comparison. The mean percentage errors
are given in parenthesis.

Fig. 11 – Comparison between measured (solid) and scaled (dashed) signals for simulated human case: (a) left ventricle; (b)
right ventricle.

Fig. 12 – Comparison between integral and derivative for true (dashed) and scaled (solid) signal for simulated human case.
The very large errors in the differentiated signals show how differentiation amplifies the modelling error: (a) pressure in
aorta, Pao; (b) pressure in pulmonary artery, Ppa.
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Fig. 13 – Comparison between integral and derivative for true (dashed) and scaled (solid) signal for simulated human case.
The very large errors in the differentiated signals show how differentiation amplifies the modelling error: (a) volume in left
ventricle, Vlv; (b) volume in right ventricle, Vrv.
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ig. 14 – Percentage error for integral and derivative for simu
ulmonary artery, Ppa.
n the matching of the signals. The total mean error in the
dentified parameters, versus the true values simulated, over
ll periods for the derivative-based method was 419 ± 1363%,
ith noise at 10%. In comparison, the total mean error in the

ig. 15 – Percentage error for integral and derivative for simulate
ight ventricle, Vrv.
d human case: (a) pressure in aorta, Pao; (b) pressure in
identified parameters for the integral-based approach applied
on the same data set, was 9 ± 16%. Thus, the integral formula-
tion provides a robust parameter identification in the presence
of modelling as well as measurement error.

d human case: (a) volume in left ventricle, Vlv; (b) volume in
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Fig. 16 – Derivative-based identification (ID): pressures and
volumes, measured vs. simulated, for a simulated human
trial of pulmonary embolism. The upper panels show the
true (solid) vs. re-simulated (dotted) pressure in aorta (Pao)
and pulmonary artery (Ppa). The lower panels show the true
(solid) vs. re-simulated (dotted) pressure–volume

Rsys and Rpul, differ significantly between healthy and dis-
relationships for the left and right ventricles.

3.3. Porcine pulmonary embolism

Finally, the integral-based parameter identification is applied
to clinical porcine data for a true clinical validation. The data
was obtained from the Hemodynamics Research Laboratory,
University of Liège, Belgium. In the experiments, a pig is

injected with autologous blood clots every 2 h to simulate pul-
monary embolism [29]. Three pigs are presented for initial
validation of the methods presented.

Fig. 17 – Porcine pulmonary embolism, pig 1, model output (dott
pressure in left/right ventricle (Plv, Prv). The middle panels show
panels show the pressure in aorta and pulmonary artery (Pao, Pp
n b i o m e d i c i n e 8 7 ( 2 0 0 7 ) 46–60

Fig. 17 shows the simulated model output for the pressure
in the left and right ventricles (Plvs, Prvs), the volume in the
left and right ventricles (Vlvs, Vrvs) and the pressure in the
aorta, pulmonary artery (Paos, Ppas) overlaid with the corre-
sponding clinical data (Plvp/Prvp, Vlvp/Vrvp, Paop/Ppap) at 30 min
into the pulmonary embolism experiment of pig 1. The simu-
lation data matches the measured porcine data very well with
errors within 2.36 mmHg (∼ 5.72%) and 1.47 ml (∼ 2.16%) for
the maximum and minimum pressures and volumes, respec-
tively.

Fig. 18 shows the volume–pressure waveforms for the left
and right ventricles in more detail. The upper panel in Fig. 18
is the simulated ventricle volume and the dotted line is the
measured porcine volume for two heartbeats. The lower panel
shows the same results obtained for the ventricle pressure.
Finally, Fig. 19 shows the resulting pressure–volume relation-
ships (P–V loops) for the left and right ventricles. Errors in all
cases are in the range of 0.15–4.76%.

Fig. 20 displays the P–V loops for the left and right ventricle
120 min into the pulmonary embolism experiment. Although
the model did not exactly capture all the exact volume shapes
in the left and right ventricles, the pressure waveform shapes
were accurately captured, as well as the maximum and mini-
mum pressures and volumes. The differences represent local,
unmodelled dynamics, as might be expected. Overall, the
errors in the maximum pressures and volumes that are typ-
ically used to define trends in different disease states are
within 0.17–4.95%, respectively.

Fig. 21 displays the P–V loops at 180 min, which was the end
of the experiment. Again the results show a very close match.
Errors in the maximum pressures and volumes are all within
0.20% and 6.59%, respectively.

Fig. 22 clearly shows that the identified subject (pig) spe-
cific parameters systemic and pulmonary vascular resistance,
ease state, with Rpul increasing by 261.44%. Furthermore, the
model’s ability to pick up reflex response can clearly be seen in
Fig. 22, as the pig increases systemic resistance to help restore

ed) vs. clinical (solid) data. The upper panels show the
the volumes in left/right ventricle (Vlv, Vrv) and the lower

a): (a) 30 min, left ventricle; (b) 30 min, right ventricle.
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Fig. 18 – Porcine pulmonary embolism, pig 1, model output (solid) vs. clinical (dotted) data for pressure and volume. The
upper panels show the volumes and the lower panels the pressures in the left and right ventricles: (a) 30 min, left ventricle;
(b) 30 min, right ventricle.

Fig. 19 – Porcine pulmonary embolism, pig 1, pressure–volume relationship for left and right ventricle as obtained when
re-simulated using the CVS model and identified pig-specific parameters: (a) 30 min, left ventricle; (b) 30 min, right ventricle.

Fig. 20 – Porcine pulmonary embolism, pig 1, pressure–volume relationship for left and right ventricle as obtained when
re-simulated using the CVS model and identified pig-specific parameters: (a) 120 min, left ventricle; (b) 120 min, right
ventricle.
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Fig. 21 – Porcine pulmonary embolism, pig 1, pressure–volume relationship for left and right ventricle as obtained when
re-simulated using the CVS model and identified pig-specific parameters: (a) 180 min, left ventricle; (b) 180 min, right
ventricle.
blood pressure. However, near the end, when the pig is near
death, systemic resistance (Rsys) drops off. This last result is
potentially a sign that the pig can no longer regulate hemody-
namics effectively. The left and right ventricle contractilities
(Eeslvf, Eesrvf) also increased during the pulmonary emboliza-
tion experiment. These contractilities are also known to be
part of reflex response [30], providing some further confirma-
tion of this result.

The derivative formulation of the parameter identification
algorithm did not produce a parameter set that could be used

to re-run the CVS simulation when using the clinical porcine
data. This result further illustrates the instability and/or diffi-
culty of this type of method for this problem.

Table 4 – Porcine pulmonary embolism: mean model response
and minimum pressures and volumes

Pig # Pao Ppa

Pressures (mmHg) and volumes (ml)
1 3.50 ± 3.24 (4.10) 2.31 ± 1.93 (8.63)
2 5.04 ± 3.16 (4.59) 2.39 ± 1.82 (10.17
3 2.56 ± 2.13 (2.18) 2.30 ± 1.79 (2.30)

Noise (%) Vrv

Volumes (ml) and error (%)
0 1.66 ± 1.68 (2.3
5 3.46 ± 0.87 (4.2

10 3.31 ± 2.31 (5.6

Pig (#) 0 min 60 min 90 min

Rpul (mmHg s ml−1)
1 0.04 0.19 0.19
2 0.15 0.30 0.39
3 0.13 0.17 0.21

The lower portion shows the true value of pulmonary resistance, Rpul, w
errors are given in parenthesis.
3.4. Summary of three pigs

The results of the integral-based parameter identification
method on the three pigs are summarized in Table 4. The mean
and standard deviation of the absolute errors for the maxi-
mum and minimum pressure in aorta (Pao) and pulmonary
artery (Ppa), and left and right ventricle (Plv, Prv) are given.
The mean model response errors are within 2.21 ± 2.15 mmHg
(∼ 5.52%) for the pressures and 2.37 ± 2.01 ml (∼ 3.49%) for the
volumes. These results show that the minimal CVS model

is able to capture the essential dynamics of the porcine CVS
response to induced pulmonary embolism, over a selection of
subjects.

errors and standard deviation for combined maximum

Plv Prv

1.37 ± 1.65 (3.46) 2.31 ± 1.93 (5.46)
) 1.60 ± 1.17 (1.90) 1.26 ± 1.33 (5.23)

2.41 ± 2.60 (2.41) 0.57 ± 0.70 (2.51)

Vlv

9) 1.27 ± 1.18 (1.90)
1) 3.00 ± 1.60 (4.75)
7) 2.29 ± 2.15 (3.32)

120 min 180 min 240 min

0.19 0.30 0.29
0.38 0.52 0.46
0.22 0.40 0.44

ith the true simulated value for comparison. The mean percentage
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Fig. 22 – Porcine pulmonary embolism, pig 1: pulmonary
(upper panel) and vascular systemic (lower panel)
resistance as identified during the pulmonary embolism
e
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[23] M.A. Fogel, P.M. Weinberg, K.B. Gupta, J. Rychik, A. Hubbard,
xperiment.

. Conclusions

he integral-based optimization successively identified
atient specific parameters for the minimal cardiac model
ith inertial effects and ventricular interaction. A much

educed discrete set of measured data was employed com-
ared to prior work. The use of integrals for identification
f this model parameter identification, particularly in the
resence of measurement noise and/or modelling error. In
ontrast, derivative-based methods failed to produce stable,
eliable identification results. Thus, integrals are fundamental
o handling both local measurement error [17] and modelling
rror in the parameter identification process. Computa-
ionally, the parameter identification optimization problem
s made linear and convex, where current approaches are
on-linear and non-convex. The results from clinical porcine
ata of pulmonary embolism show that clinically relevant
nd physiologically accurate parameter identification can be
btained to a clinical setting. These results will obviously
eed to be confirmed with further trials over broader sets
f cardiac circulatory dysfunction. However, this integral
pproach has the potential to ensure medical staff can obtain
apid patient specific information to assist in diagnosis and
herapy selection in clinical real-time.
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