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• Model accuracy can be improved by using a blending method, ETKF, with HF radial velocity and an optimal8

representativity error from an independent validation9

• Improved model analysis can be obtained either from the original HF radar data or from HF radar data obtained10

at a different site11

• Every site has a different optimal representativity error12

• Winds have a high impact on the periodicity of root mean-squared (RMS) fluctuation13

Abstract14

The examination of currents by merging model results and radial velocity High-Frequency (HF) radar data has15

been undertaken in the Sunda Strait, which links the Indonesian islands of Sumatra and Java, involving two sites16

(Anyer and Labuan) and using the Ensemble Transform Kalman Filter (ETKF). Dependent validation involved17

the data used during model analysis while independent validation utilised observations from different site. These18

validations are needed to obtain an optimal representativity error, which has the lowest averaged root mean square19
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(RMS) over time and is appropriate for all sites. Moreover, we evaluated the optimal representativity error with20

the relative error reduction and the associated skill score metric. The results show that the model analysis for21

both independent and dependent validation have better results than the model with no blending. Interestingly,22

independent validation has a smaller RMS than the model with no blending, although it is still greater than the23

dependent validation. The best results were obtained from model analysis of all sites with 0.4459 m/s being the24

value of the representativity error. However, it has a pattern in the RMS error over time series. It is necessary to25

consider the factor such as winds that would have a large influence on the magnitude of radial velocity.26

Keyword Radial velocity, HF radar, Sunda Strait, Sumatra, Java, Indonesia27

1 Introduction28

Economic activity at sea requires high-quality marine weather information to prevent or reduce the risk of loss. It is29

a big challenge for researchers to improve the accuracy of both the marine model and the technology of observations.30

During the last two decades, the research of combining models and observations, has become an important research31

area and still leaves many unsolved questions. Models are based on mathematical equations that describe physical32

conditions and are solved numerically. The advantage of the model is the fact that they can produce output for the33

past, present and future, a high temporal resolution, potentially covering a large area if enough computer processing34

unit (CPU) power is available together with a high spatial resolution. In contrast, model output can have uncertainty,35

which can be substantial, while observations typically have lower uncertainties than the model. On the other hand,36

the effort to make observations, retrieval, data collection and maintenance or the observation equipment itself all have37

a huge cost. The combination of models can be a solution to improve the accuracy of marine forecasting.38

To improve the accuracy of an ocean model, ideally one would need evenly distributed and continuously available39

observations. An observation type, which has these characteristics, is High-Frequency (HF) radar. In the last decade,40

one of the growing research areas in the field of oceanography is the incorporation of ocean models and HF radars.41

HF radar is reliable in capturing spatial ocean surface phenomena with a high coverage (Paduan & Washburn, 2012),42

such as wave (Orasi et al., 2018) and surface currents (Abascal et al., 2012; Kim et al., 2008; Kohut et al., 2004;43

Paduan & Washburn, 2012; Solabarrieta et al., 2014; Yaremchuk & Sentchev, 2009) and, in particular, tidal currents44

(Tian et al., 2015) and tsunami (Lipa, Barrick, et al., 2012; Lipa et al., 2011; Lipa, Isaacson, et al., 2012). Indirectly,45

HF radar also gives information about winds (Kirincich, 2016; Lana et al., 2016; Orasi et al., 2018). In practice,46

HF radar can be used for managing hazard risks, such as navigation safety at ports and docks, controlling pollution,47

sedimentation when dredging, tsunami warning, monitoring positions of cold fronts in open ocean and sea breeze fronts48

in particular locations (Heron et al., 2016). The high spatial coverage attracts researchers to merge these data with49

the hydrodynamic model.50

There are two methods of combination, namely blending and data assimilation. Blending is a method of combination51

between the model and observation data to obtain the best estimation at time k that we call a “model analysis”. Almost52

similar to blending, data assimilation obtains the best estimation at forward time k + 1, k + 2 and so on, that we53

call “a model forecast”. Some blending research has been carried out, such as aiming to produce nowcasts (present54
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and future events) of the surface velocity by filtering using a Codar HF radar System with a Natural Mode Analysis55

method and gap-free nowcasts (Lipphardt Jr et al., 2000), estimating Lagrangian transport using the Wera system56

(Berta et al., 2014) and the analysis of tidal hindcast (past and present events) from radial currents, also using the57

Wera system (Stanev et al., 2015). A further method is data assimilation, which does not only produce the model58

analysis but also forecasting (Barth et al., 2008; Breivik & Satra, 2001; Ren et al., 2016; Vandenbulcke et al., 2017;59

Xu et al., 2014; Yu et al., 2012). Data assimilation methods in the body of literature include the Ensemble Kalman60

Filter (Barth et al., 2008; Breivik & Satra, 2001), the Variational method (Yu et al., 2012), the Optimal Interpolation61

(Xu et al., 2014), the Lewis assimilation scheme based on a shearing stress (Lewis et al., 1998) in (Ren et al., 2016),62

and the Ensemble Transform Kalman Filter (ETKF) (Vandenbulcke et al., 2017).63

Our study focuses on applying a blending method to obtain the estimates of currents in the Sunda Strait (linking64

Sumatra and Java islands, Indonesian). In comparison to previous research such as that undertaken by Lipphardt Jr65

et al. (2000), Berta et al. (2014) and Stanev et al. (2015), there are some similarities and differences regarding our66

investigation. The similarity of the present study with that of Lipphardt Jr et al. (2000), is that we applied blending67

to combine HF radar and a model. In addition, we used the same HF Codar but our study is different with respect to68

method, HF radar data and output. Lipphardt Jr et al. (2000) used the Natural Mode Analysis method for blending69

and HF surface currents for blending input, and their output was a nowcasting result (a short few hours of forecasting).70

Meanwhile, in the present study we utilised the ETKF method, HF radial velocity and we also produced a model71

analysis. One difference with respect to previous research in the literature is that our model analysis is valid for time72

k, in that, it is not valid for time k+1, k+2, and so on. Berta et al. (2014) assimilated Lagrange transport (trajectory)73

from a model, HF radar and drifter using the LAgrangian Variational Analysis (LAVA) method in the Ligurian Sea74

(between Italian Riviera and Isle of Corsica). Those authors used trajectory objects that were superimposed with75

surface currents from HF radar plus a model, model analysis and forecasting. While we utilised surface current76

objects only and compared them to model analysis. Berta et al. (2014) produced blended and forecasting output77

compared to drifter and HF radar itself, while the present study had a focus on the blending process only. Hence,78

the similarity is only in terms of an analysis output. Compared to other previous research such as that by Stanev et79

al. (2015), we also used radial velocity for blending. Another similarity is the use of Kalman filtering for blending.80

However, in the present work we utilised an ensemble variant of the Kalman filter, the ETKF (Bishop et al., 2001).81

The difference is that those authors considered tides in simulation because the research area was dominated by tides.82

While in the present research we used one year of an ensemble model, 3 months of HF radial velocity of CODAR83

SeaSonde and also tides were not considered. The present study proposes another way to validate by using cross84

validation of each site, namely independent and dependent validation and estimates of an optimal representativity85

error to obtain the best analysis for all sites; besides, the previous study applied a blending for shallow water areas.86

In the present study, we applied a blending of not only strait, which is relatively shallow with about 0 - 100 metres87

depth, but also of the continental shelf area with more than 200 metres depth (see Fig. 1) because the Sunda Strait88

borders with the Indian Ocean at the southwestern part. The other difference is that Stanev et al. (2015) have used89

an acoustic Doppler current profiler (ADCP) for validating blending results, which is not only analysis but is also90

hindcast, nowcast and forecast. For reducing computational cost, the state vector was decomposed into eigenvectors91
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and eigenvalues. The decomposition method used by those authors is the Empirical Orthogonal Function (EOF),92

whereas in the present study we use the Singular Value Decomposition (SVD). The analysis covariance matrix used93

Stanev et al. (2015) is based on the model state matrix, while in the present study we use the decomposition of the94

inverse transformation matrix, which originates from the model state perturbation matrix in observation space and the95

innovation matrix. In our study we use the representativity error which is included in the observation error covariance96

matrix (R). The resulting model analysis was validated independently relative to radial velocity from different sites97

(independent validation). As a result, we obtained one representativity error for every site, which gives the lowest98

average root mean square error (RMS). All model analyses have lower RMS than models without blending, while in99

Stanev et al. (2015) the representation error was represented by multiplication of the observational error covariance100

by a factor 25.101

Studies of HF radar in a strait region (Strait of Gibraltar) have also been previously undertaken and described in the102

literature (Soto-Navarro et al., 2016). Identifying characteristic surface currents in a strait is not an easy task because103

of the narrow shape and the dynamic of economic activity, except that we had access to adequate equipment. HF104

radar has the capability to capture surface currents in a horizontal pattern structure from a distance. (Soto-Navarro105

et al., 2016) compared the Autonomous Measurement, Prediction and Alert System in the Bay of Algecira (SAMPA106

is the Spanish acronym) model output against 3 sites of HF radar at the Strait of Gibraltar using statistical metrics107

such as variance, complex correlation, veering angle, scalar correlation and root mean square error. The period of the108

used data was February 2013 – September 2014. The used parameters were zonal and meridional velocity components.109

Their study shows the existence of currents that are stronger than for other areas when currents flow out from strait.110

It appeared from monthly mean velocity in February, May, August and November. The pattern also occurred in the111

assimilation result in the channel between Xuejiadao Island and Xiaomaidao Island (Qingdao, China, on the western112

coast of the Yellow Sea) (Xu et al., 2014), mean surface circulation pattern from HF radar for 2016–2017 in the113

Gibraltar Strait (Lorente et al., 2019). We analyse the similarity of this pattern in the Sunda Strait.114

Since the 1960s, the Sunda Strait has been receiving the attention of marine researchers notably regarding115

oceanographic conditions (Amri et al., 2014; Jumarang & Ningsih, 2013; Koropitan et al., 2006; Li et al., 2018;116

Novico et al., 2015; Oktavia et al., 2011; Pariwono, 1999; Potemra et al., 2016; Rahmawitri et al., 2016; Sandro et117

al., 2014; Susanto et al., 2016; Wyrtki, 1961). They conducted research using various data such as vessel observations118

data (Wyrtki, 1961), ship drift (Pariwono, 1999), in situ observation (Amri et al., 2014), ADCP (Li et al., 2018;119

Novico et al., 2015; Susanto et al., 2016), Princeton Ocean Model (Koropitan et al., 2006), satellite (Rahmawitri et al.,120

2016; Sandro et al., 2014), geostropic currents derived tides-gauge (Oktavia et al., 2011), the Nucleus for European121

Modelling of the Ocean – Ocean Parallelise (NEMO-OPA) Model (Rahmawitri et al., 2016), and HYCOM (Potemra122

et al., 2016). However, to the best of our knowledge, there are only a few studies focusing specifically on the variability123

of currents. Based on all of these studies, the variability of the current in the Sunda Strait flows mostly from the Java124

Sea towards the Indian Ocean the whole year (Pariwono, 1999; Rahmawitri et al., 2016; Wyrtki, 1961). Rahmawitri125

et al. (2016) implicitly noted that sea surface height (SSH) in the Java Sea is higher than that of the Indian Ocean126

throughout the year except for November-January. The calculation of currents can be derived from SSH, hence that it127

can have the same meaning. Nevertheless, there are different exceptional months, the currents flow towards the reverse128
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directions such as in March, August, and October (Pariwono, 1999), and November-January (Rahmawitri et al., 2016).129

Notwithstanding, Amri et al. (2014) found currents coming from the Java sea which appeared along the west coast130

of Banten (Carita, Labuan until Tanjung Lesung) flowing southwestward and being deflected northeastward around131

Panaitan Island. Moreover, Oktavia et al. (2011) conclude that geostrophic currents variation is indirectly influenced132

by winds in the Sunda Strait. However, with respect to the speed of currents from the previous research papers in the133

literature, they vary depending on data availability and type. Generally, the maximum speed of currents was about134

2.63 m/s on 18 October 2012 at 16:30 Western Indonesian Time (WIB) at the narrow channel in the northeastern135

part of the Sunda Strait (Novico et al., 2015).136

The Sunda Strait became a focus of attention because of the presence of HF radar at that location, which was137

previously used for tsunami detection, but can also be used to better understand the surface circulation. The existence138

of currents data inspires us to test the merging with the ensemble method so that it allows us to bring the model139

closer to the observation. With respect to that reason, previous research and the lack availability of observational140

currents spatially, we propose a blending method using the Ensemble Transform Kalman Filter (ETKF) (Bishop et al.,141

2001) and the explanation (Vetra-Carvalho et al., 2018) to provide the best estimation of surface currents in spatial142

distribution. The best estimation could be achieved by testing the sensitivity of the representativity error to averaged143

root mean square error (RMS). The testing can show the optimal representativity error, which gives the smallest144

averaged RMS. In addition, this method can also provide a larger coverage of the best estimation, which is not only145

limited to the HF radar domain but also goes beyond the models. Hence, the fluctuation of surface currents outside146

HF radar coverage can be made to clearly appear. To carry out this, we blend the Copernicus Marine Environment147

Monitoring Service (CMEMS) model with the HF radar radial velocity of each site. Radial velocity from one site is148

blended with the CMEMS model to create a full map of surface currents and then this current map is compared to the149

originally used data (dependent validation) and to the HF radar of other site (independent validation). The optimal150

representativity error for all sites was obtained by cross validation. The improvement is shown by error reduction and151

skill score after blending. If it is significant, it becomes very interesting to continue with the next step, such as data152

assimilation, to produce a forecast. The other benefit is that we will have the model analysis (the best estimation) in153

the same abundance as for the HF radar data; in that, the more HF radar that is involved, the more model analysis154

that will be produced. We treat a long period of CMEMS model as an ensemble model with which to provide the155

more representative model analysis with consideration of: the more ensemble members there are, the more accurate156

the model analysis will be. However, in the present study the ensemble model remains constant over time. We may157

conclude that the novelties of this study are the usage of HF surface currents, a blending method to obtain the currents158

estimates from one site of HF radar, and the optimal representativity error.159

This paper is presented in five sections. Section 1 contains the background of this research and a review of previous160

studies. Section 2 discusses data, methods and steps for processing the data. Section 3 displays the results such as the161

comparison of model without blending, model with blending and the comparison with observation, plus the selection162

of an optimum representativity error that is possible for all sites. Section 4 provides a discussion on topics such as163

the comparison between the performance of the previous study and the present study and also the fluctuation of RMS164

signal which obtained by the optimum representativity error. Section 5 concludes.165
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2 Material and Methods166

2.1 Material167

In this section, the research domain, data, methods used and steps of data processing are explained. The research168

area chosen is the Sunda Strait (see Fig. 1), which is created by using the M_Map application (Pawlowicz, 2020).169

The Sunda Strait connects the Indian Ocean and the Java Sea, and the northeastern part is a narrow channel and170

shallow, in contrast to the southwestern part which is wide and steep. Three types of data were used in this study.171

The first type is the output from Copernicus - Marine Environment Monitoring service (CMEMS) model, which has172

hourly-mean zonal u and meridional velocity component v during one year, 01 September 2013 until 31 August 2014,173

from the global ocean 1/12 degrees physics analysis and with the forecast updated daily. This model does not include174

tides. The second type was HF radar Coastal Ocean Dynamics Application Radar (CODAR) SeaSonde radial velocity175

for 23 September 09 UTC until 22 December 2013 01 UTC from both sides of the strait (Anyer and Labuan; see176

Fig. 1), which have a “measured antenna pattern” an hourly temporal resolution, 20-60 km of spatial range, 3 km of177

range resolution, 5 degrees of angular resolutions and spatial resolutions, and 11.5-14 MHz of frequency. Measured178

antenna pattern means the pattern of antenna, which is adjusted with respect to the environment of the specified179

site. All radial velocity data have metadata, which contain all information of that data representation. One sample180

of the data is the type of pattern. All data we have are using a “measured” type of antenna pattern. Time series181

data availability of each site are described in Fig. 2 and spatial data availability in Fig. 3. Limited measurement at182

Labuan, due to the energy supply from a solar panel, was sometimes unstable. The third data type was hourly wind183

speed at 10 metres from the meteorological station at Serang Banten, which is part of BMKG. Winds were used for184

comparing the signal pattern of the blending result.185

Fig. 1. Research domain.(Credit: Bathymetry from the General Bathymetric Chart of the Oceans (GEBCO)) (Group, 2020)
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Fig. 3. Accumulated spatial availability of radial currents at each site 23 September - 22 December 2013 at the Anyer site (a)
and the Labuan site (b)
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Fig. 2. Time series of the availability of radial currents at each site 23 September - 22 December 2013

2.2 Method186

2.2.1 Preprocessing187

The hourly CMEMS model data from the September 1, 2013 to August 31, 2014 representing 8761 time instances188

are used. In the following, it is assumed that this time variability of the model can be used as proxy of the error189

covariance (Stanev et al., 2015). Those authors considered winds, which is a time-variant parameter, while in our190

study, we do not have a true ensemble simulation, hence we also use the time variability as a proxy. However, this191

approximated ensemble variability keeps constant over time. This approach had been implemented for assimilating192

altimetry data and ocean model using the Singular Evolutive Extended Kalman (SEEK) filter with a time-independent193
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error sub-space scheme (Brasseur et al., 1999).194

Before the HF radial velocity is used in the blending, the data are preprocessed in 3 stages. We deleted bad data195

such as incomplete coordinate data, vector data, which were not in the sea and not used for total vector and also196

non-calculable data. Next, we detected and removed outliers by using the scaled Median Absolute Deviation (MAD),197

which detects elements that have value more than three times the scaled Median Absolute Deviation (MAD) from198

the median. The scaled MAD is defined as Eq. (1) for a random variable vector A with N scalar observation with199

Eq. (2) for c coefficient. The last term usually uses 1.4826 value. This method was introduced by R.Hampel (1974)200

as mentioned by (Leys et al., 2013). In our case, outliers are removed during time series N since September 23, 2013201

- April 1, 2014. Afterwards, we removed the periodic tides effect on the radial velocity using the T_Tide application202

(Pawlowicz et al., 2002). Tidal signal was removed since CMEMS in this study has not considered tides. Hence, the203

radial velocity to be used also needs to be removed from the effect. We still have the radial velocities in the south of204

Java Island as in Fig. 3b. However, the maximum percentage of radial velocities in the south of Java Island is 8.5%205

of the total of radial velocities in the Labuan site. It occurred on October 8, 2013 20:00 UTC. Also, the average daily206

percentage is 0.961%. In other words, the contribution of radial velocities in the south of Java Island for the blending207

output is quite small.208

MAD = c(median |Ai − median(A)|) (1)

where i=1,2,....N and209

c = −1/
√

2(erfc−1(3/2)) (2)

2.2.2 Processing210

The method that is used in this study is the Ensemble Transform Kalman Filter (ETKF). It is a variant of the Ensemble211

Kalman Filter that was first introduced Evensen (1994), which is a development of the Kalman filter method (Kalman,212

1960). The method inverses the observational error covariance matrix R so that it can be easily identified. For an213

explanation regarding calculating ETKF the reader is referred to the user manual: Sangoma Package (Vetra-Carvalho214

et al., 2018).215

Regarding the Ensemble Kalman Filter, there are four general formulas including the updated ensemble mean x̄a
216

as Eq. (3), the analysis error covariance matrix Pa as Eq. (4), Kalman gain K as Eq. (5), the analysis ensemble Xa
217

as Eq. (6)218

x̄a = x̄f + K(y − H(x̄f )) (3)

Pa = (I − KH)Pf (4)

where K is Kalman gain, which is defined as219
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K = Pf HT (HPf HT + R)−1 (5)

where R is an observational error covariance matrix, H(..) in Eq. (3) is a linear observation operator for scalar220

form. While H Eq. (4) is an observation operator in the forecast ensemble mean (matrix form). The observation221

operator contains transformation values from model grid to observations grid; with the analysis ensemble given by222

Xa = X̄a + X′a (6)

Where X̄a = (x̄a
1 , x̄a

2 , ...., x̄a
N ) ∈ RnxN . X̄a is the ensemble analysis mean. While X′a is the ensemble analysis223

perturbation; superscript (.)a and (.)f denote analysis and forecast, respectively.224

Besides formula in Eq. (4), the initial error covariance matrix P can be calculated from covariance around the225

mean x̄ at the time index k = 0 by using226

Pa,(0) = 1
N − 1

N∑
j=1

(xa,(0)
j − x̄)(xa,(0)

j − x̄)T (7)

or227

Pa,(0) = X′a,(0)(X′a,(0))T

N − 1 (8)

where j = 1,...,N is an ensemble member index, N is the total number of the ensemble. The subscript T denotes228

transpose. Because we aim to obtain an analysis, so we omit the time index k = 0, thus equation of the analysis229

ensemble error covariance Eq. (8) can be written as230

Pa = X′a(X′a)T

N − 1 (9)

Based on the derivation by Vetra-Carvalho et al. (2018), Eq. (4) and Eq. (9) can be obtained by using the ensemble231

perturbation matrix in observation space S, the innovation covariance matrix F, and the transformation matrix TTT
232

and the ensemble forecast perturbation X′f as in the following equations.233

X′a(X′a)T = X′f (I − (ST (SST + (N − 1)R)−1S))(X′f )T (10)

= X′f (I − ST F−1S)(X′f )T (11)

S = HX′f (12)

F = SST + (N − 1)R (13)
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I − ST F−1S = TTT (14)

In this study, the ETKF (Bishop et al., 2001) method is used to transform matrix TTT as explained in (Vetra-234

Carvalho et al., 2018) by using the Sherman-Morrison-Woodbury identity (Golub & Loan, 1996), the scaled forecast235

ensemble observation perturbation matrix S̃ (Livings, 2005) and Singular Value Decomposition (SVD)(Vetra-Carvalho236

et al., 2018). It is more efficient to inverse the observation error covariance matrix R since a diagonal matrix R is237

often a reasonable assumption. In data assimilation, the observation error covariance matrix R is assumed in diagonal238

because of the following reason. If R is not a diagonal matrix, then nonzero off-diagonal elements exist. Next, we239

substitute F in Eq. (13) to Eq. (14), then we used the Sherman-Morrison-Woodburry identity (Golub & Loan, 1996)240

as in Eq. (15) to obtain Eq. (16)241

ABT (C + BABT ) = (A−1 + BT C−1B)−1BT C−1 (15)

with A = I, B = ST , C = (N − 1)R242

TTT = (I + 1
N − 1ST R−1S)−1 (16)

In ETKF, the innovation covariance matrix can be solved by computing an eigenvalue decomposition of the matrix243

TTT as in Eq. (16). However, as noted by Livings (2005), to avoid the floating point, rounding errors can produce244

an asymmetric matrix TTT , in fact, Eq. (13)is symmetric. Hence, Livings (2005) introduced the scaled forecast245

observation ensemble perturbation matrix S̃ as per Eq. (17)246

S̃ = ( 1√
N − 1

)R−1/2S (17)

we will obtain247

TTT = (I + S̃T S̃)−1 (18)

Now we can perform Singular Value Decomposition (SVD) to compute TTT efficiently. SVD is used to preserve248

accuracy (Livings, 2005) and it is a technique to decompose any size of matrix so that it can be processed more easily.249

SVD produces 3 matrices, namely two orthogonal matrices ( UT in size (m x m) and VT
T in size (n x n)) and diagonal250

matrix ΣT with size (m x n) with positive values. The last matrix of SVD contains a singular value according to its251

singular vector sequence. This singular value plays the biggest role in the variation of the data as a whole, and is252

stored in the first order of the diagonal matrix ΣT .253

S̃T = UT ΣT VT
T (19)
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Next step, substitute Eq. (19) to Eq. (18), and because U and VT are orthogonal matrices, hence VT
T VT = I and254

UT UT
T = I, where I is Identity matrix, hence, (UT UT

T )−1 = (UT UT
T )T = UT UT

T . Hence, we have TTT in another255

form as Eq. (20)256

TTT = UT (I + ΣT ΣT
T )−1UT

T (20)

Returning to the ensemble analysis perturbation matrix in Eq. (11), we can replace Eq. (14) which is inside Eq. (11)257

by Eq. (20), so that we have Eq. (21). We can also take root in Eq. (21) becoming Eq. (22), so that we obtain258

X′a(X′a)T = X′f UT (I + ΣT ΣT
T )−1UT

T (X′f )T (21)

X′a = X′f UT (I + ΣT ΣT
T )−1/2UT

T (22)

Note that UT
T is necessary at the end of the right hand side, so that the ensemble perturbation X′a has a zero mean.259

After that, we can calculate the Kalman gain in Eq. (5) by using derivation of Eq. (12), Eq. (13), Eq. (14), the260

Sherman-Morrison-Woodbury Identity Eq. (15), Eq. (17) and Eq. (19), so that we obtain261

K = ( 1√
N − 1

)X′f UT (I + ΣT
T ΣT )−1ΣT VT

T R−1/2 (23)

Hence, the updated ensemble mean found in Eq. (3) can be changed by substituting Eq. (23) into Eq. (3)262

x̄a = x̄f + ( 1√
N − 1

)X′f UT (I + ΣT
T ΣT )−1ΣT VT

T R−1/2(y − H(x̄f )) (24)

With regard to the derivation of ETKF, the needed input data are the forecast ensemble Xf , the ensemble263

perturbation matrix in observation space S = (HX′f ), the observational error covariance matrices R and the264

observation yo. The analysis ensemble can, therefore, be computed by using Eq. (22) and Eq. (23), and Eq. (24).265

The following are stages of data processing:266

(i) The projected radial velocity is calculated using Eq. (25). Zonal u and meridional v velocity component originate267

from the zonal u and meridional v velocity component of the CMEMS model and they were interpolated based268

on the coordinates of radial velocity HF radar. Then, they were calculated altogether using the bearing of radial269

velocity HF radar θ to obtain the model radial velocity. We call the projected radial velocity in this step the270

original model or model without blending. The outputs of this process are the original model Anyer and the271

original model Labuan. The original model Anyer is defined as the CMEMS model without passing the ETKF272

process, which is re-interpolated based on radial velocity coordinates from the Anyer site. The original model273
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Labuan is defined as the CMEMS model without passing the ETKF process, which is re-interpolated based on274

radial velocity coordinates from the Labuan site.275

U = u(− sin(θ)) + v(− cos(θ)) (25)

(ii) The zonal u and meridional velocity component v of the CMEMS model from different time instances are276

assembled into the model ensemble X. Grid cells corresponding to points on land are excluded from the state277

vector. Hence, the total number of ensemble members N is 8761. Theoretically, the more ensemble members278

there are, the more accurate the analysis ensemble will be.279

(iii) Then, the forecast ensemble or Xf is calculated. Beforehand, we calculated ensemble mean X̄ by averaging280

all state vectors from initial ensemble X over the number N ensemble member. Then, all ensemble members281

were subtracted by the ensemble mean X̄, so that we have ensemble perturbation X′f . Finally, we obtained282

the forecast ensemble by summation of ensemble perturbation and model state at member index j, which was283

replicated until N member, and at time k, in this case k = 0.284

(iv) The observation part of ensemble members HXf is computed. It contains radial velocity of forecast ensemble285

Xf , which was derived from the zonal u and meridional v velocity component of forecast ensemble Xf using286

Eq. (25).287

(v) In the next step, the forecast ensemble observation perturbation matrix S or HX′f is calculated. Beforehand,288

the observation part of ensemble members HXf from the previous step was averaged by N yielding HX̄f .289

The subtraction of the observation part of ensemble members HXf by HX̄f obtained the forecast ensemble290

observation perturbation matrix (S).291

(vi) The observation yo
k every k time instance until N size of the ensemble was defined. These variable values are292

taken from radial velocity HF radar itself, but only those in the sea are selected.293

(vii) The observation error covariance matrix R is determined. As is known, observations value yo consists of real294

observation (that unknown exactly) and observation error (ϵo) as Eq. (26). Observation error comes from 3295

sources, namely instrument noise, forward model error and representativity error.296

yo = H(x) + ϵo (26)

In this study, the observation error covariance matrix R was the sum of instrument error and representativity297

error, which was made in the form of a diagonal matrix. The related SeaSonde instrument has 4 ordered products,298

namely the radial velocity from spectra, the Short-Time Radials, the Final Output Radial, and the Total vector.299

The Short-time Radials are a merged of list of radial velocity from spectra, which is within the same range and300

bearing and in the same time interval 10 minutes (for a standard range type of Seasonde). The Final Output301

Radial is calculated from a merged of collection of Short-time radials over 5 degree and the configured time.302
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Total velocity is a combination of radial velocity from at least two sites of HF Radar. The radial velocities have303

spatial uncertainties due to horizontal shear, which is the so-called Spatial Quality, which in the Short-Time304

Radials is the standard deviation of the list of radial velocity in the Short-Time Radials. The Spatial Quality305

Qs in the Final output Radials is based on Spatial Quality in Short-Time Radials. Besides the Spatial Quality,306

the radial velocities also have temporal uncertainties due to the change of the current pattern over time, which307

is the so-called Temporal Quality Qt, which in the Final output Radials is the standard deviation of list of308

radial velocity across the Short-Time Radials (CODAR, 2009). Hence, the instrument error in this study was309

from standard deviation of radial velocity measurement for both spatial quality Qs and temporal quality Qt.310

Representativity errors (ϵrep) have various values, which were tested between 0 and 1. The error in this context311

is associated with radial velocity in order that they have the same unit in m/s. In the present study, we apply a312

quadratic function for each component, so that the observational error covariance matrix R is the sum of squares313

of spatial quality Qs, temporal quality Qt, and representativity error ϵrep as Eq. (27).314

Rii = Q2
si + Q2

t i + ϵ2
rep (27)

Where i is an index of a grid cell, which has non-zero elements. R was transformed into a sparse array following315

length of matrix Qs or Qt. The unit of R is m2/s2.316

(viii) The analysis ensemble Xa and the analysis ensemble mean x̄a are computed. After this, all variables are317

available, such as forecast ensemble Xf , the ensemble perturbation matrix in observation space S, observational318

error covariance matrix R, and observations yo, then we can use these in the ETKF equations, such as Eq. (12),319

Eq. (17), Eq. (19), Eq. (22), Eq. (23), Eq. (24), Eq. (26), Eq. (27), which are available in Sangoma package320

(Vetra-Carvalho et al., 2018).321

(ix) Last but not least, the analysis ensemble is re-interpolated based on the position of the coordinates of radial322

velocity. We chose the analysis ensemble mean x̄a for re-interpolating the model analysis radial velocity according323

to coordinates of radial velocity on each site. The term “the model analysis” refers to the definition of the best324

estimation resulted in time k. To maintain simplicity, we use the term “the blended model” to represent “the325

model analysis”. The re-interpolation result is needed to validate the blended model against the observation in326

the same grid. The outputs of this process are the blended model Anyer (the model analysis Anyer), the blended327

model Anyer for Labuan (the model analysis Anyer for Labuan), the blended model Labuan (the model analysis328

Labuan), and the blended model Labuan for Anyer (the model analysis Labuan for Anyer). The blended model329

Anyer (the model analysis Anyer) is defined as the CMEMS model, which is already blended with the observed330

radial velocity from the Anyer site and re-interpolated based on radial velocity coordinates from the Anyer site.331

The blended model Anyer for Labuan (the model analysis Anyer for Labuan) is defined as the CMEMS model,332

which is already blended with the observed radial velocity from the Anyer site and re-interpolated based on333

radial velocity coordinates from the Labuan. The blended model Labuan (the model analysis Labuan) is defined334

as the CMEMS model, which is already blended with the observed radial velocity from the Labuan site and335
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re-interpolated based on radial velocity coordinates from the Labuan. The blended model Labuan for Anyer336

(the model analysis Labuan for Anyer) is defined as the CMEMS model, which is already blended with the337

observed radial velocity from the Labuan site and re-interpolated based on radial velocity coordinates from the338

Anyer.339

2.2.3 Post-Processing340

The further procedure was a validation process against data used in the analysis (dependent validation) and against341

withheld data (independent validation). In this study, dependent validation means the blended model Anyer compared342

to observations from Anyer itself or the blended model Labuan compared to observations from Labuan itself. Whereas,343

independent validation means the blended model Labuan for Anyer compared to observations from the Anyer site or344

the blended model Anyer for Labuan compared to observations from the Labuan site. The validation result was345

indicated by the root of the mean squared error (MSE) Eq. (28) (Murphy & Epstein, 1989). For every date, the RMS346

error of the model and the observations are computed (averaging over all coordinates); this time series of RMS errors347

are averaged over time and the result is the averaged RMS.348

MSE = 1
N

N∑
i=1

(fi − oi)2 (28)

f is forecast vector, o is observations vector. In this study, f is the blended model (the model analysis) or original349

model without blending, whereas the observations o are the radial velocity observations from each of the sites. The350

perfect score for this metric is 0 (which is only possible if the observations have no noise).351

Notwithstanding, we examined the blended model (the analysis model) using two metrics, namely the relative error352

reduction (RER) Eq. (29), and the associated skill score (SS) Eq. (30) (Murphy & Epstein, 1989).353

RER = (RMSoriginalCMEMSmodel − RMSblendedmodel

RMSoriginalCMEMSmodel
) (29)

In this study, the RMS of the original CMEMS model was computed by the averaged RMS of the model without354

blending. The RMS blended model was computed by the averaged RMS of the blended model, such as independent355

validation and dependent validation. The perfect score for this metric is 1. The greater the reduction, the better the356

estimation. Our colour scheme is explained in the following result section.357

SS = 1 −
(

MSEforecast

MSEref

)
(30)

In this study, MSEforecast was computed by square of the averaged RMS of the blended model, MSEref computed358

by square of the averaged RMS of the model without blending. The perfect score for this metric is 1, which means359

that the model would approach observations. Our colour scheme is explained in the following result section.360
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3 Result361

Fig. 4a and Fig. 4b show the sensitivity of the averaged RMS relative to the representativity error ϵrep of the Anyer362

site and the Labuan site, respectively. For every date, the RMS error of the model and the observations are computed363

(averaging over all coordinates). This time series of RMS errors is averaged over time. The blue colour shows364

comparison between the original model and the observation. The red colour represents a dependent validation, that365

is, the blended model obtained from the observation itself. The green colour represents independent validation,366

that is, the blended model obtained from another site. In Fig. 4a the blue colour indicates the sensitivity of the367

averaged RMS relative to the representativity error ϵrep, in which the averaged RMS originating from the difference368

between radial velocity from the model without blending of the Anyer site and the observation radial velocity of369

the Anyer site. The green colour indicates the sensitivity of the averaged RMS relative to the representativity error370

ϵrep, in which the averaged RMS comes from the difference between the blended model Labuan for Anyer and the371

observation radial velocity of the Anyer site. The red colour indicates the sensitivity of the averaged RMS relative to372

the representativity error ϵrep, in which the averaged RMS is a result of the difference between radial velocity of the373

blended model Anyer and the observations radial velocity at the Anyer site. While in Fig. 4b, the blue colour indicates374

the sensitivity of the averaged RMS relative to the representativity error ϵrep, in which the averaged RMS is a result375

of the difference between radial velocity from the original model Labuan (the model without blending of the Labuan376

site) and observations radial velocity from the Labuan site. The green colour indicates the sensitivity of the averaged377

RMS relative to the representativity error ϵrep, in which the averaged RMS is a result of the difference between the378

blended model Anyer for Labuan and observations radial velocity at the Labuan site. The red colour indicates the379

sensitivity of the averaged RMS relative to the representativity error ϵrep, in which the averaged RMS is a result of380

the difference between the blended model Labuan and observations radial velocity of the Labuan site.381

Both figures show the averaged RMS of the blended model (red colour and green colour) is smaller than the382

averaged RMS of the original model (blue colour). It means that the blended model which resulted from blending383

process is better than the original model. Notwithstanding, the averaged RMS of dependent validation (red colour)384

is decreasing, as the representativity error ϵrep is equal to zero. This validation ensures that the blending process is385

working properly and has been well-examined, because validation of the blended model which is obtained from its386

own observation should be the smallest error in the representativity error ϵrep, equal to zero, otherwise the larger the387

representativity error ϵrep, the worse the error becomes. One would have expected that the RMS of the red curve is the388

smallest as the representativity error ϵrep approaches zero. The small increase of this RMS error in the rounding errors389

is because the matrices involved in the blended model (the analysis) become ill-conditioned if the representativity error390

ϵrep approaches to zero. In theory, the optimal representativity error ϵrep of dependent validation would be achieved391

in the representativity error ϵrep equal to zero, otherwise, it becomes worse when the representativity error ϵrep equal392

to unlimited value, in which red line is approaching blue line. We displayed a red line in order to make sure that the393

dependent validation worked properly, and as well as theory. In Fig. 4, it was achieved by the representativity error394

ϵrep equal to nearly zero, namely 0.0603 m/s at the Anyer site and 0.0222 m/s at the Labuan site. Nevertheless,395

in general dependent validation has been fulfilled. The representativity error ϵrep values were not zero because of396
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rounding errors occurring when we inverted the representativity error ϵrep matrix.397

Meanwhile, the blended model using the observations of the other site (independent validation) gives higher the398

averaged RMS than the blended model using its own observations (dependent validation), however, it is still smaller399

than that of the model without blending. The blended model in the category of independent validation is the blended400

model Anyer for Labuan or the blended model Labuan for Anyer. While the blended model in the category of401

dependent validation is the blended model Anyer or the blended model Labuan. By validating independently, we402

obtained that each site has own the representativity error ϵrep with the smallest for the averaged RMS. As a result, we403

have two representativity errors ϵrep, each of which have the smallest value for the averaged RMS from the independent404

validation.405
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Fig. 4. The sensitivity of the averaged RMS relative to the representativity error ϵrep at the Anyer site (a) and the Labuan
site (b)

From the two comparisons above, we still have 2 optimal values of the representativity error ϵrep from each site,406

namely 0.2704 m/s and 0.4459 m/s, respectively, which are from independent validation. It means that every site407

has an optimal representativity error ϵrep. We still need to evaluate which one is the best appropriate value of the408

representativity error ϵrep in order to obtain the best blended model for all sites.409

Notwithstanding, we blend model with observations from each site, we also have a blended model with observations410

from both sites simultaneously. The differences with respect to the previous process are that the CMEMS model is411

blended with the observation Anyer or Labuan, separately. Meanwhile, the further process is that the CMEMS model412

is blended with the observations from both sites (Anyer and Labuan), simultaneously. Also, this process uses the413

optimal representative errors from the separated blending process. The blended model of all sites is defined as the414

CMEMS model, which is already blended with the observed radial velocity from both sites (Anyer and Labuan),415

simultaneously, and then re-interpolated based on radial velocity coordinates from both sites. The blended model of416

all sites for Anyer is defined as the CMEMS model, which is already blended with the observed radial velocity from417

both sites (Anyer and Labuan), simultaneously, and then re-interpolated based on radial velocity coordinates from418

the Anyer site. The blended model of all sites for Labuan is defined as The CMEMS model, which is already blended419

with the observed radial velocity from both sites (Anyer and Labuan), simultaneously, and then re-interpolated based420

on radial velocity coordinates from the Labuan site. The averaged RMS is shown as a bar graph in Fig. 5, displays421

the blended model of all sites which has been optimized by either 0.2704 m/s of the representativity error ϵrep or422

0.4459 m/s of the representativity error ϵrep (orange versus blue). However, the averaged RMS of the blended model423
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of all sites for Anyer (yellow colour) and the blended model of all sites for Labuan (violet colour) are still higher than424

the blended model of all sites (orange colour). The blended model of all sites for Anyer (yellow colour) has a good425

response at 0.2704 m/s of the representativity error ϵrep in which the averaged RMS is 0.1782 m/s. While the blended426

model of all sites for Labuan (violet colour) has a good response at 0.4459 m/s of the representativity error ϵrep in427

which the averaged RMS is 0.21 m/s. Based on that result, we still have two representativity errors ϵreps. Hence,428

we measured their performance using the averaged RMS, the relative error reduction (RER) and the associated skill429

score (SS), either from a blended model from each site or a blended model from all sites as in Table. 1. The blended430

model from each site consists of the blended model Labuan for Anyer and the blended model Anyer for Labuan. The431

blended model of all sites consists of the blended model of all sites for Anyer and the blended model of all sites for432

Labuan.433
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Fig. 5. The sensitivity of the averaged RMS relative to the representativity error ϵrep 23 September - 22 December 2013

Table. 1 shows that the blended model of all sites for Anyer is better than the blended model Labuan for Anyer,434

using either 0.2704 m/s or 0.4459 m/s. At 0.2704 m/s, we obtain a decreasing averaged RMS, an increasing relative435

error reduction, and an increasing skill score. Likewise at 0.4459 m/s, we obtain a reducing the averaged RMS, an436

increasing relative error reduction, and an increasing skill score. Although performance of the blended model of all437

sites for Anyer at 0.4459 m/s is lower than the blended model of all sites for Anyer at 0.2704 m/s, the blended model438

of all sites for Anyer at 0.4459 m/s has a reduced error compared to the blended model Labuan for Anyer. In contrast439

with the Labuan site, the averaged RMS of the blended model of all sites for Labuan compared to the blended model440

Anyer for Labuan worsened using 0.4459 m/s, and it obtained an increasing averaged RMS. Interestingly, the relative441

error reduction and the associated skill score improved. It obtained an increasing relative error reduction, and an442

increasing the associated skill score. Unfortunately, if we used 0.2704 m/s, the blended model of all sites for Labuan443

was not giving a smaller error as we expected. It obtained an increasing averaged RMS, a reducing relative error444

reduction, and a decreasing skill score. Hence, we decided to use 0.4459 m/s, because it gives a better response for445

both sites although it gives a lower performance on the blended model of all sites for Anyer, but it is still better than446

the blended model Labuan for Anyer.447
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Table 1: Comparison of the averaged RMS, the Relative error reduction (RER), the Associated skill score (SS)

Site ϵrep The blended model Averaged RMS RER SS

Anyer
0.2704 Labuan for Anyer 0.2314 0.1619 0.2976

All sites for Anyer 0.1782 0.2968 0.5055
0.4459 All sites for Anyer 0.1833 0.2766 0.4767

Labuan
0.4459 Anyer for Labuan 0.1612 0.1667 0.3056

All sites for Labuan 0.21 0.1713 0.3132
0.2704 All sites for Labuan 0.2132 0.1586 0.2921

Fig. 6 shows fluctuations of the RMS signal at 0.4459 m/s of the representativity error ϵrep in time series. This448

shows that the blended model of all sites has a significantly reduced error. The maximum RMS signal of the original449

model is about 0.6575 m/s, while the maximum RMS signal of the blended model of all sites is about 0.3489 m/s.450
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Fig. 6. Comparison of the RMS signal of the blended model of all sites and the original model at 0.4459 of the representativity
error ϵrep

Once optimal 0.4459 m/s of the representativity error ϵrep and the best blended model were obtained, then we451

could use the blended model of all sites of 0.4459 m/s of the representativity error ϵrep and compare it against the452

observation and the original model (without blending). We used one of the sample dates, namely 20 November 2013 at453

0100 UTC as in Fig. 7, which consists of observations radial velocity (Fig. 7a), radial velocity from the original model454

(Fig. 7b) and radial velocity of the blended model of all sites (Fig. 7c). The legend of the figure shows positive (red455

colour) and negative values (blue colour). A positive value means that radial velocity moves towards the HF radar456

site, while a negative value means that radial velocity moves away from HF radar site.457

Radial velocity in Fig. 7b shows a stronger velocity than the velocity in Fig. 7a. Generally, radial velocity in Fig. 7b458

was dominated by (-0.5) up to 0.5 m/s. Meanwhile, radial velocity in Fig. 7a was about (-0.3) up to 0.3 m/s. After459

blending, the original model experiences an significant optimisation as radial velocity in Fig. 7c. Radial velocity in460

Fig. 7c shows a similar distribution of values to radial velocity in Fig. 7a.461
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Fig. 7. Comparison of radial velocity all sites 20-Nov-2013 01:00 UTC. (a) Radial velocity observations Anyer (b) The model
without blending Anyer. (c) The blended model of all sites for Anyer. (d) Radial velocity observations Labuan. (e) The model
without blending Labuan. (f) The blended model of all sites for Labuan

If the radial velocity from two sites is combined, we will obtain the total velocity. We use the same date as in462

Fig. 7. We can compare total velocity of the blended model in Fig. 8c against the observation total velocity (Fig. 8a)463

and original model (Fig. 8b). However, in this study the observation total velocity in Fig. 8a was taken directly from464

HF radar data. We did not combine all radial velocity sites with the result of Fig. 7a. Note that the tides effect has465

been removed from it. Fig. 8a shows that currents were distributed only at the Sunda Strait. Weak currents of about466

0 - 0.3 m/s were distributed at the eastern part and the northeastern part. Meanwhile, strong currents were located467

at the northern part of Panaitan Island with velocity at approximately > 0.5 m/s.468

The HF radar coverage does not reach the Java Sea and the Indian Ocean, which is different to the original model469

with its currents being distributed over all areas with the strongest currents, which are elongated diagonally from the470

Java Sea until the Indian Ocean. We have characteristics of currents that are not only in the Sunda Strait, but also471

in the Java Sea and the Indian Ocean. However, the original model is only an estimation. After combining the radial472

velocity of the original model and the observation, we have a new pattern of currents as in Fig. 8c. It shows all areas473

having values of currents. Nevertheless, currents speed has significantly decreased except in the northeastern part of474

the Sunda Strait near the Java Sea, which is > 0.4 m/s, while other areas are generally below 0 - 0.4 m/s, including475
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the Indian Ocean, which is mostly following the speed of currents in the original model. The strong currents at the476

northern part of Panaitan island and at the centre of the Sunda Strait in the original model are weakening. This is477

happening not only because of the difference in the speed of the currents but also because of the direction effect of478

the currents. The direction of the currents near Panaitan Island in the observation move towards the north, whereas479

the direction of the currents in the original model, generally, moves towards the northeast. In general, all figures show480

the same direction of the currents, from the Indian Ocean towards the Java Sea. In addition, we involved a monthly481

mean from November 2013 as shown in Fig. 9, to analyze our blended model. The figure shows generally, that the482

speed of the currents in the north of Panaitan Island tends to be stronger than in other areas. Our blended model is483

similar to the monthly mean total velocity from the observation.484
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Fig. 8. Comparison of total velocity 20-Nov-2013 01:00 UTC. (a) Observations. (b) Model without blending. (c) The blended
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Fig. 9. Monthly mean total velocity November 2013

4 Discussion485

We aim at analysing the effect of multiplication of R by 25 using formula Eq. (29) and Eq. (30) to obtain RER and486

SS of RMS of u and v from Table 3 page 277 of Stanev et al. (2015). The result shows RER for RMS of u and RMS487
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of v are 0.043 m/s and 0.0178 m/s. While SS of RMS u and v are 0.085 m/s and 0.035 m/s, respectively. Compared488

to our result in Fig. 5 and Table. 1, RER and SS contain a value of one digit after the decimal point, while their489

result contain a value of two digits after the decimal point. It turned out that our proposed method of adding the490

representativity error to spatial quality and temporal quality as per Eq. (27) could give a better improvement.491

There are some questions that still remain regarding Fig. 6, which shows periodic fluctuation, that has one peak492

every day or a diurnal cycle. The other point is that they have a very high RMS value for the original model (blue493

colour). Hence, we aimed at analysing the RMS signal by comparing it to wind speed 10 meter from the meteorological494

station at Serang near the HF radar site. We did not compare our date to tides, because we have already removed495

the tides effect in an earlier step.496

We used observational winds from 24 September - 13 October 2013, which are continuously available, to see the497

effect on the RMS signal; operationally, the observation is running 24 hours per day. There are zero value data each498

day because the winds are calm during the night until early morning. The comparison of wind signal and RMS signal499

is shown in Fig. 10 and it displays an interesting fluctuation, which is that RMS signal achieves a maximum once500

a day. Likewise, the signal from winds has a peak every 24 hours, although there are some dates achieving more501

than one peak per day. Notwithstanding, the peak of the RMS signal happened a few hours after the wind signal.502

The fluctuation of the winds is followed by the RMS signal and this indicates that the radial signal is influenced by503

winds. That result has a similar trend with the result of a study by Oktavia et al. (2011), which concluded that504

geostrophic currents variation is indirectly influenced by winds in the Sunda Strait. Those authors calculated monthly505

averaged geostrophic currents from 4 tide-gauge stations (Ciwandan, Panjang, Tanjung Lesung and Kota Agung) and506

sea surface height of satellite for the period of March 2008 – February 2009 using formula differences in sea level507

between two stations at a distance 1o.508
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Fig. 10. Comparison RMS and Winds

Theoretically, currents can be produced by winds at the ocean surface (wind-driver circulation), density differences509

(thermohaline circulation), and tides (NOAA, 2020). As we noted in the preprocessing section, we have already510

removed the tides effect from the radial velocity, hence the velocity could be due to the first two processes. Note that,511

HF radar can capture currents only at the surface until 2 meters of depth (Rubio et al., 2017). Considering the Hf512

radar capability, the produced currents are at the surface, which is predominantly affected by winds. In addition,513
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the magnitudes of the winds are strengthened by the narrow channel. The effect of the wind can be explained in the514

following way. The Sunda Strait has two channels, one of which is narrow in the northeast near the Java Sea, the depth515

is shallow about 50 meters, and the other is wide in the southwest near the Indian Ocean. It makes sense if the Anyer516

signal is affected by wind because HF radar at the Anyer site is located near the narrow channel of the Sunda Strait.517

Typically, winds leaving a narrow channel have stronger wind than the surrounding environment. We conclude that518

the stronger currents are due to the stronger winds leaving the strait. Hence, in our case, the RMS signal obtained519

via the radial velocity calculation is strongly influenced by winds. The strong winds generated radial currents that520

affected the HF radar significantly, which appears in the blended model (the model analysis) on 20 November 2013521

at 0100 UTC as can be seen in Fig. 8c. Based on this, the wind influences the magnitude and the frequency of high522

magnitudes of radial velocity.523

Furthermore, we also include the absolute geostrophic velocities, which are the gridded products level 4 of the524

SSALTO/Duacs Multimission Altimeter as in Fig. 11a and the model analysis on 14 October 2013 as in Fig. 11b. The525

motivation of comparison is to show what kind of currents characteristics there are in the narrow channel are. We526

realized that when comparing a blended model, this resulted in HF radar against the currents and from the altimetry527

data this is not precisely comparable due to the satellite absolute geostrophic velocities only covering within a low528

resolution, which is derived from sea surface height in 0.25 degrees of the grid. As a result, it is too coarse to cover529

a strait area and tends to be a similar value. Fig. 11 shows higher velocities than the surrounding environment and530

appears either in a blended model or the satellite absolute geostrophic velocities. The blended model shows more than531

0.5 m/s of currents. and the satellite absolute geostrophic velocities show 0.7 m/s of currents. Further, the currents in532

a blended model formed a diagonal pattern from the Java sea towards the Indian Ocean. The high absolute geostrophic533

velocities are located at a full strait. A blended model shows that the direction of the currents moves towards the534

Indian Ocean, whereas the direction of the absolute currents is coarse and heading towards the coastline. Note that535

the direction could be changed following a dominant circulation occuring between the Java Sea and the Indian Ocean.536

In conclusion, currents in a strait tend to be stronger than surrounding environment and they become increasingly537

stronger when they flow out from a narrow part of the strait. This pattern is similar to that described in the results538

of previous studies in Lorente et al. (2019); Soto-Navarro et al. (2016); Xu et al. (2014).539

5 Conclusion540

Based on the results described in the previous section, we showed that blending HF radar has been reducing the541

error of the model. Another satisfying result occurs when we blended two sites separately and validated each of them542

through independent validation. The result shows independent validation giving a lower error than the model without543

blending, even though it is still higher than with dependent validation.544

Dependent validation can be used for any various data with the condition the data is obtained from the other such545

as the blended model versus model or the blended model versus own observations. On the other hand, independent546

validation should use an independent real or independent actual data to prove whether a blending process is useful or547

not in reducing error. Independent validation would have the optimal representativity error ϵrep when the averaged548
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Fig. 11. Significant currents signature at the Sunda Strait 14 October 2013 00 UTC. (a) Altimetry satellite (Credit: E.U.
Copernicus Marine Service Information). (b) The blended model.

RMS is the lowest. We used two sites separately, hence we have two optimal representativity errors ϵrep from each site,549

namely 0.2704 m/s and 0.4459 m/s, which means that every observation has its representativity error and contributes550

to form a model analysis.551

We have selected the best optimum of the representativity error ϵrep, which can be applied for all sites operationally552

and gave the smallest of possible error. The best optimum of the representativity error ϵrep is 0.4459 m/s.553

Applying the value yields a completed spatial distribution of surface currents, which is the strongest in the narrow554

part and a lower currents in the surrounding area.555

This study can also illustrate how HF radar data from a single site can be used to obtain total currents with the556

help of a model as long as the model has a realistic variability.557

Assessing treatment of R shows that the addition of a representativity error to R could be another way to reduce558

the error rather than multiplication R by a specific value.559
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