Published in: (1988), pp. 135-136 Status: Postprint (Author's Version)

The Dissociative Photoionization of Ammonia.

The formation of NH₂⁺,NH⁺ and N⁺.

R. Locht

Institut de Chimie, Bât. B6, Université de Liège, Sart-Tilman par B-4000 Liège 1, Belgium.

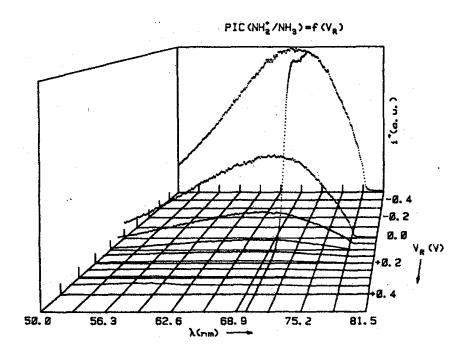
G. Hagenow, W. Denzer, H.W. Jochims, H. Baumgärtel.

Institut für Physikalische Chemie, FU Berlin, Takustrasse 3, D-1000 Berlin 33, FRG.

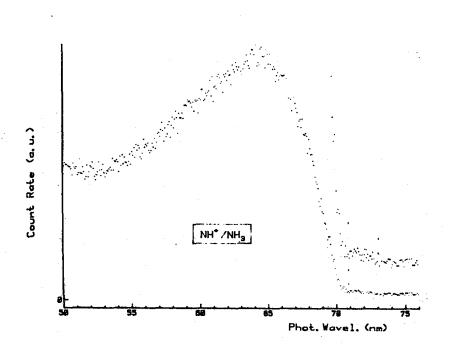
A detailed dissociative electroionization study of NH_3 has recently been completed /1/. The kinetic energy distributions and ionization efficiency curves of all fragment ions, including H^+ , were investigated in ammonia and ammonia-d.

The photoabsorption and photoionization of NH in the wavelength region of 8-112 nm have recently been published by Samson et al. /2/. The cross sections and appearance energies of the fragment ions are measured. As shown in table 1, excepting the NH $^+$ ion, the onset energy values published by these authors disagree with those determined by electron impact.

The dissociative photoionization of NH_3 has been examined in the wavelength region of 50-112 nm and 20-45 nm by using synchrotron radiation dispersed by a 1m NIM- and a TGM-monochromator respectively. Only the preliminary results and the most salient features will be reported.


Table 1. Appearance energies (eV) of NH_2^+ , NH^+ and N^+ as measured by electron impact (E.I.) /1/, photoionization (P.I.) /2/ and in this work.

Appearance Energies			
Ion	E.I.	P.I.	
		/2/	This work
NH ₂ ⁺	15.72 ± 0.04	15.71 ± 0.04	15.68± 0.01
NH ⁺	16.9 ± 0.1	_	17.05 ± 0.04
	18.0 ± 0.2	18.23 ± 0.05	17.56 ± 0.04
	22.6 ± 0.3	22.75 ± 0.1	23.5
N ⁺	22.5 ± 0.2	_	22.30 ± 0.05
	24.1 ± 0.3	_	
	26.7± 0.3	26.05 ± 0.1	27.7 ± 0.1


The NH_2 ionization efficiency curve has been investiga-ted as a function of its initial kinetic energy by using the retarding potential technique. Fig.1 shows the dependence of the NH_2^+ ionization efficiency on the retarding potential V_R .

The retarding potential curve observed at 70 nm is inserted in the same figure. Up from 0.2 V retarding potential, the ionization efficiency exhibits remarkable modifications as already observed by electron impact /1/. The NH $^+$ and N $^+$ ionization efficiency curves were only recorded at fixed retarding potential. For NH $^+$ (see fig.2) the curve starts with a low intensity tail at 17.05±0.04 eV and shows a steep rise at 17.56±0.02 eV. For N two onsets are determined, at 22.3±0.05 eV and 27.7±0.1 eV respectively. The onset at 24.0 eV could be ascibed to N $^+$ /N $_2$, present in the sample. This uncertainty will be removed in the near future.

Fig.1. Photoionization efficiency curve of NH_2^+/NH_3 at various V_R settings.

Fig.2. Photoionization efficiency curve of NH⁺/NH₃.

References

/1/ R. Locht, M. Ligot, Ch. Servais, M. Davister, J. Momigny, Chem. Phys. 123, 443 (1988), 125, 425 (1988) and 127, 435 (1988).

/2/ J.A.R. Samson, G.N. Haddad, L.D. Kilcoyne, J.Chem.Phys. 87, 6416 (1987).