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Abstract 

This work investigates in detail the Joule resistive heating phenomenon of electroactive Shape Memory 

Composites (SMC) when an electric current is injected at constant power. The SMC is a covalent 

poly(ε-caprolactone) network filled with 3 wt% of multiwall carbon nanotubes. The resistive heating of 

the SMC is studied by means of surface temperature measurements, analytical formulas and a coupled 

3D thermo-electric numerical model. Analytical expressions are derived for the 2D temperature 

distribution within a parallelepipedic SMC, either with constant or linearly-dependent electrical 

resistivity. These analytical expressions can be used to investigate the influence of geometrical and 

material parameters in the steady-state temperature and its distribution across the sample. The results 

also allow one to identify the parameters that are crucial for predicting the temperature rise due to 

resistive heating: the temperature dependence of the resistivity has little effect on the steady-state 

temperature, whereas the thermal conductivity plays a significant role. The time-dependent temperature 

is shown to be related to the particular temperature dependence of heat capacity. Furthermore, the 

presence of external objects (clamps or grips) used during the shape memory cycle must be taken into 

consideration for a certain temperature to be reached since they result in a lower steady-state 

temperature and a slower resistive heating phenomenon. With the findings presented in this work, 

accurate resistive heating can be predicted for a SMC upon the injection of an electric current at 

constant power. 
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1. Introduction 

Shape memory polymers (SMP) and their composites 

(SMC) are smart materials having morphing capabilities that 

can be applied in aerospace, biomedical or textile engineering 

[1]. Concerning thermo-responsive SMP, the shape memory 

cycle is achieved by deforming the material from its 

permanent to its temporary shape once heated above its 

transition temperature [2]. After the deformation has taken 

place, the temporary shape can be fixed by cooling down the 

material below the transition temperature. Re-heating the 

material again past its transition temperature will lead to the 

shape recovery, i.e. return to its permanent shape. 

Conventionally, the shape change is triggered with direct 

heating by placing the material close to a heat source. This 

technique, relying on an external heater, is sometimes 

impossible, problematic or even hazardous. In the recent 

years, effort has been put into generating the shape recovery 

remotely [3] by using an electric current [4][5], a magnetic 

field [6][7], light [8][9], or pH [10],[11]. 

SMC controlled and triggered by electric currents have 

gained more and more interest within the range of shape 

memory materials. This is due to the rapid and efficient 

process that is the Joule resistive heating, since the heat is 

generated directly within the material itself. For the Joule 

effect to take place, however, the SMP needs to be electrically 

conductive enough. That is the reason why conductive fillers 

are introduced into the SMP matrix. The amount of conductive 
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fillers required to reach the percolation threshold, i.e. for 

having an electrically conductive network within the SMC, 

depends on several factors such as the nature of the fillers 

themselves, their size and shape, etc [12]. Some examples of 

electrically conductive fillers include graphene [13], carbon 

nanotubes [14][15], carbon (nano)fibers [4][16], carbon black 

[5][12], and metal nanoparticles [17]. An added value of 

utilizing these fillers is, in most cases, the improved 

mechanical properties of the resulting composite [18][19]. 

In an electroactivation process, the amount of heat 

generated within the material depends on the electrical current 

being injected 𝐼, on the geometry of the SMC and its electrical 

resistivity 𝜌𝑒. In order to generate a well-defined shape 

change, it is necessary to be able to accurately predict the 

temperature increase resulting from the heat generated within 

the material. The temperature increase depends on the 

parameters cited above and on those related to the heat transfer 

process, both within the SMC (thermal conductivity 𝜅, heat 

capacity 𝐶𝑝 and density 𝜌𝑚) and at the interface between the 

SMC and its environment.  

An additional characteristic of this problem is that the 

temperature is time-dependent and non-uniform within the 

material. This affects directly the amount of heat generated 

since 𝜌𝑒 is, in general, found to be dependent on the local 

temperature 𝑇 of the SMC 𝜌𝑒(𝑇) [20][21]. Although much 

experimental effort was devoted to achieve a significant, fast 

and uniform temperature increase by electroactivation in SMC 

samples [4], there is however little analysis on how the 

geometric and physical parameters affect the temperature 

dependence of the temperature distribution, in particular when 

the electrical resistivity is time-dependent (through its 

dependence on temperature). Due to the nature of the SMC, 

the material structure changes during heating (specially after 

the transition temperature), which affects the material 

properties in a non-monotonic way and may influence the 

resistive heating behavior of these materials. 

The objective of the present work is to investigate in detail 

the mechanism of resistive heating in SMC subjected to an 

electric current. Whenever possible, analytical expressions for 

the temperature evolution in the samples will be determined. 

The present study will address the following issues: 

(i) to predict the temperature that would be reached upon 

the injection of a given electrical current 𝐼, 
(ii) to identify the parameters that are crucial for predicting 

the temperature and to understand how any variation of 

them affects the final outcome. 

 

In this work the SMC sample is assumed to have a 

parallelepiped shape and is subjected to resistive heating by an 

electric current injected in parallel to its longer dimension, as 

schematically illustrated in Figure 1(a). This geometry where 

one considers the sample alone is referred to as the “bare 

SMC” geometry: the thermal characteristics of the electrical 

contacts are neglected and the heat losses through the lead 

wires are assumed to be zero. In this configuration three cases 

will be studied and compared:(i) the analytical predictions 

using models of increasing complexity, (ii) numerical results 

obtained using Finite Element Method (FEM) with the 

commercial software Ansys, and (iii) experimental results of 

resistive heating.  

 
Figure 1: (a) Sketch of “bare SMC” geometry. (b) Sketch of “SMC 
with grips”. 

Lastly, the main changes brought by using structures of 

much larger size in contact with the SMC will be considered. 

For instance, when studying the shape memory properties of a 

SMC, one needs to deform the SMC and/or measure the shape 

recovery force. In practice, this is achieved using grips or 

clamps, whose thermal and electrical properties may 

significantly affect the resistive heating of the SMC sample 

under investigation. This would lead to a different final 

temperature and thermal time constant. In this work, the 

difference in resistive heating of the SMC will be studied 

when left by itself or when mounted in realistic conditions 

using both the FEM analysis and experiments. The geometry 

investigated will involve two grips of dimensions that are 

much larger than the sample, as schematically illustrated in 

Figure 1(b). This geometry will be referred to as “SMC with 

grips”. 

The experimental work will focus on a SMC formed by 

chemically cross-linked poly(ε-caprolactone) (PCL) filled 

with 3 wt% of multiwall carbon nanotubes (MWCNT). 

MWCNT are electrically conductive fillers that have superior 

electrical and thermal properties while having low density and 

high aspect ratio. This last property facilitates the creation of 

the conductive network inside of the composite, or, similarly, 

the percolation threshold can be obtained with a smaller 

loading of conductive filler, thus having less impact in the 

mechanical properties. Preliminary experiments showed that 

the average resistivity of SMC with >1 wt% of CNT is below 

80 Ωm, i.e. low enough to enable current driven heating. In 

the present study, the concentration of fillers was chosen to be 

3 wt% for two reasons: (i) compared to lower CNT content, 

the reproducibility of resistive heating and shape-memory 

cycle of SMC with 3 wt% CNT is much better, (ii) to ensure 

enough electrical conductivity of the SMC after the potential 

deformation during the shape memory cycles. The reason is 

that deformation will cause the CNT to be placed further apart 

and the conductivity to drop considerably. By choosing 3 wt% 

I
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of CNT, the amount of elongation for which the SMC can be 

used for shape memory is higher than for lower contents. 

2. Analytical study 

The analytical study of the resistive heating is carried out 

for the “bare SMC” geometry illustrated in Figure 1(a). In this 

study, it is always assumed that the SMC sample is heated at 

a constant power 𝑃0  switched on at 𝑡 = 0, as illustrated 

schematically in Figure 2(a). If the electrical resistance of the 

SMC sample is assumed to be constant, this corresponds to a 

constant current 𝐼 = 𝐼0. Otherwise the current 𝐼(𝑡) is adjusted 

continuously by the power supply during the resistive heating 

process to maintain the total electric power constant for 𝑡 > 0. 

The SMC sample is always placed at a starting temperature 

𝑇(𝑡 = 0) = 𝑇0. During heating up, the focus will be on both 

the time-dependent heating 𝑇(𝑡) − 𝑇0 (transient study) and the 

temperature increase reached at 𝑡 → ∞, i.e. 𝑇𝑠 − 𝑇0  (steady-

state). 

Three different analytical cases with increasing complexity 

will be analysed, as illustrated in Figure 2(c): (1) uniform 𝑇, 

(2) non-uniform 𝑇(𝑥, 𝑦) and temperature-independent 𝜌𝑒 and, 

(3) non-uniform 𝑇(𝑥, 𝑦) and linearly temperature-dependent 

𝜌𝑒. The geometry considered is that of Figure 2(b) with length 

𝐿, width 2𝑎 and thickness 2𝑏; one assumes L>>a and L>>b. 

For the 𝑇(𝑥, 𝑦) determination in the 2D analytical model, one 

assumes an infinite length 𝐿.

 

Figure 2: (a) Sketch of power step applied to the sample and resulting temperature evolution with time. (b) Schematic illustration of the 
“bare SMC” geometry of the Shape Memory Composite parallelepiped samples considered in the investigation of resistive heating. (c) 
Summary of the cases investigated either analytically (this section) or numerically (section 3). The blue dashed frames refer to cases that 
were not described previously in the literature and that are investigated in the framework of this paper. 

For all for cases, the heat exchange between the SMC and 

air happens only due to convection: for the experimental 

conditions in this work, conduction of heat through air and 

radiation heat transfer can be neglected since the Nusselt 

number (Nu) is well above unity and the radiation equivalent 

Nusselt number (Nur) is much smaller than one (see appendix 

I for Nu and Nur). Convection heat transfer from the surfaces 

of the samples to the ambient is assumed to be as described by 

Newton’s law of cooling. The convection coefficient ℎ of all 

six faces is assumed to be the same. The effective area 𝐴𝑇 is 

assumed to be constant, i.e. negligible thermal expansion. The 

material is assumed homogeneous, isotropic and, except for 

𝜌𝑒 as described per each case, its properties are assumed to be 

temperature-independent. The temperature dependence of the 

resistivity 𝜌𝑒(𝑇) is taken into consideration because it directly 

affects local power dissipated during resistive heating. 

2.1 Uniform 𝑇 

This is the simplest and the most straightforward model 

[22] for which the solution is recalled below. This assumption 

of uniform 𝑇 corresponds to relatively high thermal 

conductivity meaning that the Biot number 𝐵𝑖 = ℎ𝑎/𝜅 tends 

to zero. The ordinary differential equation that governs the 

heat transfer is given in equation 1, where 𝑚 is the mass of the 

sample, 𝐶𝑝 is the heat capacity, 𝐴𝑇 is the addition of the six 

surfaces of the parallelepiped (𝐴𝑇 = 4𝐿𝑎 + 4𝐿𝑏 + 8𝑎𝑏) and 

𝑃0  is the power generated by Joule effect.  
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𝑚𝐶𝑝
𝑑𝑇

𝑑𝑡
= −ℎ𝐴𝑇(𝑇(𝑡) − 𝑇0) + 𝑃0 (1) 

Since the current is injected at constant power 𝑃0 , any 

possible temperature dependence of the resistivity 𝜌𝑒 does not 

affect the results because 𝑃0 = (𝜌𝑒  𝐿𝐼
2)/(4𝑎𝑏) is kept 

constant. Under these assumptions, the resistive heating is 

given in equation 2, where 𝜏 is the time constant (equation 3) 

and the steady-state temperature difference is 𝑇𝑠 − 𝑇0  

(equation 4). 

𝑇(𝑡) = 𝑇0 + (𝑇𝑠 − 𝑇0) ( − exp (−
𝑡

𝜏0
)) (2) 

𝜏0 =
𝑚𝐶𝑝
ℎ𝐴𝑇

 (3) 

𝑇𝑠 − 𝑇0 =
𝑃0
ℎ𝐴𝑇

 (4) 

2.2 Non-uniform 𝑇, temperature-independent 𝜌𝑒.  

When 𝑇 is not assumed to be uniform, it is necessary to 

consider the finite value of the thermal conductivity 𝜅. The 2D 

heat balance equation is that of equation 5, where 𝑇 is the 

temperature at any point of the slice (𝑥, 𝑦) at any given time 

𝑡 and 𝜌𝑚 is the density of the material. The local power per 

unit volume 𝑞0 = 𝑃0/𝑉 is both time and temperature-

independent. Convective boundary conditions are assumed 

along the 4 faces of the sample 𝑥 = ±𝑎 and 𝑦 = ±𝑏.  

𝜕2𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+
𝜕2𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑦2
+
𝑞0
𝜅

=
𝜌𝑚𝐶𝑝
𝜅

𝜕𝑇(𝑥, 𝑦, 𝑡)

𝜕𝑡
 

(5) 

The total temperature 𝑇(𝑥, 𝑦, 𝑡) is the addition of the 

steady-state temperature 𝑇𝑠(𝑥, 𝑦) plus a transient part 

𝑇𝑡(𝑥, 𝑦, 𝑡). The steady-state part of the problem 𝑇𝑠(𝑥, 𝑦) was 

solved by Carslaw and Jaeger [23], chapter 5.5, and is shown 

in equations 6 and 7. The step-by-step solution of the transient 

part 𝑇𝑡(𝑥, 𝑦, 𝑡) can be found in appendix II. It is given in 

equations 8 to 11. 

𝑇𝑠(𝑥, 𝑦) = 𝑇0 +
𝑎𝑞0

ℎ
( +

Bi

2
( − (

𝑥

𝑎
)
2

))−

4𝑞0𝑎

ℎ
∑

Bi sin(Λ𝑛)cos(Λ𝑛
𝑥

𝑎
) cosh(Λ𝑛

𝑦

𝑎
)

Λ𝑛
2 [2Λ𝑛+sin(2Λ𝑛)][

Λ𝑛
Bi

sinh(Λ𝑛
𝑏

𝑎
)+cosh(Λ𝑛

𝑏

𝑎
)]

∞
𝑛=1   

(6) 

where 

Λ𝑛 tan(Λ𝑛) =
ℎ𝑎

𝜅
= Bi (7) 

 

𝑇𝑡(𝑥, 𝑦, 𝑡) =

∑ ∑ 𝐶3,𝑛𝑙
∞
𝑚=1 cos (Λ𝑛

𝑥

𝑎
) cos(Η𝑙

𝑦

𝑏
)∗∞

𝑛=1

exp (−
𝜅

𝜌𝑚𝐶𝑝
(
Λ𝑛
2

𝑎2
+

Η𝑙
2

𝑏2
) 𝑡)  

(8) 

 
 

 

C2,nl =

 −
4𝑎2𝑏𝑞0 sin(Η𝑙)[(Λ𝑛

2+Bi) sin(Λ𝑛)−Λ𝑛Bicos(Λ𝑛)]

ℎΛ𝑛
3Η𝑙

+

4𝑞0𝑎
3Bisin(Λ𝑛) ∗

(Λ𝑛 sinh(Λ𝑛
𝑏

𝑎
) cosh(Η𝑙)+

𝑎

𝑏
Η𝑙 cosh(Λ𝑛

𝑏

𝑎
) sin(Η𝑙))

ℎΛ𝑛
3 [

Λ𝑛
Bi

sinh(Λ𝑛
𝑏

𝑎
)+cosh(Λ𝑛

𝑏

𝑎
)][Λ𝑛

2+Η𝑙
2(

𝑎

𝑏
)
2
]

  

 

 

(9) 

 

𝐶3,𝑛𝑙 =
4Λ𝑛Η𝑙 𝐶2,𝑛𝑙

𝑎𝑏[2Λ𝑛 + sin(2Λ𝑛)][2Η𝑙 + sin(2Η𝑙)]
  

(10) 

 

 Η𝑙 tan(Η𝑙) = Bi
𝑏

𝑎
 

(11) 

In the particular case Bi = 0 (uniform temperature), it can 

be shown that the above equations reduce to equations 2 to 4 

except that the steady-state temperature increase 

𝑃0/ (ℎ𝐴𝑇)  =  (𝑞0 𝑉)/(ℎ𝐴𝑇) appearing in equations 2 to 4 is 

now replaced by (𝑞0𝑎𝑏)/(ℎ(𝑎 + 𝑏) ). This difference is due 

to the 2D approximation assuming an infinite length 𝐿. The 

ratio of the volume over the lateral surface 𝑉/𝐴𝑇 is equal to 

(4𝐿𝑎𝑏)/(4𝐿𝑎 + 4𝐿𝑏 + 8𝑎𝑏), reducing to 𝑎𝑏/(𝑎 + 𝑏) when 

𝐿 is infinite. In practice, however, SMC samples have a large 

but finite 𝐿. In order to be able to compare the 2D analytical 

modelling developed in this section to 3D modelling and 

experiment, a geometric correction factor (GCF) is to be 

multiplied by the local dissipated power 𝑞0. 

GCF =  
𝐿(𝑎 + 𝑏)

𝐿𝑎 + 𝐿𝑏 + 2𝑎𝑏
  (12) 

A frequent situation is the one for which Bi << 1. In this 

case, equations 6 and 7 can be approximated using Taylor 

series expressions for the trigonometric and hyperbolic 

functions (see appendix III). One obtains equation 13, which 

predicts perfectly elliptic isothermal lines. Moreover, it shows 

that the temperature profile that can be obtained using a 

surface temperature measurement (along the plane y = b) is, 

in first approximation, parabolic across the width of the slab.  

𝑇𝑠(𝑥, 𝑦) ≈ 𝑇0 + 
𝑞0
ℎ
(

𝑎𝑏

𝑎 + 𝑏
) 

+ 
𝑞0
𝜅
{
𝑎𝑏(𝑎2 + 6𝑎𝑏 + 𝑏2)

6(𝑎 + 𝑏)²

−
𝑎𝑏

2(𝑎 + 𝑏)
[𝑎 (

𝑥

𝑎
)
2

+ 𝑏 (
𝑦

𝑏
)
2

]} 

 (13) 

In particular, the temperature difference between the center 

(0, b) and the edge (a, b) is given by 

𝑇𝑠(0, 𝑏) − 𝑇𝑠(𝑎, 𝑏) ≈
𝑞0𝑎𝑏

2𝜅
(

𝑎

𝑎 + 𝑏
)   (14) 

The average temperature over the top surface of the sample 

y = b) is given by 

𝑇𝑠(𝑥, 𝑏) ≈ 𝑇0 + 
𝑞0
ℎ
(

𝑎𝑏

𝑎 + 𝑏
) + 

2𝑞0𝑎𝑏²(𝑎 − 𝑏)

3𝜅(𝑎 + 𝑏)²
   (15) 

Equation 13 can also be used to predict approximately the 

maximum temperature difference within the slab cross-

section, 𝑇𝑠  (0,0) − 𝑇𝑠  (𝑎, 𝑏) ≈ (𝑞0𝑎𝑏)/(2𝜅). 
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2.3 Non-uniform 𝑇, temperature-dependent 𝜌𝑒 

A temperature-dependent resistivity 𝜌𝑒(𝑇) is considered 

here. If one assumes a linear dependence 

𝜌𝑒(𝑇) =  𝜌0[  +   (𝑇 − 𝑇0)], the transient heat transfer 

governing equation in 2D cannot be solved analytically (for 

numerical results refer to section 5.3). Therefore, for this case, 

only the steady-state temperature is considered and solved.  

Because 𝜌𝑒 depends on 𝑇(𝑥, 𝑦), then it is also non-uniform 

𝜌𝑒(𝑥, 𝑦). This means that even for a current injected at 

constant power 𝑃0 , the local dissipated power 𝑞(𝑥, 𝑦) will not 

follow exactly the expression for 𝜌𝑒(𝑥, 𝑦) because the current 

will re-distribute in order to flow preferably through the path 

of least resistance. If one assumes that the local resistive 

heating is kept moderate such that | (𝑇(𝑥, 𝑦) − 𝑇0)| ≪  , 

𝑞(𝑥, 𝑦) is that of equation 16, where 〈𝑇〉 denotes the average 

temperature over the sample cross-section. The proof of this 

equation is given in appendix IV. 

 𝑞(𝑥, 𝑦) ≈  𝑞0 { −  [𝑇(𝑥, 𝑦) − 〈𝑇〉]} (16) 

Since 〈𝑇〉 is not known, one can assume it is given by 

〈𝑇〉 = 𝑇0 + 𝑇̃ where 𝑇̃ denotes the average steady-state 

resistive heating when  = 0, i.e. 〈𝑇〉 is the average of 

equation 6. The local dissipated power 𝑞(𝑥, 𝑦) can then be 

inserted into the steady-state heat balance given by equation 

17. 

 

𝜕2𝑇(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑇(𝑥, 𝑦)

𝜕𝑦2
+
𝑞(𝑥, 𝑦)

𝜅
= 0 (17) 

The solution to the non-homogeneous partial differential 

equation with the same boundary conditions as those specified 

in section 2.2 is given in equation 18. The necessary 

coefficients are given below in equations 19 to 22. The step-

by-step solution is given in appendix V. 

𝑇(𝑥, 𝑦) = 〈𝑇〉 +∑𝐶6,𝑛 cos (Λ𝑛

𝑥

𝑎
) cosh(𝐶7,𝑛  

𝑦

𝑎
)

∞

𝑛=1

+ 
 

 
+ 𝐶4 cosh (𝐶5  

𝑥

𝑎
) 

(18) 

 

𝐶4 =
−
 
 
− 𝑇̃

𝐶5
Bi

sinh(𝐶5) + cosh(𝐶5)
 

(19) 

 

𝐶5 = √
𝑞0

 𝑎2 

 

 

(20) 

 

𝐶6,𝑛 =
−4(

1

𝛼
+𝑇̃)𝐶5

2 sin(Λ𝑛)

(𝐶5
2+Λ𝑛

2 )[2Λ𝑛+sin(2Λ𝑛)][
𝐶7,𝑛
Bi

sinh(𝐶7
𝑏

𝑎
)+cosh(𝐶7,𝑛

𝑏

𝑎
)]

  

 

 

 

(21) 

 

𝐶7,𝑛 = √
𝑞0

 𝑎2 + Λ𝑛

2  
(22) 

 

In the particular case  = 0 (temperature-independent 

resistivity), it can be checked that the above equations reduce 

to equation 6, as expected intuitively. 

3. Numerical modelling 

The numerical study on the resistive heating of the SMC 

samples is carried out using the commercial finite element 

method (FEM) software Ansys. A thermal-electric module is 

added in Ansys Workbench and appropriately modified by 

inserting APDL (Ansys Parametric Design Language) 

commands in order to render it transient. APDL commands 

are also used to specify the time step, and to enforce the same 

type of quadratic element throughout the SMC geometry. The 

homogenized thermal and electrical material properties of the 

SMC are obtained from experimental measurements on the 

SMC samples (see section 5.1 and 5.2) and are assumed to be 

homogeneous. The thermal expansion of the SMC is assumed 

to be negligible. As for the analytical study, conduction and 

radiation heat transfer to surroundings are neglected. 

The two geometries illustrated in Figure 1 are considered. 

For the “bare SMC” geometry shown in Figure 1(a), it is 

assumed that the heat transfer through the wire leads used for 

injecting the electric current is negligible. 

Convection heat transfer boundary conditions are used in 

all six faces of the parallelepiped. Similar to the experimental 

conditions and to the analytical study, the current injected is 

adjusted continuously during the resistive heating process to 

maintain the total injected electric power constant, even when 

a temperature-dependent resistivity is considered. Using 

numerical modelling, it is possible to consider any 

temperature dependence of the material properties, including 

electrical resistivity or heat capacity. 

Convergence is specified on the voltage and temperature 

calculations, both with a tolerance value of 5·10-3 with the 

Euclidean norm. Newton-Raphson linearization method is 

chosen to cope with the nonlinearities of some material 

properties with a distributed sparse matrix direct solver. The 

mesh is built with quadratic elements SOLID226 and 

SURF152. For all information concerning the chosen 

formulation, solver type, or elements, one can refer to the 

Ansys Mechanical User’s Guide [24]. 

The FEM model is also run in the “SMC with grips” 

geometry as shown in Figure 3. These grips are made of 

aluminum and covered with a rubber layer in order to 

electrically insulate them from the SMC sample. The size and 

material properties of the rubber and aluminum of the grips 

are taken from the literature or from the manufacturer 

whenever possible. All used geometrical and material 

parameters are summarized in Table 1. The contact between 

the different materials of the geometry is set as Bonded with 

elements CONTA174 and acts as a pure thermal contact since 

no mechanical loads are present. The interface thermal 

conductance at the contact between the SMC and the grips 
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(1000 W·m-2·K-1) and the convection coefficient of the grips 

(30 W·m-2·K-1) are estimated to best fit the experimental 

results of resistive heating. The time-step is set as automatic 

in Ansys with an initial time-step of 10-5 s and a maximum 

time-step of 10-1 s. 

The symmetry of both geometries was considered in order 

to reduce the computational time. With that in mind, a mesh 

convergence study was performed for each geometry in order 

to determine the minimum number of elements required to 

give a prediction of resistive heating that is independent of the 

mesh size. The convergence study can be seen in appendix VI. 

For the “bare SMC” and the “SMC with grips” the number of 

elements used are 2500 and 18500 respectively. 

 
Figure 3: Sketch of “SMC with grips” geometry showing the Shape 
Memory Composite sample, rubber and aluminum grips used for 
modelling, considered material parameters and boundary 
conditions. 

Table 1: Geometrical and material properties for the aluminum and 
rubber grips used in the Ansys numerical simulation for “SMC with 
grips” geometry 

 Aluminum Rubber 

Size [mm3] 30x30x11 30x30x1 

𝜌𝑚 [kg·m-3] 2689 950 

𝐶𝑝 [J·kg-1·K-1] 951 1350 

 [W·m-1·K-1] 237.5 0.24 

𝜌𝑒 [Ω·m] 2.8e-8 4.3e8 

4. Experiment 

4.1 Processing of Shape Memory Composite Samples 

The PCL used in this work was obtained by end-groups 

functionalization of commercially available star-shaped PCL 

samples (CAPA™ 4801, Perstorp®) according to the 

procedure reported in [25]. In order to prepare the SMC, 

stoichiometric amounts in reactive groups (furan and 

maleimide moieties) of PCL76-4FUR and PCL76-4MAL 

powders were grinded together in a mortar and then mixed 

with 3 wt% of MWCNTs (Nanocyl 7000, properties given in 

appendix VII). This mixture was melt-blended at 105 °C in a 

6 cm3 co-rotating twin screw mini-extruder (Xplore, DSM) for 

60 min at 150 rpm. After extrusion, the polymer blend was 

shaped to a flat sheet of 0.7 mm thick in a hot press under a 

load of 75 N for 90 seconds at 105°C and then let to cool down 

to room temperature. A post-curing is applied for 3 days at 

65 °C in a ventilated oven under load. 

4.2 Measurement of thermal properties 

 Differential scanning calorimetry (DSC) was performed 

using a DSC Q500 (TA Instruments) calibrated with indium. 

Two heating ramps (3 °C·min−1) were applied to the sample 

between −80 and 100 °C. The melting temperature (𝑇𝑚, the 

transition temperature of this SMC) and melting enthalpy 

(∆𝐻𝑚) were recorded during the second heating ramp to be 

42 °C and 52.48 J·g-1 respectively, which corresponds to a 

crystallinity ratio of 37.6%. The evolution of the 𝐶𝑝 of the 

SMC as function of 𝑇 was also measured. 

Thermal conductivity measurements were performed with 

a bespoke experimental system whose details are reported in 

[26]. Disc samples of 13.94 mm diameter are punched out of 

a 1.86 mm thick SMC plate. The surfaces of the samples are 

cleaned with isopropanol and coated with silver paste (Agar 

scientific Electrodag 1415) for better adhesion and thermal 

contact between the disc and the sample holder. The 

measurements are carried out at a pressure <5·10-8 mbar. 

 

4.3 Resistive heating experiments  

Rectangular samples are cut from a SMC sheet of 0.7 mm 

thick. The length and width of the nominal rectangular 

samples are 25 and 3 mm respectively. The surface of the 

samples is cleaned with isopropanol. Four electrodes are 

painted on the surface of the samples with silver paste and thin 

wire leads are placed on them so that the injected current flows 

through the length of the sample in a four-point measurement 

configuration.  

A LabVIEW program controls a Keithley 2400 current 

source and a Keithley 2001 voltmeter, from which the 

resistivity of the samples 𝜌𝑒 is calculated. The LabVIEW 

program controls the devices so that the power is kept constant 

and equal to 0.1 W. The temperature on the XZ front surface 

of the sample is measured using an infrared thermal camera 

(COX CX320) that was previously calibrated in-house. 

For the resistive heating experiments on the “bare SMC” 

samples, the sample is suspended vertically on air with its 

longest side perpendicular to the horizontal by making use of 

Considered parameters: 

Mass density

Heat capacity

Thermal conductivity

Convection

Contact thermal 

conductance

RubberSMCAluminum
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the mechanical properties of the lead wires. The temperature 

measurement region excludes the electrodes in order to avoid 

errors in due to the difference emissivity of the silver and the 

SMC itself. For the resistive heating experiments on the “SMC 

with grips”, the grips used in the experiment (AML 

instruments TH240k vise grip) are made of aluminum with a 

layer of nitrile rubber covering the surfaces in contact to the 

SMC. The nitrile rubber serves to electrically insulate the 

SMC from the grips themselves. The sample is placed 

vertically between the grips with a quarter of its length trapped 

at each grip end, i.e. half of its length is left free to measure 

the temperature on its surface with the infrared thermal 

camera. 

5. Results and discussion 

5.1 Material properties of SMC 

The measured heat capacity of the SMC as a function of 𝑇 

is shown in Figure 4(a). This temperature dependence is used 

for the numerical study. For the analytical study a constant 

value of 2.02 J·kg-1·K-1 is used instead, corresponding to the 

average between 25 and 50 °C. 

The 𝜅 is measured on three different samples of SMC at 

three different power levels, i.e. 61, 122 and 244 mW. Each 

measurement is carried out twice. The average value of 𝜅 

measured is 0.22 ± 0.02 W·m-1·K-1. 

The density of the SMC is measured to be 1200 kg·m-3. 

5.2 Experimental results of resistive heating derived 

parameters 

The resistivity of SMC samples during resistive heating is 

calculated from the measured voltage across them in order to 

adjust the injected current to maintain a constant power of 

0.1 W. At room temperature, the resistivity of the samples is 

0.050 ± 0.015 Ω·m. Figure 4(b) shows the relative resistivity 

when compared to its value at room temperature as a function 

of the average temperature on the surface of the samples. 

There are two very distinguishable regions: for 𝑇 < 𝑇𝑚, 𝜌𝑒 

increases with temperature and for 𝑇 > 𝑇𝑚, 𝜌𝑒 decreases. 

These two regions have already been reported [21]. For 

𝑇 <  𝑇𝑚, the resistivity increases with temperature because the 

polymer expands and the MWCNT are placed further away 

from each other. For 𝑇 > 𝑇𝑚 the resistivity decreases with 

temperature due to the alignment of MWCNT along the path 

of the current. 

The curve of Figure 4(b) is discretized in temperature 

intervals in which the temperature coefficient   is assumed 

constant; the average values of the slope   below and above 

𝑇𝑚 are indicated on the graph.  

The overall convection coefficient ℎ is estimated from the 

measurement of the steady-state temperature 𝑇𝑠 after a 

resistive heating experiment. For this the constant temperature 

analytical model (equation 4) is used. For the SMC samples, 

the average ℎ for different resistive heating ranges 

investigated is estimated to be 25 W·m-2 ·K-1. 

 
Figure 4: Temperature dependence of (a) the heat capacity and (b) 
the resistivity of the Shape Memory Composite. 

5.3 Resistive heating results on the “bare SMC”  

Figure 5(a) shows a sketch of a SMC sample prepared for 

resistive heating measurements and the experimental steady-

state temperature distribution due to resistive heating of an 

average sample of SMC. The experimental temperature 

(averaged over the SMC top surface) increases with time as a 

result of the resistive heating phenomenon for a SMC sample 

is shown in Figure 5(b) compared to the transient analytical 

results of section 2.1 and 2.2. It can be first noticed the very 

satisfactory agreement between the resistive heating 

experimental data and the simplest model assuming infinite 

thermal conductivity (uniform 𝑇). Since equation 4 from this 

model was used to find the convection coefficient ℎ, the 

perfect match with the steady-state temperature is expected. 

The results plotted in Figure 5(b) show that the whole 

experimental 𝑇(𝑡) curve can be reasonably predicted with the 

uniform 𝑇 model as well (dotted line). When a finite thermal 

conductivity 𝜅 is considered, the temperature of the sample is 

not uniform. The 2D analytical model (equations 6 and 8) run 

with the experimental data and the geometric correction factor 

(equation 12) allows one to predict the temperature 

distribution along the top surface of the sample (𝑦 = 𝑏) and to 

calculate its average value, plotted in Figure 5 (plain line).  

T<Tm: (8  4)10-3 K-1

T>Tm: (-7  2) 10-3 K-1

Average slopes:

(a)

(b)

Tm=38  C

Temperature [°C]
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As it can be seen, the 2D analytical approximation predicts 

a higher steady-state temperature than that of the isothermal 

model. This can be explained by the internal temperature 

gradients caused by the finite value of 𝜅. Equation 14, 

obtained in the approximation Bi << 1, can be used to estimate 

analytically the difference in the steady-state temperature 

predicted by the two models; using this procedure one obtains 

1.8 ºC. This value reasonably agrees with the difference of 1.1 

ºC observed in Figure 5(b), even though the experimental Bi 

value in the experiment is 0.16. 

Additionally, the time dependence of the resistive heating 

phenomenon is highly dependent on 𝐶𝑝. As Figure 5(b) shows, 

analytical expressions are unable to capture the transient 

characteristics of resistive heating due, mainly, to a constant 

𝐶𝑝. Figure 6 compares the experimental and analytical results 

to those obtained by the 3D numerical model, run either at 

constant 𝐶𝑝 or using the full 𝐶𝑝(𝑇) temperature dependence 

observed in Figure 4(a). For a constant 𝐶𝑝, the 3D numerical 

model predicts values very close to the analytical results. 

When the full 𝐶𝑝(𝑇) is used, the 3D model predicts 𝑇(𝑡) 

remarkably close to the experiments. This feature underlines 

the ability of the numerical model to cope with the non-

linearities of 𝐶𝑝(𝑇) and gives evidence that the irregular 

behavior in the experimental 𝑇(𝑡) is closely related to 𝐶𝑝(𝑇).  

 

 
Figure 5: (a) Schematic illustration of a SMC sample with 
electrodes and wires placed in a four-point configuration and 

experimental steady-state temperature distribution along the SMC 
surface (𝑦 = 𝑏). (b) Experimental time dependence of the average 

temperature over the surface of the SMC sample (black) and 
calculated analytical temperature (red): uniform 𝑇 approximation 

(section 2.1) and non-uniform 𝑇 and temperature-independent 𝜌𝑒 

evaluated at 𝑦 = 𝑏 (section 2.2). 

 
Figure 6: Temperature evolution with time measured 
experimentally (black dots), analytically as per section 2.2 (red) and 
numerically (blue lines). Comparison between constant and 

temperature-dependent 𝐶𝑝. 

Figure 7 shows the steady-state temperature distribution 

𝑇𝑠(𝑥, 𝑦) on a quarter of the cross-section of the SMC 

calculated analytically either by equation 6 (constant electrical 

resistivity) or equation 18 (temperature-dependent electrical 

resistivity) including the GCF. The 𝑇(𝑥, 𝑦) predicted by the 

Ansys model in a central slice of the 3D geometry is also 

shown (either at constant 𝜌0 or using the experimental 𝜌𝑒(𝑇) 
in Figure 4(b)). As it can be seen in Figure 7, the analytical 

model with temperature-dependent resistivity is quite close to 

the case of constant resistivity (equation 6). The predicted 

temperature distribution using the 3D Ansys model at constant 

resistivity displays a very similar steady-state temperature 

distribution than the above two analytical calculations 

including the GCF. This small difference confirms the 

assumption of infinite length in the 2D analytical formulas for 

geometries such as the one presented in this study. When the 

experimental 𝜌𝑒(𝑇) is considered in the 3D model, the 

maximum difference with the constant resistivity modelling is 

2.1 ºC, i.e. less than 4.3%, although resistivity changes of 

~10% are observed during resistive heating. This can be 

explained by the small change of local dissipated power 

caused by a finite temperature coefficient   when the resistive 

T [ºC] 
Measurement region 

SMC 
SAMPLE 

Silver electrodes Copper wires (a) 

(b) 
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heating is carried out at constant power. As equation 16 shows 

in the particular case of a linear 𝑇 dependence, the relative 

change in the dissipated power is  [𝑇(𝑥, 𝑦) − 〈𝑇〉]. As a 

consequence, the temperature range to be considered is the 

difference between the local temperature and its average over 

the cross-section, and not the whole temperature increase. An 

upper bound of this change is given approximately by 

  (𝑞0𝑎𝑏)/(2𝜅). 

 
Figure 7: Steady-state temperature distribution on a quarter of a 
slice of the SMC: (a) analytical results for non-uniform temperature 
distribution and temperature-independent resistivity (equation 6) 
with GCF, (b) with temperature dependent resistivity (equation 18) 

with GCF, (c) the numerical results at the central slice of the 3D 
thermoelectric model in Ansys with constant resistivity and (d) with 
the experimental temperature-dependent resistivity. 

Figure 8 compares the surface steady-state temperature 

distribution 𝑇𝑠(𝑥, 𝑏) along the width of the SMC sample 

(−𝑎 ≤ 𝑥 ≤ 𝑎): experimental, analytical and numerical results. 

The experimental values (given in black circles) follow a 

distinguishable parabolic shape with minimum and maximum 

values 𝑇𝑠(𝑎, 𝑏) = 46.1 ºC and 𝑇𝑠(0, 𝑏) = 49.7 ºC. The 

numerical (in blue) and the analytical results (in red) are 

plotted for different values of 𝜅: the average measured of 

0.22 W·m-1·K-1 and the best fit of 0.11 W·m-1·K-1 (found using 

the approximation in equation 13 on the experimental results). 

Varying 𝜅 changes the temperature distribution considerably 

but the average value stays almost unchanged. Results plotted 

in Figure 8 give evidence that the best fit of the surface 

temperature distribution is obtained for a much lower 𝜅 than 

that obtained by independent measurements on similar 

materials, both differing only by 0.11 W·m-1·K-1. A possible 

explanation of the small difference between the numerical 

model and the experiments is that the 𝜅 measurements in this 

work are obtained around room temperature, while the 

average temperature in Figure 8 is ~ 48 °C. As previously 

reported in [27] , the temperature coefficient of the thermal 

conductivity is negative for these type of materials and hence 

the actual 𝜅 of the SMC at 48 ºC will be smaller than the 

measured at room temperature. This agrees with the estimated 

𝜅 of 0.11 W·m-1·K-1 found analytically. In spite of this 

discrepancy, both numerical and analytical models are shown 

to be able to reproduce the parabolic distribution obtained 

experimentally. In particular, equation 14 can be used to 

estimate 𝜅 from a resistive heating experiment of the SMC 

material. 

 
Figure 8: Experimental steady-state temperature on the center line 

at the surface of the SMC (in black) compared to the analytical (in 
red) and numerical (in blue) results for two values of thermal 
conductivity. 

5.4 Resistive heating results on the “SMC with grips” 

When trying to measure or make use of the shape memory 

properties of SMC, one needs to be able to deform the sample. 

With that aim, practically, the SMC is attached to external 

bodies that will influence the resistive heating of the samples. 

In order to study the influence of these fixing structures, the 

experimental resistive heating results of both geometries (i.e. 

“bare SMC” and “SMC with grips”) are shown in Figure 9 for 

another sample with the same geometry and experimental 

conditions as before. These measurements were both carried 

out at the same input power of 0.1 W and yet it is possible to 

see that the addition of the grips on the set-up noticeably 

changes both the transient and the steady-state temperature 

due to resistive heating. Resistive heating with grips leads to 

a lower steady-state temperature upon the injection of the 

current. This is due to the additional heat dissipation from the 

surface of the samples to the grips by conduction. The fact that 

this conduction heat transfer occurs is also the explanation for 

the slower resistive heating phenomenon since the grips 

function as a heat sink with an added thermal mass. These 

results give evidence that the presence of grips for mechanical 

experiments on the SMC may affect considerably the resistive 

heating behavior. The results of Figure 9 also show that the 

1.6

1.8

Analytical 2D 𝑇𝑠 𝑥, 𝑦 , 𝜌𝑒 = 𝜌0 - Eq. 6

Analytical 2D 𝑇 𝑥, 𝑦 , 𝜌𝑒 𝑇 - Eq. 18

Numerical 3D - constant 𝜌𝑒 = 𝜌0

Numerical 3D - 𝜌𝑒 𝑇

T [ºC]

(a)

(b)

(c)

(d)

x
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influence of the grips on the transient 𝑇(𝑡) can be modelled 

successfully. 

 
Figure 9: Average temperature evolution with time on the surface 
of the SMC sample “Bare SMC” (solid line) and “SMC with grips” 
(dashed line): experimental results in black and numerical results in 
blue. 

6. Conclusions 

A comprehensive analysis of the resistive heating of SMC 

when subjected to the injection of an electric current at 

constant power is investigated. The experimental temperature 

measured on the surface of the SMC parallelepiped samples is 

compared to analytical and numerical models that couple both 

the thermal and the electrical phenomena. The findings shown 

in this article can be summarized as follows: 

i. The electrical resistivity of this SMC has a non-linear 

dependence on temperature, exhibiting a maximum at 

the melting temperature of the polymer. For controlled 

resistive heating of the SMC at constant power, the 

injected current needs to continuously vary. 

ii. A simple analytical 1D model assuming temperature 

homogeneity within the samples serves to have a good 

first approximation of the resistive heating phenomenon. 

Nevertheless, the final steady-state temperature is 

somewhat underestimated.  

iii. The transient 2D analytical model with temperature-

independent resistivity developed in this study predicts a 

resistive heating phenomenon closer to the experimental 

data than the 1D model. The difference between the 2D 

analytical model with temperature-independent 

resistivity and the 1D analytical model resides in the 

additional temperature gradients that arise due to the 

finite value of the thermal conductivity. This analytical 

2D model can be used for predicting the resistive heating 

arising from the injection of a current at constant power 

without the need of numerical modelling. Furthermore, 

parametric investigations of the variations of certain 

geometrical and material properties can be done easily 

and rapidly for a sample with rectangular cross-section, 

e.g. a metal (positive  ) or even a semiconductor 

(negative  ), provided the assumptions of the 

calculations are met and a constant   can be assumed 

within the temperature range considered. 

iv. The 2D analytical models and the 3D numerical model 

in Ansys predict elliptic temperature distributions in the 

XY-plane, consistent with the type of distribution found 

experimentally on the SMC surface. 

v. Simpler analytical expressions are derived for the 

frequent case of Biot number much smaller than unity: 

these results permit the prediction, for any dimension or 

range of parameters, of the magnitude of the thermal 

gradients within the sample or, in an equivalent manner, 

find an upper bound of the sample dimensions that lead 

to a certain maximum temperature difference (e.g. 1 ºC) 

within the sample. 

vi. For the first time, the 2D local dissipated power due to 

the injection of an electric current at constant power has 

been described (in equation 16) for a material exhibiting 

a linear temperature dependence of resistivity. The 

practical consequence is that the temperature difference 

that is relevant to estimate the effect of a finite 

temperature coefficient   is not the average temperature 

increase (𝑇(𝑥, 𝑦) − 𝑇0) but the local temperature non-

uniformity (𝑇(𝑥, 𝑦) − 〈𝑇〉). 
vii. Several material parameters have been shown to heavily 

influence the resistive heating of SMC upon the injection 

of a current at constant power. These are: 

a. temperature-dependent resistivity: when the resistivity 

is no longer considered constant but temperature-

dependent, the 2D steady-state analytical model is 

modified so that the local dissipated power follows a 

linear temperature dependence. This model is shown to 

be successfully applied to approximate the non-linear 

temperature dependence of the resistivity in a piece-

wise linear fashion. The results have shown that 

neglecting the temperature-dependent resistivity may 

result in temperatures that are much lower than those 

intended. Therefore, for applications such as shape 

memory cycles, in which a certain temperature (the 

transition temperature) needs to be reached, the 

knowledge and description within the analytical model 

of the material’s temperature-dependent resistivity is 

needed. 

b. temperature-dependent heat capacity: using a constant 

heat capacity throughout the analytical models results 

in slower resistive heating phenomena than the 

experiment. However, when describing the non-linear 

temperature dependence of the heat capacity in the 3D 

numerical model in Ansys, the resulting numerical 

temperature evolution with time is a very close match 

with the experiment. Hence, this result highlights the 

importance of including such a non-monotonic 

temperature dependence of the heat capacity for an 

https://doi.org/10.1088/1361-665X/ac3ebd


This is the authors’ version of the article published in Smart Materials and Structures. Changes were made to this version by 
the publisher prior to publication. The final version is available at https://doi.org/10.1088/1361-665X/ac3ebd  

 

 11  
 

accurate prediction of the transient characteristics of 

the resistive heating phenomenon. 

c. thermal conductivity: the higher the value of thermal 

conductivity, the lower the temperature differences 

within the sample. However, the average temperature 

within the sample stays almost constant regardless of 

the value of thermal conductivity. An average value of 

𝜅 = 0.22 W·m-1·K-1 is measured. Furthermore, an 

inverse identification of 𝜅 based on the experimental 

surface temperature measurements results in a smaller 

𝜅, but having the same order of magnitude 

(0.11 W·m- 1·K-1). The results presented in this paper 

highlight the importance of characterizing the thermal 

conductivity for predicting the temperature distribution 

in SMC in which heating is produced by an electric 

current. 

viii. When trying to use the SMC with realistic conditions, the 

resistive heating phenomenon may be drastically 

different depending on the structures that are placed in 

contact. This study has shown that, when attached by 

grips intended to apply a certain deformation within the 

shape memory cycle, a great thermal mass is added. This 

yields a slower resistive heating and lower steady-state 

temperatures than for the “bare SMC”. If a certain 

temperature needs to be reached with resistive heating, 

the influence of these type of structures must be taken 

into account. 
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Appendix I: Nusselt and radiation-equivalent Nusselt number calculation. 

- The Nusselt number (Nu) is a dimensionless parameter defined as the ratio between the convective 

and the conductive heat transfer [28]. Nu > 10 means that convection dominates conduction during 

the heat transfer from the solid sample to the surroundings and therefore conduction heat transfer 

from the solid to the ambient can be neglected. For the problem described in this study where the 

parallelepiped samples are suspended vertically, the Nusselt number can be defined as 

Nu = 
ℎ𝐿

𝜅𝑎𝑖𝑟
 (A1) 

  

where ℎ is the convection coefficient (i.e. for the material in this study ℎ ≈ 25 W·m-2 K-1), 𝐿 is the length 

of the sample (characteristic length for the convection phenomenon, for the samples in this study 𝐿 = 25 

mm) and 𝜅𝑎𝑖𝑟  is the thermal conductivity of air at the characteristic temperature of the boundary layer 𝑇𝐵𝐿. 

This characteristic temperature, for the data presented in this article, can be estimated to be 

𝑇𝐵𝐿 ≈  (𝑇𝑚𝑎𝑥 + 𝑇0)/2 ≈ 37.2 ºC (where 𝑇𝑚𝑎𝑥 and 𝑇0 are the maximum and the initial temperature 

respectively). At this temperature, 𝜅𝑎𝑖𝑟 ≈ 0.027 W·m-1·K-1. Substituting these values into the definition 

of Nu one gets Nu ≈ 23. Therefore, the conduction heat transfer from the sample to the surroundings can 

be neglected over convection. 

- The radiation-equivalent Nusselt number (Nu𝑟) is a dimensionless parameter that can be defined 

as the ratio of the heat transferred through radiation and the heat transferred through convection: 

Nu𝑟 = 
𝑄𝑟𝑎𝑑

𝑄𝑐𝑜𝑛𝑣
= 

𝜎𝜀𝐴𝑇(𝑇
4 − 𝑇0

4)

ℎ𝐴𝑇(𝑇 − 𝑇0)
 (A2) 

  

where 𝜎 is the Stephan-Boltzmann constant, 𝜀 the emissivity of the material (measured to be 0.91), and 

𝐴𝑇 the total area as defined in the article. The Nu𝑟 for these samples is Nu𝑟 ≈ 4.6 ·  0−4. Since Nu𝑟 ≪  , 

radiation heat transfer can be neglected when compared to convection heat transfer. 
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Appendix II: Derivation of the transient temperature term included in the analytical 2D model 

describing the resistive heating of a sample with non-uniform temperature and temperature-

independent resistivity. 

Let us assume that the sample is a parallelepiped of length 𝐿, width 2𝑎 and thickness 2𝑏 such that 𝐿 ≫

𝑎 ≫ 𝑏 and a coordinate system centered on its cross-section −𝑎 ≤ 𝑥 ≤ 𝑎 and −𝑏 ≤  𝑦 ≤ 𝑏. In the 2D 

approximation, the sample exhibits a total non-uniform temperature distribution 𝑇(𝑥, 𝑦, 𝑡) in its cross-

section arising due to the resistive heating produced by the injection of an electric current parallel to the 

length 𝐿. The material is assumed to have a constant electrical resistivity 𝜌0 and a finite thermal 

conductivity 𝜅. All surfaces of the parallelepiped are subjected to free convection cooling as defined by 

Newton’s law of cooling and the heat transfer by conduction and radiation to the surroundings is neglected. 

At the beginning of the resistive heating phenomenon, the sample is at a uniform temperature that is equal 

to the temperature of the surroundings (𝑇0). 

The total temperature distribution can be described as the addition of a steady-state temperature 𝑇𝑠(𝑥, 𝑦) 

and a transient part 𝑇𝑡(𝑥, 𝑦, 𝑡) that depends on time 𝑡. The former has already been published by Carslaw 

and Jaeger [20]. The solution, expressed as a function of the variables used throughout this paper, is the 

following: 

𝑇𝑠(𝑥, 𝑦) = 𝑇0 +
𝑎𝑞0
ℎ

( +
Bi

2
( − (

𝑥

𝑎
)
2

))

−
4𝑞0𝑎

ℎ
∑

Bi sin(Λ𝑛) cos (Λ𝑛
𝑥
𝑎
) cosh (Λ𝑛

𝑦
𝑎
)

Λ𝑛
2 [2Λ𝑛 + sin(2Λ𝑛)] [

Λ𝑛

Bi sinh
(Λ𝑛

𝑏
𝑎
) + cosh (Λ𝑛

𝑏
𝑎
)]

∞

𝑛=1

 

(A3) 

  

where 𝑞0 is the dissipated power per unit volume and Λ𝑛 tan(Λ𝑛) =
ℎ𝑎

𝜅
= Bi, Bi standing for the Biot 

number. 

The step-by-step solution to the transient part 𝑇𝑡(𝑥, 𝑦, 𝑡) is given hereinafter. 

The 2D transient heat transfer governing equation for this problem is 

𝜕2𝑇𝑡(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+
𝜕2𝑇𝑡(𝑥, 𝑦, 𝑡)

𝜕𝑦2
=
𝜌𝑚𝐶𝑝
𝜅

𝜕𝑇𝑡(𝑥, 𝑦, 𝑡)

𝜕𝑡
 (A4) 

  

where 𝜌𝑚 is the density of the material and 𝐶𝑝 the heat capacity. The boundary conditions for this transient 

problem applying symmetry along the 𝑥 and 𝑦 axis are the following:  

 

 

 

 

 

 

 

𝜕𝑇𝑡
𝜕𝑥

= 0                                   ∀   𝑥 = 0 
(A5) 

  
 

𝜅
𝜕𝑇𝑡
𝜕𝑥

+ ℎ(𝑇𝑡) = 0                   ∀   𝑥 = +𝑎 

 

(A6) 

 
𝜕𝑇𝑡
𝜕𝑦

= 0                                     ∀   𝑦 = 0 

 

(A7) 

 

𝜅
𝜕𝑇𝑡
𝜕𝑦

+ ℎ(𝑇𝑡) = 0                    ∀   𝑦 = +𝑏 

 

(A8) 
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The initial condition for this problem states that 𝑇𝑡(𝑥, 𝑦, 𝑡 = 0) = 𝑇(𝑥, 𝑦, 𝑡 = 0) − 𝑇𝑠(𝑥, 𝑦) =  𝑇0 −

𝑇𝑠(𝑥, 𝑦). 

Applying separation of variables such that 𝑇𝑡(𝑥, 𝑦, 𝑡) = 𝑉(𝑥, 𝑦)𝑍(𝑡), one will obtain a temporal and a 

spatial problem separately such that 

𝜌𝑚𝐶𝑝
𝜅

𝑍̇

𝑍
=

𝜕2𝑉
𝜕𝑥2 +

𝜕2𝑉
𝜕𝑦2

𝑉
= 𝛽 

(A9) 

  

where 𝛽 is a constant. 

A. Solution to the spatial problem 
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2 = 𝑉𝛽: 

Applying the separation of variables for a second time, 𝑉(𝑥, 𝑦) = 𝑃(𝑥)𝑄(𝑦). Substituting inside the 

spatial problem characteristic equations, one gets 

𝑃̈

𝑃
= 𝛽 −

𝑄̈

𝑄
 = −𝜇2 (A10) 

  

where 𝜇 is a constant. The solution to the ordinary differential equations for 𝑃(𝑥) (i.e. 𝑃̈ + 𝜇2𝑃 = 0) and 

𝑄(𝑦) (i.e. 𝑄̈ − (𝛽 + 𝜇2)𝑄 = 0) is straightforward and can be expressed as  

𝑃(𝑥) = 𝐷1 cos(𝜇𝑥) + 𝐷2 sin(𝜇𝑥) (A11) 

  

The coefficients 𝐷𝑖 are constants to be determined with the boundary conditions. Applying the first 

boundary condition in equation A11 at 𝑥 = 0, the coefficients 𝐷2 vanishes in order to avoid trivialities. 

A.1. Case in which 𝛽 < −𝜇2: 

If 𝛽 < −𝜇2 once can introduce the parameter 𝜂 such that 𝜂2 = −(𝛽 + 𝜇2). The spatial term 𝑄(𝑦) has the 

form 

𝑄(𝑦) = 𝐷3 cos(𝜂𝑦) + 𝐷4 sin(𝜂𝑦) (A12) 

  

The coefficients 𝐷𝑖 are constants to be determined with the boundary conditions. Applying the third 

boundary condition in equation A12 at the center 𝑦 = 0, the coefficient 𝐷4 vanishes in order to avoid 

trivialities. Using the second boundary condition of equation A6, one gets the transcendental equation  

𝜇𝑚𝑎 tan(𝜇𝑚𝑎) =
ℎ𝑎

𝜅
= Bi  (A13) 

  

By introducing Μ𝑚 = 𝜇𝑚𝑎, equation A13 can be expressed as Μ𝑚 tan(Μ𝑚) = Bi. 

The 4th boundary condition (equation A8) yields yet another similar transcendental equation: 

𝜂𝑙𝑏 tan(𝜂𝑙𝑏) =
ℎ𝑏

𝜅
= Bi

𝑏

𝑎
 (A14) 
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By introducing the dimensionless number Η𝑙 = 𝜂𝑙𝑏, equation A14 can be expressed as Η𝑙tan(Η𝑙) =

Bi 𝑏/𝑎. 

The solution to the spatial problem 𝑉(𝑥, 𝑦) would therefore remain as a double series of addition where 

the constants 𝐷1 and 𝐷3 can be combined into a single constant 𝐷5,𝑚𝑙. The expression for 𝑉(𝑥, 𝑦) is the 

following: 

𝑉(𝑥, 𝑦) = ∑ ∑𝐷5,𝑚𝑙

∞

𝑙=1

cos (Μ𝑚

𝑥

𝑎
) cos (Η𝑙

𝑥

𝑏
)

∞

𝑚=1

 (A15) 

  

A.2. Case in which 𝛽 > −𝜇2: 

If 𝛽 > −𝜇2 one can introduce the parameter 𝜂 such that 𝜂2 = (𝛽 + 𝜇2). In what follows, it is shown that 

this case will not be mathematically possible. Consider that 𝜂 can be defined as above. Then the spatial 

term 𝑄(𝑦) would have the form 

𝑄(𝑦) = 𝐷̃3 cosh(𝜂𝑦) + 𝐷̃4 sinh(𝜂𝑦) (A16) 

where the coefficients 𝐷̃𝑖 can be found using the boundary conditions. Applying the third boundary 

condition (equation A7), one gets 𝐷̃4 = 0, and applying the fourth boundary condition (equation A8) one 

gets 𝜅𝜂𝐷̃3 sinh(𝜂𝑏) + ℎ𝐷̃3 cosh(𝜂𝑏) = 0. This expression can be re-written as: 

𝜂𝑏 tanh(𝜂𝑏) = −
ℎ𝑏

𝜅
= −Bi

𝑏

𝑎
 (A17) 

If one introduces again Η = 𝜂𝑏, equation A17 can be expressed as Η tanh(Η) = −Bi 𝑏/𝑎. Since Bi 𝑏/𝑎 >

0, the only solution for Η must be imaginary, i.e. H should take the form H = 𝑗|H|, where 𝑗 = √− . 

In this case, 𝛽 would take the form 𝛽𝑚 = (
Η

𝑏
)
2

− (
Μ𝑚

𝑎
)
2

. Since (
Η

𝑏
)
2

 is a negative value because Η is 

imaginary, the statement done at the beginning of 𝛽 > −𝜇2 is not true and this case cannot happen.  

B. Solution to the temporal problem 
𝜌𝑚𝐶𝑝

𝜅

𝑍̇

𝑍
= 𝛽: 

Taking into account that the constant 𝛽 can be expressed in terms of the constants derived above in case 

A.1 (i.e. 𝛽𝑚𝑙 = −(𝜇𝑚
2 + 𝜂𝑙

2)), the solution to the ordinary differential equation is simply: 

𝑍̇ +
𝜅

𝜌𝐶𝑝
(𝜇𝑚

2 + 𝜂𝑙
2)𝑍 = 0 → 𝑍𝑚𝑙(𝑡) = 𝐷6,𝑚𝑙exp (−

𝜅

𝜌𝐶𝑝
(𝜇𝑚

2 + 𝜂𝑙
2)𝑡) (A18) 

where 𝐷6,𝑚𝑙 is a constant. 

Thanks to the solution of both the spatial and the temporal problems, the complete solution for the transient 

part is the multiplication of these last two equations. The result of the transient part is: 

𝑇𝑡(𝑥, 𝑦, 𝑡) = ∑ ∑𝐶3,𝑚𝑙

∞

𝑙=1

cos (Μ𝑚

𝑥

𝑎
) cos (Η𝑙

𝑥

𝑏
)

∞

𝑚=1

exp (−
𝜅

𝜌𝐶𝑝
(𝜇𝑚

2 + 𝜂𝑙
2)𝑡) (A19) 

  

where 𝐶3,𝑚𝑙 is a constant that results from the multiplication of 𝐷5,𝑚𝑙 and 𝐷6,𝑚𝑙. After applying the initial 

condition on 𝑇𝑡(𝑥, 𝑦, 𝑡) one gets 
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𝑇0 − 𝑇𝑠(𝑥, 𝑦) = ∑ ∑𝐶3,𝑚𝑙

∞

𝑙=1

cos (Μ𝑚

𝑥

𝑎
) cos (Η𝑙

𝑦

𝑏
)

∞

𝑚=1

 (A20) 

  

To solve for 𝐶3,𝑚𝑙, one can take advantage of the orthogonality of the eigenfunctions and multiply both 

sides by cos (Μ𝑘𝑥/𝑎) · cos (Η𝑗𝑦/𝑏) and integrate over the cross-section. Due to this orthogonality, there 

is a solution only if Μ𝑚 = Μ𝑘  and Η𝑙=Η𝑗. Furthermore, one may notice that the coefficients 𝑚 and 𝑛 must 

be equal. This implies that Μ𝑚 = Λ𝑛 . The left-hand side of the equation would therefore remain as: 

C2,𝑛𝑙  = ∫ ∫ [𝑇0 − 𝑇𝑠(𝑥, 𝑦)]
𝑏

−𝑏

cos (Μ𝑚

𝑥

𝑎
) cos (Η𝑙

𝑦

𝑏
)𝑑𝑦𝑑𝑥 =

𝑎

−𝑎

= −
4𝑎2𝑏𝑞0 sin(Η𝑙) [(Λ𝑛

2 + Bi) sin(Λ𝑛) − Λ𝑛Bicos(Λ𝑛)]

ℎΛ𝑛
3Η𝑙

+
4𝑞0𝑎

3Bi sin(Λ𝑛) (Λ𝑛 sinh (Λ𝑛
𝑏
𝑎) cosh

(Η𝑙) +
𝑎
𝑏 Η𝑙 cosh (Λ𝑛

𝑏
𝑎) sin

(Η𝑙))

ℎΛ𝑛
3 [

Λ𝑛

Bi sinh (Λ𝑛
𝑏
𝑎) + cosh (Λ𝑛

𝑏
𝑎)

] [Λ𝑛
2 + Η𝑙

2 (
𝑎
𝑏)

2

]
 

(A21) 

 

By solving for 𝐶3,𝑛𝑙 one obtains: 

𝐶3,𝑛𝑙 =
4Λ𝑛Η𝑙  𝐶2,𝑛𝑙

𝑎𝑏[2Λ𝑛 + sin(2Λ𝑛)][2Η𝑙 + sin(2Η𝑙)]
 (A22) 

 

Once the coefficients 𝐶2,𝑛𝑙 and 𝐶3,𝑛𝑙 are defined, the transient part of the temperature distribution has a 

closed solution: 

𝑇𝑡(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝐶3,𝑛𝑙

∞

𝑚=1

cos (Λ𝑛

𝑥

𝑎
) cos (Η𝑙

𝑦

𝑏
)∗ exp(−

𝜅

𝜌𝑚𝐶𝑝
(
Λ𝑛
2

𝑎2
+
Η𝑙
2

𝑏2
) 𝑡)

∞

𝑛=1

 (A23) 
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Appendix III: Derivation of the approximation of steady-state non-uniform temperature and 

temperature-independent resistivity for Bi << 1 (equation 13 of the main body of the article) 

In order to approximate the steady-state temperature distribution of equation 6 of the main body of the 

article for cases of Bi << 1, one starts by approximating the roots of Λ𝑛 given in equation 7 of the main 

body of the article. The roots of Λ𝑛 can be approximated as 

Λ𝑛 ≈ {
√Bi                                                   for   𝑛 =  

(𝑛 −  )𝜋 +
Bi

(𝑛 −  )𝜋
                  ∀   𝑛 >  

 (A24) 

When Bi << 1, the Λ1 of the equation satisfies also Λ1 << 1 and can be approximated by Λ1  tan(Λ1) ≈

(Λ1)
2 = Bi, i.e. Λ1 ≈ Bi1/2 . The following roots are very close to (𝑛 −  )𝜋, i.e. can be expressed as Λ𝑛 ≈

(𝑛 −  )𝜋 + 𝜀𝑛 with 𝜀𝑛 << 1. Substituting in equation 7 one finds 𝜀𝑛 ≈ 𝐵𝑖/[(𝑛 −  )𝜋], i.e. the result 

shown in equation A24. In such case, the first term of the series in equation 6 dominates and the others 

can be neglected. 

Using the assumption Bi << 1 and taking into account that Λ1 is also much smaller than 1, one can use the 

Taylor series expressions for the trigonometric and hyperbolic functions in equation 6. Restricting the 

expansion of 𝑇𝑠(𝑥, 𝑦) to the second order in Λ1, the approximation in equation 13 of the main body of the 

article is obtained. 
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Appendix IV: Derivation of the expression for the 2D local dissipated power arising due to resistive 

heating upon the injection of an electric current at constant power through a material exhibiting a 

linear temperature dependence of resistivity. 

Let us assume that the sample is a parallelepiped of length 𝐿, width 2𝑎 and thickness 2𝑏 such that 𝐿 ≫

𝑎 ≫ 𝑏 and a coordinate system centered on its cross-section −𝑎 ≤ 𝑥 ≤ 𝑎 and −𝑏 ≤  𝑦 ≤ 𝑏. In the 2D 

approximation, the sample exhibits non-uniform temperature distribution 𝑇(𝑥, 𝑦) in its cross-section 

arising due to the resistive heating produced by the injection of an electric current passing through. If the 

electrical resistivity of the sample is temperature dependent, then it is also non-uniform 𝜌𝑒 = 𝜌𝑒[𝑇(𝑥, 𝑦)]. 

For that reason, even if the current is injected at constant power, the local dissipated power 𝑞(𝑥, 𝑦) will 

also be non-uniform because the current will redistribute to preferably flow throw the paths of least 

resistivity. 

The local dissipated power is the product of the local current density 𝐽(𝑥, 𝑦) and the local electric field 

𝐸(𝑥, 𝑦). By making use of Ohm’s law (𝐸 = 𝜌𝑒𝐽), the local dissipated power can be expressed in terms of 

the local resistivity as 𝑞(𝑥, 𝑦) =
𝐸2

𝜌𝑒(𝑥,𝑦)
. If the sample is assumed to have a uniform cross-section, the 

electric field can be assumed to be 𝐸 =
𝑉

𝐿
, where 𝑉 is the total voltage across the sample. Furthermore, at 

constant power 𝑃0, the total voltage is defined as 𝑉2 = 𝑃0𝑅(𝑇), where 𝑅(𝑇) is the total resistance of the 

sample that is related to the infinite number of parallel current paths of cross-section d𝑥 d𝑦 and resistivity 

𝜌𝑒(𝑥, 𝑦). The conductance of these paths can be defined as d𝐺(𝑥, 𝑦) =
d𝑥 d𝑦

𝐿 𝜌𝑒(𝑥,𝑦)
. The total conductance 

(𝐺 =  𝑅−1) is the integral over the cross-section of the sample. The total resistance of the sample is 

therefore given by 

𝑅(𝑇) =  
𝐿

∫ ∫
d𝑥d𝑦

𝜌𝑒 (𝑥, 𝑦)
𝑏

−𝑏

𝑎

−𝑎

 
(A25) 

 

The local dissipated power 𝑞(𝑥, 𝑦) can then be expressed in terms of 𝑃0 and 𝜌𝑒(𝑥, 𝑦) as 

𝑞(𝑥, 𝑦) =  
𝑃0

𝜌𝑒(𝑥, 𝑦) 𝐿 ∫ ∫
d𝑥d𝑦

𝜌𝑒(𝑥, 𝑦)
𝑏

−𝑏

𝑎

−𝑎

 =  
𝑞0 (4𝑎𝑏)

𝜌𝑒(𝑥, 𝑦) ∫ ∫
d𝑥d𝑦

𝜌𝑒(𝑥, 𝑦)
𝑏

−𝑏

𝑎

−𝑎

 
(A26) 

 

where 𝑞0 denotes the average power per unit volume (𝑞0 = 𝑃0/(4𝐿𝑎𝑏)) 

Let us assume that the resistivity varies linearly with temperature as per 𝜌𝑒(𝑇) =  𝜌0[ +   (𝑇 − 𝑇0)], 

where   is the temperature coefficient of resistivity (units of K-1), 𝑇0 is the temperature of the surroundings 

and 𝜌0 the resistivity of the sample at said temperature. Moreover, one can assume that the local resistive 

heating is kept moderate such that  (𝑇 − 𝑇0) ≪   . Doing so, the local resistive heating 𝑞(𝑥, 𝑦) can be 

approximated as: 
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𝑞(𝑥, 𝑦) =
𝑞0 (4𝑎𝑏)

 
𝜌𝑒(𝑥, 𝑦)

𝜌0
∫ ∫

d𝑥d𝑦
 +  [𝑇(𝑥, 𝑦) − 𝑇0]

𝑏

−𝑏

𝑎

−𝑎

≈
𝑞0 (4𝑎𝑏)

 
𝜌𝑒(𝑥, 𝑦)

𝜌0
∫ ∫ { −  [𝑇(𝑥, 𝑦) − 𝑇0]}d𝑥d𝑦

𝑏

−𝑏

𝑎

−𝑎

 

(A27) 

 

The integral term in the denominator can be left in terms of the average temperature within the sample 

〈𝑇(𝑥, 𝑦)〉, i.e. ∫ ∫ { −  [𝑇(𝑥, 𝑦) − 𝑇0]}d𝑥d𝑦
𝑏

−𝑏

𝑎

−𝑎
= 4𝑎𝑏{ −  [〈𝑇(𝑥, 𝑦)〉 − 𝑇0]}. Finally, substituting 

this expression into the local heat dissipation and further applying the approximations abovementioned: 

𝑞(𝑥, 𝑦) ≈  
𝑞0 

{ +  [𝑇(𝑥, 𝑦) − 𝑇0]} { −  [〈𝑇(𝑥, 𝑦)〉 − 𝑇0]}
≈  𝑞0 { −  [𝑇(𝑥, 𝑦) − 〈𝑇(𝑥, 𝑦)〉]} 

(A28) 
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Appendix V: Derivation of the steady-state 2D temperature field describing the resistive heating of 

a sample with non-uniform temperature and temperature-dependent resistivity 𝜌𝑒(𝑇). 

Let us assume that the sample is a parallelepiped of length 𝐿, width 2𝑎 and thickness 2𝑏 such that 𝐿 ≫

𝑎 ≫ 𝑏 and a coordinate system centered on its cross-section −𝑎 ≤ 𝑥 ≤ 𝑎 and −𝑏 ≤ 𝑦 ≤ 𝑏. In the 2D 

steady-state approximation, the sample exhibits a total non-uniform temperature distribution 𝑇(𝑥, 𝑦) in its 

cross-section arising due to the resistive heating produced by the injection of an electric current passing 

through. The material is assumed to have finite thermal conductivity 𝜅 and a temperature-dependent 

electrical resistivity 𝜌𝑒(𝑇) such that 𝜌𝑒(𝑇) = 𝜌0[ +  (𝑇 − 𝑇0)], where 𝜌0 is the electrical resistivity at 

the room temperature 𝑇0. All surfaces of the parallelepiped are subjected to free convection cooling as 

defined by Newton’s law of cooling and the heat transfer by conduction and radiation to the surroundings 

is neglected.  

Due to that linear temperature dependence on resistivity, the local heat dissipation 𝑞(𝑥, 𝑦) would be given 

by equation A28. The heat balance equation would then be 

𝜕2𝑇(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑇(𝑥, 𝑦)

𝜕𝑦2
−
𝑞0 

𝜅
𝑇(𝑥, 𝑦) = −

𝑞0 

𝜅
( +  〈𝑇(𝑥, 𝑦)〉) (A29) 

with the boundary conditions 

𝜕𝑇

𝜕𝑥
= 0                                                    ∀   𝑥 = 0 

𝜅
𝜕𝑇

𝜕𝑥
+ ℎ(𝑇 − 𝑇0) = 0                           ∀   𝑥 = +𝑎 

𝜕𝑇

𝜕𝑦
= 0                                                    ∀   𝑦 = 0 

𝜅
𝜕𝑇

𝜕𝑦
+ ℎ(𝑇 − 𝑇0) = 0                           ∀   𝑦 = +𝑏 

(A30) 

To solve this non-homogeneous partial differential equation there is several methods that one can follow. 

As an example, the temperature field 𝑇(𝑥, 𝑦) can take the form 𝑇(𝑥, 𝑦) = 𝜙(𝑥) + 𝜑(𝑥, 𝑦) so that 

equations A29 and A30 can be split up into a non-homogeneous ordinary differential equation depending 

on 𝑥, i.e. equation A31 with its boundary conditions in A32 

𝑑2𝜙

𝑑𝑥2
−
𝑞0 

𝜅
𝜙 = −

𝑞0
𝜅
( +  〈𝑇(𝑥, 𝑦)〉) (A31) 

𝑑𝜙

𝑑𝑥
= 0                                          ∀   𝑥 = 0 

𝜅
𝑑𝜙

𝑑𝑥
+ ℎ(𝜙 − 𝑇0) = 0                  ∀   𝑥 = +𝑎 

(A32) 

and a homogeneous partial differential equation depending on 𝑦 (equation A33 with its boundary 

conditions in equation A34). 

𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
−
𝑞0 

𝜅
𝜑 = 0 (A33) 
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𝜕𝜑

𝜕𝑥
= 0                                                ∀   𝑥 = 0 

𝜅
𝜕𝜑

𝜕𝑥
+ ℎ𝜑 = 0                                      ∀   𝑥 = +𝑎 

𝜕𝜑

𝜕𝑦
= 0                                                 ∀   𝑦 = 0 

𝜅
𝜕𝜑

𝜕𝑦
+ ℎ(𝜑 + 𝜙 − 𝑇0) = 0                ∀   𝑦 = +𝑏 

(A34) 

The solution of equation A31 is 

𝜙(𝑥) =
 +  〈𝑇(𝑥, 𝑦)〉

 
+ 𝐷7 exp(√

𝑞0 

𝜅
𝑥) + 𝐷8 exp (−√

𝑞0 

𝜅
𝑥) (A35) 

where 𝐷7 and 𝐷8 can be obtained thanks to the boundary conditions in A32. Doing so, the first boundary 

condition gives 𝐷7 = 𝐷8, and therefore the exponential terms can be gathered together in terms of a 

hyperbolic cosine 𝐶4cosh (𝑥√((𝑞0 )/𝜅)) where 𝐶4 = 2𝐷7. The second boundary condition in equation 

A32 gives a solution for 𝐶4 such that 

𝐶4 = −

 
 + 〈𝑇(𝑥, 𝑦)〉 − 𝑇0

cosh (√
𝑞0 
𝜅 𝑎) +

𝜅
ℎ√

𝑞0 
𝜅 sinh (√

𝑞0 
𝜅 𝑎)

 (A36) 

which is equivalent to equation 19 of the main body of the article. Therefore, the complete solution of the 

non-homogeneous ordinary differential equation is  

𝜙(𝑥) =
 +  〈𝑇(𝑥, 𝑦)〉

 

−

 
 + 〈𝑇(𝑥, 𝑦)〉 − 𝑇0

cosh (√
𝑞0 
𝜅 𝑎) +

𝜅
ℎ√

𝑞0 
𝜅 sinh (√

𝑞0 
𝜅 𝑎)

cosh (√
𝑞0 

𝜅
𝑥) 

(A37) 

On the other hand, the solution to the homogenous partial differential equation of 𝜑(𝑥, 𝑦) can be obtained 

by using separation of variables 𝜑(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) and substituting in the equation A33. Doing so, one 

gets  

𝑋̈

𝑋
= −

𝑌̈

𝑌
+
𝑞0 

𝜅
= −𝜆2 (A38) 

where 𝜆 is a constant. Note that equation A38 is a similar eigenvalue problem to the one depicted in 

appendix II equation A10.  

The solution to the ordinary differential equations for 𝑋(𝑥) (i.e. 𝑋̈ + 𝜆2𝑋 = 0) and 𝑌(𝑦) (i.e. 𝑌̈ −

((𝑞0 )/𝜅 + 𝜆2)𝑌 = 0) is straightforward and can be expressed as  

𝑋(𝑥) = 𝐷9 cos(𝜆𝑥) + 𝐷10 sin(𝜆𝑥) (A39) 

The coefficients 𝐷𝑖 are constants to be determined with the boundary conditions. Applying the first 

boundary condition in equations A34 at 𝑥 = 0, the coefficient 𝐷10 vanishes in order to avoid trivialities. 

Using the second boundary condition of equation A34, one gets the transcendental equation  
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𝜆𝑛𝑎 tan(𝜆𝑛𝑎) =
ℎ𝑎

𝜅
= Bi  (A40) 

By introducing Λ𝑛 = 𝜆𝑛𝑎, equation A40 can be expressed as Λ𝑛 tan(Λ𝑛) = Bi. 

On the other hand, the solution for 𝑌̈ − ((𝑞0 )/𝜅 + 𝜆2)𝑌 = 0 is given by 𝑌(𝑦) = 𝐷11 cosh(𝐶7,𝑛𝑦/𝑎) +

𝐷12 sinh(𝐶7,𝑛𝑦/𝑎), where 𝐶7,𝑛 is given in equation 22 of the main body of the article. By applying the 

third boundary condition in A34, the coefficient 𝐷12 is vanished. The fourth boundary condition at 𝑦 = 𝑏 

in equation A34 gives the condition 

𝐶7,𝑛𝐶6,𝑛
𝜅

𝑎
cos (Λ𝑛

𝑥

𝑎
) sinh (𝐶7,𝑛

𝑏

𝑎
) + ℎ [𝐶6,𝑛 cos (Λ𝑛

𝑥

𝑎
) cosh (𝐶7,𝑛

𝑏

𝑎
)]

= −ℎ(𝜙(𝑥) − 𝑇0)  
(A41) 

where 𝜙(𝑥) is already given in equation A37 and 𝐶6,𝑛 is the multiplication of 𝐷9 times 𝐷11. Finally, the 

coefficient 𝐶6,𝑛 is obtained by multiplying on both sides by cos (Λ𝑚
𝑥

𝑎
) and integrating on 𝑥 over the width 

from −𝑎 to 𝑎. Applying orthogonality, 𝑚 = 𝑛 for having a solution, and 𝐶6,𝑛 would then result on the 

expression of equation 21 of the main body of the article. 

Once 𝐶6,𝑛 is known, it can be inserted in the expression for 𝜑(𝑥, 𝑦) and the solution for the temperature 

field 𝑇(𝑥, 𝑦) will then be 

𝑇(𝑥, 𝑦) = 〈𝑇〉 +∑𝐶6,𝑛 cos (Λ𝑛

𝑥

𝑎
) cosh (𝐶7,𝑛  

𝑦

𝑎
)

∞

𝑛=1

+ 
 

 
+ 𝐶4 cosh (𝐶5  

𝑥

𝑎
) (A42) 

 

N.B. Similarly to what was already explained in appendix II, if equation A35 was equated to a positive 

eigenvalue 𝜆2 (instead of −𝜆2) the solution will not be mathematically possible. This is because, in this 

case, 𝑋(𝑥) = 𝐷9 cosh(𝜆𝑥) + 𝐷10 sinh(𝜆𝑥), where 𝐷10 would become zero thanks to the first boundary 

condition of equation A31. The second boundary condition would lead to 𝜆𝑎 tanh(𝜆𝑎) = −Bi, which 

means that 𝜆 has one imaginary solution. Finally, the square of an imaginary number results in a negative 

number, therefore the original statement of having a positive eigenvalue 𝜆2 instead of −𝜆2 is not valid. 
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Appendix VI: Mesh convergence study of the “Bare SMC” and “SMC With Grips” geometries used 

during the numerical analysis of resistive heating. 

A mesh convergence study is performed in both geometries used for the numerical analysis in Ansys in 

order to determine the minimum number of elements required to achieve an accurate prediction of resistive 

heating in the “Bare SMC” and “SMC With Grips” geometries. In order to save computational time and 

memory, one has taken advantage, whenever possible, of symmetry by just representing a quarter of the 

geometry and applying symmetry as a boundary condition. 

Several simulations were run with increasing number of elements and the average temperature on the 

surface of the SMC was tracked. Figure A1 shows the average temperature on the surface for both the 

“Bare SMC” and the “SMC With Grips” with increasing number of elements. As it can be seen, the 

average temperature on the surface of the SMC starts converging to the same calculated value at a number 

of elements equal to 2500 and 18500 for the “Bare SMC” and “SMC With Grips” respectively. These are 

the two meshes used for the investigations presented in the main body of the article. 

 

Figure A1: Mesh convergence study for the geometries “Bare SMC” and “SMC With Grips” used for the numerical analysis in Ansys of 
resistive heating of a SMC 
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Appendix VII: Properties of MWCNT Nanocyl 7000, data taken from the manufacturer 

Table A1: Characteristics of the MWCNT Nanocyl 7000 used in the shape memory composites 

(data taken from the manufacturer’s datasheet). 

Parameter Value 

Average diameter  [nm] 9.5 

Average length [µm] 1.5 

Carbon purity [%] 90 

Transition metal oxide [%] <1 

Surface Area [m2·kg-1] 0.25-0.3 

Volume resistivity [Ω · m] 1e-5 
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