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Abstract

The components of the insulin-like growth factor (IGF) axis have been investigated in the normal
human thymus. Using ribonuclease protection assays (RPA), IGF-II transcripts were detected in the
normal human thymus. By reverse transcriptase polymerase chain reaction (RT-PCR) analyses,
promoters P3 and P4 were found to be active in the transcription of IGF2 gene within human thymic
epithelial cells (TEC). No IGF-II mRNA could be detected in human lymphoid Jurkat T cells with 30
cycles of RT-PCR. By Northern blot analyses, IGFBP-2 to -6 (but not IGFBP-1) were found to be
expressed in TEC with a predominance of IGFBP-4. Interestingly, Jurkat T cells only express
IGFBP-2 but at high levels. The type 1 IGF receptor was detected in Jurkat T cells but not in human
TEC. The identification of the components of the IGF axis within separate compartments of the
human thymus adds further evidence for a role of this axis in the control of T-cell development. The
precise influence of thymic IGF axis upon T-cell differentiation and immunological self-tolerance
however needs to be further investigated.

The thymus is the primary lymphoid organ involved in the IGF-I was also detected in the thymus, but IGF-I distribution
was restricted to macrophage-like thymic stromal cells (15).development of competent and self-tolerant T lymphocytes

(1). The induction of thymic central T-cell self-tolerance is IGF-I mRNA and protein have also been identified in murine
macrophage cell lines from thymic and non-thymic originthought to be the consequence of T-cell apoptosis or the

developmental arrest of immature T cells bearing a randomly (16). IR proinsulin could not be identified by ICC in the
human thymus.rearranged receptor for self-antigens presented in the thymic

microenvironment (2–6). We showed in our previous studies IGF-II is a 67 amino acid peptide which is thought to be
a growth regulator during foetal development (17, 18). Thethat thymic epithelial and nurse cells (TEC/TNC) from

different species express neuroendocrine-related polypeptide human IGF2 gene is located on the chromosome 11p15 (19).
It contains nine exons and four promoters (20), the activitiesprecursors/genes belonging to neurohypophysial, tachykinin

and neurotensin families (7–9). Thymic neuroendocrine- of which are regulated in a tissue- and developmental-specific
manner. Such specificity gives rise to multiple IGF-II tran-related precursors have been proposed to recapitulate at the

molecular level the dual role of the thymus in T-cell develop- scripts with different 5∞- and 3∞-non-coding regions (21). The
P1 promoter is only active in adult human liver and it yieldsment and self-tolerance (10–12). Regarding the insulin

family, previous studies have reported a predominant expres- a 5.3 Kb mRNA. P2, P3 and P4 promoters are active in
foetal liver as well as in adult non-hepatic tissues where theysion of insulin-like growth factor-II (IGF-II ) over IGF-I in

human foetal organs including the thymus (13, 14). By activate the production of 5, 6 and 4.8 Kb transcripts, respect-
ively (22).immunocytochemistry (ICC), we have reported that IGF-II

is the dominant peptide of the insulin family synthesized by Currently, there is no information concerning the active
promoter of IGF2 in thymic cells. In the first part of thisTEC from human and rat thymus (15). Immunoreactive (IR)
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or IGF-I RNA probes, respectively (33, 34). The riboprobes were synthesizedstudy we analyse IGF2 gene expression in the thymus and
from the 800-bp IGF-II-pSPT18 Sst II linearized plasmid, or 600-bp IGF-I-identify the thymic active promoters by RNase protection
pSPT18 Sma I using 5–10 units of the SP6 RNA polymerase from the Promega

assay and RT-PCR respectively. transcription kit (Promega Corp.). The riboprobes are 440- and 660-nt in
IGF activity is not only dependent on the regulation of length containing 20-nt of poly-linker sequence. Hybridization and RNase

treatment were performed as described by Lambert et al. (33), and the samplestheir synthesis but also on the presence of IGF receptors
were submitted to electrophoresis on a 4% polyacrylamide sequencing gelon target cells: type 1 (IGF-1R) (23), type 2/mannose-
containing 8 M urea and dried gel were exposed to X-ray film for 48 h.6-phosphate (IGF-2R) (24) IGF-receptors and insulin recep-
Reverse transcription polymerase chain reactiontors (25), as well as on the presence of IGF-binding proteins

(IGFBPs) (26). These IGFBPs are found in many body fluids IGF-II mRNA levels were analysed by RT-PCR. Five mg of total RNA were
reverse-transcribed in the presence of 10 pmole of antisense primer: primer 9and in the conditioned media of a wide variety of cell types
(Table 1) at 48 °C for 60 min with 200 units Superscript II reverse transcriptase(27) where they are presumed to regulate IGF bioavailability
(Life Technologies), 1X first strand buffer, 10 mM dithiothreitol, 0.5 mM of

and bioactivity for their receptors (28). Type 1 and type 2 each deoxynucleotide triphosphate. The reaction was stopped by incubation
IGF receptors are expressed by freshly isolated immature and at 90 °C for 5 min and samples were quick-chilled on ice.

Five ml of newly transcribed cDNA was amplified by PCR for 25–30 cyclesmature T lymphocytes (29, 30), as well as by human leukemic
at 95 °C/1 min, 51 °C/1 min 30 s and 72 °C/2 min followed by 5 min incubationlymphoblasts (31), indicating that thymic IGFs could play a
at 72 °C, in the presence of 1X Taq buffer, 200 mM dNTP mix, 1 mM of therole in T-cell development. Little is known about IGFBP sense primer: primer-5, primer-6, or primer-7 and primer-9 as antisense primer

expression in cells from thymic origin. (35) (Primers are from Pharmacia LKB Biotechnology, Piscataway, NJ,
In the second part of this work, we investigated the USA).The PCR products were fractioned by electrophoresis on 0.8% aga-

rose gel.expression of IGF receptors and IGFBPs in the human TEC,
and in the human Jurkat T-lymphoblast cell line (32). Given Southern blotting and hybridization
the high heterogeneity of thymic cells, the human Jurkat The RT-PCR products were submitted to gel agarose electrophoresis and
T-lymphoblast cell line (31) was used to evaluate the compo- vacuum blotted in 10X SSC (20×SSC: 3 M NaCl, 0.3 M Sodium Citrate

Dihydrate) for 90 min onto Zeta-Probe GT nylon membrane (Bio-Rad,nents of the IGF axis expressed in the lymphoid compartment.
Hercules, CA, USA). The 800-bp Pst I fragment of the human IGF-II cDNA
probe (33) was labelled with [a-32P] dCTP (50 mCi at a specific activity of
3000 Ci/mmol; ICN) by random priming using Ready To Go reaction mixMaterials and methods
(Pharmacia LKB). Unincorporated nucleotides were removed by gel filtration

Human tissue samples on a Sephadex G50 column and the blotted membranes were hybridized for
16 h at 42 °C to 5.107 c.p.m. of the probe. The washes were performed atThymic fragments were obtained from children (aged from 6 months to 3
65 °C as follows: twice in 40 mM Na2HPO4 (pH 7.2), 5% SDS for 30 minyears) undergoing corrective cardiovascular surgery for congenital cardiopath-
and twice in 40 mM Na2HPO4 (pH 7.2), 1% SDS for 30 min. The blots wereies. Human liver and placenta samples were used as positive controls. Tissue
exposed for 1 h to phosphorimager.samples were frozen in liquid nitrogen and stored at −70 °C. This study was

approved by the ethical committee of the University Hospital of Liège.
Northern blotting and hybridization

TEC cultures Total RNA were prepared from tissue samples and cell cultures as described
above. Fifteen to 20 mg of TEC and Jurkat T cell line RNA and 5 mg ofTEC cultures were obtained from thymic explants as described by
liver or placenta RNA were loaded on a formaldehyde agarose gel followingMartens et al. (33). Briefly, surgical thymic fragments were cut and washed
denaturationon. The gel was stained with ethidium bromide to visualize RNAtwice by sedimentation for 5 min in HBSS (ICN, Costa Mesa, CA, USA).
standards and ribosomal RNA (rRNA) and total RNA were blotted ontoThe small fragments (<2 mm) were cultured in Eagle’s minimum essential
Gene Screen Nylon membran (Dupont, NEN Research Product, Boston,medium containing D-valine (Life Technology, Gaithersburg, MD, USA) in
USA). Hybridization were carried out at 42 °C for 16 h according to theorder to reduce fibroblast growth, supplemented with 2 mM -glutamine,
manufacturer’s instructions in 10 ml hybridization mixture containing 5.10710 mM HEPES, 100 U/m; penicillin, 100 mg/ml streptomycin and 10% heat-
c.p.m. of 32P randomly primed probe (as described previously) and posthybrid-inactivated foetal calf serum (Life Technology). Fragments were allowed to
ization washes were performed as follows: twice in 2×SSPE (20×SSPE: 3 Madhere to T-75 flasks in the same medium in a humidified atmosphere at
NaCl, 0.02 M EDTA and 0.2 M NaH2PO4H2O) at room temperature for37 °C and 5% CO2. On day 17, explants and confluent cells were trypsinized
15 min, twice in 2×SSPE, 2% SDS at 65 °C for 45 min, and finally twice in(Trypsin Versene, BioWhittaker, Walkersville, MD, USA) and filtered through
0.1×SSPE at room temperature for 15 min. Hybridized membranes werenylon gaze to eliminate fragment residues. TEC were subcultured for 1 week
exposed to X-Ray film. The blots were stripped and rehybridized (in the samebefore RNA extraction. Purity of human TEC cultures was around 75–85%
condition) with a-32P-labelled b-actin probe (kindly provided by Dr Bell, GI )as determined by Martens et al. (33).
to assess RNA loading. Relative hybridization levels were determined by

Jurkat T-cell line cultures densitometric analysis. In all cases, IGFBP levels were normalised with respect
to the level of b-actin expression and to the length of the probes. TheThe human Jurkat T lymphoblast cell line (32) was cultured in RPMI 1640
following probes were used for hybridization: IGF-IR probe was obtained(BioWhittaker) containing 2 mM l-glutamine, 1% sodium pyruvate, 1% non-
from ATCC (Rockville, MD, USA), IGFBP-1 and-2 are from JCRessential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin and 10%
Biopharmeuticals, Inc. (San Diego, CA, USA) and IGFBP-3, -4, -5 and-6heat-inactivated FCS (Life Technology) in a humidified atmosphere at 37 °C
probes were purchased from Chiron Cell Corporation (Emeryville, CA, USA).and 5% CO2.

RNA isolation
ResultsTotal RNA was extracted from tissue samples and cells using RNAzolTM B

(Biotex Laboratories Inc. Houston, TX, USA) according to the manufacture
instructions. The amount of total RNA was quantified by UV spectrophoto- IGF-II mRNA expression and identification of IGF2 active
metry and RNA integrity was analysed by agarose gel electrophoresis after promotors in the thymus
ethidium bromide staining.

IGF2 gene expression in the human thymus was analysed byRibonuclease protection assay
RPA. A 32P-labelled IGF-II RNA probe (36) was hybridizedRibonuclease protection assay (RPA) was performed as described by Lambert
with increasing amounts of total RNA from the humanet al. (34). Briefly, 10, 20 and 30 mg or 20, 40, 60 mg of total RNA were

hybridized for 16 h at 50 °C with 105 c.p.m. of a (a-32P-CTP)-labelled IGF-II thymus and term placenta used as a positive control (Fig. 1).
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F. 1. Identification of IGF-II transcripts in human thymus by ribonuclease protection assay (RPA). Ten, 20 and 30 mg of total human thymus
RNA and 5 and 10 mg of total human placenta RNA were hybridized with a (a-32P-CTP) labelled antisense IGF-II riboprobe (105 c.p.m.); CA: Probe
alone; CB: 105 c.p.m. probe incubated with 30 mg of yeast RNA and not subjected to RNase treatment as described in Materials and Methods; nt:
nucleotides (exposure time is 48 h at −70 °C).

The IGF-II message was already detected using 5 or 10 mg and in the lymphoid Jurkat T-cell line. Human liver RNA
was used as a control tissue (Fig. 3). IGFBP-3 (Fig. 3),of total placenta or thymic RNA, respectively, and its level

increased with increasing amount of RNA. The size of the IGFBP-4 (Fig. 3), IGFBP-5 (Fig. 3 ) and IGFBP-6
(Fig. 3) transcripts were detected both in TEC and liver, butprotected fragments were 20-nt shorter than the unhybridized

probe (440-nt), due to the digestion of the linker sequences not in Jurkat T cells. By contrast, IGFBP-2 mRNA was
abundant in the Jurkat T cells, and barely detectable in thetranscribed from the pSPT18 vector. Two protected IGF-II

fragments were detected. This result indicates that IGF2 is TEC (Fig. 3). IGFBP-1 mRNA was not detected neither in
TEC, nor in Jurkat T cells (data not shown). The signalsindeed expressed in the thymus, but does not provide informa-

tion concerning the cellular origin of the transcripts nor the were quantified by densitometric analysis after rehybridiza-
tion with b-actin probe. IGFBP mRNA levels were expressedidentity of the active promoters. We could not detect any

IGF-I mRNA in the human thymus using RPA (data not as the percentage of b-actin with respect to the probe length
and compared to IGFBP expression in the liver. IGFBP-4shown). These experiments were realized with three different

thymuses and gave similar results. mRNA was the dominant IGFBP in TEC and was 14-, 21-,
and 20-fold more abundant than BP-3, BP-5, and BP-6We also studied IGF-II mRNA expression in the Jurkat

cells by RT-PCR. No amplification was observed after 30 respectively (in arbitrary units).
Using Northern blot analysis, type 1 IGF receptorcycles indicating that the expression level was probably below

the detection level of this very sensitive technique (data (IGF-1R) mRNA (11 kb) was only found in Jurkat T cells
(Fig. 3 ). Human placenta was used as a positive controlnot shown).

To identify promoters responsibles of IGF-II mRNA tissue. These experiments were repeated and realized with
different total RNA extracts.expression in cultured human TEC, RT-PCR analyses were

performed using a common 3∞-primer derived from exon 9
and a 5∞-primer from exon 5 or 6, whose expression is under Discussion
the control of promoters P3 and P4, respectively. The
RT-PCR products specific for promoters P3 (662 bp, Fig. 2, In the present study, we confirmed the expression of different

members of the IGF axis (IGF-I, IGF-II, IGF-1R andlane 1) and P4 (596 bp, Fig. 2, lane 2) were detected in
TEC RNA. RT-PCR with primers from exon 9 and 7 IGFBPs) in the human thymus, in TEC primary cultures and

in Jurkat, a human lymphoid T-cell line. Interestingly, ouramplified a 450 bp PCR product which correspond to the
common coding sequence for all IGF-II transcripts (Fig. 2, results show that the thymic epithelial and lymphoid compart-

ments exhibit different patterns of expression for members oflane 3). This experiment was realized three times and similar
results were obtained. The identity of the amplified cDNAs the IGF axis:

1. TEC express IGF-II under the control of P3 and P4, mostwas controlled by Southern blot hybridization to a 800 bp
human IGF-II cDNA probe containing exons 7, 8 and a of the IGFBPs (BP-2 to-6), but no IGF-1R mRNAs.

2. Jurkat T cells do not express IGF-II, express only IGFBP-2portion of exon 9 (32) (Fig. 2). Thus, promoters P3 and P4
are active in TEC. and are rich in IGF-1R transcripts.

The identification of IGF-II mRNA in TEC indicates that
IR IGF-II previously detected in the epithelial compartmentIGFBPs and type 1 IGF receptor mRNA expression in TEC
of human thymuses excised from 6-month-old to 3-year-oldand Jurkat T cells
children (15) is probably synthesized by these cells. Other
autors have localised IGF-II mRNA and peptide, by in-situNorthern blot analyses were used to study the level of

IGFBPs transcripts in the primary cultures of human TEC hybridization and ICC, in the mesenchymal cells and imma-
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F. 2. () Identification of the promoters responsibles of IGF-II mRNA expression in human TEC. Amplification of mRNA from human TEC
primary culture by RT-PCR. The RT-PCR products were separated through agarose gel electrophoresis and visualized with ethidium bromide. The
predicted sizes for the amplification bands using primer specific for exon 5, exon 6 or exon 7 as upstream primer with primer specific for exon 9 as
downstream primer were 660 bp (lane 1), 596 bp (lane 2) and 450 bp ( lane 3), M1=1 kb ladder, M2=100 bp markers, lane 4=negative control (no
RNA). () Southern blot hybridization of TEC RT/PCR products(a: 660 bp, b: 596 bp, c: 450 bp) to the 800 bp human IGF-II cDNA probe.

ture hematopoietic precusors of foetal human thymus (13, Pintar et al. at the Fourth International Symposium on IGFs
(44) have raised the possibility of a misinterpretation of this14, 37). The difference between those results and our observa-

tions could be due to the difference in the developmental inhibitory effect. This IGFBP has also been detected in
murine thymic macrophages and in macrophage cell linesstages of the analysed tissues. In transgenic mice overexpress-

ing IGF-II, in-situ hybridization revealed the high expression (45). As suggested by these authors, macrophage-derived
IGFBP-4 might antagonize the extracellular effects of IGF-I.of the IGF-II transgene within non-lymphocyte cells of the

thymic medulla (38, 39). Similar experiments were performed with the lymphoid
Jurkat T-cell line (32). This cell line was used as a globalTwo IGF-II mRNA protected fragments were detected by

RPA in the thymus. The shorter transcript may correspond representative of the lymphoid compartment in the thymus.
By contrast with the subpopulations of thymic T cells (thymo-to an IGF-II mRNA variant in the region detected by the

probe used in the assay (40, 41). cytes), the Jurkat T-cell line offers the advantage of an
homogenous population which can be reproducibly analysed,The expression of the IGF-II gene in TEC is under the

control of promoters P3 and P4 which are known to be active the disadvantage being that it is a cancer cell line so that all
informations have to be interpreted with caution. No IGF-IIin all foetal tissues, as well as in the extra-hepatic adult

tissues (21). To the best of our knowledge, the identity of mRNA could be detected in Jurkat T cells by RT-PCR
analysis, while these cells were found to express both IGF-1RIGF-II gene promoters in TEC has not been addressed before.

IGF-I could not be detected in TEC by RPA. The absence mRNA, and IGFBP-2 trancripts. The presence of functional
IGF-1R (46) and IGF-2R (47) on Jurkat cells has beenof IGF-I transcripts is in accordance with our previous

observations according which IR IGF-I was restricted to described before. These receptors have been reported to be
expressed by freshly isolated immature and mature T lympho-thymic macrophages (15). In accordance with our own

observations, Arkins et al. have shown that a variety of cytes (29, 30), as well as by human leukemic lymphoblasts
(32).murine macrophage cells and cell lines express the IGF-I

mRNA, while this transcript was undetectable in the whole In summary this study confirms—at the molecular level—
the existence of IGF axis members in the human thymus withthymus (16).

Timsit and coworkers have reported that primary cultures a predominance of IGF-II synthesis within TEC and the
expression of IGF receptors by lymphoid cells. The character-of TEC respond to IGF-I, an effect which could be blocked

by an anti-IGF-I receptor antibody (42). The apparent ization of a complete IGF system in a lymphopoietic site
adds another argument for its implication in thymic T-celldiscrepancy with the absence of IGF-1R mRNA in our study

could be due to some differences in the conditions of TEC differentiation and self-tolerance (48). IGF-II transgenic mice
overexpress IGF-II mRNA in the thymus and spleen, andprimary cultures, the presence of insulin receptor or in the

regulation of expression of the IGF-1R gene. their thymus shows a significant hyperplasia (35). In addition,
the same group showed that overexpression of IGF-IITEC express different levels of IGFBP-2 to-6, with a

predominance of IGFBP-4. IGFBP-4 is thought to be an increases thymic cellularity and stimulates the generation of
phenotypically normal T cells with a preference to CD4+inhibitor of IGF biological activity (43). However, recent

results concerning IGFBP-4 knock-out mice, presented by cells (38). The precise involvment of the IGF axis in T-cell
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F. 3. Northern blot analyses of IGFBPs and IGF-1R mRNAs in human TEC primary cultures, Jurkat T-cell line and human liver or placenta as
positive controls. Twenty mg of total cellular RNA from TEC and Jurkat, and 5 mg of total RNA from liver or placenta were hybridized with human
IGFBP-2 to-6 and IGF-1R cDNAs probe. The exposure time was 48 h at −70 °C with amplifying screens (IGFBP-2,-3,-4,-6) and 1 week for
IGFBP-5. (–) (Top) Autoradiographies of Northern blots analysis of IGFBP-2,-3 -4, -5 and -6 (respectively) in TEC, Jurkat T-cell line, and liver.
( ) (Top) Autoradiography of Northern blots analysis of type-1 IGF receptor in TEC, Jurkat T-cell line, and placenta. The exposure time was 48 h
at −70 °C. (– ) (Bottom) Blots were stripped and hybridized with labelled b-actin cDNA probe.
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