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In order to improve Eurocode 3 beam-column formulae, a research was led by a so-called 
“ECCS TC8 – ad-hoc working group”, and, as a result, a new proposal dealing with plane and 
spatial behaviour has been suggested. It was derived according to the following requirements: 
theoretical background, strong physical meaning, consistency with the other formulae of the 
code, and accuracy. It should also cover all types of continuities: between the cross-section 
classes, from plasticity to elasticity as slenderness and axial force increase, and continuity 
between individual stability checks and cross-section verifications. In this paper, the theoretical 
basis are first established and then the proposal is detailed for in-plane behaviour. Extension to 
spatial behaviour is next tackled, without accounting for lateral torsional buckling. Finally, in 
order to check the accuracy of the proposal, the results of comparisons based on a large number 
of numerical simulations are presented. It shows that the proposal gives satisfactory results. 

1. Introduction 

In modern steel structures, instability problems are of considerable importance 
because of a general tendency to increase member’s slenderness. Most of the 
standard codes then propose so-called “M–N” interaction formulae, in order to 
account for both buckling and lateral torsional buckling; formulae which should be 
conservative as well as accurate. In the particular case of Eurocode 3, numerical 
simulations led to the conclusion that the present formulae [1] are not efficient 
enough, and should therefore be improved. This paper proposes a general “level 2” 
approach, which may be introduced in the final version of Eurocode 3. It is based on  
elastic second-order theory, and was derived according to four main objectives: 
transparency, consistency, accuracy and user-friendliness. So, plane behaviour will 
be first tackled, in order to show how the formulation is theoretically built; then, 
extension to spatial behaviour is presented. Obviously the proposal also accounts  
for lateral torsional buckling, but, because of the limited number of available pages, 
the presentation is here limited to cases where lateral torsional buckling is 
prevented. Comparisons with results of FEM simulations allow the accuracy of the 
proposal to be shown; some of them are presented in the last part of the paper. 



2. In-plane Behaviour 

2. 1. Theoretical Background 

Fig. 1 shows a simply supported member with an initial sinusoidal transverse 
deformation de ,0 , subjected to axial compression SdN  and in-plane end-moment 

distribution SdM . Notations are the same as in Eurocode 3. 

NSd N Sd

L

e 0,d

M Sd M Sd

 

Figure 1.  Member and applied loading. 
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An elastic second-order resistance verification of such a member may be written 
as in Eq. (1), after having introduced two notions: the equivalent moment factor 

mC , and the second-order amplification factor )/1(/1 crSd NN− . The equivalent 

moment factor concept can be defined as follows: “the equivalent moment is the 
first order constant moment which can be applied to the member already subjected 
to axial compression in order to obtain the same maximum amplified moment than 
in the member subjected to the same axial force and to the actual bending 
distribution”. It can be illustrated by Fig. 2. An additional resistance check has to be 
done when the axial force is not sufficient to reach a maximum second-order 
moment in span; this often occurs for members subjected to highly variable linear 
end-moments along the length of the beam, and in this case, the resistant moment 
value is reached at an end section, where the resistance has therefore to be checked. 

The second important concept lies in the definition of the second-order 
amplification factor. In order to get the theoretical but anyway simple format of 
Eq. (1), it is necessary to approximate the amplification factor for constant bending 

moment )/
2

(cos/1 crSd NN
π

 by the sinusoidal bending moment one: 

)/1(/1 crSd NN−  [2]. The definition of mC  suggested later in this paper is such 

that it compensates for this theoretical error. 
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Figure 2.  Equivalent moment factor concept. 

Eq. (1) is the basic formula of the proposal from which all other derivations are 
made. Starting from it, and remembering that in the particular case of flexural 
buckling under pure compression, the collapse is reached for RdplSd NN .χ= , it is 

then possible to express: 
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and then to write Eq. (1) under some other well-known formats. Simple calculations 
lead to the formulation of [3]: 
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Eq. (1) can also be written as in DIN 18800 format [4]: 
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In a µ  format, it can be written as: 
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where:  ( ) ( )crSdcrSd N/N1/N/N1 χµ −−=  (8) 

This last shape is the one retained for the proposal detailed in this paper, in 
order to keep the )/1(/1 crSd NN−  amplification factor and to have a first term as 

in EC3 buckling check, for pointing out the continuity with pure buckling. 

2. 2. Proposed Formulae 

For in-plane instability, the proposed formula is expressed as: 
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where µ  defines as in (8). crN  is the eulerian critical buckling load, and mC  is the 

equivalent moment factor [3]: 

For linear ψM  moments: ( ) ( ) crSdm NNC /33,036,021,079,0 −++= ψψψ  (10) 

and for other QM  and ψMMQ +  moments: 
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Keeping the term RdM  in the relationship allows the formulation to be general, 

whatever the class of cross-section is. The k  coefficient is aimed at correcting the 
theoretical elastic shape in order to account for the MN −  plastic interaction: 
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It has been built so that the theoretical elastic format can be kept, and must also 
be bounded by plel WWw //1 =  for Class 1 or 2 cross-sections, in order the 

bending moment resistant term RdMk  not to be lower than the elastic one. It is also 

limited by 3/ WWel  for Class 3 cross-sections, 3W  being an intermediate plasticity 

modulus allowing a smooth linear transition from Class 2 to Class 3, as it is 



physically but not in Eurocode 3 [5]. In expression (12), ( )1−w  represents the 

maximum available bending potential due to plasticity effects. This term must also 

be tempered by a function of mC , because the member cannot develop the same 

plasticity effects whatever the transverse loading is, and by a function of the length 
of the beam, in order to make the behaviour of the beam becoming elastic when  
slenderness and axial force increase. Then, this calibrated coefficient allows the 
behaviour of the member to tend in a continuous way from plasticity to pure 
elasticity when length and axial force increase. 

Expression (9) is consistent with the EC3 buckling formulae ( 0→M ), and 

with the in-plane bending check ( 0→N ). It also reduces to a section resistance 

criterion, as 0→L , that accounts for MN −  plastic interaction (Fig. 3). 
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Figure 3.  MN − plastic cross-section interaction (IPE section). 

3. Spatial Behaviour 

In this paper, only beams prevented from lateral torsional buckling are studied; a 
formulation where lateral buckling is considered is also available but is not 
presented here. Anyway the interested reader will find all details about this item in 
[5]. The in-plane formula of Eq. (1) is extended to biaxial behaviour using two 
formulae, one for each plane where the collapse is expected to be reached, as it is 
done in Eurocode 3 for buckling: 
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At this stage, the linear interaction formats adopted in Eqs. (13) and (14) are 
breaking with the full theoretical approach detailed in § 2.1: as a matter of fact, the 
initial deformations in planes y-y and z-z don’t allow the two amplification factors 
(one in y-y plane and another in z-z plane) to increase separately with the axial 
force, as the formulae mean. In reality, a coupling between y-y and z-z instabilities 
exists, but neglecting its effect doesn’t alter significantly the accuracy of the 
proposal, while it brings great simplification. The yyk  and zzk coefficients keep the 

format given in § 2.2, for continuity aspects: indeed, their expression is so that 
formulae (13) and (14) reduce to plane Eq. (9) when one of the bending moments 

tends to 0. The only restriction lies in the use of maxλ : the latter must be considered 
in case of spatial behaviour, because the axis of higher slenderness directly governs 
the ability of the beam to develop any plasticity; full consistency with the buckling 
formulae of Eurocode 3 can also be exhibited. The yzk  and zyk  calibrated 

coefficients reflect the possibility of developing plasticity respectively about weak 
and strong axis, in formulae (13) and (14) concerning Class 1 or 2 cross-sections: 
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Figure 4.  Biaxial bending cross-section resistance criterion (Class 1 and 2 sections). 



The last coefficient *α  is useful to deal with plasticity interaction between the 
two bending moments; it is taken equal to 0.6 for Class 1 or 2 cross-sections, and to 
1.0 for Class 3 cross-sections. Its value was derived to approximate the Eurocode 3 
biaxial bending criterion using two straight lines (Fig. 4). The elastic conservative 
value of 1.0 represents a linear interaction. 

4. Comparison with Numerical Simulations Results 

To check its accuracy, the proposal (including the formula with lateral torsional 
buckling) was compared to about 15000 numerical FEM simulation results [6], 
where a large amount of cases were studied, distinguishing the type of: cross-section 
(IPE 200, IPE 500, HEB 300 and RHS 200×100×10), slenderness, first order 
bending moment diagram, and kind of behaviour (in-plane y-y, in-plane z-z, and 
spatial with and without lateral torsional buckling). 

Table 1.  Comparison with results of numerical simulations. 

 
IPE 500 
y-y in-plane behaviour 

RHS 200 
spatial behaviour without LTB 

λ  0.5 1 1.5 0.5 1 1.5 3 

m 1.034 1.061 1.062 1.079 1.121 1.136 1.079 
s 0.030 0.038 0.042 0.065 0.075 0.087 0.062 
max 1.126 1.136 1.150 1.239 1.299 1.352 1.233 
min 0.990 0.991 0.983 0.974 0.993 0.994 0.989 
Σ simulations 104 105 108 498 542 567 232 
Σ simulations < 1 9 4 3 37 11 1 6 
Σ simulations < 0.97 0 0 0 0 0 0 0 
 
The numerical simulations were used to calibrate the k coefficients; some results of 
this study [5] are reported in Table 1. The characteristic value used for this 
comparison is proposalsimulationsimul FFR /= , where F  represents one of N , yM  or 

zM  value. In this study, the simulR  value is the ratio between the ultimate loading 

of the simulation and the calculated proportional loading giving failure according 
to the proposal. So, a value 1>simulR  means that the proposal is safe. It has been 

seen in 2.1 that an additional resistance check for the end sections needs to be 
performed, and, when the collapse is reached by excess of plasticity at these 
particular sections, it becomes the governing criterion. The one retained in this study 
is so that it sometimes leads to slightly unsafe results, that cannot be objected to the 
stability formulae. In this way, an additional line in Table 1 represents the 



97.0≤simulR  values, which are really caused by the stability check. As a 

conclusion, it appears that the formulae give safe results, and are highly satisfactory 
for plane behaviour, and quite satisfactory for spatial behaviour (without lateral 
torsional buckling). 

5. Conclusion 

New formulae for beam-columns are presented in this paper. They are based on 
elastic second-order theory, and extended to spatial behaviour and to plasticity. 
While keeping a strong physical meaning, they allow full continuity between the 
cross-section classes, smooth transitions from plasticity to elasticity when 
slenderness and axial force increase, and also reduces to resistance checks when the 
slenderness of the member decreases or the axial force vanishes. Their accuracy has 
been shown through a comparison study with a large number of numerical 
simulations emphasising the efficiency of the proposal in representing the behaviour 
of structural members. 
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