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Design of engineering structures relies on

• Numerical predictions modal analysis (FEM)

• Dynamic testing experimental modal analysis (EMA)

In the case of linear structures, the techniques available for EMA are 
mature e.g.

• Eigensystem realization algorithm

• Stochastic subspace identification

• Polyreference least-squares complex exponentials frequency domain

• etc

Introduction
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Introduction

Nonlinearity in Engineering Applications

hardening nonlinearities in 
engine-to-pylon connections

fluid-structure interaction
backlash and friction in 

control surfaces and joints

composite materials

Many works are reported in the literature on dynamic testing and
identification of nonlinear systems but very few address nonlinear 
phenomena during modal survey tests.
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Aim of this presentation

• To extend experimental modal analysis to a practical analogue 
using the nonlinear normal mode (NNM) theory.

• Validate mathematical models of non-linear structures against 
experimental data.

Introduction

Why?

• NNMs offer a solid and rigorous mathematical tool.

• They have a clear conceptual relation to the classical LNMs.

• They are capable of handling strong structural nonlinearity.
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Theoretical Modal Analysis

• Modal analysis of the MDOF system (with no damping)

• Dynamic analysis

Prediction of the responses using a numerical integration procedure 
(e.g. Newmark’s schema)

MDOF system

In the nonlinear case

)(tNL p)x(x,fxKxCxM =+++ &&&&

Vector of nonlinear forces

In the linear case

0=+ xKxM && ( ) 0=++ xx,fxKxM &&& NL

j th eigenvector 

Structural eigenproblem

njjjj ,,12 L== ΦMΦK ω

j th natural frequency

Use of the concept of nonlinear 
normal modes (NNMs) which is a 
rigorous extension of the concept of 
eigenmodes to nonlinear systems.
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Nonlinear Normal Modes

Definitions

Two definitions of an NNM in the literature:

1. Targeting a straightforward nonlinear extension of the linear 
normal mode (LNM) concept, Rosenberg defined an NNM motion 
as a vibration in unison of the system (i.e., a synchronous 
periodic oscillation). 

2. To provide an extension of the NNM concept to damped systems, 
Shaw and Pierre defined an NNM as a two-dimensional 
invariant manifold in phase space. Such a manifold is invariant 
under the flow (i.e., orbits that start out in the manifold remain in 
it for all time), which generalizes the invariance property of LNMs
to nonlinear systems.

In the present study, an NNM motion is defined as a (non-necessarily 
synchronous) periodic motion of the undamped mechanical system 

this extended definition is particularly attractive when targeting a 
numerical computation of the NNMs.
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Illustrative example: 2 DOF-system with a cubic stiffness

Nonlinear Normal Modes
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In-Phase NNMs for Increasing Energy

Time-series

Configuration 
space

Phase space 

Power 
spectral 
density 

Low energy Moderate energy High energy

Nonlinear Normal Modes
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( ) 0=++ xx,fxKxM &&& NL

The numerical computation of NNMs relies on two main techniques, 
namely a shooting procedure and a method for the continuation 
of periodic solutions.

Numerical Computation of NNMs

General equation of the nonlinear system (with no damping)

Vector of nonlinear forces
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• Shooting method

The shooting method consists in finding, in an iterative way, the 
initial conditions                 and the period T inducing an isolated 
periodic motion (i.e., an NNM motion) of the conservative system. 

( ) ( )0,0
0
xx &

=t
Numerical
integration

( ) ( )TT
Tt
xx &,

=

Newton-Raphson

( ) ( )0,0 xx &

Numerical Computation of NNMs
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• Pseudo-arclength continuation method
In

iti
al

 c
on

di
tio

ns

Pseudo-arclength continuation method:

predictor step tangent to the branch

NNM branch

Period T

Numerical Computation of NNMs

corrector step perpendicular to the  
predictor step (shooting)
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Frequency-Energy Plot (FEP)

Backbone 
of the FEP

Modal curves
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Experimental Modal Analysis (EMA)

EMA for linear systems is now mature and widely used in structural 
engineering well established techniques [1], [2].

Finite Element Model Response Measurements

Theoretical Approach Experimental Approach

Eigenvalue problem

0=+ xKxM &&

jjj ΦMΦK 2ω=

Natural frequencies (ωj
2)

Mode shapes (Φj)

Time series

Identification methods

Time

A
cc

 (
m

/s
2
)

Linear systems
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Experimental Modal Analysis (EMA)

EMA for nonlinear systems is still a challenge.

Nonlinear systems

Finite Element Model Response Measurements

Theoretical Approach Experimental Approach

Numerical NNM computation

NNM frequencies
NNM modal curves

Time series

Experimental NNM extraction

( ) 0=++ xx,fxKxM &&& NL

Time

A
cc

 (
m

/s
2
)
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There are two main techniques for EMA. 

1. Phase separation methods

Several modes are excited at once using either broadband excitation 
(e.g., hammer impact and random excitation) or swept-sine excitation 
in the frequency range of interest. 

in the nonlinear case, extraction of individual NNMs is not 
possible generally, because modal superposition is no longer valid.

use of the proper orthogonal decomposition (POD) method 
to extract features from the time series .

Experimental Modal Analysis (EMA)

Remark

• All structures encountered in practice are nonlinear to some degree.

• If a nonlinear structure is excited with a broadband excitation signal 
(e.g. random force), then the results will appear linear 
experimental modal analysis will lead to an updated linearized model !
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Instrumented structure
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Proper Orthogonal Decomposition (POD)

is the observation matrix
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The M x M correlation matrix R is built

T

M
XXR 1=

The eigenvalue problem is solved

uuR λ=

Eigenvectors of XXT (POMs)

Eigenvalues (POVs)

Proper Orthogonal Decomposition (POD)
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Geometric Interpretation of the POMs

Comparison of LNM, NNM and POM on the 2 DOF example

x1

x 2

-1.5 1.5
-2

2

NNM

First mode

LNM

POM

The POM is the best linear 
representation of the 
nonlinear normal mode.

Proper Orthogonal Decomposition (POD)
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Nonlinear Systems

Statistical approach

Proper Orthogonal Decomposition :

Response :

Key idea: Application of the POD to Features Extraction

Linear Systems

Deterministic approach

Eigenvalue problem :

Response :

)(tNL p)x(x,fxKxCxM =+++ &&&&)(tpxKxCxM =++ &&&

0ΦMK =− )( 2ω

∑
=

=
n

i
ii tt

1
)()()( Φx η

TVUX Σ=

∑
=

=
n

j
jj tat

1
)()()( ux

Spatial 
information

Natural frequencies

)sin()cos( tBtA iiiii ωωη +=

Time information

Instantaneous 
frequencies

Spatial 
information

Proper Orthogonal Decomposition (POD)



24

2. Phase resonance methods (Normal mode testing)

One of the normal mode at a time is excited using multi-point sine 
excitation at the corresponding natural frequency. The modes are
identified one by one. 

can be extended to nonlinear structures according to the 
invariance property of NNMs: 

« If the motion is initiated on one specific NNM,                 
the remaining NNMs remain quiescent for all time. »

Experimental Modal Analysis (EMA)

Remark
• Expensive and difficult.
• Extremely accurate mode shapes a way to identify NNMs

(but still a research topic).
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Fundamental properties

1. Forced responses of nonlinear systems at resonance occur in the 
neighborhood of NNMs [3].

2. According to the invariance property, motions that start out in the 
NNM manifold remain in it for all time [4].

3. The effect of weak to moderate damping on the transient dynamics
is purely parasitic. The free damped dynamics closely follows the 
NNM of the underlying undamped system [5, 6, 7]

Nonlinear EMA

The proposed method for nonlinear EMA relies on a two-step approach 
that extracts the NNM modal curves and their frequencies of oscillation.
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Objective: isolate a single NNM

Step 1: NNM Force Appropriation

Time

Phase lag 
estimation

p(t)

p(
t)

x(
t)



27

Consider the forced response of a nonlinear structure with linear viscous 
damping

)(tNL p(x)fxKxCxM =+++ &&&

It is assumed here that the nonlinear restoring force contains only 
stiffness nonlinearities.

Appropriate excitation

For a given NNM motion xnnm(t) the equations of motion of the 
forced and damped system lead to the appropriate excitation

( ) ( )tt nnmnnm xCp &=
This relationship shows that the appropriate excitation is periodic and 
has the same frequency components as the corresponding NNM motion 
(i.e., generally including multiharmonic components).

Step 1: NNM Force Appropriation
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An NNM motion is now expressed as a Fourier cosine series

( ) ( )∑
∞

=

=
1

cos
k

nnm
knnm tkt ωXx

fundamental pulsation 
of the NNM motion 

amplitude vector of the kth harmonic

This type of motion is referred to as monophase NNM motion due to 
the fact that the displacements of all DOFs reach their extreme values 
simultaneously. 

The appropriate excitation is given by

( ) ( )∑
∞

=

−=
1

sin
k

nnm
knnm tkkt ωωXCp

the excitation of a monophase NNM is thus characterized by a phase lag 
of 90◦ of each harmonics with respect to the displacement response.

Step 1: NNM Force Appropriation
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Step 1: NNM Force Appropriation
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Step 1: NNM Force Appropriation
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A nonlinear structure vibrates according to one of its NNMs if the 
degrees of freedom have a phase lag of 90º with respect to the 
excitation.

Phase lag quadrature criterion: 

A linear structure vibrates according to one of its LNMs if the 
degrees of freedom have a phase lag of 90º with respect to the 
excitation.

Step 1: NNM Force Appropriation

NNM Indicator
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The excitation phase is 90º

Step 1: NNM Force Appropriation
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Turn off the excitation and track the NNM according to the invariance 
principle:

« If the motion is initiated on one specific NNM,    
the remaining NNMs remain quiescent for all time. »

Step 2: NNM Free Decay Identification



34

Numerical experiments of a nonlinear beam (defined as benchmark in the 
framework of the European COST Action F3 « Structural Dynamics » [8]).

Geometry

Nonlinear EMA (Illustrative Example)

cubic stiffness is realised by 
means of a very thin beam

For weak excitation, the system behaviour may be considered as linear. 
When the excitation level increases, the thin beam exhibits large 
displacements and a nonlinear geometric effect is activated resulting in 
a stiffening effect at the end of the main beam.
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Finite Element model

The thin beam is represented by two equivalent grounded   

springs: one in translation ( ) and one in rotation (    ). 

Nonlinear EMA (Illustrative Example)

8 10978002.05 1011

Nonlinear parameter knl
(N/m3)

Density
(kg/m3)

Young’s modulus
(N/m2)

8 10978002.05 1011

Nonlinear parameter knl
(N/m3)

Density
(kg/m3)

Young’s modulus
(N/m2)
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Theoretical frequency-energy plots

First NNM

NNM 
shapes

Second NNM

Backbone 
curve Backbone 

curve

NNM 
shapes

Nonlinear EMA (Illustrative Example)

Energy Energy

Fr
eq

ue
nc

y 
(H

z)

Fr
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ue
nc

y 
(H

z)
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Simulated experiments

Linear proportional damping is considered. 

Imperfect force appropriation

From a practical viewpoint, it is useful to study the quality of imperfect force 
appropriation consisting of a single-point mono-harmonic excitation, i.e., 
using a single shaker with no harmonics of the fundamental frequency. 

The harmonic force p(t) = F sin(ω t) is applied to node 4 of the main beam.

It corresponds to moderate damping; for instance, the modal damping 
ratio is equal to 1.28% for the first linear normal mode.

MKC 5103 7 += −

Nonlinear EMA (Illustrative Example)
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Nonlinear forced frequency responses to the first resonant frequency

backbone of the first undamped NNM

4 different forcing amplitudes: 1N, 2N, 3N, 4N.

Node 14

Nonlinear EMA (Illustrative Example)

FAm
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Frequency (Hz)
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Observations

• The phase lag quadrature criterion is fulfilled close to resonant 
frequencies.

• Forced responses at resonance occur in the neighbourhood of NNMs.

• Imperfect appropriation can isolate the NNM of interest (the beam 
has well-separated modes).

These findings also hold for the second beam NNM.

Time series
F = 4N

Configuration space

Nonlinear EMA (Illustrative Example)

Time (s) Displ. at node 10 (m)

D
is

pl
ac

em
en

t 
(m

)

D
is

pl
. a

t 
no

de
 1

4 
(m

)
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Responses along the branch 
close to the first resonance 

Stepped sine excitation procedure for carrying out the NNM force
appropriation (F = 4N) of the damped nonlinear beam.

Phase scatter diagrams of the complex Fourier 
coefficients of the displacements corresponding 
to the fundamental frequency for the responses 
(a), (b), (c) and (d).

Nonlinear EMA (Illustrative Example)
Am

pl
itu

de
 (

m
)

Frequency (Hz)
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NNM free decay identification

Time series of the displacement at 
the tip of the main beam (node 14).

Free response of the damped nonlinear beam initiated 
from the imperfect appropriated forced response

Motion in the configuration space 
composed of the displacements 
at nodes 10 and 14.

Nonlinear EMA (Illustrative Example)

Time (s) Displacement at node 10 (m)
D
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. a
t 
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Frequency-energy plot of the first NNM of the nonlinear beam. 

Theoretical FEP

This FEP was calculated from the 
time series of the free damped 
response using the CWT. The solid 
line is the ridge of the transform.

Nonlinear EMA (Illustrative Example)

Experimental FEP
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Experimental FEP

Backbone

Modal curves Modal shapes

Nonlinear EMA (Illustrative Example)
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Experimental set-up

Benchmark of the European COST Action F3 « Structural Dynamics ».

Experimental Demonstration

Test conditions

• Harmonic excitation of the nonlinear beam.

• Response measured using seven accelerometers.

• Very preliminary results.
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Total energy (Log scale)
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Initiate the motion here

Excitation of the 1st NNM of the beam

Experimental Demonstration
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Burst sine
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Total energy (Log scale)
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Description of the structure in 
terms of its mass, stiffness and 

damping properties

Theoretical Approach – Direct Problem

Experimental Approach – Inverse Problem

Structural Model Modal Model Response Model

Response 
Measurements

Modal Model 
(Identification) Structural Model

Natural frequencies, 
Modal damping factors, 

Mode shapes

Frequency Response Functions, 
Impulse Response Functions

Model Updating

Model Updating
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Parameters for Model Updating (Crucial step!)

The number of parameters :

• should be kept small to avoid problems of ill-conditioning, 

• should be chosen with the aim of correcting recognised features in 
the model.

requires physical insight leads to knowledge-based models.

Methodology

• Estimation of nonlinear parameters only (which will be based on 
FE updating techniques).

Assumption

• The linear counterpart of the structure is known (updated).

Model Updating
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Consider the general equation governing the dynamics of a structure

Step 1: definition of a penalty function involving modal features of the 
system (residual between analytical and measured dynamic behaviour)

Mathematical Background

The measured quantities may be assembled into a measurement vector z.

)(tNL g)x(x,fxKxCxM =+++ &&&&

Vector of nonlinear forces

Model Parameter Estimation Techniques
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Penalty function methods are based on the Taylor series expansion of 
the modal data in terms of the unknown parameters 

( ) ( ) ( )2
00

0

ppp
p
zzz

pp
Op +−⎥

⎦

⎤
⎢
⎣

⎡
∂
∂+=

=

The vector of modal features z depends on parameters p

( )pzz =
The choice of parameters is a crucial step in model updating. For 
nonlinear identification purposes, we will assume that a knowledge-based
model exists (the physically meaningful model and the associated
parameters are supposed to be known).

Sensitivity matrix

Initial estimation 
of the parameters

This expansion is often limited to the first two terms.

Model Parameter Estimation Techniques
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Define the weighted penalty function

εWεT=J
Positive definite 
weighting matrix

where pSzε Δ−Δ= is the error in the predicted measurements.

Model Parameter Estimation Techniques

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂=
p
zS is the sensitivity matrix.

Minimising J with respect to Δp leads to

( ) zWSSWSp Δ=Δ
− TT 1

With the assumption that the number of measurements is larger than 
the number of parameters, the matrix                 is square and 
hopefully full rank.

SWST
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Definition of the measurement vector z containing the modal 
features.

• In the case of linear systems

• In the case of nonlinear systems

Proper Orthogonal Decomposition

Nonlinear Modal Analysis

Model Parameter Estimation Techniques

( )TT
rr

T
ii

TT ΦΦΦz ,,,,,,, 11 ωωω KK=

i th eigenvalue

i th mode shape vector
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Nonlinear Systems

Statistical approach

Proper Orthogonal Decomposition:

Response:

Linear Systems

Deterministic approach

Eigenvalue problem:

Response:

)(tNL p)x(x,fxKxCxM =+++ &&&&)(tpxKxCxM =++ &&&

0ΦMK =− )( 2ω

∑
=

=
n

i
ii tt

1
)()()( Φx η

TVUX Σ=

∑
=

=
n

j
jj tat

1
)()()( ux

Spatial 
information

Natural frequencies

)sin()cos( tBtA iiiii ωωη +=

Time information

Instantaneous 
frequencies

Spatial 
information

Parameter Estimation Using POD
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Wavelet Transform 
Instantaneous frequencies

Principle of the method :
Minimise the residuals between the bi-orthogonal
decompositions of the measured and simulated data.

Penalty function :

222 )()()( jk
j kj

jjij
i j

VUJ ∑∑∑∑∑ Δ+ΔΣ+Δ=

Selection of the POMs with the highest POV

X = U Σ VT

POM (Spatial 
information)

Associated 
energy 

(Mode participation)

Time 
information

Parameter Estimation Using POD
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Vertical viewHorizontal view

Experimental 
set-up

Benchmark of the European COST Action F3 « Structural Dynamics »

Parameter Estimation Using POD
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Finite Element model

The nonlinear stiffening effect of the thin beam is modelled    
by a nonlinear function in displacement of the form:

where A and α are nonlinear parameters to be identified.

( )xsignxAfnl
α=

Parameter Estimation Using POD
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Identification of linear and nonlinear parameters

• 2 parameters : nonlinear stiffness + Young’s modulus

• Penalty function in terms of the first POM

• Simulation time = 0.4 sec

• Gaussian white noise of 1 %

• Nonlinear parameter correction < 10 %

• Linear parameter correction < 50 % 

Simulated results

Parameter Estimation Using POD
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Simulated results

Before
updating

After
updating

Comparison between the original (−) and the reconstructed (--) signals

Parameter Estimation Using POD
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Well-conditioning Ill-conditioning
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Contour Plot

Penalty Function (no WT)Penalty Function (use of WT)
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Linear parameter Linear parameter

Simulated results

Parameter Estimation Using POD
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PSD of the time evolution 
of the 1st POM

Frequency (Hz)

)()( xsignxAxfnl
α=

Experimental results (Vertical set-up)

Model of the nonlinear stiffness

Results of the identification of 
the nonlinear parameters based 
on the model updating method:

α = 2.8

A = 1.65 109 N/m2.8
Updated

Measured

Parameter Estimation Using POD
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Comparison of the POM

1st POM 2nd POM

3rd POM 4th POM

Experimental results (Vertical set-up)

□ experimental

* nonlinear model
(after updating)

o linear model
(before updating)

Parameter Estimation Using POD



66

Nonlinear MDOF systems

( ) 0=++ xx,fxKxM &&& NL

The concept of Nonlinear Normal Modes (NNMs) is a rigorous extension 
of the concept of eigenmodes to nonlinear systems.

Caution: the solution is energy-dependent !

Parameter Estimation Using Nonlinear EMA
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modal shape

Vector of modal features:

i th backbone
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TT zzzz ,,,,1 KK=
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T
ii

T
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T
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T
i K,,,,,,,, 44332211 ΦΦΦΦz ωωωω=

frequency 

energy level

Experimental FEP

Backbone

Parameter Estimation Using Nonlinear EMA
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The Structural Dynamicist’s Toolkit

Theoretical 
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