
Draft version May 11, 2021
Typeset using LATEX twocolumn style in AASTeX63

A kinematic perspective on the formation process of the stellar groups in the Rosette Nebula
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ABSTRACT

Stellar kinematics is a powerful tool for understanding the formation process of stellar associations.

Here, we present a kinematic study of the young stellar population in the Rosette nebula using the

recent Gaia data and high-resolution spectra. We first isolate member candidates using the published

mid-infrared photometric data and the list of X-ray sources. A total of 403 stars with similar parallaxes

and proper motions are finally selected as members. The spatial distribution of the members shows

that this star-forming region is highly substructured. The young open cluster NGC 2244 in the center

of the nebula has a pattern of radial expansion and rotation. We discuss its implication on the

cluster formation, e.g., monolithic cold collapse or hierarchical assembly. On the other hand, we also

investigate three groups located around the border of the H II bubble. The western group seems to be

spatially correlated with the adjacent gas structure, but their kinematics is not associated with that

of the gas. The southern group does not show any systematic motion relative to NGC 2244. These

two groups might be spontaneously formed in filaments of a turbulent cloud. The eastern group is

spatially and kinematically associated with the gas pillar receding away from NGC 2244. This group

might be formed by feedback from massive stars in NGC 2244. Our results suggest that the stellar

population in the Rosette Nebula may form through three different processes: the expansion of stellar

clusters, hierarchical star formation in turbulent clouds, and feedback-driven star formation.

Keywords: Star formation (1569); Stellar kinematics (1608); Stellar associations (1582); Stellar dy-

namics (1596); Open star clusters (1160)

1. INTRODUCTION

Star formation hierarchically takes place on various

spatial scales (Elmegreen et al. 2000; Gouliermis 2018).

Stellar complexes are the largest components of galactic

superstructures spanning hundreds of parsecs. These
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complexes are composed of several stellar associations

that extend up to several tens of parsecs. Single or mul-

tiple stellar clusters (a few parsecs) and a distributed

stellar population constitute these stellar associations

(Blaauw 1964; Koenig et al. 2012). The formation of

these components is thought to be physically intercon-

nected in space and time. In this context, stellar associ-

ations would be basic units of star formation in galaxies.

Indeed, the majority of stars tend to form in such stel-

lar systems (Lada & Lada 2003; Porras et al. 2003), and

their initial mass functions are very similar to that de-
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rived from field stars in the Galaxy (Miller & Scalo 1978;

Briceño et al. 2007).

Stellar associations are gravitationally unbound and

substructured (Mel’nik & Dambis 2017; Kuhn et al.

2019; Lim et al. 2019, 2020). The internal structure

and kinematics are the keys to understanding their for-

mation process. A classical model attempted to explain

the observed structures and unboundness of OB associa-

tions in the context of dynamical evolution of embedded

clusters. Once embedded clusters have formed in giant

molecular clouds, they begin to expand after rapid gas

expulsion by winds and outflows of embedded OB stars

(Tutukov 1978; Hills 1980; Lada et al. 1984; Kroupa et

al. 2001; Banerjee & Kroupa 2013, 2015). Kroupa et al.

(2001) performed N -body simulations for model clusters

with the properties similar to those of the Orion Neb-

ula Cluster that were observationally constrained. As a

result, they found that only about 30 % of the initial

cluster members remain in the model clusters. Their

results imply that open clusters can be the cores of un-

bound OB associations.

The structural features observed in star-forming com-

plexes are similar to those found in molecular clouds

(Dickman et al. 1990; Elmegreen et al. 2000; André

2015). It has been suggested that turbulence is respon-

sible for the origin of these substructures in molecular

clouds (Larson 1981; Padoan et al. 2001). Density fluc-

tuation caused by turbulence results in locally different

star formation efficiency, and therefore groups of stars

with different stellar densities form along the substruc-

tures on short timescales (Bonnell et al. 2011; Kruijssen

2012).

On the other hand, massive stars can play crucial roles

in regulating star formation in either constructive or de-

structive way. Far-ultraviolet radiation and stellar wind

from massive stars disperse the remaining gas in their

close neighborhood, lowering star formation efficiency

and eventually terminating star formation (Dale et al.

2012, 2013). In contrast, expanding H II bubbles driven

by massive stars can compress the surrounding mate-

rial, triggering the formation of new generations of stars

further away from the massive stars (Elmegreen & Lada

1977). OB associations could also form through this

self-propagating star formation.

Explaining the formation of stellar associations from

observed features seems complicated and impossible by

one specific model. The signature of dynamical evo-

lution of central stellar clusters has been reported.

For example, a pattern of expansion has been de-

tected in young stellar clusters within many associations

(Kounkel et al. 2018; Cantat-Gaudin et al. 2019; Lim

et al. 2019; Kuhn et al. 2019). Recently, a kine-

matic study showed that a distributed stellar population

spread over 20 pc in W4 can be formed by cluster mem-

bers radially escaping from the central cluster IC 1805

(Lim et al. 2020). In addition, even larger scale expan-

sion of associations spanning several hundreds of par-

secs toward the Perseus arm was also reported (Román-

Zúñiga et al. 2019; Dalessandro et al. 2021).

Several stellar groups were found at the border of the

W4 H II region (Panwar et al. 2019), and their pro-

jected distance from IC 1805 cannot be explained by

crossing time of the escaping stars (Lim et al. 2020).

Instead, feedback-driven star formation may be a possi-

ble explanation for the formation of these groups. Many

signposts of feedback-driven star formation have been

steadily reported in various star-forming regions (SFRs)

(Fukuda et al. 2002; Sicilia-Aguilar et al. 2004; Koenig

et al. 2008, etc). For instance, a stellar group in NGC

1893 is located in the vicinity of the gas pillar Sim 130

(Marco & Negueruela 2002; Sharma et al. 2007).

This group is younger than the central cluster contain-

ing massive O-type stars (Lim et al. 2014) and receding

away from the cluster at a similar velocity to that of the

gas pillar (Lim et al. 2018).

The signatures of hierarchical star formation in turbu-

lent clouds have been investigated using stellar proper

motions (PMs) under the assumption that the age of OB

associations is young enough to preserve the kinematic

properties of their natal clouds just before onset of star

formation. For example, the Cygnus OB2 and Carina

OB1 associations are composed of spatially and kine-

matically distinct subgroups (Lim et al. 2019). In addi-

tion, a correlation between the size and two-dimensional

velocity dispersion of these subgroups was found, which

has a similar power law index to that found in molec-

ular clouds (Larson 1981). These first observational

results were supported by an extensive kinematic study

on larger samples of the Galactic OB associations (Ward

et al. 2020).

Hence, we hypothesize that stellar associations may

form through three different processes, i.e., dynamical

evolution of stellar clusters, feedback from massive stars,

and star formation in turbulent clouds. In this con-

text, the Rosette Nebula, the most active SFR in the

Monoceros OB2 association, is an ideal site to examine

the hypothesis because this region is composed of sev-

eral stellar groups in a range of 30 pc. The open clus-

ter NGC 2244 is centered at the cavity of the Rosette

Nebula and contains several tens of OB stars (Román-

Zúñiga & Lada 2008b; Mahy et al. 2009) as well as a

large number of low-mass young stellar objects (YSOs)

(Balog et al. 2007; Wang et al. 2008; Mužić et al.

2019). These massive stars may be the main ionizing
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Figure 1. CMD (left) and spatial distribution (right) of member candidates in the Rosette Nebula. The photometric data
were taken from the Gaia Data Release 2 (Gaia Collaboration et al. 2018). Blue dots, red triangles, green filled square, cyan
open square, black large cross, small cross, and grey small dots represent early-type star (O- or B-type), Class I, Class II, object
with a transitional disk, X-ray source, X-ray source candidates, and all stars in the survey region, respectively. We set a locus
(black solid line) that contains the majority of member candidates. In the right panel, the fiber positions (black open circles)
are superimposed on the optical image taken from the Digitized Sky Survey. The positions of stars are relative to the coordinate
R.A. = 06h 31m 55.s00, Decl. = +04◦ 56′ 30.′′0 (J2000). The size of the symbols is proportional to the brightness of individual
stars.

sources of the H II region. Additional, smaller, stellar

groups are found at the border of the nebula (Li 2005;

Wang et al. 2009, 2010).

The Rosette Molecular Cloud is located to the east of

the H II region, and star-forming activity is still ongoing

there. Phelps & Lada (1997) reported the presence of

seven embedded clusters. Later, Román-Zúñiga et al.

(2008a) identified four more clusters (see also the his-

torical review on this SFR by Román-Zúñiga & Lada

2008b). Extensive Spitzer and Chandra surveys contin-

uously discovered deeply embedded clusters composed

of active YSOs (Poulton et al. 2008; Wang et al. 2009;

Cambrésy et al. 2013). Ybarra et al. (2013) investi-

gated the star formation history on different scales from

clusters to the molecular cloud and claimed that star for-

mation occurred almost simultaneously across the cloud.

The relation between the YSO ratio and extinction that

they found suggests that the densest regions in the cloud

are the favorable sites of star formation and that gas is

rapidly evacuating out, lowering star formation efficien-

cies in the cloud.

In this study, we aim to understand the formation pro-

cess of the stellar groups in the Rosette Nebula using gas

and stellar kinematics. The splendid performance of the

Gaia mission (Gaia Collaboration et al. 2016) opened a

new window to study such young stellar systems. The

Gaia astrometric data (Gaia Collaboration et al. 2020)

provide a better understanding of the kinematic prop-

erties of stellar groups in this SFR when combined with

spectroscopic data of stars and gas. Observations and

data that we used are described in Section 2. In Sec-

tion 3, the method of member selection is addressed.

We investigate the motions of stars using PMs (Gaia

Collaboration et al. 2020) and radial velocities (RVs)

in Section 4. The physical associations between stars

and gas are also probed. The formation process of NGC

2244 and stellar groups around the cluster is discussed

in Section 5. Finally, we summarize our results in Sec-

tion 6.

2. DATA

2.1. Selection of member candidates

Our targets are young stars within an 1◦ × 1◦ region

centered at R.A. = 06h 31m 55.s00, Decl. = +04◦ 56′

30.′′0 (J2000). This SFR (b ∼ −2.◦072) is located in the

Galactic plane, and therefore a large number of field in-

terlopers are also observed in the same field of view. We

intend to isolate member candidates first using multi-
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ple sets of archival data in this section, and then the

final decision on membership is made by using the re-

cent astrometric data from the Gaia Early Data Release

3 (EDR3, Gaia Collaboration et al. 2020) in Section 3.

To identify probable member candidates in the survey

region, we considered the intrinsic properties of young

stars. O- and B-types stars spread over this SFR are

probable member candidates because the positions of

these stars are close to birthplaces within their short

lifetime, particularly for O-type stars. We took a list

of OB stars from the data bases of MK classifications

(Reed 2003; Mermilliod & Paunzen 2003; Skiff 2009;

Máız Apellániz et al. 2013, SIMBAD) and combined

them into a list after checking for duplicates. A total of

112 OB stars were selected as member candidates.

A large number of low-mass YSOs have a warm cir-

cumstellar disk. These disk-bearing YSOs appear bright

in infrared passbands (Lada 1987; Gutermuth et al.

2008; Koenig et al. 2012). YSO candidates were identi-

fied using the published Spitzer and AllWISE data (Ba-

log et al. 2007; Cutri et al. 2013) (see Appendix for

detail). We found 291 YSO candidates (10 Class I, 262

Class II, and 19 YSOs with a transitional disk) from the

Spitzer data in total, while a total of 84 candidates (six

Class I, 76 Class II, and two objects with a transitional

disk) were identified from the AllWISE data. There are

37 YSO candidates in common between these data sets.

Note that the survey region (30′×30′) by Spitzer (Balog

et al. 2007) is smaller than ours. Our list contains 338

YSO candidates in total.

We used photometric data from the Gaia Data Release

2 (DR2, Gaia Collaboration et al. 2018) instead of the

recent EDR3 (Gaia Collaboration et al. 2020) because

the reddening law is empirically well established (Wang

& Chen 2019) for the former. We found counterparts

for all the OB stars and for 320 YSO candidates in the

Gaia DR2 (Gaia Collaboration et al. 2018). In addition,

we searched for counterparts of X-ray sources detected

in this SFR (Wang et al. 2008, 2009, 2010). Stars found

within searching radii of 1.′′0 and 1.′′5 were classified as

X-ray sources and X-ray source candidates, respectively.

A total of 720 X-ray sources and 134 candidates were

found in the Gaia data. Note that the lists of X-ray

sources are complete down to 0.5 – 1 M� (Wang et al.

2008, 2009, 2010).

Figure 1 displays the color-magnitude diagram (CMD)

of stars in the Rosette Nebula. Most member candi-

dates seem to occupy a specific locus in the diagram.

The main-sequence turn-on is found at about 13 mag in

GRP . There are several B-type stars fainter than YSOs

near the main-sequence turn-on. These stars may be

background early-type stars. A large fraction of the X-

ray sources may be YSO candidates, while some X-ray

sources appear to fall on the main-sequence band. These

X-ray emitting stars may be late-type field stars. All the

YSO candidates with infrared excess emission were con-

sidered as member candidates because their colors and

magnitudes could vary with different levels of internal

extinction by material in disks or envelopes and accre-

tion activities (Lee et al. 2020). Photometric errors

increase with brightness, and therefore we limited our

sample to 840 candidates brighter than 18 mag. The

selection criteria of member candidates can be summa-

rized as below:

1. GRP < 18 mag

2. O- or B-type stars brighter than 13.5 mag in GRP

3. Class I YSOs

4. Class II YSOs

5. YSOs with a transitional disk

6. X-ray sources within the locus (see Figure 1).

2.2. Radial velocities

We performed spectroscopic observations of 316 YSO

candidates with or without an X-ray emission and ion-

ized gas on 2019 October 13, November 9, 13, and 18

using the high-resolution (R ∼ 34000) multi-object spec-

trograph Hectochelle (Szentgyorgyi et al. 2011) on the

6.5-m telescope of the MMT observatory. The spectra

of the YSO candidates were taken with the RV31 fil-

ter (5150 – 5300 Å) in 2 × 2 binning mode to achieve

good signal-to-noise ratios. In addition, several tens of

fibers were simultaneously assigned to blank sky to ob-

tain sky spectra. The spectra of ionized gas were ob-

tained from the fibers assigned to 238 positions on the

Rosette Nebula (see Figure 1). The oder separating filter

OB25 (6475 – 6630 Å) was used to observe the forbidden

line [N II] λ6584. For calibration, dome flat and ThAr

lamp spectra were also obtained just before and after

the target observation. We present a summary of our

observations in Table 1.

We preprocessed the raw mosaic frames using the

IRAF1/MSCRED packages in a standard way. One-

dimensional spectra were then extracted from the

reduced frames using the dofiber task in the

IRAF/SPECRED package. Target spectra were flattened

1 Image Reduction and Analysis Facility is developed and dis-
tributed by the National Optical Astronomy Observatories,
which is operated by the Association of Universities for Research
in Astronomy under operative agreement with the National Sci-
ence Foundation.
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Table 1. Summary of observations

Date Setup Filter N1 Exposure time Binning Seeing

2019 October 13 1 RV31 111 35 min. × 3 2 × 2 0.′′9

2019 November 13 2 RV31 110 40 min. × 3 2 × 2 1.′′4

YSOs 38 min. × 1

3 RV31 95 37 min. × 1 2 × 2 1.′′3

35 min. × 1

2019 November 18 3 RV31 95 35 min. × 2 2 × 2 1.′′3

Ionized gas 2019 November 9 4 OB25 238 15 min. × 5 1 × 1 0.′′9

1N represents the number of observed targets.

using dome flat spectra. The solutions for the wave-

length calibration obtained from ThAr spectra were ap-

plied to the target and sky spectra.

Our observations were performed under bright sky

condition, and therefore the scattered light was unevenly

illuminated over the field of view (1◦ in diameter), re-

sulting in a spatial variation of sky levels. For a given

observing setup, we constructed a map of the sky levels

and combined sky spectra into a master sky spectrum

with an improved signal-to-noise ratio. The sky level at

a target position was inferred by interpolating the po-

sition of the target to the map, and its sky spectrum

was obtained from the master sky spectrum scaled to

the inferred sky level. For each target spectrum, we

subtracted the corresponding scaled master sky spectra

and then combined sky-subtracted spectra into a sin-

gle spectrum for the same target observed on the same

night. Finally, the target spectra were normalized by

using continuum levels traced from a cubic spline inter-

polation.

Since the spectra of low-mass stars contain a large

number of metallic lines, their RVs can be measured

more precisely than those of high-mass stars. The RVs

of the YSO candidates were measured by applying a

cross-correlation technique to the observed spectra. As-

suming the Solar chemical abundance, a total of 31 syn-

thetic spectra in a wide temperature range of 3800–

9880 K were generated from the MOOG code and Ku-

rucz ODFNEW model stellar atmosphere (Sneden 1973;

Castelli & Kurucz 2004). We derived cross-correlation

function (CCF) between the observed spectra and syn-

thetic ones using the xcsao task in the RVSAO package

(Kurtz & Mink 1998) and adopted the central velocities

at the strongest CCF peaks as RVs. The errors on RVs

were estimated from the equation 3w/8(1 + h/
√

2σa),

where w, h, and σa represent the full widths at half-

maximum of CCFs, their amplitudes, and the rms from

antisymmetric components, respectively (Tonry & Davis

1979; Kurtz & Mink 1998). The measured RVs were con-

verted to velocities in the local standard of rest frame

using the IRAF/RVCORRECT task.

The spectra of 95 YSO candidates (Setup 3 in Ta-

ble 1) were obtained on two different nights. The RVs of

these stars were measured for each night. The median

difference between two RV measurements for 52 com-

mon stars is about 0.3 km s−1, which is smaller than

the mean of measurement errors (∼ 1.5 km s−1). The

weighted means of two measurements were adopted as

the RVs of given stars, where the inverse of the squared

error was used as the weight value. We measured the

RVs of 224 out of 316 YSO candidates in total. The

spectra of the other 92 stars have insufficient signals to

derive CCFs, or some of them show only emission lines.

We used the forbidden line [N II] λ6584 to probe the

kinematics of ionized gas. In general, the critical density

of this line is higher than the typical electron densities

of the Galactic H II regions (Copetti et al. 2000), and

photons emitted from the singly ionized nitrogen atoms

are not absorbed along the line of sight. Therefore, this

emission line can be used to trace the structure and kine-

matics of ionized gas distributed across an H II region.

The RVs of the ionized gas were measured from the line

center of the best-fit Gaussian profile. We fit multiple

Gaussian profiles to some complex line profiles and mea-

sured the RVs of the multiple components along the line

of sight.

2.3. 12CO (J = 1− 0) and 13CO (J = 1− 0) data

We used radio data to investigate the physical asso-

ciation between stellar groups and remaining molecular

gas. The 12CO and 13CO (J = 1 − 0) line maps were

obtained from Heyer et al. (2006). These radio maps

covering both the Rosette Nebula and the eastern molec-

ular cloud are useful for investigating the velocity fields

of remaining molecular gas at the boundary of the H II

region. In addition, the excitation temperature Tex and

column densities can be estimated by assuming of local

thermodynamic equilibrium.
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Figure 2. Parallax (left) and PM (right) distributions of member candidates (grey dots). Dashed lines in the left panel represent
the lower and upper limits in parallax for selecting genuine members. The parallaxes from the Gaia EDR3 (Gaia Collaboration
et al. 2020) are corrected for zero-point offsets (Lindegren et al. 2020). The ellipse in the right panel shows the region confined
to 3.5 times the standard deviation from the weighted mean PMs, where the inverse of the squared PM error was used as the
weight value. The selected members were plotted by red dots.

Since the 12CO line is, in general, optically thick, Tex
can be derived from the following equation by Pineda et

al. (2008):

Tex =
5.5K

ln(1 + 5.5K/Tmax(12CO) + 0.82K)
(1)

where Tmax(12CO) is the brightness temperature at the

peak intensity of 12CO. The column density of 13CO was

estimated from the integrated intensity along the line of

sight (in unit of K km s−1) assuming an optically thin

case (Pineda et al. 2008). On the other hand, the col-

umn density of 12CO was estimated using the relation of

Scoville et al. (1986). However, this relation considers

an optically thin case. The effects of optical depth were

corrected by adopting the correction factor addressed in

Schnee et al. (2007).

The integrated intensity maps of molecular gas were

also constructed from the 12CO (J = 1− 0) cube data.

Note that the 12CO lines between velocities of −5 to 25

km s−1 were integrated. In addition, position-velocity

diagrams were obtained by integrating the data cube

along R.A. and declination.

3. MEMBER SELECTION

We selected member candidates based on the intrin-

sic properties of young stars, but some nonmembers

with similar properties may be included in our candi-

date list. The astrometric data from the Gaia EDR3

(Gaia Collaboration et al. 2020) allow us to better

isolate genuine members. Lindegren et al. (2020)

found the zero-point offset in parallax that depends

on magnitude, color, and position. For reliable mem-

ber selection, we corrected the zero-point offsets for

the parallaxes of individual member candidates using

the public python code (Lindegren et al. 2020, https:

//gitlab.com/icc-ub/public/gaiadr3 zeropoint)2.

Figure 2 displays the parallax and PM distributions of

the member candidates. Stars with negative parallaxes

or close companion (duplication flag = 1 or RUWE >

1.4), or without astrometric parameters were not used in

analysis. We first limited members to stars between 0.5

and 1.0 mas in parallax, given the distance to NGC 2244

determined by previous studies (1.4 to 1.7 kpc; Ogura &

Ishida 1981; Pérez et al. 1987; Hensberge et al. 2000;

Park & Sung 2002; Mužić et al. 2019). Stars with

parallax smaller than three times the associated error

and PMs larger than 3.5 times the standard deviation

from the weighted mean PMs were excluded. Note that

the inverse of the squared PM errors was used as the

weight value. We repeated the same procedure until

the mean PMs and standard deviations converged to

constant values.

Figure 3 shows the CMD of the selected members. A

number of faint stars with large errors on parallax and

PMs are naturally excluded through our member selec-

tion processes. The membership of these stars could be

improved from the later release of the Gaia data. There

2 Note that using the global zero-point (0.017 mas) mentioned by
Lindegren et al. (2020) does not change the results in any sig-
nificant way

https://gitlab.com/icc-ub/public/gaiadr3_zeropoint
https://gitlab.com/icc-ub/public/gaiadr3_zeropoint
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Figure 3. Selected members. The upper panel displays the
CMD of the members taken from the photometric data of
the Gaia DR2 (Gaia Collaboration et al. 2018). An open
circle denotes a nonmember with an X-ray emission (see the
main text for detail). The other symbols are the same as
Figure 1. The lower-left and lower-right panels show the
distance and RV distributions of the members, respectively.
The distances were computed from the inversion of the recent
Gaia parallaxes after correction for zero-point offsets (Gaia
Collaboration et al. 2020; Lindegren et al. 2020). Red
curves represent the best-fit Gaussian distributions.

is an X-ray source that was classified as a Class II YSO

(the open circle in the upper panel of Figure 3). This

object has a lower luminosity than those of the other

members at a given color. An intermediate-mass YSO

with a nearly edge-on disk could be a possible expla-

nation for the low luminosity. However, such an object

rarely shows X-ray emission and has low stellar mass

(Sung et al. 2008, 2009). We therefore cautiously ex-

cluded this object from our member list. A total of 403

members were finally selected. We present the list of the

members in Table 2.

We compared our member list with that of Cantat-

Gaudin et al. (2018). There are 238 stars in common
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Figure 4. Spatial distribution (left) and surface density map (right) of members. The background image in the left panel was
taken from the Digital Sky Survey image. The size of dots is proportional to the brightness of individual stars in the GRP band.
The PM vectors relative to the systemic motion are also plotted by solid line, and the different colors represent the position
angle of the PM vectors as shown in the scale bar. The two circles (solid and dashed lines) indicate the apparent radius (rcl)
and half-mass radius (rh), respectively. Red squares denote the locations of three subregions. In the right panel, white solid,
white dotted, and black dashed lines represent contours corresponding to the 70, 50, and 8% levels of the maximum density,
respectively. The squares correspond to the three subregions in the left panel. The crosses represent the centers of the four
groups determined from median coordinates. The reference coordinate is the same as Figure 1.

with membership probabilities higher than 0.5. How-

ever, we suspect that their list contains a number of field

interlopers below the locus of YSOs in CMD. They may

be too old to be the members of this young SFR. Some

giant stars were also selected as members. In addition,

the member list is missing several O- and B-type stars

that are the most likely members. For these reasons, we

decided to use our own list of members.

We present the distance and RV distributions of the

selected members in the lower panel of Figure 3. The

distances of individual stars were computed by the inver-

sion of the zero-point-corrected Gaia parallaxes (Gaia

Collaboration et al. 2020; Lindegren et al. 2020).

Since these two distributions appear as Gaussian distri-

butions, the distance and systemic velocity of this SFR

are obtained from the center of the best-fit Gaussian dis-

tributions. The distance is determined to be 1.4 ± 0.1

(s.d.) kpc. This is in good agreement with those de-

rived by previous studies within errors (Cantat-Gaudin

et al. 2018; Hensberge et al. 2000; Kuhn et al. 2019;

Ogura & Ishida 1981). The systemic RV of this SFR is

13.4± 2.7 (s.d.) km s−1. To minimize the contribution

of binaries, we limited the RV sample to stars with RVs

within three times the standard deviation from the peak

value.

4. STRUCTURES AND KINEMATICS

Figure 4 displays the spatial distribution and surface

density map of the members. The surface density map

was obtained by counting stars with an interval of 4.′0

along the R.A. and Decl., where grids dithered by half

the bin size were used to improve the spatial resolution.

The central cluster NGC 2244 seems to have a substruc-

ture as its surface density does not sharply drop toward

the southeast. In addition to the cluster, there are at

least three stellar groups with slightly enhanced peak

surface densities (8% of the maximum density of NGC

2244) compared to nearby regions. The presence of the

group (NGC 2237) at the western patch of the Rosette

Nebula was reported by previous studies (Li 2005; Bon-

atto & Bica 2009; Wang et al. 2010). The small eastern

group is found at the tip of the gas pillar on the east side

of the nebula, and the other group corresponding to the

known PL02 (Phelps & Lada 1997) is located at the

southeastern molecular ridge.

We determined the central position and systemic mo-

tion of NGC 2244 in order to probe stellar motions rel-

ative to this cluster. The reference coordinate (R.A. =

06h 31m 55.s00, Decl. = +04◦ 56′ 30.′′0, J2000) used in

Figure 1 was adopted as the initial position of the clus-

ter center. A new central position and systemic PM of

NGC 2244 were obtained from the median coordinates

and PMs of stars within a radius of 5′. This proce-

dure was repeated until these parameters converged to
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Figure 5. Radial surface density profile in logarithmic scale.
The orange curve represents the best-fit model from Elson
et al. (1987). The radius at which the western group begins
to affect the surface density profile is indicated by a dashed
line (rcl ∼ 11′).

constant values. We found the cluster center at R.A.

= 06h31m55.s60, Decl. = +04◦55′41.′′7 (J2000) and the

systemic PM of µα cos δ = −1.731 mas yr−1, µδ = 0.312

mas yr−1.

4.1. NGC 2244

Figure 5 displays the radial surface density profile fit

to the model profiles of Elson et al. (1987) in a log-

arithmic scale. The surface density of NGC 2244 de-

creases with the radial distance, but is influenced by

NGC 2237 beyond the radius of 11′ (see also the left

panel of Figure 4). Therefore, we adopted this bound-

ary as the apparent radius of NGC 2244 (rcl). This ra-

dius encompasses the majority of cluster members. The

fundamental parameters and kinematics of this cluster

were investigated within this radius.

4.1.1. Age

In order to derive the fundamental parameters (red-

dening, age, mass, and half-mass radius) of this clus-

ter, we fit the isochrones from MESA models consid-

ering the effects of stellar rotation (Choi et al. 2016;

Dotter 2016) to the CMD. The distance modulus of

10.73 mag (equivalent to 1.4 kpc) was applied to the

unreddened isochrones (AV = 0 mag). For the early-

type members with colors bluer than GBP − GRP =

0.6, the reddening of the individual stars was obtained

by fitting them to the distance-corrected isochrones

along the reddening vector of Wang & Chen (2019)

[AGRP/E(GBP − GRP ) = 1.429]. The mean reddening

is then estimated to be 〈E(GBP−GRP )〉 = 0.733±0.078.

Figure 6. CMD of NGC 2244. Red curves are the isochrones
from the MESA models (Choi et al. 2016; Dotter 2016) for
2, 3, 5, and 10 Myrs. The arrow represents the reddening
vector. The other symbols are the same as Figure 1.

Figure 6 shows the CMD of the members in NGC

2244. The isochrones for four different ages (2, 3, 5, and

10 Myr) were superimposed on the CMD after correction

for the mean reddening. Some B-type stars may be al-

ready evolving into the main-sequence. The magnitude

of the main-sequence turn-on is sensitive to the age of

the cluster. The isochrone for 2 Myr well matches the

main-sequence turn-on. We adopt 2 Myr as the age of

NGC 2244, and this is in good agreement with the pre-

vious estimates (Hensberge et al. 2000; Park & Sung

2002). However, the entire shape of the CMD seems
to be fit by isochrones in a wide range of ages (∆Age

> 7 Myr). There could be systematic uncertainties in

the calibration adopted in the theoretical models (Choi

et al. 2016; Dotter 2016). Observationally, photomet-

ric errors, imperfect reddening correction, binaries, and

variabilities of YSOs are possible sources of the observed

scatter in the CMD (Lim et al. 2015). In addition, the

luminosity spread can be caused by multiple star forma-

tion events.

4.1.2. The initial mass function and total stellar mass

The mass function is important to estimate the total

cluster mass, which allows us to infer the virial state of

NGC 2244 at a current epoch. To derive the mass func-

tion of this cluster, we first obtained the masses of indi-

vidual stars from the CMD by means of the isochrones

from the MESA evolutionary models (Choi et al. 2016;
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Dotter 2016). The masses of early-type main-sequence

members (GBP −GRP < 0.6) were obtained by interpo-

lating their magnitude to the mass-luminosity relation

constructed from the isochrones for 2, 5, and 10 Myr,

where the individual reddening values were applied to

the isochrones. For the other members, we adopted a

mean reddening because the individual reddening val-

ues of these stars cannot be obtained from the current

data. The colors of stars were interpolated to the grid of

the isochrones with different ages (0.1 – 40 Myr) to con-

struct the mass-luminosity relations at the given colors.

The masses of individual members were then obtained

from the interpolation of their magnitude to the mass-

luminosity relations.

To compute the uncertainty in mass estimation, the

photometric errors were added to or taken out from the

observed magnitudes and colors. We then found the

masses associated to these increased or decreased mag-

nitudes and colors in the same way as done before. The

mass uncertainties were adopted from half the differ-

ence between the upper and lower values. A typical

uncertainty due to photometric errors is about 0.1M�.

Differential reddening can also affect the mass estima-

tion. The uncertainty in mass is then about 0.3 M�,

on average, if we considered the differential reddening

of 0.078.

We derived the present-day mass function of this clus-

ter by counting the number of stars in given logarithmic

mass bins (∆ logm). A bin size of 0.2 was used to count

the number of stars with mass smaller than 10M�, while

a larger bin of 1.08 was used for higher mass stars be-

cause of their paucity. Then, the mass function was nor-

malized by the associated bin sizes. To avoid the binning

effects, we repeated the same procedure by shifting by

half the bin size. The Poisson noise was adopted as the

errors on the mass function.

Figure 7 displays the present-day mass function. The

difference between the initial and present stellar masses

is negligible in the first few Myr. According to the

MESA model (Choi et al. 2016; Dotter 2016), the

most massive star in NGC 2244 has lost 4M� for 2 Myr.

Hence, the present-day mass function can be considered

as the initial mass function. We constrained the slope

(Γ) of the mass function down to the turn-over mass (∼
1 M�). The slope is estimated to be Γ = −1.4 ± 0.1

from a least-square fitting method for stars with masses

larger than 1 M�. This is in good agreement with those

obtained from other SFRs in the Solar neighborhood

(Salpeter 1955; Kroupa 2001).

However, it does not guarantee that our member se-

lection is complete down to the turn-over mass. Since we

selected the most likely members using strict selection

Figure 7. Present-day mass function of NGC 2244 (red
dots). The result of a least square fitting to the mass function
is shown by a blue dashed line. Black solid lines represent the
Kroupa initial mass function (Kroupa 2001) for comparison.
The open circles denote the upper limits of the mass function
derived from members and member candidates fainter than
14 mag in GRP band.

criteria, many lower-mass members with large errors in

parallax and PM may have been excluded. We esti-

mated the upper limits of the mass function including

member candidates fainter than 14 mag in GRP band

in the same way as above (open circles in Figure 7).

The upper limits follow a trend similar to the original

one for masses larger than 1 M� and become larger for

the lower mass regime. The number of stars obtained

from the original mass function is about 30% lower than

that from the upper limits at around the turn-over mass.

But, this may not be the actual completeness limit of our

sample because some field interlopers may be included

in the sample of member candidates. If we adopt the up-

per limits of mass function, then the slope of the mass

function is estimated to be Γ = −1.6 ± 0.2, which is

consistent with the value found above within errors.

The sum of stellar masses yields a total mass of 533

M�. However, this result does not consider a number

of stars with very low mass (< 1M�). In order to infer

their population, we scaled the Kroupa initial mass func-

tion to ours (the original mass function) using the mean

difference between these mass functions. This scaled

Kroupa initial mass function was then integrated in the

mass range of 0.08 M� to 1 M�. The number of cluster

members down to the hydrogen burning limit is expected

to be about 1510+522
−375, where the upper and lower limits

were inferred from the integration of the scaled Kroupa

initial mass functions adjusted by the uncertainty of the

scaling factors (i.e., the standard deviation) in the low-
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Figure 8. Φ distribution of stars in NGC 2244. The dashed
line in the left panel represents rh of this cluster. Red filled
squares and blue open squares exhibit the histograms of Φ
values for all stars and only stars within rh, respectively.

mass regime (< 1M�). The total stellar mass of NGC

2244 is estimated to be about 879+136
−98 M�, which is

slightly larger than those previously obtained by other

studies (770M� – Pérez 1991; 625M� – Bonatto & Bica

2009).

We also estimated a projected half-mass radius (rh) of

5.′9 (equivalent to 2.4 pc) from our limited sample. A re-

cent study derived the initial mass function of stars in a

very small central region, down to subsolar mass regime

(Mužić et al. 2019). The mass function appeared simi-

lar to the Kroupa initial mass function, which implies

that there is no sign of dynamical mass segregation.

Hence, rh obtained in this study may not be significantly

altered even if the radial mass distribution of stars in the

full mass range is considered.

4.1.3. Internal kinematics

The PM vectors of the members relative to the sys-

temic motion of NGC 2244 are shown in Figure 4. Stars

in the central cluster show outward motions, which were

also detected in Kuhn et al. (2019). To probe the direc-

tion of their motion in detail, we calculated the vectorial

angle (Φ) between the position vectors from the cluster

center and the relative PM vectors of stars (see also Lim

et al. 2019, 2020). A Φ close to 0◦ means that a given

star is radially moving away from the center of the clus-

ter, while a Φ of 180◦ indicates that the star is moving

toward the cluster center.

Figure 8 displays the Φ distribution of stars in NGC

2244. The cluster members have Φ values in a wide

range. We present the histograms of Φ values in the

right panel of the figure. There is a peak at 0◦, which in-

dicates that some stars are radially escaping from NGC

2244. Given that this feature seems weaker within rh
(blue open squares in the figure), the majority of these

escaping stars may be distributed beyond rh.

In order to search for the signature of cluster rota-

tion, the RV distribution of stars was investigated as

addressed in many previous studies (Lane et al. 2009;

Mackey et al. 2013). We first considered a projected

rotational axis across the cluster center from north (0◦)

to south (180◦). The difference between the mean RVs

of stars in the two regions separated by the projected

rotational axis was computed. The same procedure was

repeated for various position angles of the projected ro-

tational axis with an interval of 20◦.

We found a variation of the mean differences of RVs

with the position angles of the projected rotational axis,

as shown in the left panel of Figure 9. This variation

was fit to the sinusoidal curve as below:

∆〈RV〉 = 2Vrot sin i sin(φ+ φ0) (2)

where Vrot, i, and φ0 represent the rotational velocity,

inclination of a rotational axis, and phase, respectively.

The amplitude of the sinusoidal curve corresponds to

twice the projected rotational velocity (Vrot sin i). The

position angle of the projected rotational axis can be in-

ferred from 270◦ − φ0. The projected rotational axis is

tilted by ∼ 20◦(±14◦) from north to east. We investi-

gated a variation of Vrot sin i using stars within various

radii from 4.′5 to 11.′0. The middle panel of Figure 9 dis-

plays the variation of Vrot sin i with the projected radial

distances. In the inner region (< 6.′5), Vrot sin i of stars

increases up to 0.67 km s−1 with the radial distance,

and drops to ∼ 0.20 km s−1 beyond this radius. It is

interesting that this cluster rotation is evident around

rh. A clear pattern of cluster rotation is also seen in the

position-velocity diagram (the right panel of Figure 9).

The signature of cluster rotation was also searched for

using PMs. The one-dimensional tangential velocities

(Vt) of stars along R.A. and Decl. were calculated by

adopting a distance of 1.4 kpc. Since the diameter of

the cluster is very small compared to the distance, the

errors on Vt by the extent of the cluster is less than 1%

under the assumption that this cluster has a spherical

shape. The rotational velocity on the celestial sphere is

given by the equation below:

Vrot = (dR.A. × VDecl. − dDecl. × VR.A.)/r (3)

where r, dR.A., VR.A, dDecl., and VDecl. represent the

radial distance, the position and Vt in R.A., and the po-

sition and Vt in Decl., respectively. The non-zero mean

velocity would yield the rotational velocity of this clus-

ter. However, the mean velocity was calculated to be

0.03 ± 1.32 km s−1, meaning that this cluster does not

have significant azimuthal motion. This result is consis-

tent with that found by Kuhn et al. (2019). Since the

cluster rotation was only detected in RV, the rotational
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Figure 9. Signature of cluster rotation. Left panel: Differences of mean RVs with respect to the position angles of the projected
rotational axis within r < 6.′5 (2.6 pc). The blue solid line represents the best-fit sinusoidal curve. The projected rotational
velocity can be estimated from the amplitude of the sinusoidal curve divided by 2. Middle panel: Variation of projected
rotational velocities with respect to the radial distances. The dots and error bars were obtained from the best-fit sinusoidal
curves for different samples. Right panel: Spatial distribution of mean RVs within r < 6.′5. The color bar shows the different
levels of mean RVs. The mean RVs were computed within spatial bins of 7.′0. A grid dithered by the half the bin size was used
to sample the stars. The cross indicates the center of NGC 2244. The reference coordinate is the same as Figure 1.

axis of NGC 2244 may be tilted by almost 90◦ from the

line of sight.

4.1.4. Dynamical state

We computed the virial velocity dispersion of NGC

2244 by using the equation (Parker & Wright 2016) be-

low :

σvir =

√
2GMtotal

ηR
(4)

where G, Mtotal, R, and η represent the gravitational

constant, enclosed total mass, radius, and the structure

parameter, respectively. Note that we can consider the

total cluster mass of 879 M� as the enclosed mass given

that gas has already been removed around NGC 2244

according to 12CO (J = 1 − 0) and 13CO (J = 1 − 0)

observations (Heyer et al. 2006). The rh of 2.4 pc was

used in Equation 4. η is a structure parameter with a

value between 1 and 12 depending on the geometry of

the cluster. Here, η of 10 was adopted because the ob-

served surface density profile (γ = 3.5±0.3; Figure 5) is

close to that (γ = 4) of Plummer (1911) (see also Fig-

ure 4 of Portegies Zwart, McMillan & Gieles 2010). The

expected velocity dispersion at a virial state is about

0.6 km s−1 (c.f., the virial velocity dispersion for other

clusters is in the range of 0.4 – 1.6 km s−1; Kuhn et

al. 2019). The virial velocity dispersion is not very

sensitively varied with the total mass because it is pro-

portional to
√
Mtotal. The virial velocity dispersion is

almost constant even if we adopted the upper limit of

the total cluster mass.

Figure 10 displays the distributions of VR.A, VDecl.,

and RV (the upper panels) with their error distribu-

tions (the lower panels). We derived the systemic veloc-

ities and velocity dispersions from the best-fit Gaussian

distributions (Table 3). The typical errors on the mea-

surements are estimated from the weighted-mean errors,

where the associated error distributions were used as the

weight values for given errors. We obtained the intrinsic

velocity dispersions of 0.8 and 0.8 km s−1 along R.A.,

and Decl., respectively, from quadratic subtraction be-

tween the observed velocity dispersions and their typical

errors. The effect of system rotation on the observed RV

dispersion can be simulated by using the ideal Gaussian

velocity distribution based on the underlying rotation

with position angles. As a result, the observed veloc-

ity dispersion can be inflated by about 14% compared

to the intrinsic velocity dispersion. Since our measure-

ment of the velocity dispersion along the line of sight,

after quadratic subtraction by the typical error of 1.6

km s−1, is about 0.8 km s−1, the intrinsic RV dispersion

would be 0.7 km s−1. The mean value from the intrinsic

velocity dispersions along R.A., Decl., and the line of

sight is 0.8± 0.1 km s−1.

The initial size of this cluster might have been smaller

than the current one. In addition, a large amount of the

natal cloud mass probably remained around the clus-

ter. The virial velocity dispersion might have thus been

larger than what we derived. While the velocities of

cluster members at a supervirial state are not signifi-

cantly altered in the first several Myrs (Schoettler et

al. 2019), the virial velocity dispersion could decrease

with the evolution of the cluster because of the clus-

ter expansion and gas expulsion. At the current epoch,

the observed velocity dispersion is comparable to
√

2

times the virial velocity dispersion, which implies that

the total kinetic energy is almost in balance with the
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Figure 10. Velocity (upper) and error (lower) distributions
along R.A., Decl., and the line of sight. The histograms
were obtained from stars within rh using bin sizes of 0.6,
0.6, and 1.5 km s−1 for VR.A, VDecl., and RV, respectively.
The red curves represent the best-fit Gaussian distributions.
The systemic velocities and velocity dispersions are presented
in Table 3. In the lower panels, the associated errors were
sampled with a bin size of 0.25 km s−1.

total potential energy. This cluster may be gravitation-

ally unbound. The weak pattern of expansion within rh
supports this argument.

The relaxation time of this cluster was estimated from

the equation of Binney & Tremaine (1987). The cross-

ing time of stars for rh is about 2.9 Myr, adopting the

mean velocity dispersion of 0.8 km s−1. Given the total

number of stars (1510), the dynamical relaxation time

was estimated to be about 76 Myr. The age of NGC

2244 is much younger than this timescale, and there-

fore dynamical mass segregation may not be found in

this cluster. Figure 11 displays the two dimensional Vt
(
√
V 2
R.A. + V 2

Decl.) distribution with respect to the radial

distance and stellar mass. Since dynamical mass segre-

gation is the result of energy equipartition (Binney &

Tremaine 1987), the signature of this dynamical pro-

cess can be probed from a correlation between stellar

mass and velocities, i.e., the low-mass stars have ve-

locities higher than those of high-mass stars. However,

there is no evidence for the energy equipartition among

cluster members, confirming the result of Chen et al.

(2007). Furthermore, the most massive O-type stars are

widely distributed across the cluster region.

4.2. Stellar groups around NGC 2244

The physical association between stellar groups and

remaining gas can be a key clue to understanding the for-

mation of substructures. To this aim, the distributions

of stars and gas were investigated in position-velocity

Figure 11. Two-dimensional Vt Distribution of cluster
members with respect to the radial distance (upper) and
stellar mass (lower). In the upper panel, the size of dots is
proportional to the mass of individual stars. The dashed line
in the lower panel represents the median Vt. Dots and error
bars denote the mean and standard deviations of masses and
Vt within a given logarithmic mass bin of 0.5, respectively.

space. We constructed a three-dimensional position-

position-velocity diagram of ionized gas as made in our

previous studies (Lim et al. 2018, 2019). A data cube

composed of 90×90×90 regular volume cells was created,

and then a Delauney triangulation technique was used
to interpolate the intensities and velocities of the forbid-

den line [N II] λ6584 into the individual cells. From this

data cube, we also obtained position-velocity diagrams

by the sum of the counts along R.A. and Decl., respec-

tively. The positions and RVs of stars are overplotted

in these diagrams.

Figure 12 shows the distribution of stars and ionized

gas in position-velocity space. A cavity of the H II re-

gion is clearly seen in the central region occupied by

NGC 2244 (red). In the position-velocity diagrams, the

other stellar groups (blue) are found along the H II bub-

ble, and they have velocities roughly similar to those of

the ionized gas. This indicates that these groups and

remaining gas belong to the same physical system. The

RVs of ionized gas ranges from 0 km s−1 to 30 km s−1,

and therefore the Rosette Nebula is expanding at veloc-
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Table 3. Velocity dispersions.

Vsys σobs σerr σint

(km s−1) (km s−1) (km s−1) (km s−1)

VR.A -11.4 1.0 0.6 0.8

VDecl. 2.0 1.0 0.6 0.8

RV 12.8 1.8 1.6 0.7a

Note—Velocity dispersions were obtained for members within rh. Columns (2), (3), and (4) represent the systemic velocities, the observed velocity dispersions, typical
errors, and the intrinsic velocity dispersions along R.A, Decl., and the line of sight, respectively.

a The contribution of the cluster rotation (∼ 10%) has been corrected for the RV dispersion.

Figure 12. Distribution of stars and ionized gas in position-velocity diagrams. Stars in the NGC 2244 region are plotted
by red spheres, and the other stars are shown by blue spheres. The size of the spheres is proportional to the brightness of
individual stars in the GRP band. Left panel: Position-Position-velocity diagram. The bluish nebula represents the distribution
of ionized gas traced by the forbidden line [N II] λ6584. Middle and right panels: Position-velocity diagrams along R.A. and
Decl., respectively. Contour shows the integrated intensity distribution of [N II] λ6584 line in unit of electrons (e−). The
reference coordinate is the same as Figure 1.

ities up to 17.2 km s−1 from NGC 2244 (12.8 km s−1;

Table 3).

In order to find the physical association between stel-

lar groups and gas, it is necessary to probe them in detail

in smaller position-velocity space. We investigated the

three stellar groups that are likely associated with ad-

jacent gas structures (the left panel of Figure 4). An

amount of molecular gas still remains in the vicinity of

these groups. Figure 13 exhibits the distribution of stars

on the integrated intensity maps and position-velocity

diagrams of molecular gas. The RVs of ionized gas mea-

sured from the [N II] λ6584 were also superimposed on

the figure. The ionized and molecular gas appear to

have similar RVs.

Most stars in the subregion a may be the members of

the neighboring cluster NGC 2237 (Li 2005; Wang et al.

2010). There are two gas components in the position-

velocity diagrams, which is indicative of expanding shell

components. The ionized gas also traces both compo-

nents in RV. The heads of the gas pillars seen in the

left panel of Figure 4 correspond to the molecular gas

clumps at (∆R.A., ∆Decl.) ∼ (−17′,5′). The RVs of

these clumps range 0 km s−1 to 5 km s−1. Given the

systemic velocity of NGC 2244 (12.8 km s−1), they may

be part of the near side of the H II bubble. Some gas

structures associated with this bubble extend southwest.

This component may be expanding at velocities up to

−12.8 km s−1 although this is a projected expanding

velocity. The other gas component is found at (∆R.A.,

∆Decl.) ∼ (−22′,1′) and has RVs in a range of 15 to

20 km s−1. This component may be part of the bubble

receding away from NGC 2244 at projected velocities up

to 7.2 km s−1. NGC 2237 is located in the vicinity of the

heads of the gas pillars. Most stars in this group tend to

systematically move toward the south. Stars with RV

measurements have RVs in range 15 to 21 km, except

for one star. Therefore, this group seems kinematically

associated with the latter gas component, rather than

the gas pillars.

There is a gas pillar in the subregion b. This gas struc-

ture is moving at velocities of about 10 km s−1 along the

line of sight, which is smaller than the systemic velocity
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Figure 13. Integrated intensity maps and position-velocity diagrams obtained from the 12CO (J = 1 − 0) line. The panels
a to c correspond to the regions indicated by boxes in the left panel of Figure 4. The distribution of molecular gas is plotted
in gray scale. Red dots represent the positions and RVs of stars, and their sizes are proportional to their brightness. Arrows
denote the PM vectors relative to the systemic motion of NGC 2244. Fiber positions used to obtain optical spectra as well
as RVs of ionized gas are shown by pluses. The size of errors on RV is smaller than the symbol size. The dashed lines in the
position-velocity diagrams represent the systemic velocity of this SFR. The reference coordinate is the same as Figure 1.

of NGC 2244 (12.8 km s−1). It implies that this is part of

the near side H II bubble approaching observers. There

is a small group of stars in the vicinity of the gas pillar.

These stars have similar RVs to that of the gas pillar

although the number of stars with RV measurements is

only three out of six stars. In addition, their PM vectors

are systematically oriented toward southeast (i.e. away

from the central cluster).

The remaining gas in the subregion c is part of the

northwestern ridge of the Rosette Molecular Cloud.

This molecular gas has RVs slightly larger than the sys-

temic velocity of the central cluster, and therefore it

is receding away from the cluster in the line of sight.

There are more than 20 members of PL02 in the sub-

region. Their RVs range from 7 km s−1 to 19 km s−1.

It is unclear whether or not PL02 is physically associ-

ated with this gas due to the spread of the RVs. Given

that the PM vectors of the PL02 members are small and

random, the velocity field of this group may be closer to

that of NGC 2244, than that of the molecular gas.

5. DISCUSSION

5.1. The formation of NGC 2244

The formation of stellar clusters has been explained

by two scenarios, monolithic formation (Kroupa et al.

2001; Banerjee & Kroupa 2013, 2015) and hierarchical

mergers of subclusters (Bonnell et al. 2003; Bate 2009).

Cluster rotation can also provide additional implication

on the cluster formation (Corsaro et al. 2017; Mapelli

2017). Here, we discuss the formation of the central

cluster NGC 2244 in the two-theories framework.

Stellar clusters may form along the dense regions in

a turbulent molecular cloud because star formation ef-

ficiencies can be high in this environment (Kruijssen

2012). Recent simulations of monolithic cluster forma-

tion are capable of reproducing the internal structures

and kinematics of clusters (Kroupa et al. 2001; Banerjee

& Kroupa 2013, 2015; Gavagnin et al. 2017). Rapid gas

expulsion and stellar feedback can significantly change

the structure and kinematics of clusters (Tutukov 1978;

Hills 1980; Lada et al. 1984; Kroupa et al. 2001; Baner-

jee & Kroupa 2013, 2015; Gavagnin et al. 2017). How-

ever, it is also possible to explain the formation of stel-

lar clusters even without consideration of these effects.

Our previous study (Lim et al. 2020) simulated the

dynamical evolution of a model cluster formed in an

extremely subvirial state. This model cluster collapses

in the first several million years and expands. Subse-

quently, its structural features and kinematics were com-

pared with those of the young open cluster IC 1805 (3.5

Myr – Sung et al. 2017) composed of a virialized core

and an expanding halo. The model cluster had proper-

ties that compared well with the observed structure and

kinematic properties of IC 1805.

Many other clusters in OB associations also tend to

show expansion (Cantat-Gaudin et al. 2019; Kuhn et

al. 2019), but it seems difficult to detect cluster ro-

tation by using only PMs, as rotating clusters are rare

in the sample of Kuhn et al. (2019). However, the

rotation of NGC 2244 was found by RVs in this study.

Therefore, the spectroscopic observations are crucial to

perform a more complete search of cluster rotation. In-

deed, the significant rotation of the young massive clus-
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ter R136 in the Large Magellanic Cloud was detected

from spectroscopic observations (Hénault-Brunet et al.

2012). The rotational energy accounts for more than

20% of total kinetic energy of this cluster. The detec-

tion of cluster rotation implies that clusters can form in

rotating molecular clouds or from hierarchical mergers

of small stellar groups with different motions.

Systematic survey of molecular clouds in exter-

nal galaxies found that molecular clouds are rotating

(Braine et al. 2020; Rosolowsky et al. 2003; Tasker

2011). More than 50% of the observed molecular clouds

have prograde rotation with respect to the galactic ro-

tation. The angular momenta of these clouds may be

acquired from the differential rotation of disk and self-

gravity. The clouds with retrograde rotation can form

by cloud-cloud collisions (Dobbs et al. 2011). The ro-

tation of stellar clusters can thus be inherited from their

natal clouds. However, it is not yet understood how ef-

ficiently the angular momenta of their natal clouds are

redistributed to individual stars and clusters.

The hierarchical merging of gaseous and stellar clumps

in a turbulent cloud can also lead to the formation of ro-

tating clusters (Mapelli 2017). There are some possible

candidates. The core of 30 Doradus in the Large Magel-

lanic Cloud has an elongated shape, and it is composed

of two stellar populations with different ages (Sabbi et

al. 2012). The dense group is known to be the young

massive cluster R136 which presents rotation (Hénault-

Brunet et al. 2012), while a diffuse stellar group is lo-

cated at the northeast of this cluster. It is believed that

the elongated structure and age difference indicate a re-

cent or an on-going merger of these two groups (Sabbi et

al. 2012). Similarly, the young massive cluster Wester-

lund 1 has an elliptical shape (Gennaro et al. 2011) and

hosts two different age groups (Lim et al. 2013). How-

ever, the rotation of this cluster has not been reported

yet.

NGC 2244 could monolithically form in a rotating

cloud or filament hub, after which it might undergo cold

collapse depending on its initial virial state. Some stars

are now escaping from the cluster as seen in Figure 8.

Gas expulsion may also play a role in dispersing the

cluster members. In addition, there are several stars in

the north and south beyond rcl, and these stars are also

moving away from the cluster (see Figure 4). We traced

their positions back using PMs. As a result, about 85%

(11/13) of these stars were in the cluster (< rcl) 2 Myr

ago. Therefore, the spatial distribution of these stars

can also be explained by the dynamical evolution of this

cluster after the monolithic formation.

The observed features in IC 1805 could be explained

by the monolithic collapse and rebound (Lim et al.

2020). In the same context, we compare the pattern of

expansion in NGC 2244 with those in IC 1805. While IC

1805 shows a strong expansion pattern in its outer re-

gion (Lim et al. 2020), NGC 2244 has, in comparison, a

rather weak tendency of expansion (Figure 8). One pos-

sible explanation would be that the initial rotation sup-

ported the system against the sub-virial collapse. Dy-

namical mass segregation is a natural consequence of the

violent relaxation during the cold collapse (Allison et al.

2009). However, the absence of notable mass segrega-

tion in NGC 2244 also implies that the cluster did not

have a strong cold collapse in the past.

The western half of the cluster has a negative net RV

relative to the systemic velocity as it rotates (Figure 9),

while NGC 2237 has a positive net RV (Figures 12 and

13). The discrepancy between the directions of the clus-

ter rotation and stellar motions in the subregion can-

not be simply explained by the monolithic cluster for-

mation in a rotating cloud. On the other hand, star

formation is still taking place along the filaments in the

Rosette Molecular Cloud, forming several groups of stars

(Cambrésy et al. 2013; Poulton et al. 2008; Schneinder

et al. 2010). In particular, a clustering of the stellar

groups PL04, PL05, PL06, and REFL08 is noteworthy

(Cambrésy et al. 2013) (see also Cluster E in Poulton

et al. 2008). This circumstance is a favorable condition

for merging of stellar groups. Similarly, NGC 2244 has

a substructure toward the southeast (Figure 4). The

structural feature and rotation of this cluster may be

the result of hierarchical mergers of stellar groups.

5.2. The origin of the stellar population around NGC

2244

The Herschel observation reveals that the Rosette

Molecular Cloud is being affected by the ultraviolet irra-

diation from the massive stars in NGC 2244 (Schneinder

et al. 2010). A gradient of dust temperature was found

toward the southeast. The age differences among in-

dividual stellar groups indicate the presence of an age

sequence among YSOs from the H II bubble toward the

Rosette Molecular Cloud. Schneinder et al. (2010) ar-

gued that the formation of the stellar groups may be

triggered by the radiative feedback from massive stars

in NGC 2244.

However, this argument was later refuted by

Cambrésy et al. (2013). They measured the slope

of spectral energy distributions of individual YSOs and

better estimated the ages of the stellar groups. The

stellar groups close to the Rosette Nebula are systemat-

ically younger than NGC 2244. On the other hand, the

stellar groups PL06 and PL07 are far from the Rosette

Nebula, but their ages are comparable to that of NGC



Gas and stellar kinematics in the Rosette Nebula 17

Figure 14. Distributions of Tex and column density in the subregions a (left), b (middle), and c (right). The levels of Tex and
column density are shown by the color bars. To minimize the contribution of diffuse gas toward this SFR (Heyer et al. 2006),
the velocity ranges were limited to −3.0 – 10.0 km s−1 for the subregion a, 4.0 – 15.0 km s−1 for b, and 6.0 – 18.5 km s−1 for
c. The reference coordinate is the same as Figure 1.

2244. As a conclusion, their age distribution could not

be fully understood in the context of the feedback-driven

star formation (Elmegreen & Lada 1977). Star forma-

tion in the Rosette Molecular Cloud seems to take place

in two different ways (Phelps & Lada 1997). Several

previous studies also reached similar conclusion on the

formation of these stellar groups (Poulton et al. 2008;

Román-Zúñiga et al. 2008a; Ybarra et al. 2013) .

To understand the formation of the three groups that

we defined at the border of the Rosette Nebula (the left

panel of Figure 4), it is necessary to consider both mod-

els of hierarchical star formation along filaments (Bon-

nell et al. 2011) and feedback-driven star formation

(Elmegreen & Lada 1977) as suggested by Phelps &

Lada (1997). Figure 14 displays the distributions of Tex
and column density along the remaining molecular gas in

these subregions. The heads of gas pillars in the subre-

gion a have Tex and column densities lower than those in

the other subregions. The column density traced by the

optically thin 13CO line compared to 12CO line shows

no agglomeration deeper inside the pillar heads.

A large amount of molecular gas still remains in the

subregions b and c. Tex in the subregions b and c ap-

pears higher than 25K, which is consistent with dust

temperature (Schneinder et al. 2010). The molecular

gas in the subregion b condenses along the midplane,

and a local condensation is found at the ridge of the

molecular gas in the subregion c. These results indi-

cate that molecular gas is compressed along the ridge

of the Rosette Molecular Cloud because the clouds are

exposed to the ultraviolet irradiation from the O-type

stars in NGC 2244. Hence, the subregions b and c might

be the possible sites of feedback-driven star formation,

compared to the subregion a. If PL02 is physically asso-

ciated with the adjacent molecular gas, its age younger

than NGC 2244 (Cambrésy et al. 2013) may support

this argument.
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Here, we discuss the formation of the three groups

based on their kinematics as shown in Section 4.2. If

stars form in the remaining gas compressed by the ex-

panding H II bubble, it is expected that they are receding

away from ionizing sources in NGC 2244 and have sim-

ilar velocities to that of the gas. The stars in the sub-

region b seem to follow this expectation. These stars

are moving away from the cluster (toward southeast)

and have similar RVs to that of the adjacent gas pil-

lar. In addition, this group contains a low-mass Class I

YSO at an early evolutionary stage of protostars. This

group may be slightly younger than the other groups,

and hence its formation might be triggered by the feed-

back from massive stars in NGC 2244. We note that

there is another Class I object in NGC 2244, but this

may be a slightly old Herbig Ae/Be star candidate with

a thick disk (Figure 6).

NGC 2237 in the subregion a does not show any phys-

ical association between stars and the gas pillars (Fig-

ure 13). Also, this group is moving toward south in-

stead of west (the direction of radial expansion of the

H II bubble). This confirms that the region a is prob-

ably not a site of feedback-driven star formation. Al-

though the subregion c was considered as a possible site

of feedback-driven star formation in Phelps & Lada

(1997), the kinematic properties of PL02 and adjacent

clouds do not support the claim. If PL02 was formed by

the compression of the clouds, the members of PL02

should show PMs systematically receding away from

NGC 2244. However, they have almost random motions,

rather than any systematic motion toward the southeast

as seen in the subgroup b. In addition, the physical

association between PL02 and the remaining clouds is

unclear. Hence, the formation of this group seems not

to be related to feedback from the massive stars in the

cluster. These two groups NGC 2237 and PL02 might

have been independently formed through the hierarchi-

cal fragmentation of a molecular cloud.

6. SUMMARY

Stellar associations are not only ideal targets to under-

stand star formation process on different spatial scales,

but also the factories of field stars in the Galactic thin

disk. There are three theoretical models to explain the

formation of these young stellar systems, however our

observational knowledge of their formation is still in-

complete. In this study, we investigated gas and young

stellar population in the Rosette Nebula, the most active

SFR in the Mon OB2 association.

We identified the young star members based on pho-

tometric and spectroscopic criteria, complemented by

parallax and proper motion criteria based on the recent

Gaia astrometric data (Gaia Collaboration et al. 2020).

A total of 403 stars were selected as the members. Their

spatial distribution showed that this SFR is highly sub-

structured.

The central cluster NGC 2244 is the most populous

group in the Rosette Nebula. The age of this cluster

was estimated to be about 2 Myr by means of stellar

evolutionary models (Choi et al. 2016; Dotter 2016).

We derived its mass function, which appeared to be

consistent with the Salpeter/Kroupa initial mass func-

tion (Kroupa 2001) for stars with masses larger than

1 M�. However, a number of bona-fide members with

smaller masses could have been excluded because of our

strict criteria of member selection. The total number

of members and cluster mass were deduced to be about

1510+522
−375 and 879+136

−98 , respectively. This cluster showed

a clear pattern of expansion beyond the rh (2.4 pc) and

rotation below that radius. We also investigated cor-

relations between stellar mass, velocity, and the radial

distance of stars, but could not find any sign of dynam-

ical mass segregation.

Several groups of stars were found at the border of the

Rosette Nebula. We investigated the kinematic proper-

ties of stars in three subregions by comparing their RVs

with those of adjacent gas structures. The eastern group

(subregion b) seemed to be physically associated with

the gas pillar and receding away from the central clus-

ter. In addition, a low-mass Class I object was found

in this group. These results can be understood in the

context of feedback-driven star formation (Elmegreen &

Lada 1977). On the other hand, there was no kinematic

evidence of feedback-driven star formation in other sub-

regions. These groups might have originated from spon-

taneous star formation along filaments.

In conclusion, all the processes proposed by the three

theoretical models seem to be involved in the formation

of this association. We need to examine other Galactic

OB associations with the same perspective as that of

this study. A systematic survey of both stars and gas

in many stellar associations will provide key clues to

understanding their formation process.
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APPENDIX

A. YSO CLASSIFICATION

The Spitzer IRAC and MIPS 24µm observations of young stars in the Rosette Nebula were carried out by Balog

et al. (2007). This survey covers an optically visible 30′ × 30′ region in the center of the nebula. We took their

photometric data of 1084 stars detected in all IRAC four bands. Figure A1 displays the color-color diagrams of stars

in mid-infrared wavelengths. Some stars have photospheric colors close to zero, while the others exhibit significant

mid-infrared excess originating from their warm circumstellar disks or envelopes.

Prior to YSO classification, we flagged the sources of contamination. Active galactic nuclei (AGNs) and star-forming

galaxies are also sources with infrared excess emission (Donrey et al. 2008). These objects were identified by using the

criteria of Gutermuth et al. (2008). A total of 104 AGNs and four star-forming galaxy candidates were found. One

source was identified as a blob of shock emission that appears bright in 4.5 µm (Gutermuth et al. 2008; Smith et al.

2006).

The YSO candidates were identified from these color magnitude diagrams according to the classification scheme of

Gutermuth et al. (2008). We classified ten and 262 young stars as Class I and Class II objects, respectively. In

addition, a total of 19 YSOs with a transitional disk were found in the color-color diagram combined with MIPS 24µm

photometry. Balog et al. (2007) identified 337 Class II and 25 Class I objects from the IRAC color-color diagrams and

213 Class II and 20 Class I objects from the IRAC and MIPS 24µm photometry. The results of their YSO classification

were different from ours for the same data. One reason may be due to the adoption of different classification schemes

for AGNs, star-forming galaxies, and YSOs. The second possible reason is that Balog et al. (2007) published only

the good quality photometric data of sources detected in the four IRAC bands, and so it is possible that faint sources

were not be contained in their data. It is worth noting that such faint YSOs would not be selected as final members

because of their low-quality astrometric data (see Section 3).

The AllWISE catalogue (Cutri et al. 2013) was used to identify more YSOs spread over the Rosette Nebula (a

6◦×6◦ region centered at R.A. = 06h 31m 55.s00, Decl. = +04◦ 56′ 30.′′0, J2000). All YSOs and the other sources were

classified according to the scheme of Koenig & Leisawitz (2014). This catalogue contains a large number of spurious

sources. All the criteria examined by Koenig & Leisawitz (2014) were applied to minimize the contamination by these

spurious sources. The candidates of AGNs and star-forming galaxies were then sorted out from the color-magnitude

cuts. Class I, Class II, and YSOs with a transitional disk were identified from color-color diagrams (Figure A2). Among

these young stars, the candidates of asymptotic giant branch stars and classical Be stars were excluded in the list of

YSO. In the end, we found six Class I, 76 Class II, and two YSOs with a transitional disk in total. Among them, a

total of 40 YSO candidates were found in the field of view of the Spitzer observation (Balog et al. 2007). This number

is lower than that identified from the Spitzer data because of the lower sensitivity of the WISE mission (Wright et al.

2010).

A total of 338 YSO candidates were identified from the Spitzer and AllWISE data (Balog et al. 2007; Cutri et al.

2013). There are 37 YSO candidates in common between the data sets. Our classification shows a good consistency

except for two candidates. One star (R.A. = 06h 32m 11.s98, Decl. = +05◦ 00′ 31.′′0, J2000) was classified as Class I

in the Spitzer data and Class II in AllWISE data. This star was identified as an X-ray emitting star (Wang et al.

2008), and thereby it is most likely a YSO. Similarly, the other star (R.A. = 06h 32m 49.s49, +04◦ 43′ 37.′′6, J2000)

was classified as Class I and Class II in the Spitzer and AllWISE data, respectively. Since there are a few stars around

this star within a radius 10′′, the measured magnitude and colors could be affected by these neighboring sources. The

intrinsic color variation may also be responsible for the discrepancy between the two classifications (Wolk et al. 2018).
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