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Abstract

A micro-mechanical model for fibre bundle failure is formulated following

a phase-field approach and is embedded in a semi-analytical homogenisa-

tion scheme. In particular mesh-independence and consistency of energy re-

lease rate for fibre bundles embedded in a matrix phase are ensured for fibre

dominated failure. Besides, the matrix cracking and fibre-matrix interface

debonding are modelled through the evolution of the matrix damage variable

framed in an implicit non-local form. Considering the material parameters of

both fibre and epoxy matrix phases identified from manufacturer data sheets,

it is shown that the failure strength of a ply loaded along the longitudinal
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direction is in agreement with the reported values. Finally, the multi-damage

homogenisation framework is applied to model, on the one hand, the failure

of a notched laminate, in which case the failure modes are observed to be

in good agreement with experiments, and, on the other hand, the failure of

yarns in a plain woven composite unit-cell under uni-axial tension.

Keywords: Mean-field homogenisation, Phase-field, Fibre bundle failure,

Matrix cracking, Woven composites, UD laminates

1. Introduction1

The failure of fibre-reinforced composites often occurs suddenly with-2

out any prior visible signs of damage. Understanding and modelling the3

failure processes of Unidirectional-Carbon Fibre Reinforced Polymer (UD-4

CFRP) composite structures become vital to the safe application of compos-5

ites. Many attempts had been conducted to predict strength of this kind of6

material. In recent years, micro in situ experiments and enhanced computer7

simulations have been carried out to deepen the understanding of failure8

processes of a UD-CFRP composite component [1–10]. Comparing to ho-9

mogeneous materials, the failures mechanisms of UD-CFRP composites are10

more complicated because of the coexistence of fibre-dominated and matrix-11

dominated failure modes and delamination. Delamination of laminated com-12

posites has been well modelled with cohesive laws. However, modelling the13

fibre-dominated and matrix-dominated failure is still an active research area.14

For matrix-dominated failure, micro-scale modelling was performed with15

discontinuous Galerkin/cohesive zone method in [6] and with damage en-16

hanced matrix combining cohesive zone at fibre/matrix interface in [4] to17
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simulate the transverse tensile failure of UD-CFRP composites. In [5], an18

XFEM / cohesive zone method was applied to predict the matrix-dominated19

failure of UD-CFRP composite laminates. The longitudinal tensile failure of20

UD-CFRP composites is dominated by fibre failure whose mechanisms can21

be described successively by initiation of single fibre failure accompanied by22

a redistribution of stress in the neighbouring fibres, the formation and prop-23

agation of clusters of broken fibres, and eventually failure of the material. In24

[7], finite element analyses were applied on representative volume elements25

(RVEs) with a progressive failure model for fibre bundles. Spring-element26

model was also used to simulate the failure of fibres in 2D and 3D RVEs27

[8–10].28

It is well understood that the sudden failure is caused by the gradually29

accumulated micro-damage. Therefore, continuum damage mechanics was30

also widely used at both macro- and micro-scales in the modelling of com-31

posites failures [11–14]. Anisotropic damage models were applied in [11, 12]32

to describe the degradation of the elastic tensor of a composite ply. The33

components of the anisotropic damage model were separated into fibre- and34

matrix-dominated damage processes according to the stress state of the ply.35

Since the stress state of a ply is a combination of the of stress states in both36

the matrix and fibre phases, the damage contributions caused by fibre and37

matrix damage cannot always be clearly separated and this may lead to an38

inaccurate prediction of the damage zone propagation [15]. Besides, when39

local damage models are used, the model parameters need to be related to40

the mesh size of the finite element discretisation in order to reduce the mesh41

dependency. In a micro-scale finite element analysis on RVEs, damage mod-42
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els were introduced in fibre and matrix to predict the longitudinal tensile43

failure of composites [13].44

In the recent years, the phase-field approaches have attracted attention45

for computational modelling of brittle failure. Using diffusive crack zones46

governed by a scalar auxiliary variable to mimic the crack surface topology47

in the solid, the phase-field method does not require the implementation of48

complex crack tracking algorithms whilst recovering the Griffith fracture ap-49

proach [16]. At the micro-scale, by considering a combination of phase-field50

with smeared interfaces [17], it is possible to predict the crack interface in-51

teraction. Such an approach was used to develop a micro-mechanical model52

of the fibre-matrix debonding and matrix cracking interaction [18]. At the53

macro-scale, a phase-field method with two auxiliary variables, respectively54

for fibre and inter-fibre failures, was developed in [19] to simulate the crack55

propagation in UD-CFRP composites. In this approach, the applied consti-56

tutive law remains at the composite ply scale, facing the same problem as the57

other macro-scale anisotropic damage models for which the propagation of58

crack/damage zones cannot always be captured correctly accordingly to the59

ply orientation. This particular anisotropic nature of a UD ply can be cap-60

tured by considering a characteristic lengths tensor with preferred directions61

in the phase-field equation governing the auxiliary variable [20]. Combin-62

ing this anisotropic form of the phase-field equation with a new definition63

of the driving energy release rate, which is defined from the different fail-64

ure mode strain energies and critical energies, allows recovering the correct65

crack/damage propagation direction in plies [20] and laminates [21]. We also66

refer to the recent review of phase-field methods applied to composite lami-67
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nates [22]. In these macro-scale models, the parameters are identified by con-68

sidering the response at the ply level and not directly from the constituents.69

Besides, the progressive failure mechanism of fibre bundles also physically70

interacts with the fibre-matrix interface debonding and the matrix yielding71

and cracking [2] during the failure process of composite materials, and this72

physical process is difficult to be simulated with a purely macro-scale model.73

Clearly, predicting the failure of composites with direct finite element74

analyses on RVE remains computationally costly when all the coupled dam-75

age phenomena are considered while macro-scale models are not detailed76

enough to represent the interplay between these damage mechanisms, moti-77

vating the development of multi-scale methods accounting for the micro-78

mechanics. Among the micro-mechanics-based methods, the Mean-Field79

Homogenisation (MFH) approaches provide an efficient framework to pre-80

dict the macroscopic behaviour of heterogeneous materials at a reasonable81

computational cost even for non-linear simulations. Based on the concept82

of Linear Comparison Composite (LCC) [23, 24], MFH has been extended83

to the modelling of composites, whose constituents may exhibit non-linear84

behaviours, as plasticity [25–27] or elasto-visco-plasticity [28–31]. MFH has85

been extended to consider the damage in the matrix phase independently of86

the fibre failure in [14]. This method is free from the mesh dependency since87

the implicit gradient enhanced damage model was adopted [32]. Besides, be-88

cause of the underlying micro-mechanics model, the matrix damage modes89

were found to be in good agreement with micro-CT measurements [14]: stress90

and strain states in fibre and matrix can be estimated in an average sense91

and the damage in the matrix propagates along the fibre directions even92
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for longitudinally loaded plies, as observed in the micro-CT measurements.93

However, the fibre-dominated failure was not considered in [14].94

The fibre strength is a stochastic property that exhibits a size effect [33].95

Based on a Weibull distribution of the fibre strength, a stochastic damage96

model of fibre bundles has been developed and introduced in a Mean Field97

Homogenisation (MFH) process to describe the fibre breaking in UD fibre re-98

inforced composites [34]. In this model, a length parameter of the stochastic99

fibre damage model was determined from the matrix and fibre mechanical100

properties and fibre radius according to the experimental measurements pro-101

vided in [1], in which optical microscopy was used for in situ measurements of102

the stress build-up profile of broken fibres. Although fibre failure and matrix103

cracking were predicted to occur at locations in good agreement with ex-104

perimental measurements for the longitudinal tensile strength of UD-CFRP105

notched laminates, the stochastic damage evolution was framed in a local106

way. As a result fibre damage model needed to be connected with the finite107

element size and the energy dissipation resulting from fibre-dominated failure108

could not be resolved.109

Embedding damage evolution in a MFH was shown in [14] to present110

several advantages resulting from the micro-structure informed nature of the111

formulation: i) only micro-structure parameters such as the phase material112

responses have to be identified; ii) the macro-scale resolution also gives in-113

formation on the phases responses; iii) the anisotropic non-local formulation114

allowed predicting matrix cracking in good agreement with experimental ob-115

servations. Nevertheless the method developed in [14] embeds the matrix116

damage only and is not able to predict laminate failure because of the lack117
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of representation of the fibre-dominated failure. The novelty of this work118

is thus to enrich the non-local matrix damage enhanced MFH formulation119

to account for fibre failure in a mesh-independent way. Besides because the120

critical energy release rate of longitudinal failure strongly affects the com-121

posite material response, this enrichment ought to be achieved in an energy122

consistent manner. To address these two requirements, the stochastic fibre123

damage model developed in [34] and embedded in a Mean Field Homogeni-124

sation (MFH) process is substituted by a spatially correlated damage model.125

In this deterministic approach, it is assumed that the failure results from a126

stress concentration, in which case the statistical effects become less impor-127

tant than for a uni-axial tension of a uniform sample, and a deterministic128

continuum damage approach can be a suitable choice. In order to recover129

mesh-independence and the correct energy release rate for fibre dominated130

failure, a phase-field model is adopted to describe the embedded fibre bundle131

failure, allowing recovering the observed physical phenomena in [1]. Further-132

more, in this MFH based damage modelling, the behaviours of the fibre and133

matrix phases are implicitly coupled, which makes the model able to reflect134

the fibre-matrix interface debonding and the matrix yielding and cracking135

during fibre breaking via the evolution of the matrix damage variable [34].136

This approach is in agreement with the physics observed in composites with137

strong fibre-matrix interface, in which case, the dominating failure mecha-138

nism is an inter-phase failure [35], and the failure of matrix and of interfaces139

can be both taken into account using a damage-enhanced constitutive model140

for the matrix [36].141

The paper is organised as follows. Section 2 develops the phase-field142
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damage model of embedded fibre bundles and the non-local damage model143

used for the matrix phase. Section 3 details the extension of Mean-Field144

Homogenisation to account for both matrix cracking and fibre failure. The145

finite element implementation of the resulting multi-scale framework is for-146

mulated in Section 4. The identification of the phases material parameters147

and the study of the effect of the characteristic failure length of the em-148

bedded fibre bundles are provided in Section 5, allowing their determination149

from experimental measurements. A simple ply tension is then considered150

in order to evaluate the predicted ply strength. The developed multi-scale151

model is eventually applied in Section 6 successively to study the failure of a152

notched laminate and the failure of a plain woven composite unit-cell. The153

former case was studied with a local approach of fibre bundle damage in154

[34], in which the simulation exhibited a lack of convergence due to the local155

damage assumption. In this paper we show that the phase-field approach, on156

the one hand, allows conducting the simulation to an end, and, on the other157

hand, predicts the failure modes in good agreement with the experimental158

CT observations reported in the literature [3]. In the latter case studying159

the failure of a plain woven composite unit-cell, the warps and wefts are160

modelled as dense unidirectional fibre reinforced epoxy using the developed161

damage enhanced MFH model, whilst the epoxy matrix out of the yarns is162

modelled using a non-local damage enhanced elasto-plastic material. The163

predicted strength of the woven unit-cell is found to be comparable to the164

experimental observations.165
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2. Mesh-independent damage model of the composite micro-constituents166

In this first section we present the damage enhanced micro-scale consti-

tutive models of the phases of Unidirectional (UD) composite materials. In

each phase ωi, at configuration time t, the stress tensor can be obtained from

a constitutive relation

σ (x, t) = Si
(
ε (x, tn+1) , Z̃i (x, τ) ;Zi (x, τ) , τ ∈ [0, t]

)
, (1)

where Zi is a set of internal variables particularised to phase ωi and used to

account for history-dependent behaviours. In order to avoid mesh-dependency

issues upon strain softening onset, a subset of the internal variables Zi is

associated to a set of auxiliary internal variables Z̃i which are kinematics

variables obtained from the resolution of equations that can be stated, for

Z̃ij the internal variable j of phase ωi, in the form

Z̃ij (x, t)−∇ · ci ·∇Z̃ij (x, t) = fi

(
Zij (x, t) , ε (x, t) , Z̃ij (x, t)

)
, (2)

where ci is a squared characteristic lengths matrix associated to phase ωi

and where fi

(
Zij , ε, Z̃ij

)
is a function of the local variable Zij that depends

on the formulation. The constitutive law (1) is then completed by a damage

evolution law formulated in a mesh-independent setting, i.e. formulated in

terms of the auxiliary internal variables Z̃i, with for phase ωi:Ḋi (x, t) = Di (Di (x, t) , ε (x, t) , χi(x, t) ;Zi (x, τ) , τ ∈ [0, t]) χ̇i ,

χi(x, t) = maxτ∈[0, t]

(
Z̃i

)
(3)

where χi is the maximum value reached by the auxiliary internal variable in167

order to ensure irreversibility of the damage process.168
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In the following we particularise these equations for the two phases while169

accounting for the interaction mechanisms between them. First, the case of170

the failure of fibre bundles embedded in a matrix is studied and framed in a171

phase-field like approach in order to represent the spatial distribution of the172

stress build-up developing along a broken embedded fibre. Then, the micro-173

cracking of the matrix is developed by combining a non-local approach with174

an anisotropic squared characteristic lengths matrix in order to account for175

the presence of fibre bundles which constrain the damage spatial evolution.176

2.1. Phase-field damage model of the embedded fibre bundles177

In this part we introduce a mesh-independent damage model for fibre178

bundles embedded in a matrix. First the stress build-up resulting from the179

failure of a single fibre embedded in a matrix is studied. The resulting spa-180

tial damage distribution of a fibre bundle is then expressed in terms of an181

auxiliary damage function defined from a characteristic length, allowing the182

derivation of phase-field-like governing equations.183

2.1.1. Damage of a broken embedded fibre in a matrix184

𝜎∞ 𝜎∞

𝜏𝜏

Figure 1: The longitudinal stress build-up at the adjacent parts of the fibre breaking point.

When a fibre embedded in a matrix breaks, the longitudinal stress of

this fibre drops to zero at its breaking point whilst the longitudinal stress
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of this fibre increases progressively at the adjacent two sides of the breaking

point until the far-field stress σ∞ is recovered, see Fig. 1. This progressive

longitudinal stress increase in a broken fibre can be described by a stress

build-up profile, which is a spatial function of the distance along the fibre

with its origin at the breaking point. On the one hand, when embedded

in an elastic matrix, the stress build-up profile of a broken fibre can be

obtained analytically using the shear-lag theory [37]. On the other hand,

when embedded in an elasto-plastic matrix, since the shear stress at fibre-

matrix interface is limited, either an experimental or a numerical method is

required to obtain the stress build-up profile of the broken fibre. Based on

the experimental data provided in [1], a continuous function was suggested

in [34] to describe the stress profile, which reads

σ(x) = σ∞

(
1− exp

(
−|x|
lI

))n
, (4)

where |x| is the distance from the origin of the fibre breaking point to the185

considered material point in the longitudinal fibre direction, the length pa-186

rameter lI relates to the distance at which the maximum shear stress τ is187

reached at the fibre-matrix interface, see Fig. 1, and n is the shape param-188

eter. Values of n ∈ [2 , 3] were shown to describe the stress profile σ(x) in a189

good agreement with the experimental data [34].190

Since the breaking of an embedded fibre reduces its stress carrying capa-

bility from the faraway field to the breaking point, a fibre damage evolution

can be defined to describe this decrease in the composite material, which

yields

D(x) = 1− σ(x)

σ∞
= 1−

(
1− exp

(
−|x|
lI

))n
. (5)
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Instead of being a local variable, the fibre damage in Eq. (5) is a spatial191

function characterised by a length parameter lI, with D(0) = 1 at the fibre192

breaking point and D(x) ≈ 0.0 for |x| >> lI. This definition of the fibre193

damage shows that the effect of the fibre breaking exists in a certain spa-194

tial region along the fibre whose size is related to this characteristic length195

parameter lI.196

2.1.2. Damage of fibre bundle in matrix197

Although a fibre bundle is an aggregate of parallel fibres, its damage198

evolution cannot be described by a simple linear combination of the damage199

variables of the individual fibres since the longitudinal stress of a broken200

fibre will be redistributed to their unbroken neighbours through the matrix.201

Therefore, the reduction of stress carrying capability of a fibre bundle is also202

governed by the matrix shear response. However, the concept of effective203

damage zone with characteristic length lI introduced when considering a204

fibre breaking still holds.205

As an extreme case, when considering a fibre bundle made of a single

fibre, the damage at x = 0 jumps from 0 at the onset of fibre breaking to

1. When considering several fibres, it is assumed that the damage of the

fibre bundle evolves progressively from 0 to 1 at x = 0 with the increase of

longitudinal loading, and, at the ultimate stage tu of total fibre breaking, one

has

DI(x, tu) = 1−
(

1− exp

(
−|x|
lI

))n
, (6)

where, with a view to the upcoming homogenisation process, the subscript

“I” of DI(x, t) refers to the inclusion phase, here the fibre bundle, of the

composite material. In order to model a continuous evolution of DI(x, t)
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in space and during the loading process t, an auxiliary function dI(x, t) is

adopted such that

DI(x, t) = 1− (1− dI(x, t))
n , (7)

with

dI(x, tu) = exp

(
−|x|
lI

)
, (8)

being the solution of DI(x, t) at the final breaking stage tu of the fibre bundle.206

It needs to be clarified that DI(x, t) is a scalar damage variable which207

mainly describes the degradation of the material along the fibre longitudinal208

direction represented by the spacial variable x. In order to solve the evolu-209

tion of DI(x, t) via its auxiliary function dI(x, t) with a finite-element-based210

numerical process, a phase-field approach is adopted in this work, which sub-211

stitutes to Eq. (2), with DI(x, t) playing the role of the local internal variable212

ZI and dI(x, t) the role of the auxiliary internal variable Z̃I. Finally, Eq. (7)213

is the particularised form of the damage evolution law (3).214

2.1.3. Phase-field model215

Phase-field-type approaches use diffusive crack zones governed by a scalar

auxiliary variable to mimic the crack surface topology in solid mechanics. The

scalar auxiliary variable serves as a measure of the damage, micro-cracks and

micro-voids, in a homogenised sense, and its evolution is governed by an eval-

uation of the related energy dissipation through a new governing equation.

In particular, in the work of Miehe [16], to represent a crack surface at x = 0,

the one-dimensional non-smooth phase-field is approximated by an exponen-

tial function (8), which is also the sought solution of the fibre bundle damage

in Eq. (7) at the ultimate breaking stage tu. Compared to the approach of
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phase-field, in which the auxiliary damage function dI(x, tu) is used to mimic

the discontinuous crack surface, in this work dI(x, t) is used as a measure of

the damage evolution in the fibre bundle. Let us note that the fibre damage

DI is defined by Eq. (7) through dI by

1−DI = (1− dI)
n with n ∈ [2 , 3] , (9)

and (1 −DI) is comparable to the stored energy degradation function g(dI)

defined in [16], which needs to satisfy

g(0) = 1 , g(1) = 0 and g′(1) = 0 . (10)

Energy dissipation of the fibre bundle damaging process. It is assumed that

damage is the only energy dissipation mechanism of the fibre bundle and that

the energy dissipation can be evaluated through a damage density function

following the crack density function as in the work of Miehe [16], with

γ(dI, ∇dI) =
1

2lI
dI

2 +
lI
2
∇dI · ∇dI . (11)

The global energy dissipation per unit time related to the damage evolu-

tion on an arbitrary volume ω̃ of the fibre bundle reads

Φ
(
ḋI; dI

)
=

∫
ω̃

φ
(
ḋI, ∇ḋI; dI, ∇dI

)
dV , (12)

with the per unit volume and time dissipated energy due to the damage

evolution reading

φ
(
ḋI, ∇ḋI; dI, ∇dI

)
= Gcγ̇(ḋI, ∇ḋI; dI, ∇dI) + ε

〈
ḋI

〉2

−
, (13)

whereGc denotes the dissipated energy at total breaking, i.e. whenDI(0, tu) =

1 in Eq. (7), of a fibre bundle of unit cross-section area; this energy corre-

sponds to the critical energy release rate in fracture analysis. In Eq. (13),
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the operator ε 〈x〉2− is the approximated indicator function of the set R+ of

positive real numbers, with

〈x〉− = (|x| − x)/2 , (14)

and the constant ε >> 1 being a regularisation parameter of high value, the216

approximation being exact for the limit ε → ∞. This indicator function is217

introduced in order to ensure the positive evolution of the auxiliary damage218

variable ḋI > 0. As a result, in Eq. (3) one can directly consider χI = dI.
1

219

Elastic energy of the fibre bundle. A fibre is modelled using a transverse

isotropic linear elastic constitutive law characterised by the elasticity tensor

Cel
I . The energy storage function ψI describes the strain energy of the fibre

stored per unit volume. The energy storage function of an undamaged fibre

bundle reads

ψI(ε) =
1

2
ε : Cel

I : ε , (15)

for a strain tensor ε. The elasticity tensor Cel
I of a transverse isotropic mate-220

rial can be defined by 5 independent elastic constants: the Young’s modulus221

and Poisson’s ratio in the 1-2 symmetry plane (transverse plane), E1
I , ν

1 2
I ,222

the Young’s modulus and Poisson’s ratio in the 3-direction (longitudinal di-223

rection), E3
I , ν

3 1
I and the shear modulus in the 3-direction, µ3 1

I . The other224

parameters can be derived through some relations, such as E1
I = E2

I and225

ν13I
E1

I
=

ν3 1
I

E3
I

. The longitudinal direction of the fibres is refereed to by the su-226

perscript 3, and its two symmetric transverse directions by the superscript 1227

1During the implementation we however keep the formulation (3) instead of considering

the term ε 〈x〉2− because convergence was shown to be better.
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or 2. In the local fibre axes, the expression of the transverse isotropic elastic228

tensor Cel
I reads in the Voigt notations229

Cel
I =

E1
I (1−ν1 3

I ν3 1
I )

∆

E1
I (ν1 2

I +ν1 3
I ν3 1

I )

∆

E1
I (ν3 1

I +ν1 2
I ν3 1

I )

∆
0 0 0

E1
I (ν1 2

I +ν1 3
I ν3 1

I )

∆

E1
I (1−ν1 3

I ν3 1
I )

∆

E1
I (ν3 1

I +ν1 2
I ν3 1

I )

∆
0 0 0

E3
I (ν1 3

I +ν1 2
I ν1 3

I )

∆

E3
I (ν1 3

I +ν1 2
I ν1 3

I )

∆

E3
I (1−ν1 2

I ν1 2
I )

∆
0 0 0

0 0 0 2µ3 1
I 0 0

0 0 0 0 2µ3 1
I 0

0 0 0 0 0 2µ1 2
I


,

(16)

where ∆ = (1 + ν1 2
I )(1− ν1 2

I − 2ν1 3
I ν3 1

I ).230

It is here assumed that the fibre bundle damage is only due to a tension

along the longitudinal fibre direction. However the damage affects the energy

storage of fibre in both longitudinal tension and compression modes because

of the resulting material degradation. Since the breaking of a fibre can cause

a local debonding and/or bonding degradation at the fibre matrix interface,

this assumption is reasonable. Therefore, the energy storage function of a

damaged fibre bundle reads

ψI(ε, dI) = ψ+
I (ε , dI) + ψ−I (ε; dI) , (17)

where the positive part ψ+
I (ε, dI) refers to fibres in tension and the negative

part ψ−I (ε; dI), in which dI is seen as a constant parameter and no longer as

an evolving variable, refers to the fibre in compression. Defining CD
I as the

damaged elasticity tensor defined through the damage variable DI given by

16



Eq. (7), one has

ψI(ε , dI) =
1

2
ε : CD

I : ε . (18)

Since DI is used to describe the degradation of the fibre mechanical property231

along its longitudinal direction, a simple multiplication of (1−DI) to Cel
I is232

not applicable in order to define the damaged elasticity tensor CD
I . Instead,233

following the work [34], the longitudinal Young’s modulus is affected by the234

damage evolution as well as the major Poisson’s coefficient in order to keep235

a symmetric transverse isotropic operator.236

In the work [34], it was assumed that237

E3 D
I = (1−DI)E

3
I , and (19)

ν3 1 D
I = (1−DI)ν

3 1
I , (20)

where the second equation allows keeping
ν1 3
I

E1
I

constant and
ν3 1
I

E3
I

=
ν3 1D
I

E3D
I

,238

yielding a damaged transverse isotropic elasticity tensor, which reads using239

Voigt’s notations:240

CD
I (D) =

E1
I (1−ν1 3

I ν3 1D
I )

∆D

E1
I (ν1 2

I +ν1 3
I ν3 1D

I )

∆D

E1
I (ν3 1D

I +ν1 2
I ν3 1D

I )

∆D 0 0 0

E1
I (ν1 2

I +ν1 3
I ν3 1D

I )

∆D

E1
I (1−ν1 3

I ν3 1D
I )

∆D

E1
I (ν3 1D

I +ν1 2
I ν3 1D

I )

∆D 0 0 0

E3D
I (ν1 3

I +ν1 2
I ν1 3

I )

∆D

E3D
I (ν1 3

I +ν1 2
I ν1 3

I )

∆D

E3D
I (1−ν1 2

I ν1 2
I )

∆D 0 0 0

0 0 0 2µ3 1
I 0 0

0 0 0 0 2µ3 1
I 0

0 0 0 0 0 2µ1 2
I


,

(21)

where ∆D = (1 + ν1 2
I )(1− ν1 2

I − 2ν1 3
I ν3 1 D

I ).241
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The global bulk energy storage on an arbitrary volume ω̃ of the fibre

bundle reads

ΨI(ε, dI) =

∫
ω̃

ψI(ε, dI)dV , (22)

and according to the assumption (17), the evolution of the stored energy

reads

Ψ̇I

(
ε̇, ḋI; ε, dI

)
=

∫
ω̃

ψ̇IdV =

∫
ω̃

[
∂ψI

∂ε
ε̇+

∂ψ+
I

∂dI

ḋI

]
dV . (23)

The classical constitutive assumption yields the stress expression (1) of the

fibre bundle which, using Eq. (18), reads

σ =
∂ψI

∂ε
= CD

I : ε . (24)

The algorithmic operators of σ(ε, dI) are given in Appendix A.1.1. Using242

equation (7), the derivative
∂ψ+

I

∂dI
can be computed for ḋI > 0 by243

∂ψ+
I

∂dI

=
∂

∂dI

(
1

2
ε : CD

I : ε

)
=

1

2
ε :

∂CD
I

∂DI

∂DI

∂dI

: ε

=
n(1− dI)

n−1

2
ε :

∂CD
I

∂DI

: ε , (25)

where the derivative
∂CD

I

∂DI
is given in Appendix A.1.2.244

The governing equation for dI . The balance of mechanical energy on the

arbitrary volume ω̃ requires that

Ψ̇I(ε̇, ḋI; ε, dI) + Φ(ḋI) = Ṗ (u̇) , (26)

where Ṗ (u̇) is the external power, and u is the displacement field. Equa-

tion (26) needs to be satisfied for all admissible rates u̇ and ḋI. Using the

expressions (12) and (23), Eq. (26) is rewritten as∫
ω̃

[
∂ψI

∂ε
ε̇+

∂ψ+
I

∂dI

ḋI + φ(ḋI, ∇ḋI; dI, ∇dI)

]
dV = Ṗ (u̇) . (27)
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The expression of Ṗ (u̇) is not directly available for the fibres embedded245

in the matrix, and some micro-mechanics assumptions are required to derive246

the equations related to the strain rate ε̇ (and displacement rate u̇) evolu-247

tion in the composite phases; this point will be studied in Section 3.1 when248

performing the homogenisation process.249

Considering only the admissible damage rate ḋI in Eq. (27) allows ex-

tracting the missing governing law. Using Eqs. (11) and (13) leads to∫
ω̃

[
∂ψ+

I

∂dI

ḋI +Gc

(
1

lI
dIḋI + lI∇dI · ∇ḋI

)
− ε

〈
ḋI

〉
−
ḋI

]
dV = 0 . (28)

The application of the Gauss theorem on the term “∇dI · ∇ḋI” of Eq. (28)250

gives251 ∫
ω̃

[
∂ψ+

I

∂dI

ḋI +Gc

(
1

lI
dI − lI∇2dI

)
ḋI − ε

〈
ḋI

〉
−
ḋI

]
dV +

GclI

∫
∂ω̃

∇dI · nḋI dS = 0 , (29)

where n is the outward normal on ∂ω̃. The governing equation of dI can

then be obtained as

dI − l2I∇2dI −
lI
Gc

ε
〈
ḋI

〉
−

= − lI
Gc

∂ψ+
I

∂dI

, (30)

which is the particularised form of Eq. (2). The algorithmic operators of252 (
− lI
Gc

∂ψ+
I

∂dI

)
(ε, dI) are given in Appendix A.1.1.253

2.2. Non-local damage model of the matrix phase254

In this part, the damage model of the matrix is framed in an implicit non-255

local form as suggested in [32, 38, 39]. However to account for the fact that256

the fibre bundles embedded in the matrix govern the direction of the damage257

propagation, the non-local model uses an anisotropic squared characteristic258

lengths matrix as suggested in [14].259
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2.2.1. Non-local damage enhanced J2 plasticity260

The constitutive Eq. (1) is particularised to the case of an elasto-plastic261

material enhanced by a non-local damage model.262

Considering that the strain tensors in the actual and undamaged or ef-

fective phase representations are equivalent [40], the effective or undamaged

stress σ̂(x, t) is defined from the apparent stress σ(x, t) by introducing a

damage parameter 0 ≤ D0(x, t) < 1, such that

σ̂ =
σ

(1−D0)
, (31)

where the subscript “0” of D0(x, t) refers to the matrix phase.263

In the context of J2 elasto-plasticity, and assuming that the plastic flow264

equations can be written in the effective stress space, the von Mises stress265

criterion reads266

f = σ̂eq −R0(p0)− σY0 6 0 , (32)

with the equivalent von Mises effective stress σ̂eq =
√

3
2

dev(σ)
1−D0

: dev(σ)
1−D0

, the267

yield surface f , the initial yield stress σY0 , and the isotropic hardening stress268

R0(p0) > 0, where p0 is the internal variable characterising the irreversible269

behaviour, here the equivalent plastic strain2. The plastic flow rule, see270

Appendix A.2.1, yields the plastic strain tensor εpl. The set of internal271

variables Z0 is thus {p0, ε
pl}.272

In a small deformations context, the reversible (elastic) and irreversible273

(plastic) strain tensors can be added (ε = εel +εpl), allowing to particularise274

2Rigorously, the von Mises stress criterion (32) should be written f (σ̂, r) 6 0, where

r is an internal variable related to the accumulated plastic strain p0 and to the plastic

multiplier λ̇ following ṙ = λ̇ = (1−D0)ṗ0, see the discussion by [41] for details.
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Eq. (1) as275

σ = (1−D0)Cel
0 : (ε− εpl) , (33)

with the fourth-order Hooke tensor of the undamaged elasticity tensor of the276

matrix reading277

Cel
0 = 3κ0Ivol + 2µ0Idev . (34)

In this last equation, κ0 and µ0 are the elastic bulk and shear modulii of the278

undamaged material and Ivol = 1
3
I ⊗ I and Idev = I − Ivol are respectively279

the spherical and deviatoric operators.280

2.2.2. Damage evolution laws281

The damage evolution law (3) is formulated in a non-local setting with as282

a set of non-local internal variables Z̃0, the scalar {p̃0}, which is the non-local283

counterpart of the equivalent plastic strain p0 ∈ Z0.284

One possible damage evolution law is the classical Lemaitre-Chaboche285

law [42]286

Ḋ0 =

(
ψ0(ε)

S0

)s0
χ̇0 when (χ0 − pC0)χ̇0 > 0 , (35)

where S0, s0 and the damage critical plastic strain pC0 are the material287

parameters, and ψ0(ε) is the strain energy release rate computed as288

ψ0(ε) =
1

2
εel : Cel

0 : εel . (36)

Another possible damage law is to saturate the damage evolution with289

D0 =
Dmax0

1− 1

1+exp (s0pC0)

(
1

1 + exp (−s0(χ0 − pC0))
− 1

1 + exp (s0pC0)

)
, (37)
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where Dmax0 is the saturation damage and s0, pC0 are two material parame-290

ters.291

In these equations, χ0(x, t) = maxτ∈[0, t] (p̃0) ensures the irreversibility of292

the damage evolution.293

The algorithmic operators of σ(ε, p̃0) are given in Appendix A.2.2.294

2.2.3. Governing equation for p̃0295

The damage evolution law (3) was particularised in the previous section

with as non-local internal variables Z̃0, the scalar {p̃0}, which is evaluated

from its local counterpart p0 ∈ Z0 using the implicit non-local model [32, 38,

39], which reads

p̃0 −∇ · (c0 · ∇p̃0) = p0 , (38)

where c0 is the matrix of the squared characteristic lengths. Because of the296

presence of the fibre bundles in the matrix, a longer non-local length along the297

UD-fibre direction was suggested in [14] in order to represent the interaction298

with the fibres which “block” the matrix material-point interactions in the299

transverse directions of UD-fibre, whilst “prolonging” it in the longitudinal300

direction.301

The algorithmic operators of p0(ε, p̃0) are given in Appendix A.2.2.302

3. MFH with damage-enhanced matrix and fibres303

In this section we derive a Mean-Field Homogenisation (MFH) frame-304

work accounting for the damage distribution in a Unidirectional (UD) com-305

posite material in a non-local way. First, the key principles of Mean-Field306

Homogenisation (MFH) are recalled in the cases of linear and non-linear307
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two-phase composite materials. The incremental-secant MFH method for308

non-linear composites is then developed in order to account for the dam-309

age evolution in both the fibre bundle and matrix phases. In particular, the310

phase-field like fibre bundle damage model developed in Section 2.1 is used to311

derive the damage evolution of the inclusion phase, whilst the non-local dam-312

age model developed in Section 2.2 is used to derive the damage evolution in313

the matrix phase as previously done in [14, 43].314

3.1. Mori-Tanaka-based MFH for composites315

Homogenisation theories provide the relation between the macro-strains316

εM and macro-stresses σM under the form of a relation between the volume317

averages of the micro-strains εm(x) and micro-stresses σm(x) over a meso-318

scale volume element ω, with319

εM = 〈εm(x)〉ω and σM = 〈σm(x)〉ω , (39)

where 〈f(x)〉ω = 1
Vω

∫
ω
f(x)dV and Vω is the volume of the meso-scale volume320

element ω.321

These relations can be particularised in the context of a two-phase isother-322

mal composite material by separating the volume averages on the matrix323

subdomain ω0 and on the inclusions subdomain ωI following324

εM = v0〈εm〉ω0 + vI〈εm〉ωI
and σM = v0〈σm〉ω0 + vI〈σm〉ωI

, (40)

where the respective volume fractions vi obey to v0 +vI = 1. As a convention,325

the subscript “0” refers to the matrix phase and the subscript “I” to the326

inclusion phase. In what follows, the notations 〈•m〉ωi are replaced by 〈•〉i327

for conciseness.328
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First-statistical moment mean-field homogenisation assumes that the com-329

posite material response can be evaluated by applying the phases constitutive330

behaviour on the average strain 〈ε〉i and stress 〈σ〉i tensors of the phase ωi.331

However, they require further assumptions under the form of a relation be-332

tween the average strain 〈ε〉i tensors of the two phases. A commonly used333

assumption for 2-phase composite materials is the Mori-Tanaka extension of334

the Eshelby single inclusion solution [44] to multiple-inclusion interactions335

since it provides accurate predictions [45]. This assumption is first recalled336

in the linear range and then extended in the non-linear range by defining a337

Linear Comparison Composite (LCC) material.338

3.1.1. Case of linear elasticity339

Assuming linear elasticity for both phases, considering a linear elastic

behaviour that can be applied on the average strain 〈ε〉i and stress 〈σ〉i
tensors of the phase ωi, yields

〈σ〉0 = Cel
0 : 〈ε〉0 and 〈σ〉I = Cel

I : 〈ε〉I , (41)

where Cel
0 is the uniform elasticity tensor of the matrix phase and Cel

I is the340

uniform elasticity tensor of the inclusion phase.341

The relation linking the strain averages per phase can be stated under

the form

〈ε〉I = Bε(I,Cel
0 , Cel

I ) : 〈ε〉0 , (42)

where Bε is the strain concentration tensor whose expression depends on the

chosen micro-mechanics assumptions, on “I”, the geometrical information of

the inclusion phase, and on the elasticity tensors of both phases. In case of
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the Mori-Tanaka (M-T) [46] assumption, this tensor reads

Bε(I,C0, CI) = {I + S(I, C0) : [(C0)−1 : CI − I]}−1 , (43)

where C0 and CI are the considered phase linear operators, i.e. respectively342

Cel
0 and Cel

I in the context of linear elasticity, and where the Eshelby tensor343

S(I, C0) [44] depends on “I”, the geometrical information of the inclusions,344

and on the linear operator C0 of the matrix phase.345

For linear elastic composites, the set of Eqs. (40-42) can be rewritten as

the following macro-scale constitutive relation

σM = Cel
M(I,Cel

0 ,Cel
I , vI) : εM . (44)

3.1.2. Definition of Linear Comparison Composite (LCC)346

MFH can be extended to the non-linear range by considering an incre-347

mental form between the configurations at time tn and at time tn+1. To this348

end, a Linear Comparison Composite (LCC) [23, 24, 27, 47–53] is defined349

during that time increment as a virtual heterogeneous material, whose con-350

stituents linear behaviours, defined through virtual elastic operators, match351

the linearised behaviours of the real composite material constituents at that352

configurations. The LCC definition yields virtual elastic operators CLCC
0 of353

the matrix phase and CLCC
I of the inclusion phase, allowing the MFH equa-354

tions of the linear composite material developed in Section 3.1.1 to be applied355

readily. In particular, the set of Eqs. (40) is thus rewritten as356

∆εM = v0〈∆ε〉0 + vI〈∆ε〉I and σM = v0〈σ〉0 + vI〈σ〉I , (45)

and the relation (42) is rewritten using the averaged incremental strains in

the two phases as

〈∆ε〉I = Bε(I,CLCC
0 , CLCC

I ) : 〈∆ε〉0 . (46)
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These equations are completed by the constitutive behaviour models (1)

of the phases, but written in terms of the average stress and strain tensors

at configuration time tn+1 in the phase ωi, yielding

〈σ〉i (tn+1) = Si
(
〈ε〉i (tn+1) , Z̃i (τ) ;Zi (τ) , τ ∈ [0, t]

)
, (47)

where Zi and Z̃i, the sets of internal and auxiliary variables used to account357

for history-dependent behaviours of phase ωi, are considered as uniform on358

the phase ωi. However, they are not strictly volume average values, which359

explains why the notation 〈•〉i is not used.360

3.2. Incremental-secant MFH with damage model in both phases361

Different assumptions on the linearisation method were made to define362

the LCC. In [27], a virtual unloading step of the composite material was363

first applied, and then followed by a secant loading from the residual states364

reached in both phases. This so-called incremental-secant approach uses the365

loading step in order to define the virtual elastic operators CLCC
0 and CLCC

I366

of the LCC. The virtual unloading allows improving the accuracy in the367

case of non-proportional loading [27] and in the case of damage-enhanced368

elasto-plasticity of the matrix phase since it allows capturing the fibre elastic369

unloading occurring during the matrix softening [43].370

This method is extended in this paper to account for the phase-field371

formulation of the fibre bundle damage model developed in Section 2.1.372

3.2.1. Virtual elastic unloading373

The virtual elastic unloading is defined as an unloading process of the374

composite material at configuration tn in order to reach a residual stress375

26



 

∆𝜀M
unload 

ℂM
el D 

𝜀M 

 

𝜎M 

𝜎M𝑛 

�̂�𝑛 

𝜀M 𝑛
res  

ℂM
el 

(a) Composite material; unloading

 

〈∆𝜀〉𝑖
unload 

𝜎𝑖  

〈𝜎〉𝑖𝑛
 

�̂�𝑖𝑛
 

〈𝜀〉𝑖 𝑛
res 

𝜎𝑖 𝑛
res(𝐷𝑖𝑛

) 

ℂ𝑖
el 

ℂ𝑖
el D 

〈𝜀〉𝑖  

�̂�𝑖 𝑛
res 

(b) Phase ωi; unloading

 

∆𝜀M
unload 

ℂM
el D 

𝜀M 

 

𝜎M 

𝜎M𝑛 
𝜎M𝑛+1 

∆𝜀M
r  

ℂM
SD 

 

�̂�𝑛+1 
�̂�𝑛 

𝜀M 𝑛
res  

ℂM
el 

(c) Composite material; loading

 

〈∆𝜀〉𝑖
unload 

ℂ𝑖
S 

〈𝜀〉𝑖  

𝜎𝑖  

〈𝜎〉𝑖𝑛
 

〈𝜎〉𝑖𝑛+1 

〈∆𝜀〉𝑖
r 

ℂ𝑖
SD 

 

�̂�𝑖𝑛+1
 

�̂�𝑖𝑛 

�̂�𝑖 𝑛
res 

𝜎𝑖 𝑛
res(𝐷𝑖 𝑛+1) 

〈𝜀〉𝑖 𝑛
res 

(d) Phase ωi; loading

Figure 2: Definition of the LCC in the incremental-secant method for damage-enhanced

elasto-plastic composites: (a) Virtual elastic unloading of the composite material with the

elastic operator Cel D
M , the red dotted line corresponds to an undamaged composite material

and is shown for illustration purpose only; (b) Corresponding virtual elastic unloading of

an elasto-plastic phase ωi with the damaged elastic operator Cel D
i , the red line corresponds

to the effective stress-strain curve (or undamaged phase material); (c) Incremental-secant

loading of the composite material from the virtually unloaded state and definition of

the incremental-secant operator CSD
M ; and (d) Corresponding incremental-secant loading

of a damage-enhanced elasto-plastic phase ωi from the residual undamaged stress and

definition of the incremental-secant phase operator CS
i ; the damaged incremental-secant

phase operator CSD
i is obtained in the apparent stress space.
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state σres
M n = 0, where the superscript “res” refers to the virtually unloaded376

state. It is assumed that this unloading process does not involve reverse377

plasticity which can always be stated since the unloading remains virtual.378

The case of damage-enhanced elasto-plasticity is illustrated in Figs. 2(a)379

and 2(b) for respectively the composite material and the phase ωi.380

Since this virtual unloading is elastic, the LCC is defined from the phase381

damaged elastic operators, i.e. Cel D
0 = (1 − D0)Cel

0 following Eq. (33) for382

the matrix phase ω0, and Cel D
I = CD

I (DI) following Eq. (24) for the fibre383

bundle phase ωI. These operators are constant during the virtual unloading384

step since elasticity is assumed to occur at constant damage variables.385

The unloading is obtained from Eq. (44) by setting a macro-stress equal

to zero, yielding

0 = σMn − Cel D
M (I,Cel D

0 ,Cel D
I , vI) : ∆εunload

M , (48)

with386

Cel D
M =

[
vICel D

I : Bε(I,Cel D
0 , Cel D

I ) + v0Cel D
0

]
:[

vIBε(I,Cel D
0 , Cel D

I ) + v0I
]−1

, (49)

the macro-scale damaged elastic operator Cel D
M obtained from the damaged387

elastic operators Cel D
0 and Cel D

I of both phases, see Fig. 2(b).388

The residual states in the phases are deduced from the set of Eqs. (45-389

46). The virtual unloading of the composite material results in residual strain390

tensors 〈ε〉res
in = 〈ε〉in − 〈∆ε〉unload

i and residual stress tensors 〈σ〉res
in in the391

two phases as depicted in Fig. 2(b). The apparent residual stress obtained in392

phase ωi after unloading at configuration n is denoted by σres
in (Din), because393
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the virtual unloading was performed at constant damage value Di = Din ,394

whilst this damage variable will evolve during the reloading increment from395

configuration at time tn to configuration at time tn+1, yielding a new residual396

stress σres
in

(
Din+1

)
. We note that contrarily to this apparent residual stress,397

the effective residual stress σ̂res
in does not depend on the variable Di as it can398

be seen in Fig. 2(b) in which the effective stress-strain curves σ̂(〈ε〉i) are also399

reported. Since the residual stress states are not strictly volume averages,400

we do not use the 〈•〉 notation.401

3.2.2. Incremental-secant loading402

The virtually unloaded state obtained in the previous section is now used403

to define the secant linearisation of the non-linear composite material in the404

time interval [tn, tn+1], which corresponds to defining the LCC from the405

unloaded configuration to the configuration at time tn+1.406

The macro-scale strain increment from the residual state, ∆εr
M, is thus

defined as

εMn+1 = εres
Mn

+ ∆εr
M , (50)

see Fig. 2(c), where εMn+1 is known from the macro-scale BVP, and the

phase strain increments 〈∆ε〉ri are similarly defined as

〈ε〉in+1 = 〈ε〉res
in + 〈∆ε〉ri , (51)

see Fig. 2(d).407

The linear operator CLCC
i in the phase ωi is thus defined as the damaged-

incremental-secant operator CS D
i which is evaluated from the apparent stress

and strain increments obtained from the residuals state as

〈σ〉in+1 − σres
in

(
Din+1

)
= CS D

i : 〈∆ε〉ri , (52)

29



with σres
in

(
Din+1

)
defining the apparent residual stress that would be reached408

at configuration tn with the damage variable reached at configuration tn+1,409

see Fig. 2(d). As previously explained, although the effective residual stress410

σ̂res
in does not depend on the variable Di, the apparent residual stress does,411

i.e. σres
in

(
Din+1

)
is not necessarily equal to σres

in (Din) when the damage Di412

evolves.413

Using these definitions of the linear operators, the set of Eqs. (45-46)

becomes 
∆εr

M = v0〈∆ε〉r0 + vI〈∆ε〉rI and

σMn+1 = v0〈σ〉0n+1 + vI〈σ〉In+1 with

〈∆ε〉rI = Bε(I,CS D
0 , CS D

I ) : 〈∆ε〉r0 ,

(53)

where the average stress 〈σ〉in+1 at configuration time tn+1 in the phase ωi414

results from the constitutive box (47).415

The resolution of the set of equations (53) follows the iterative process416

detailed in Section 3.4.417

3.3. Phases incremental-secant operators418

The expressions of the damaged incremental-secant operators CS D
i are419

now particularised for the phase-field like fibre bundle damage model devel-420

oped in Section 2.1 and considered in the inclusion phase ωI, and for the421

non-local damage model developed in Section 2.2 and considered for the422

matrix phase ω0, as illustrated in Fig. 3. The debonding of fibre-matrix423

interfaces near the fibre breaking point and the debonding caused by trans-424

verse loading on the composites are captured by the damage in the matrix425

naturally.426
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Figure 3: Particularisation of the LCC in the incremental-secant method for the (a)

Damage-enhanced elasto-plastic matrix, with the definition in the effective stress space of

the incremental-secant phase operator CSr
0 from the residual stress and of the incremental-

secant phase operator CS0
0 from the zero-stress state; and for the (b) Damage-enhanced

elastic fibre bundle.

3.3.1. Matrix non-local damage model427

Damaged elastic material operator of the damage-enhanced elasto-plastic ma-

trix material. Using the relation (33) governing the stress evolution in the

matrix phase, the damaged fourth-order elastic operator Cel D
0 is evaluated

from Eq. (34) as

Cel D
0 (D0) = (1−D0)Cel

0 = 3(1−D0)κ0Ivol + 2(1−D0)µ0Idev , (54)

with κ0 and µ0 the elastic bulk and shear modulii of the undamaged matrix428

material.429

Incremental-secant operators of the damage-enhanced elasto-plastic matrix

material. Following Eq. (33), the apparent residual stress reached upon vir-

tual elastic unloading at configuration tn reads

σres
0n (D0n) = (1−D0n) σ̂res

0n , (55)
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where σ̂res
0n is the residual stress in the effective stress state, see Fig. 2(b).

In the effective stress space, the incremental loading from the residual state

to configuration tn+1, see Fig. 2(d), defines the incremental-secant operator

CSr
0 as

σ̂0n+1 − σ̂res
0n = CSr

0 : 〈∆ε〉r0 . (56)

By considering the normal to the plastic flow from the residual state, see

Appendix A.2.1, the incremental-secant operator CSr
0 is isotropic and can

thus be written

CSr
0 = 3κ0Ivol + 2µSr

0 Idev , (57)

where κ0 is the elastic bulk modulus of the undamaged matrix material and

µSr
0 is the secant shear modulus which reads

µSr
0 =

1

3

√
3
2
dev

(
σ̂0n+1 − σ̂res

0n

)
: dev

(
σ̂0n+1 − σ̂res

0n

)√
2
3
dev (〈∆ε〉r0) : dev (〈∆ε〉r0)

. (58)

Because only first-statistical-moments are considered in this formulation,

the incremental-secant method was shown to be over-stiff in its prediction

[27, 31] and its predictive capabilities were improved in the case of hard

inclusions when the residual stress in the matrix phase, σ̂res
0n , was cancelled

when defining the incremental-secant operator of the LCC [27, 31], see Fig.

3(a). Therefore, the residual of the matrix phase is removed in Eq. (56),

which becomes

σ̂0n+1 = CS0
0 : 〈∆ε〉r0 , (59)

where

CS0
0 = 3κ0Ivol + 2µS0

0 Idev , (60)
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and where the increment shear modulus (58) is rewritten as

µS0
0 =

1

3

√
3
2
dev

(
σ̂0n+1

)
: dev

(
σ̂0n+1

)√
2
3
dev (〈∆ε〉r0) : dev (〈∆ε〉r0)

. (61)

The incremental-secant operator is defined in the general form as

CS
0 = 3κ0Ivol + 2µS

0Idev , (62)

with µS
0 computed from either (58) or (61) depending whether the residual430

is kept or not in the matrix phase.431

Finally, in the apparent stress space, the incremental-secant damaged

operator CS D
0 is defined through Eq. (52) using the relation σres

0n

(
D0n+1

)
=(

1−D0n+1

)
σ̂res

0n , Eq. (33) and Eq. (56), which allow rewriting Eq. (52) as

CS D
0 : 〈∆ε〉r0 = (1−D0n+1)

[
σ̂0n+1 − σ̂res

0n

]
= (1−D0n+1)CS

0 : 〈∆ε〉r0 . (63)

As a result, the damaged incremental-secant operator reads

CS D
0 = 3(1−D0n+1)κ0Ivol + 2(1−D0n+1)µ

S
0Idev = 3κD

0 Ivol + 2µS D
0 Idev , (64)

with κD
0 = (1−D0n+1)κ0 and µS D

0 = (1−D0n+1)µ
S
0.432

3.3.2. Embedded fibre bundle damage model433

The stress tensor of the damaged elastic fibre bundle results from Eq.

(24) and reads

〈σ〉I = CD
I (DI) : 〈ε〉I , (65)

with the damaged elastic operator (21).434
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Damaged elastic material operator of the fibre bundle material. The fibre

bundle damaged fourth-order elastic operator Cel D
I is directly evaluated from

Eqs. (21) and (24) as

Cel D
I (DI) = CD

I (DI) , (66)

with DI = DIn during the elastic unloading at configuration tn.435

Incremental-secant operators of the damage-enhanced fibre bundle material.

In the absence of plastic-flow in the fibre bundle, the residual stress tensors

from the virtual elastic-unloading at configuration tn are defined following

Eq. (65) for the two damage configurations

σres
In (DIn) = CD

I (DIn) : 〈ε〉res
In and σres

In

(
DIn+1

)
= CD

I (DIn+1) : 〈ε〉res
In ,

(67)

as illustrated in Fig. 3(b).436

Equation (52) defines the fourth-order incremental-secant operator CS D
I437

of the fibre bundle, with438

CS D
I : 〈∆ε〉rI = 〈σ〉In+1 − σres

In

(
DIn+1

)
= CD

I

(
DIn+1

)
:
[
〈ε〉In+1 − 〈ε〉res

In

]
= CD

I

(
DIn+1

)
: 〈∆ε〉rI , (68)

and

CS D
I (DI) = Cel D

I (DI) = CD
I (DI) , (69)

whereDI = DIn+1 is the damage reached during the reloading to configuration439

tn+1, which is evaluated through Eqs. (7) and (9).440
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3.4. Resolution of the MFH equations441

3.4.1. Linearisation of the MFH equations442

Combining the first and last equations of the set (53) and using the M-T

assumption (43) yield

∆εr
M = v0

[
I + S(I, CS D

0 ) : [(CS D
0 )−1 : CS D

I − I]
]

: 〈∆ε〉rI + vI〈∆ε〉rI , (70)

which is satisfied for F (〈∆ε〉rI, 〈∆ε〉r0; ∆εr
M, p̃0, dI) = 0 with

F = CS D
0 :

[
〈∆ε〉rI −

1

v0

S−1(I, CS D
0 ) : (〈∆ε〉rI −∆εr

M)

]
− CS D

I : 〈∆ε〉rI . (71)

The residue F (〈∆ε〉rI, 〈∆ε〉r0; ∆εr
M, p̃0, dI) = 0 can be differentiated as443

δF =
∂F

∂〈∆ε〉rI
: δ〈∆ε〉rI +

∂F

∂〈∆ε〉r0
:
∂〈∆ε〉r0
∂〈∆ε〉rI

δ〈∆ε〉rI +

∂F

∂∆εr
M

: δ∆εr
M +

∂F

∂p̃0

δp̃0 +
∂F

∂dI

δdI . (72)

Because of the first equation of the set (53), at constant ∆εr
M, p̃0, dI, one

has
∂〈∆ε〉r0
∂〈∆ε〉rI

= − vI

v0

I , (73)

and defining the Jacobian

J =
∂F

〈∆ε〉rI
− vI

v0

∂F

〈∆ε〉r0
, (74)

Eq. (72) is rewritten as

δF = J : δ〈∆ε〉rI +
∂F

∂∆εr
M

: δ∆εr
M +

∂F

∂p̃0

: δp̃0 +
∂F

∂dI

: δdI . (75)

The explicit expressions of the derivatives are reported in Appendix B.1.444
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3.4.2. MFH iterative resolution445

For given kinematics variables ∆εr
M, p̃0 and dI resulting from the finite

element resolution, the resolution of the set of MFH equations restated by

Eq. (71) follows an iterative Newton-Raphson process in the unknown 〈∆ε〉rI,

with the linearisation (75) rewritten as

δF = J : δ〈∆ε〉rI . (76)

3.5. Algorithmic operators of the homogenised behaviour446

To be complete, we present the algorithmic operators of the homogenised447

behaviour with respect to the kinematics variables ∆εr
M, p̃0 and dI. Indeed,448

in this work the damage evolution in the matrix and fibre phases are governed449

respectively by a non-local and a phase-field forms, respectively Eqs. (38)450

and (30), and both p̃0 and dI result from the resolution of the finite elements451

discretisation as detailed in the next Section.452

First, once the MFH equations are solved for given kinematics variables453

∆εr
M, p̃0 and dI, their effects on the phases response can be evaluated from Eq.454

(75) by considering that at equilibrium δF = 0 and ∆εr
M = vI〈∆ε〉rI+v0〈∆ε〉r0.455

The effect of the macro-scale strain tensor ∆εr
M on the phases response reads456

∂〈∆ε〉rI
∂∆εr

M

= −J−1 :
∂F

∂∆εr
M

, and
∂〈∆ε〉r0
∂∆εr

M

=
1

v0

I +
vI

v0

J−1 :
∂F

∂∆εr
M

. (77)

Similarly, the effects of the non-local strain and auxiliary damage variables457

read458

∂〈∆ε〉rI
∂p̃0

= −J−1 :
∂F

∂p̃0

,
∂〈∆ε〉r0
∂p̃0

=
vI

v0

J−1 :
∂F

∂p̃0

, (78)

∂〈∆ε〉rI
∂dI

= −J−1 :
∂F

∂dI

, and
∂〈∆ε〉r0
∂dI

=
vI

v0

J−1 :
∂F

∂dI

. (79)
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Then, the linearisation of the homogenised stress tensor given by Eq. (53)459

can be evaluated460

δσM =

(
vICεε

I :
∂〈ε〉rI
∂εr

M

+ v0Cεε
0 :

∂〈ε〉r0
∂εr

M

)
: δεr

M +(
vICεε

I :
∂〈ε〉rI
∂dI

+ v0Cεε
0 :

∂〈ε〉r0
∂dI

+ vIC
εd
I

)
δdI +(

vICεε
I :

∂〈ε〉rI
∂p̃0

+ v0Cεε
0 :

∂〈ε〉r0
∂p̃0

+ v0C
εp̃
0

)
δp̃0 , (80)

where the fibre bundle material operators Cεε
I = ∂〈σ〉I

∂〈ε〉I
and Cεd

I = ∂〈σ〉I
∂dI

are461

given in Appendix A.1.1, and the matrix material operators Cεε
0 = ∂〈σ〉0

∂〈ε〉0 and462

Cεp̃
0 = ∂〈σ〉0

∂p̃0
are given in Appendix A.2.2. The derivatives of the phases463

average strain tensors result from the MFH resolution and are given in Eqs.464

(77-79). Finally, the different terms of Eq. (80) are denoted as465

Cεε
M = vICεε

I :
∂〈ε〉rI
∂εr

M

+ v0Cεε
0 :

∂〈ε〉r0
∂εr

M

, (81)

Cεd
M = vICεε

I :
∂〈ε〉rI
∂dI

+ v0Cεε
0 :

∂〈ε〉r0
∂dI

+ vIC
εd
I , and (82)

Cεp̃
M = vICεε

I :
∂〈ε〉rI
∂p̃0

+ v0Cεε
0 :

∂〈ε〉r0
∂p̃0

+ v0C
εp̃
0 , (83)

allowing to write down δσM = Cεε
M : δεr

M +Cεd
M δdI +Cεp̃

M δp̃0.466

In order to solve the coupled system of equations, the derivatives of the467

different terms involved in Eq. (30) have also to be evaluated at the level of468

the composite material, yielding469

Cψ ε
M =

∂
(
− lI
Gc

∂ψ+
I

∂dI

)
∂εr

M

= Cψ ε
I :

∂〈ε〉rI
∂εr

M

, (84)

Cψ d
M =

d
(
− lI
Gc

∂ψ+
I

∂dI

)
ddI

= Cψ ε
I :

∂〈ε〉rI
∂dI

+ Cψ d
I , and (85)

Cψ p̃
M =

∂
(
− lI
Gc

∂ψ+
I

∂dI

)
∂p̃0

= Cψ ε
I :

∂〈ε〉rI
∂p̃0

, (86)
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where Cψ ε
I =

∂

(
− lI
Gc

∂ψ+
I

∂dI

)
∂〈ε〉I

and Cψ d
I =

∂

(
− lI
Gc

∂ψ+
I

∂dI

)
∂dI

are given in Appendix470

A.1.1.471

Finally, the terms of the coupled system (38) also have to be linearised472

at the composite level, yielding473

Cpε
M =

∂p0

∂εr
M

= Cpε
0 :

∂〈ε〉r0
∂εr

M

, (87)

Cpd
M =

∂p0

∂dI

= Cpε
0 :

∂〈ε〉r0
∂dI

, and (88)

Cpp̃
M =

dp0

dp̃0

=
∂p0

∂〈ε〉r0
:
∂〈ε〉r0
∂p̃0

+
∂p0

∂p̃0

= Cpε
0 :

∂〈ε〉r0
∂p̃0

+ Cpp̃
0 , (89)

where Cpε
0 = ∂p0

∂〈ε〉0 and Cpp̃
0 = ∂p0

∂p̃0
are given in Appendix A.2.2.474

4. Finite element discretisation of the phase-field non-local damage475

MFH476

In this section, starting from the strong form of the linear momentum477

conservation equation at the composite level completed by the phase-field478

and non-local damage auxiliary equations, we derive the finite element dis-479

cretisation of the homogenised behaviour.480

4.1. Strong form481

The problem is limited to small deformations and static analyses. The482

governing equations at the homogenised behaviour level read483

∇ · σM + f = 0 for composite , (90)

dI −∇ · (cI · ∇dI)−
lI
Gc

ε
〈
ḋI

〉
−

= − lI
Gc

ψ+
I,dI

for fibre bundle , (91)

p̃0 −∇ · (c0 · ∇p̃0) = p0 , for matrix . (92)
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The first equation corresponds to the linear momentum equilibrium equation484

of the composite material, with f the applied volume force vector. The sec-485

ond equation is the phase-field formulation (30), which refers to the damage486

evolution of the fibre bundle phase in an average sense. Neither the auxiliary487

variable dI nor the damage variable DI correspond to the phase volume aver-488

age, but they are constructed as uniform on the phase for a given macro-scale489

material point. The squared characteristic lengths matrix cI corresponds to490

the matrix diag(0, 0, l2I ), with the last entry referring to the longitudinal di-491

rection of the fibres rotated from the material principal coordinates to the492

current fibre bundle direction. Finally, the third equation results from the493

non-local damage formulation (38), which refers to the damage evolution in494

the matrix phase. In particular, p̃0 and p0 are homogenised representations,495

but not volume average values, of respectively the non-local and local ac-496

cumulated plastic strain of the matrix material, and c0 is a rotation of the497

squared characteristic lengths matrix diag(l210, l
2
20, l

2
30). In this last expres-498

sion written in the material principal coordinates, the index ’3’ refers to the499

longitudinal direction of the fibre bundles, while the two other indices re-500

fer to the transverse direction characterised by smaller characteristic lengths501

because the damage propagation is blocked to the presence of the other fibres.502

Standard Neumann boundary conditions

σ · n = T , on ΓT , (93)

with the surface traction T and Dirichlet boundary conditions on Γu are503

applied to the first set of partial differential equations (PDE) (90). For the504

phase-field formulations (91) and implicit gradient formulation (92), homo-505
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geneous Neumann boundary conditions are applied:506

(cI · ∇dI) · n = 0 , on ∂Ω , and (94)

(c0 · ∇p̃0) · n = 0 on ∂Ω . (95)

4.2. Weak formulation507

The weak form of the set of Eqs. (90-92) is established using suitable508

weight functions defined in the n+ 2-dimensional spaces, with n the spatial509

dimension:510

wu ∈ [C0]n The weight function of the displacement field,

wd ∈ [C0] The weight function of the auxiliary damage field of fibre bundle,

wp̃ ∈ [C0] The weight function of non-local accumulated

plastic strain field of the matrix phase. (96)

Multiplying the weight functions respectively with their corresponding PDE511

(90, 91, 92), integrating the results over the domain Ω and applying the512

divergence theorem along with the boundary conditions (93-95) allows stating513

the weak form as finding the fields (u, dI, p̃0), with u the displacement field,514

such that515 ∫
Ω

[∇wu]
T : σMdV −

∫
ΓT

wu · TdS =

∫
Ω

wu · fdV , (97)∫
Ω

(
wddI +∇wd · cI · ∇dI − wd

lI
Gc

ε
〈
ḋI

〉
−

)
dV = −

∫
Ω

wd
lI
Gc

ψ+
I,dI

(u)dV ,

(98)∫
Ω

(wp̃p̃0 +∇wp̃ · c0 · ∇p̃0) dV =

∫
Ω

wp̃p0dV , (99)

for all kinematically admissible weight functions (wu, wd, wp̃).516
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Anticipating on the Newton Raphson resolution of the upcoming finite-517

element resolution, the set of Eqs. (97-99) is linearised at iteration i of the518

configurations increment [tn, tn+1] as519 ∫
Ω

[∇wu]
T : δσi+1

Mn+1
dV =∫

Ω

wu · fn+1dV +

∫
ΓT

wu · Tn+1dS −
∫

Ω

[∇wu]
T : σiMn+1

dV , (100)

for the first equation; substituting ḋI by dI − dIn since the purpose of the520

term is solely to ensure irreversibility of the damaging process, as521 ∫
Ω

wdδ

[
lI
Gc

ψ+ i+1
I,dI

]
dV +

∫
Ω

[wdδd
i+1
In+1 +∇wd · cI · ∇δdi+1

In+1dV

−
∫

Ω

wd
lI
Gc

ε
〈
sign(diIn+1 − dIn)

〉
− δd

i+1
In+1]dV = −

∫
Ω

wd
lI
Gc

ψ+ i
I,dI

dV −∫
Ω

[wdd
i
In+1 +∇wd · cI · ∇diIn+1 − wd

lI
Gc

ε
〈
diIn+1 − dIn

〉
−]dV , (101)

for the second equation where sign(•) is the sign function, and522

−
∫

Ω

wp̃δp
i+1
0n+1dV +

∫
Ω

(wp̃δp̃
i+1
0n+1 +∇wp̃ · c0 · ∇δp̃i+1

0n+1)dV =∫
Ω

wp̃p
i
0n+1dV −

∫
Ω

(wp̃p̃
i
0n+1 +∇wp̃ · c0 · ∇p̃i0n+1)dV , (102)

for the third equation.523

4.3. Finite element implementation - Discretisation and incremental-iterative524

formulation525

The domain Ω is discretized into elements Ωe, and the displacement field

u, the auxiliary damage field dI, and the non-local accumulated plastic stain

field p̃0 are interpolated in each element using their respective shape function

matrices Nu, Nd and Np̃ as follows:

u = NuU , dI = Ndd and p̃0 = Np̃p̃ , (103)
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where the vectors U , p̃ and d contain the assembled nodal values of the

displacement field, of the auxiliary damage field, and of the non-local accu-

mulated plastic strain field, respectively. The fields gradients directly arise

from

εM = BuU , ∇dI = Bdd and ∇p̃0 = Bp̃p̃ , (104)

where Bu, Bd, and Bp̃ are the matrix gradient operators of the displacement

field, auxiliary damage field, and non-local accumulated plastic strain field,

respectively. Similarly, the weight functions are interpolated using the same

shape functions, yielding

wu = NuδU , wd = Ndδd and wp̃ = Np̃δp̃ , (105)

where δU , δd and δp̃ are arbitrary vectors fulfilling the essential boundary526

conditions.527

Therefore, using Eqs. (103-105), and the arbitrary nature of δU , δd and528

δp̃, the linearised weak form (100-102) at iteration i between the configura-529

tions of the time interval [tn, tn+1] leads to the residual vector R with530 
Ki

uu Ki
ud Ki

up̃

Ki
du Ki

dd +Ki
ε Ki

dp̃

Ki
p̃u Ki

p̃d Ki
p̃p̃



δU

δd

δp̃

 =


Fext − F i

int

F i
ψ − F i

d + F i
ε

F i
p − F i

p̃

 = −R . (106)

The force vectors are easily obtained from the right hand sides of the set531

of Eqs. (100-102), with for the mechanical part532

Fext =

∫
Ω

NT
u fdV +

∫
ΓT

NT
u TdS , and F i

int =

∫
Ω

BT
uσ

i
MdV , (107)
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with for the auxiliary fibre bundle damage part533

F i
ψ = −

∫
Ω

NT
d

lI
Gc

ψ+ i
I,dI

dV , F i
d =

∫
Ω

(
NT

d Nd +BT
d · cI ·Bd

)
didV , and

F i
ε = −

∫
Ω

NT
d

lI
Gc

ε
〈
din+1 − dn

〉
− dV , (108)

and with for the non-local accumulated plastic strain part534

F i
p =

∫
Ω

NT
p̃ p

i
0dV , and F i

p̃ =

∫
Ω

(NT
p̃ Np̃ +BT

p̃ · c0 ·Bp̃)p̃
idV . (109)

The stiffness sub-matrices defined in Eq. (106) are obtained from the left535

hand side of the set of Eqs. (100-102). Starting from Eq. (100) with the536

linearisation (80) yields the sub-matrices537

Ki
uu =

∫
Ω

BT
uC

εεi

M BudV , (110)

Ki
ud =

∫
Ω

BT
uC

εdi

M NddV , (111)

Ki
up̃ =

∫
Ω

BT
uC

εp̃i

M Np̃dV , (112)

where Cεε
M is the matrix representation of the derivative tensors Cεε

M (81), Cεd
538

results from Eq. (82), and Cεp̃
M results from Eq. (83). The left hand side of539

Eq. (101) yields the stiffness sub-matrices540

Ki
du = −

∫
Ω

NT
d C

ψεi

M BudV , (113)

Ki
dd =

∫
Ω

[
(1− Cψdi

M )NT
d Nd +BT

d · cI ·Bd

]
dV , (114)

Ki
ε = −

∫
Ω

[
lI
Gc

ε
〈
sign(din+1 − dn)

〉
−

]
NT

d NddV , and (115)

Ki
dp̃ = −

∫
Ω

Cψp̃i

M NT
d Np̃dV , (116)

where Cψε
M results from Eq. (84), Cψd

M results from Eq. (85), and Cψp̃
M results541

from Eq. (86). Finally, using Eqs. (87-89) in Eq. (102) yields the stiffness542
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sub-matrices543

Ki
p̃u = −

∫
Ω

NT
p̃ C

pεi

M BudV , (117)

Ki
p̃d = −

∫
Ω

Cpdi

M NT
p̃ NddV , and (118)

Ki
p̃p̃ =

∫
Ω

[
(1− Cpp̃i

M )NT
p̃ Np̃ +BT

p̃ · c0 ·Bp̃

]
dV , (119)

where Cpε
M results from Eq. (87), Cpd

M from Eq. (88), and Cpp̃
M results from544

Eq. (89).545

Figure 4 presents the flowchart of the finite element resolution of the546

phase-field non-local damage multiscale formulation. At the higher scale,547

the weak form (97-99) is integrated in time using the finite-element dis-548

cretisation (103-105). For each time increment [tn, tn+1], the solution at549

configuration tn+1 is obtained from the solution at configuration tn through550

Newton-Raphson iterations using the system (106). In this system, the force551

vectors (107-109) and the stiffness contributions (110-119) are obtained by552

assembling the homogenised stress tensor σM and phases auxiliary equations553

driving forces ψ+
I,dI

and p0, and the material tensors Cεε
M, Cεd, Cεp̃

M , Cψε
M , Cψd

M ,554

Cψp̃
M , Cpε

M , Cpd
M and Cpp̃

M . These terms arise from the resolution of the MFH555

enhanced with damage in both phases as described in Section 3. Finally, dur-556

ing the MFH resolution, the average stress 〈σ〉in+1 , auxiliary equation driving557

force, and material operators in the phases ωi are obtained from the consti-558

tutive laws described in Section 2.1 for the inclusion phase and in Section559

2.2 for the matrix phase.560
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Constitutive 

laws, Section 2 

Material tensors ℂM
𝜀𝜀, 𝑪M

𝜀𝑑, 𝑪M
𝜀𝑝  ,  𝑪M

𝜓𝜀
, 𝐶M

𝜓𝑑
, 𝐶M

𝜓𝑝 
, 𝑪M

𝑝𝜀, 𝐶M
𝑝𝑑, 𝐶M

𝑝𝑝 , Eqs. (81-89) 

Initialise d.o.f. 𝑼𝑛+1, 𝒅𝑛+1 = 𝒅𝑛, 𝒑 𝑛+1 = 𝒑 𝑛 & increments 𝛿𝑼 = 𝟎, 𝛿𝒅 = 𝟎, 𝛿𝒑 = 𝟎 
 

Integration point k: 

 Extract fields, Eq. (103): 𝑑I𝑛+1
, 𝑝 0𝑛+1

,  

 Extract fields gradient, Eq. (104): 𝜺M𝑛+1
, ∇𝑑I𝑛+1

, ∇𝑝 0𝑛+1
 

 Internal variables at time 𝑡𝑛: 𝒁𝑛 

Yes 

𝛿 Δ𝜺 I𝑛+1

r = −𝕁−1 𝐅 & 𝛿 Δ𝜺 0𝑛+1

r = −
𝑣𝐼

𝑣0
𝛿 Δ𝜺 I𝑛+1

r  

Update d.o.f.: 𝑼𝑛+1 ← 𝑼𝑛+1 + 𝛿𝑼, 𝒅𝑛+1 ← 𝒅𝑛+1 + 𝛿𝒅, 𝒑 𝑛+1 ← 𝒑 𝑛+1 + 𝛿𝒑  

Apply virtual elastic unloading, Section 3.2.1, with outputs: 

 Composite: residual strain 𝜺M𝑛

res & increment Δ𝜺M𝑛+1

r , Eq. (50) 

 Phases: residual strains   𝜺 I𝑛
res,  𝜺 0𝑛

res  

Initialise increments  Δ𝜺 I𝑛+1

r = Δ𝜺M𝑛+1

r ,  Δ𝜺 0𝑛+1

r = Δ𝜺M𝑛+1

r  

Initialise variation 𝛿 Δ𝜺 I𝑛+1

r = 0, 𝛿 Δ𝜺 0𝑛+1

r = 0 

Evaluate residual 𝐅, Eq. (71), and derivatives, Eq. (75): 

Update phase increments:  Δ𝜺 𝑖𝑛+1

r ←  Δ𝜺 𝑖𝑛+1

r + 𝛿 Δ𝜺 𝑖𝑛+1

r   

No 

𝑘 ← 𝑘 +1 All integration points spanned 

Yes 

No 

Evaluate weak form residual 𝑹, Eqs. (107-109), and stiffness matrix 𝑲, Eqs. (110-119) 

Yes 

No 
 𝛿𝑼𝑻 𝛿𝒅𝑻 𝛿𝒑 𝑇 𝑇 = −𝑲−1𝑹 

𝑡𝑛 ← 𝑡𝑛+1, 𝑼𝑛 ← 𝑼𝑛+1,  𝒅𝑛 ← 𝒅𝑛+1, 𝒑 𝑛 ← 𝒑 𝑛+1 & 𝒁𝑛 ← 𝒁𝑛+1 

 

 𝐅  <tol 

 𝑹  <tol 

Phase 𝜔𝑖 constitutive law, Section 2, outputs:  

 Stress  𝝈 𝑖𝑛+1
  

 Internal variable 𝒁𝑖𝑛+1
, including 𝐷I𝑛+1

, 𝑝0𝑛+1
 

 Secant operators ℂ𝑖
S, ℂ𝑖

SD  & derivatives  

Strains  𝜺 𝑖𝑛+1
=  𝜺 𝑖𝑛

res +  Δ𝜺 𝑖𝑛+1

r , Eq. (51) 

Time increment [𝑡𝑛, 𝑡𝑛+1 : 

 Nodal d.o.f. at time 𝑡𝑛: Displacement vector 𝑼𝑛, nodal auxiliary vector 𝒅𝑛, nodal non-local vector 𝒑 𝑛 

 Sets of integration points internal variables 𝒁𝑛 at time 𝑡𝑛:  
o Composite: average strain tensor 𝜺M𝑛

, average stress tensor 𝝈M𝑛
 

o Inclusion phase: average strain tensor  𝜺 I𝑛, average stress tensor  𝝈 I𝑛, damage 𝐷I𝑛  

o Matrix phase: average strain tensor  𝜺 0𝑛
, average stress tensor  𝝈 0𝑛

, plastic strain tensor 

𝜺𝑛
pl

, equivalent plastic strain 𝑝0, maximum non-local strain  𝜒0𝑛
, damage 𝐷0𝑛

 

 

Figure 4: Resolution of the phase-field non-local damage multiscale formulation.
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5. Identification of material properties and model parameters561

In this section, we first summarise the model parameters and the meth-562

ods that are used for their identification. We then consider the case of AS4563

carbon fibre and 8552 epoxy matrix as a material system. We identify the564

material parameters of both the fibre bundle and matrix phases from manu-565

facturer data sheets and literature data. The non-local damage parameters566

are evaluated in order to recover the critical energy release of the matrix567

material. By considering uni-axial tension tests, we evaluate the phase-field568

model parameters which allow recovering the right amount of dissipated en-569

ergy for the failure of a ply loaded along its longitudinal direction.570

5.1. Parameters summary571

Table 1 summarises the properties required by the finite element imple-572

mentation of the MFH with a damage model embedded in both phases.573

First the constituents, both fibre and matrix phases, material behaviours574

have to be identified. For the fibre, in this work we assume a transverse575

isotropic behaviour and only the elasticity tensor Cel
I , Eq. (16), has to be576

given. It can be obtained from manufacturer data sheets of micro-mechanical577

tests performed on the fibres, e.g. [54]. The matrix material properties char-578

acterising the linear response, i.e. Cel
0 of Eq. (34), and non-linear linear579

behaviour, i.e. matrix hardening law σY0 +R0(p0) in Eq. (32) and the dam-580

age law evolution Ḋ0 (ε0, χ0), Eq. (35) or (37), can be deduced using the581

manufacturer elasticity modulus and tensile strength. This allows tuning582

the hardening and damage evolution laws in order to recover the reported583

strength, as it will be done here below. However, on the one hand, because the584
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Table 1: Model material properties to be identified.

Nature Property Method

Constituent Fibre elastic tensor Cel
I , Eq. (16). Manufacturer data-sheet or

micro-scale experiments.

Constituent Matrix elasticity tensor Cel
0 , Eq.

(34).

Manufacturer data-sheet or resin

experiments.

Constituent Matrix hardening law σY0 +

R0(p0), Eq. (32); Damage law

evolution Ḋ0 (ε0, χ0), Eq. (35)

or (37).

Manufacturer strength and criti-

cal energy release rate, or inverse

analysis from coupons.

Embedded

fibre-bundle

Tensile energy release rate

of fibre-bundle breaking and

debonding Gc, Eq. (30).

Experimental measurements.

Embedded

fibre-bundle

Bundle damage evolution param-

eters n and lI, Eqs. (7) and (30).

From stress build-up profile

(4) and/or uni-axial ply tensile

strength σc.

Matrix crack-

ing direction

Matrix squared lengths tensor

c0, Eq. (38).

From transverse critical energy

release rate & Constrained ma-

trix cracking direction.

matrix non-linear behaviour changes in a composite as compared to its neat585

bulk behaviour it is possible to use an inverse analysis from composite coupon586

experiments [36], and, on the other hand, rigorously the model parameters587

should satisfy both matrix strength and critical energy release rate and this588

requires to identify the transverse non-local lengths, i.e.
√
c01 =

√
c02 defin-589

ing the matrix squared lengths tensor c0, Eq. (38), and the damage model590
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altogether [36].591

The critical energy Gc, Eq. (30), related to the embedded fibre bun-592

dle tensile breaking and debonding can be measured from Compact Tension593

Specimen [55] or Double Edge Notched Test specimen [56]. Indeed, when the594

fibre bundles are embedded in a matrix, the fracture of fibre is accompanied595

with fibre/matrix interface debonding, matrix micro-cracking, and finally by596

the final fibre pull-out from the matrix. Therefore, a much higher energy is597

dissipated during the fibre breaking process in composites than that of neat598

fibre breaking and should thus be measured accordingly. The embedded fibre599

bundle damage evolution is defined by the two damage evolution parameters600

n and lI, Eqs. (7) and (30). As discussed here below, a relation between601

them can be derived from the stress build-up profile, see Fig. 1 and Eq. (4),602

whilst a second relation results from the uni-axial ply tensile strength σc,603

which can be experimentally measured or is given by the manufacturer data604

sheets.605

Finally, the matrix squared lengths tensor c0, Eq. (38), is defined in606

order to represent the anisotropic nature of the matrix cracking in a UD ply.607

Whilst the transverse characteristic lengths
√
c01 =

√
c02 can be chosen in608

order to recover the critical energy release rate of transverse failure [36], see609

Appendix C, the third characteristic length
√
c03 is taken large enough to610

constrain matrix cracking along the fibre direction.611

5.2. Case of AS4 carbon fibre and 8552 epoxy matrix612

5.2.1. Phases material properties613

The studied composite material is a UD-carbon fibre reinforced epoxy.614

The AS4 carbon fibre and 8552 epoxy components are used as reference615
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materials and their mechanical properties are collected from product data616

sheet of Hexcel [57, 58] and completed with data from the literature [4, 54, 59].617

Table 2: Material properties of the embedded AS4 carbon fibres.

Property Value

Long. Young’s modulus E3
I [GPa] 231.0 [54]

Trans. Young’s modulus E1
I [GPa] 12.99 [54]

Trans. Poisson’s ratio ν12
I [-] 0.46 [54]

Long.-Trans. Poisson’s ratio ν31
I [-] 0.3 [54]

Trans. shear modulus µ12
I [GPa] 4.45 [54]

Long.-Trans. shear modulus µ31
I [GPa] 11.3 [54]

Tensile Strength Xt
I [MPa] 4413 [58]

Carbon fibre radius r [µm] 3.55 [58]

Energy release rate of fibres GcI [J/m2] 52 [54]

Carbon fibre bundles. The phase-field model of the fibre bundle material618

phase was presented in Section 2.1. The continuous PAN based carbon fi-619

bres AS4 are modelled using a transverse isotropic linear elastic constitutive620

model, see Eq. (16). The typical mechanical elastic properties of PAN based621

high strain carbon fibres are presented in Table 2.622

When it comes to the properties related to the tensile failure, the mea-623

sured critical energy release rate was GcI = 52 N/m for AS4 fibre in reference624

[54]. However, as said, when the fibre bundles are embedded in a matrix,625

the energy dissipated during the fibre breaking process in composites is not626

the one of neat fibre breaking and a higher critical energy release rate was627

reported in [4] for fibres of a composite ply and is used in this work, see Table628

5.629
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Epoxy matrix. The non-local damage model was presented in Section 2.2.1.630

It is assumed that the epoxy matrix follows an elasto-plastic behaviour model631

and its hardening law defining the yield surface (32) reads632

R0(p0) = h0 (1− exp(−m0p0)) , (120)

where p0 is the accumulated plastic strain of the material, and where h0 and633

m0 are the material parameters. Furthermore, either a Lemaitre [42] scalar634

damage model (35) or a saturated damage law (37) can be adopted.635

The elastic properties of the cured 8552 epoxy are taken from the manu-636

facturer data sheet. By lack of elasto-plastic data, the approximated elasto-637

plastic and damage parameters are adopted to match the tensile strength638

Xt
0 of 121 MPa reported for 8552 epoxy, for both damage models. All the639

necessary material parameters are reported in Table 3, in which the char-640

acteristic length of the non-local model is evaluated in order to recover the641

failure critical energy release rate of the bulk matrix Gc0 , see Appendix C.642

This length actually depends on the damage model used. Besides, when us-643

ing the matrix model in the damage enhanced MFH, the non-local lengths644

have to be reevaluated, on the one hand, in order to recover the transverse645

intra-laminar failure critical energy release rate GcT , see Appendix C, with646

the final values reported in Table 5, and, on the other hand, in order to have647

an anisotropic behaviour with the length along the fibres being larger.648

5.2.2. Determination of phase-field parameters of the fibre bundle phase649

In this section, the two parameters n and lI of phase-field model used650

in Eqs. (7) and (30) are determined under two constraints arising from the651

mechanical properties of fibre and matrix.652
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Table 3: Material properties of the matrix.

Property Value

Young’s modulus E0 [GPa] 4.668 [57]

Poisson’s ratio ν0 [-] 0.39

Initial yield stress σY0 [MPa] 32.0

Hardening modulus h0 [MPa] 300.0

Hardening exponent m0 [-] 100.0

Bulk matrix Tensile strength Xt
0 [MPa] 121 [57]

Bulk matrix critical energy release rate of Gc0 [J/m2] ' 100 [59]

Lemaitre damage critical energy release S0 [MPa] 0.21

Lemaitre damage exponent s0 [-] 2.0

Lemaitre damage critical plastic strain pC0 [-] 0.0

Characteristic lengths bulk matrix with Lemaitre model 30× 10−3

√
c01 =

√
c02 =

√
c03 [mm]

Saturated damage threshold Dmax0 [-] 0.99

Saturated damage exponent s0 [-] 700

Saturated damage plastic strain threshold pC0 [-] 0.007

Characteristic lengths bulk matrix with saturated model 20× 10−3

√
c01 =

√
c02 =

√
c03 [mm]

The first constraint is determined based on the limited maximum shear

stress τmax that arises in the stress build-up profile (4) at the fibre-matrix

interface of embedded broken fibres. Since the shear stress at the fibre-matrix

interface reads τ = r
2
∂σ
∂x

, where r is the radius of a fibre, its maximum value

can be computed through Eq. (4) and is expressed as

τmax =
nrσ∞

2lI
×max

x∈R

[(
1− exp

(
−|x|
lI

))n−1

exp

(
−|x|
lI

)]
. (121)
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The measurement of [1] shows that the maximum shear stress τmax at the

fibre-matrix interface is approximately equal to the yielding stress, σY0, of

the matrix. Assuming that the tensile strength Xt
I of carbon fibre can be used

as σ∞ at failure point, and using the properties of Table 2, the parameters

in Eq. (121) are summarised as follows

τmax = 32.0 MPa , σ∞ = 4413 MPa and r = 3.55µm . (122)

Equation (121), together with the parameters reported in Eq. (122), provides653

a first constraint between n and lI.654

The second constraint results from the tensile strength of the composite655

material: the longitudinal tensile strength of the composite material pre-656

dicted by the MFH scheme embedding the phase-field fibre damage model657

needs to match the reported experimental values.658

Uni-axial tensile test on fibre bundle with uniform damage solution. The659

phase-field damage model of a fibre under uni-axial tension along the longi-660

tudinal direction presented in Section 2.1 reads661

σ = E3 D
I ε , and (123)

dI − lI∇2dI = − lI
2Gc

∂

∂dI

[
(1− dI)

nE3
I

]
ε2 . (124)

The maximum value of stress, σ, can be obtained easily by solving the set of

Eqs. (123) and (124) under a uniformity assumption, i.e. ∇2dI = 0, yielding

dI =
n(1− dI)

n−1lI
2Gc

E3
I ε

2 . (125)

First, according to the experimental measurements in [1], it has been662

shown in [34] that the shape parameter n ∈ [2 , 3] can be used to describe663
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Table 4: Parameter n and its corresponding lI according to Eq. (121).

n 2.0 2.1 2.2 2.3 2.4 2.5

lI [µm] 122.4 120.2 118.3 116.6 115.1 113.8

n 2.6 2.7 2.8 2.9 3.0

lI [µm] 112.6 111.5 110.5 109.6 108.8

0.00 0.05 0.10 0.15 0.20 0.250

1000

2000

3000

4000

 [M
Pa

]

n = 2.0
2.2
2.4
2.6
2.8
3.0

Figure 5: The strain-stress curves for different values of n of the longitudinal tensile case

for fibre with uniform damage.

the stress build-up profile (4) of embedded broken fibres. For given values of664

n ∈ [2, 3], lI can be computed by solving Eq. (121). The resulting values of lI665

are listed in Table 4 in terms of the corresponding assumptions on the value666

of n. Submitting the couples n and lI to Eq. (125), and letting d increase667

from 0 to 1, the strain ε and stress σ can be computed successively with Eqs.668

(123) and (125). Using the values of E3
I = 231.0 GPa and Gc = 90.0 N/mm669

reported in Table 2 and in Table 5, the strain-stress curves of the uniform670

damage 1D cases are presented in Fig. 5 for different values of n ∈ [2, 3].671

Since the longitudinal tensile strength σc of UD fibre reinforced composite672

is dominated by the fibre failure, for a reported composite tensile strength673
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of σc = 2205.0 MPa for a fibre volume fraction vI = 60% [58], the expected674

maximum tensile stress of fibre at composite failure is around σc
vI

= 3675.0675

MPa. According to the strain-stress curves presented in Fig. 5, the value of676

the parameter n will be above 2.4, and the corresponding length lI is readily677

deduced from Table 4.678

 1.4 mm 

0                0.5                1 DI 

(a) Fibre damage at loading stage 1;
√
c03 =

lI

 

0                0.5                1 DI 

(b) Fibre damage at loading stage 1;
√
c03 =

√
2 mm

 

0                0.5                1 DI 

(c) Fibre damage at loading stage 2;
√
c03 =

lI

 

0                0.5                1 DI 

(d) Fibre damage at loading stage 2;
√
c03 =

√
2 mm

 

0                0.5                1 D0 

(e) Matrix damage at loading stage 1;
√
c03 = lI

 

0.               0.5             1. D0 

0.22          0.24         0.26 D0 

(f) Matrix damage at loading stage 1;
√
c03 =

√
2 mm

 

0                0.5                1 D0 

(g) Matrix damage at loading stage 2;
√
c03 = lI

 

0.               0.5              1. D0 

0.96         0.965        0.97 D0 

(h) Matrix damage at loading stage 2;
√
c03 =

√
2 mm

Figure 6: Schematics of the uni axial composite material loading and damage distributions

of fibre and matrix phases at two different loading stages marked with crosses on the

strain-stress curve in Fig. 7(b) for
√
c03 = lI (left column) and for

√
c03 =

√
2 mm (right

column).
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Uni-axial tensile test on composites. The developed MFH multiscale method679

presented in Section 3 and implemented using the finite element method680

in Section 4 is applied to a uni-axial tensile test of a 2D composite sample681

under plane strain condition with an element size lelement ≈ lI/5. The damage682

initiation in the centre is enforced through the application of a Dirichlet683

boundary condition dI = 0 applied at the left and right edges of the sample,684

see the schematics in Fig. 6(a). Applying this boundary condition requires685

a specimen length such that both left and right edges are more than 6 × lI686

away from the damaging centre. Therefore, a sample length of 1.4 mm is687

used according to the value of lI reported in Table 4, whilst the width is688

set to 0.06 mm. We consider the composite material with a fibre volume689

fraction, vI, of 60%. The required material properties are listed in Tables 2690

and 3.691

0.00 0.01 0.02 0.03
M

0

500

1000

1500

2000

2500

M
 [M

Pa
]

C = 2205.0
n

(a)
√
c03 = lI

0.00 0.01 0.02 0.03
M

0

500

1000

1500

2000

2500

M
 [M

Pa
]

C = 2205.0
n=2.7

1

2l0 = lI
l0 = 2 mm

(b) n = 2.7

Figure 7: The strain-stress curves of the longitudinal tensile test of the 2D composite sam-

ple: (a) For
√
c03 = lI and for successively n = 2.4, 2.5, 2.6, 2.7, 2.8; the arrow indicates

the increasing direction of n; and (b) For n = 2.7 and for successively
√
c03 = lI in blue

and
√

2 mm in orange.
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First, the characteristic length along the longitudinal direction of the

fibres for the matrix non-local damage model is set to be
√
c03 = lI, see Table

4. The global strain-stress evolution of the 2D tensile sample is successively

evaluated for n = 2.4, 2.5, 2.6, 2.7, 2.8 using a path following analysis in

order to capture the snapback behaviours. For the studied material system,

which has a reported longitudinal tensile strength of 2205.0 MPa [58], the

values of n and lI can be determined according to the strain-stress curves

reported in Fig. 7(a), which indicates that the value of n should be slightly

lower than 2.7. Eventually, the values of

n = 2.7,
√
c03 = lI and lI = 111.5µm , (126)

are adopted in the following applications unless otherwise stated.692

Considering n = 2.7, the effect of the characteristic length for the matrix693

non-local damage model is studied on the 2D tensile test using successively694

√
c03 = lI and

√
c03 =

√
2 mm. In Fig. 7(b), it can be seen that changing the695

characteristic length of the matrix non-local damage model has no effect on696

the maximum stress of the tensile sample. However, a longer non-local dam-697

age length
√
c03 leads to slightly more energy dissipation since the snapback698

is slightly less pronounced. The higher energy dissipation resulting from a699

longer
√
c03 can be explained easily by the size of the matrix damage zone as700

shown in Fig. 6, which presents the damage zones of both fibre and matrix701

phases at the two different loading stages marked with crosses on the strain-702

stress curves in Fig. 7(b), successively for
√
c03 = lI and

√
2 mm. The fibre703

damage zone reflects the number of broken fibres in the fibre bundles: Figs.704

6(a) and 6(c) for
√
c03 = lI, and Figs. 6(b) and 6(d) for

√
c03 =

√
2 mm,705

show this evolution from the points in which half of the fibres are broken,706
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up to the final stage in which the full fibre bundle is broken. The damage of707

the matrix phase reflects the cracking of matrix and the debonding at fibre-708

matrix interface. The matrix damage in Figs. 6(e) and 6(g) for l3 0 = lI, and709

in Figs. 6(f) and 6(h) for
√
c03 =

√
2 mm, represents the evolution from the710

matrix cracking and fibre-matrix debonding around the fibre breaking point711

up to the final fibre pull-out stage. When comparing Figs. 6(a)- 6(d), the712

fibre damage zones do not show any difference for
√
c03 = lI and

√
c03 =

√
2713

mm. This indicates that the matrix damage has no effect on the fibre dam-714

aging process for a uni-axial tension and that the failure is dominated by the715

fibres. When comparing Figs. 6(e)- 6(h), the matrix damage concentrates in716

the centre of the sample for
√
c03 = lI, whilst it propagates throughout the717

sample for
√
c03 =

√
2 mm, explaining the higher ductility of this last case.718

Table 5: Material properties related to the composite material failure modelled using

MFH.

Transverse critical energy release rate of GcT ' 100 J/m2 [59]

Characteristic lengths in MFH with Lemaitre model

√
c01 =

√
c02 [mm] 110× 10−3

√
c03 [mm]

√
2

Characteristic lengths in MFH with saturated model

√
c01 =

√
c02 [mm] 50× 10−3

√
c03 [mm]

√
2

Tensile critical energy release rate Gc [N/mm] 90.0 [4]

Longitudinal strength σc [MPa] for vI = 60% 2205 [58]

Phase-field length lI [mm] 0.111

Phase-field exponent n [-] 2.7
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6. Applications719

The developed MFH embedding a non-local damage approach for the720

matrix phase and a phase-field approach for the fibre bundle phase is now721

applied to study the failure of a notched laminate and the failure of a plain722

woven composite unit-cell.723

6.1. Applications on a notched laminate724

The failure of a notched laminate was studied with a MFH method em-725

bedding a local approach of fibre bundle damage in [34]. Because of the local726

formalism the simulation exhibited a lack of convergence when some finite727

elements were reaching local softening because of the fibre bundle damag-728

ing process. In this section we show that the phase-field approach, on the729

one hand, allows conducting the simulation to an end, and, on the other730

hand, predicts the failure modes in good agreement with the experimental731

Computed Tomography (CT) observations reported in the literature [3].732

6.1.1. Geometry733

3.8 mm

1
m
m

0.7 mm
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Figure 8: Double notched sample laminate redrawn from [34]: (a) Geometry and stacking

sequence of the sample; and (b) Finite element discretisation of one quarter of the notched

sample.

58



A double notched sample extracted from a UD laminate is illustrated in734

Fig. 8(a). The layup corresponds to a [90◦/0◦]S stacking sequence. One quar-735

ter of the sample is discretised into finite elements as illustrated in Fig. 8(b).736

Quadratic hexahedral elements are considered, and the element size at the737

notched part is about 40 µm in the x−y plane, so that the distance between738

integration points remains lower than the matrix non-local and phase-field739

characteristic lengths.740

A tensile test is studied using a dynamic implicit solver.741

6.1.2. Material properties742

The exact matrix and fibre material system was not provided in Ref.743

[3]. We thus consider a composite material made of the 8552 epoxy resin,744

modelled with a saturated damage law and whose properties are reported in745

Table 3, reinforced with AS4 fibre, whose properties are reported in Table 2.746

We consider a nominal fibre volume fraction vI = 0.6 for the AS4/8552 UD747

composite material which is modelled using the MFH approach embedded748

with a non-local damage approach for the matrix and a phase-field approach749

for the fibre bundle damaging process as presented in Section 3. The phase-750

field and non-local damage auxiliary equations parameters are reported in751

Table 5. Quadratic hexahedral elements were used in this simulations with752

linear shape functions for the auxiliary equations.753

The inter-laminar failure is governed by a delamination law. As discussed

in [34], delamination initiation is triggered by the criterion

� σ �2

σ̂2
I C

+
τ 2

τ̂ 2
II C

≤ (1−D0)2 , (127)

where σ̂I C and τ̂II C are the maximum tension and shearing of the cohesive
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model. The presence of the matrix damage D0 in Eq. (127) accounts for the

existence of the damaging process taking place in the plies. The delamination

process is governed by the two delamination modes energy release rates GI

and GII, with a complete fracture obtained for(
GI

GI C

)α
+

(
GII

GII C

)α
= 1 , (128)

where GI C and GII C are the mode I and mode II critical energy release rates754

respectively, and where α is a mixed mode parameter. The surface traction755

is governed by an effective stress σeff which obeys to an exponential law in756

terms of the maximum reached opening ∆max = maxt′≤t (∆(t′)) during the757

delamination process as detailed in [34]. The delamination model parameters758

listed in Table 6 were used in [34] although they correspond to values used759

for IM7/8552 carbon-epoxy composite laminates in Ref. [4], with a critical760

stress reduced to 25 [MPa] to account for the finite size of the elements.761

Table 6: Material properties of the delamination model [34].

Property Value

Mode I critical energy release rate GI C [J/m2] 277.0

Mode II critical energy release rate GII C [J/m2] 788.0

Mode I critical stress σ̂I C [MPa] 25

Mode II critical stress τ̂II C [MPa] 25

Mixed mode parameter α [-] 1.0
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Figure 9: Experimental damage modes of the notched sample as observed in Ref. [3].

Reprinted from Composites Science and Technology, 71/12, A.E. Scott and M. Mavro-

gordato and P. Wright and I. Sinclair and S.M. Spearing, In situ fibre fracture measure-

ment in carbonepoxy laminates using high resolution computed tomography, 1471-1477,

Copyright (2011), with permission from Elsevier.

6.1.3. Results762

A double notched sample of the same geometry was in situ tested so that763

the damage modes could be observed by Synchrotron radiation Computed764

Tomography (CT) in Ref. [3]. The different damage modes experimentally765

observed are illustrated in Fig. 9.766

Figure 10 compares the forces vs. displacement curves obtained by con-767

sidering successively a local damage model [34] and a phase-field damage768

model for the fibre bundles. Whilst the local approach fails when the dam-769

age localises in a finite element, preventing the simulation to be achieved, the770

phase-field method proceeds up to failure of the laminate. The damage and771

delamination distributions predicted for the four configurations indicated in772
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Figure 10: Comparison between numerical predictions of the MFH framework using either

a local damage model [34] or a phase-field formulation to represent the failure of the fibre

bundle phase.

Fig 10 are reported in Figs. 11-13.773

For a load corresponding to about 50% of the maximum load, i.e. at774

configuration #1, the damage and delamination distributions obtained by775

the two approaches are comparable, see Fig. 11, except concerning the fibre776

bundle damage in the 0◦-ply which concentrates at the notch with the local777

approach, see Fig. 11(e). The damage distributions can also be compared778

to the experimental observations of Fig. 9(d). For the 0◦-ply, the damage779

evolution in the matrix, see Figs. 11(a)-11(b) forms the so-called 0◦ splits,780

which are experimentally observed in Fig. 9(d). For the 90◦-ply, the damage781

develops only in the matrix near the notch, see Figs. 11(c)-11(d), in agree-782

ment with Fig. 9(d). The slight delamination predicted at the notch in Figs.783

11(g)-11(h) is visible on the CT-scan image related to the 57% loading, see784

Fig. 9(e).785

For a load corresponding to about 70% of the maximum load, i.e. at con-786
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Figure 11: Damage and delamination distributions for the notched sample at configuration

#1, see Fig. 10, predicted with the local damage formulation (left column) and the phase-

field formulation (right column) of the fibre bundle damage process: (a-b) Matrix damage

(logarithmic scale) in the 0◦ ply; (c-d) Matrix damage (logarithmic scale) in the 90◦ ply;

(e-f) Fibre bundle damage (logarithmic scale) in the 0◦ ply; and (g-h) Delamination zones

at the 0◦-90◦ interface.
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Figure 12: Damage and delamination distributions for the notched sample at configuration

#2, see Fig. 10, predicted with the local damage formulation (left column) and the phase-

field formulation (right column) of the fibre bundle damage process: (a-b) Matrix damage

(logarithmic scale) in the 0◦ ply; (c-d) Matrix damage (logarithmic scale) in the 90◦ ply;

(e-f) Fibre bundle damage (logarithmic scale) in the 0◦ ply; and (g-h) Delamination zones

at the 0◦-90◦ interface.
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Figure 13: Damage and delamination distributions for the notched sample at configuration

#3 (left column) and at configuration #4 (right column), see Fig. 10, predicted with

the phase-field formulation of the fibre bundle damage process: (a-b) Matrix damage

(logarithmic scale) in the 0◦ ply; (c-d) Matrix damage (logarithmic scale) in the 90◦ ply;

(e-f) Fibre bundle damage (logarithmic scale) in the 0◦ ply; and (g-h) Delamination zones

at the 0◦-90◦ interface.
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figuration #2, the fibre bundle damage in the 0◦-ply has localised with the787

local approach, see Fig. 12(e), whilst it extends along the fibre orientation788

with the phase-field method, see Fig. 12(f). The matrix damage distribu-789

tions are comparable with the experimental observations of Fig. 9(g), with790

a 0◦ splits in the 0◦-ply and transverse cracking in the 90◦-ply, see Figs.791

12(a)-12(b) and Figs. 12(c)-12(d), respectively. The delamination zone has792

extended from the notch as seen in Figs. 12(g)-12(h), and is less extended793

than in the experimental observation of Fig. 9(g). It is actually in better794

agreement with the CT images of the previous stage, Fig. 9(f).795

At this point the local approach looses convergence because of the fibre796

bundle damage localisation, see Fig. 12(e). The phase-field simulation al-797

lows capturing the maximum loading, i.e. configuration #3 see Fig. 13(left798

column), and the failed configuration, i.e. configuration #4 see Fig. 13(right799

column). Compared to configuration #2, the 0◦ splits first increases in dam-800

age amplitude, see Fig. 13(a), and extends to a large region at total failure,801

see Fig. 13(b). The transverse cracking in the 90◦-ply, tends to localise in802

bands along the fibre directions, see Figs. 13(c)-13(d). The fibre bundle803

damage in the 0◦-ply extends across the cross-section, see Figs. 13(e)-13(f),804

yielding loss of stress carrying capacity of the laminate. Finally, the de-805

lamination zone develops, see Figs. 13(g)-13(h) as already experimentally806

observed at 80% of the total load in Fig. 9(h).807

6.2. Applications on a woven unit cell808

In this section we apply the MFH model to represent the yarn behaviour809

of a plain woven composite material made of the 8552 epoxy resin reinforced810

with AS4 fibre. The 8552 epoxy properties are used as such for the matrix811
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phase embedding the yarns.812

6.2.1. Geometry813
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Figure 14: Definition of the plain woven unit cell: dimensions associated to (a) The 3D

cell; and to (b) The cross-section.

The geometrical model of the plain woven unit cell represented in Fig. 14814

lies on the following assumptions815

• The yarns cross-section is approximated by an ellipse of semi-axes a0816

and b0, see Fig. 14(a);817

• The size of the unit cell is Lx × Ly × Lz, see Fig. 14(a);818

• The central axis vertical location of a yarn along ζ = x or ζ = y reads

z = b

 2

1 + exp
(
− l

2

(
2ζ − Lζ

2

)) − 1

 for ζ ∈ [0;
Lζ
2

] , (129)

where b governs the waviness of the yarn and l its asymptotic behaviour819

such that the yarn reaches the location αb with α =
z
(
Lζ
2

)
b

, see Fig.820

14(b);821

• In order to avoid contact between yarns, the condition b > b0 is enforced822

by constraining b = ξb0 with the eccentricity ξ > 1.823
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Table 7: Geometrical description of the woven unit cell.

Geometrical relationships Value

Cell length Lx = Ly = 4a0 + 2e1 [mm] 3.294

Cell thickness Lz = 4b+ 2e2 [mm] 0.2245

Yarn axis location b = ξb0 [mm] 0.053625

Vertical distance between yarns α = 2

(
1

1+exp (− l Lx4 )
− 1

2

)
[-] 0.99889

Experimental measurements Value

Yarn cross-section area A0 [mm2] 0.12

Yarn small semi-axis b0 [mm] 0.04875

Yarn large semi-axis a0 = A0
πb0

[mm] 0.78353

Yarns horizontal gap e1 [mm] 0.08

Model parameters Value

Yarns vertical gap e2 [mm] 0.005

Yarn eccentricity ξ [-] 1.1

Asymptoticy l Lx [-] 30

• The distances between the yarns in the cross-section is governed by e1824

and e2, see Fig. 14(b);825

Using the parameters reported in Table 7 allows obtaining a unit cell with826

64.3% volume fraction of yarns.827

6.2.2. Material properties828

The yarns are modelled using the MFH model with damage enhanced829

matrix and fibre bundle behaviours presented in Section 3. This model is830

defined using the Euler angles characterising the initial fibre direction. To831

this end, since each Gauss integration Point (GP), see Fig. 15, belongs to an832
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Figure 15: Definition of the non-local MFH model at the Gauss integration Point (GP)

from the yarn cross-section defined by its Central Point (CP).

ellipsoidal cross-section, the fibre direction is defined from the normal to the833

cross-section at its central point, whose directrix is governed by Eq. (129).834

The AS4 fibre properties of the yarn are reported in Table 2. The 8552835

epoxy properties, using a the saturated damage model, of the yarn are re-836

ported in Table 3. These properties are completed by the phase-field model837

and non-local model parameters of Table 5. Finally we consider that the838

yarns have a 85% volume fraction of fibres, yielding a 55% volume of fibres839

for the woven unit cell as specified by the manufacturer [58].840

The remaining matrix part, i.e. the out-of yarns phase, of the woven841

unit cell is also modelled with the 8552 epoxy properties reported in Table842

3. Since this part has no fibre, the characteristic lengths matrix c0 is taken843

isotropic with the values reported in Table 3.844

Linear tetrahedral elements with volume average volume deformation845

were used in this simulations.846
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Figure 16: Magnified deformation (10 times) and epoxy damage distribution at macro-

strain softening onset in the woven unit cell: model with (a) KUBC; and (b) PBC.
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Figure 17: Homogenised stress-strain evolution of the woven unit cell submitted to uni-

axial tension; comparison between the results predicted using KUBC and PBC; The man-

ufacturing tensile stiffness and strength are also reported [58].

6.2.3. Results847

A uni-axial tension is applied on the woven unit-cell. We successively848

consider the cases in which the lower and upper faces are constrained to i)849

deform following Periodic Boundary Conditions (PBC) and ii) remain planar850

following Kinematically Uniform Boundary Conditions (KUBC) in order to851

study the effect of the out-of-plane deformation mode. For both cases the pe-852

riodic boundary conditions are considered on the lateral faces although they853
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naturally remain planar under uni-axial tension. The resulting (magnified)854

deformed configurations at macro-strain softening onset are compared in Fig.855

16. The PBC model allows out-of-plane deformation and the warp yarns tend856

to straighten inducing extra deformation in the weft yarns. As a results the857

predicted homogenised stress-strain curve is more compliant for the PBC858

model than for the KUBC model, predicting an earlier strain softening onset859

as illustrated in Fig. 17. The latter figure also reports the manufacturer data860

[58], which provide only elastic modulus and tensile strength values.861

The predictions using the KUBC model are closer to the manufacturing862

data, both in term of initial slope and strength. This can be explained863

by the fact that in a real structure the out-of-plane deformations are not864

totally free because of the laminate-like structure. This behaviour is further865

studied in Appendix D where it is shown that the response of the layer in866

laminate unit-cell is closer to that of the KUBC. Besides, as discussed in867

[60], when comparing the homogenised in-plane Poisson’s ratios νxy = 0.1868

predicted using PBC, the value is higher than that under KUBC (νxy =869

0.037). Experimental measurements of in-plane Poisson ratio on a woven870

composite material are typically νxy ∈ (0.03, 0.05) at low strain rate in [61],871

which is also in better agreement with the KUBC model. Let us note that872

the analytical result [62] and experimental measurement [63] of the in-plane873

Poisson ratios for woven fabric have shown νxy ∈ (0.2, 0.57). It indicates that874

the homogenised elasticity properties of woven composites obtained under875

MBC are more physical than that obtained under PBC.876

The damage distributions at damage initiation (εxx = 0.005) and at877

macro-strain softening are illustrated for the different phases in Fig. 18 when878
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Figure 18: Evolution of the damage distribution in the woven unit cell simulated using

KUBC for a tensile strain εxx = 0.005 (left column) and for a tensile strain εxx = 0.017

(right column): (a-b) Damage D0 distribution in the matrix phase of the yarn; (c-d)

Damage DI distribution in the fibre phase of the yarn; and (e-f) Damage D0 distribution

in the matrix (out-of yarns phase).

considering KUBC and in Fig. 19 when considering PBC. Concerning the879

yarns, the damage in the matrix phase propagates in the wefts along a direc-880

tion parallel to the fibres, i.e. perpendicular to the tensile direction, when881
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Figure 19: Evolution of the damage distribution in the woven unit cell simulated using

PBC for a tensile strain εxx = 0.005 (left column) and for a tensile strain εxx = 0.011 (right

column): (a-b) Damage D0 distribution in the matrix phase of the yarn; (c-d) Damage DI

distribution in the fibre phase of the yarn; and (e-f) Damage D distribution in the matrix

(out-of yarns phase).

considering KUBC, see Figs. 18(a) and 18(b); the final failure is triggered by882

the fibre damage in the warps, see Figs. 18(d) and 19(d) for respectively the883

KUBC and PBC cases. Finally it appears that the out-of-yarn epoxy phase884
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experiences a damage near the intersections between the warps and wefts,885

see Figs. 18(f) and 19(f).886

7. Conclusions887

A micro-mechanical model for fibre reinforced matrix has been developed888

by extending Mean-Field Homogenisation theory to account for fibre bundle889

breaking and matrix damage. In order to ensure mesh-independence and to890

recover the correct energy release rate for fibre dominated failure, the dam-891

aging process of the fibre bundle has been framed in a phase-field approach.892

The diffuse damage of the matrix phase has been formulated using an im-893

plicit non-local approach. The fibre-matrix interface debonding as well as the894

matrix yielding and cracking occurring during fibre breaking have been as-895

sumed to develop via the evolution of the matrix damage variable [34], which896

is realistic since the behaviours of the fibre and matrix phases are implicitly897

coupled.898

This micro-structure informed formulation of the UD composite failure899

presents several features:900

• Only micro-structure parameters such as the phase material responses901

have to be identified to represent the composite UD elastic and elasto-902

plastic responses;903

• Knowing the longitudinal critical energy release rate and strength of904

the fibre-reinforced matrix, which can be obtained by common experi-905

mental tests, the phase-field parameters are obtained in order to respect906

these two values through micro-mechanical argumentation such as the907

representation of the stress build-up;908
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• Correctly representing the energy released during transverse failure can909

also be done by identification of the non-local characteristic length that910

allows recovering the transverse critical energy release rate;911

• All the required parameters are physical parameters that can be identi-912

fied easily from either micro-mechanical arguments, manufacturer data913

sheet, or experimental tests commonly available in the literature, at914

the exception of the characteristic lengths of the non-local and phase-915

field models; Although the latter have also a physical meaning, they916

are identified, on the one hand, in order to recover the transverse crit-917

ical energy release rate and constrain the matrix cracking direction for918

the non-local damage model, and, on the other hand, in order to re-919

cover the composite material longitudinal strength for the phase-field920

parameters;921

• The anisotropic non-local formulation allowed predicting failure modes922

such as matrix cracking and fibre failure in good agreement with ex-923

perimental observation;924

• The MFH model is implemented as a classical constitutive material law925

in a finite element code without particular difficulties, whilst both non-926

local and phase-field formulations require the resolution of additional927

elliptic equations that have to be integrated at the finite element level,928

as it is now commonly done finite-element code considering thermo-929

mechanical coupling, e.g. or phase-field equations.930

In this paper, the material parameters of both fibre and epoxy matrix931

phases have been identified from manufacturer data sheets in the case of AS4932
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fibre reinforced 8552 epoxy matrix. A sensitivity analysis has been conducted933

on the phase-field model parameters governing the smearing of the damage,934

whilst constraining the amount of dissipated energy. The model has been935

studied on the failure of a ply loaded along the longitudinal direction, and it936

has been shown that the predicted strength is in agreement with the reported937

values by the manufacturer. The non-local damage parameter of the matrix938

phase have been identified by micro-mechanical analyses [6, 36].939

The developed multi-scale model has first been applied to predict the fail-940

ure modes of a notched laminate. It was found that the damage delamination941

patterns were similar to the experimentally observed ones. The multi-scale942

model has then been applied to represent the yarn failure of a plain wo-943

ven composite unit-cell under uni-axial tension. To this end, the warps and944

wefts were modelled as dense unidirectional fibre reinforced epoxy using the945

developed damage enhanced MFH model.946

Appendix A. Material operators of the constitutive models947

Appendix A.1. Damage-enhanced transverse isotropic elasticity948

Appendix A.1.1. Algorithmic operators of damaged fibre bundles949

Because of the existence of the auxiliary damage variable dI, the elastic950

behaviour of the fibre bundle becomes non-linear, and the stress σ(ε, dI) in951

the fibre bundle depends not only on the fibre strain, but also on the auxiliary952

damage variable dI. Therefore, the variation of the fibre stress reads953

δσ = δ(CD
I : ε) = CD

I : δε+ ε :
∂CD

I

∂DI

∂DI

∂dI

δdI , (A.1)
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and the algorithmic operators of the damaged fibres bundle stress read954

Cεε
I =

∂σ

∂ε
= CD

I , and (A.2)

Cε d
I =

∂σ

∂dI

= ε :
∂CD

I

∂DI

∂DI

∂dI

= n(1− dI)
n−1ε :

∂CD
I

∂DI

, (A.3)

according to the definition of DI in Eq. (9).955

Besides, in order to solve the coupled system of equations, Eq. (30) also956

has to be linearised, which requires the evaluation of the following terms957

Cψ ε
I =

∂
(
− lI
Gc

∂ψ+
I

∂dI

)
∂ε

= −n(1− dI)
n−1lI

Gc

∂CD
I

∂DI

: ε , and (A.4)

Cψ d
I =

∂
(
− lI
Gc

∂ψ+
I

∂dI

)
∂dI

= − lI
2Gc

[
−n(n− 1)(1− dI)

n−2ε :
∂CD

I

∂DI

: ε

+ [n(1− dI)
n−1]2ε :

∂2CD
I

∂D2
I

: ε

]
, (A.5)

where we have used Eq. (25) and where the derivatives
∂CD

I

∂DI
and

∂2CD
I

∂D2
I

are958

respectively given in Appendix A.1.2 and Appendix A.1.3.959

Appendix A.1.2. First order derivative of the damaged transverse isotropic960

elasticity tensor961

According to the definition of the damaged transverse isotropic elasticity962

tensor, Eq. (21), and of ∆D = (1 + ν1 2
I )(1 − ν1 2

I − 2ν1 3
I ν3 1 D

I ) with ν3 1 D
I =963
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(1−DI)ν
3 1
I and E3 D

I = (1−D)E3
I , it yields964

∂CD
I 11

∂DI

=
∂CD

I 22

∂DI

=
E1

I ν
1 3
I ν3 1

I

∆D
− E1

I (1− ν1 3
I ν3 1 D

I )

∆D 2

∂∆D

∂DI

,

∂CD
I 12

∂DI

=
∂CD

I 21

∂DI

= −E
1
I ν

1 3
I ν3 1

I

∆D
− E1

I (ν1 2
I + ν1 3

I ν3 1 D
I )

∆D 2

∂∆D

∂DI

,

∂CD
I 13

∂DI

=
∂CD

I 31

∂DI

=
∂CD

I 23

∂DI

=
∂CD

I 32

∂DI

,

= −E
3
I (ν1 3

I + ν1 2
I ν1 3

I )

∆D
− E3 D(ν1 3

I + ν1 2
I ν1 3

I )

∆D 2

∂∆D

∂DI

,

∂CD
I 33

∂DI

= −E
3
I (1− ν1 2

I ν1 2
I )

∆D
− E3 D

I (1− ν1 2
I ν1 2

I )

∆D 2

∂∆D

∂DI

, (A.6)

with
∂∆D

∂DI

= 2ν1 3
I ν3 1

I (1 + ν1 2
I ) . (A.7)

Finally, one has965

∂CD
ij

∂dI

=
∂CD

ij

∂DI

∂DI

∂dI

with i, j = 1, 2, 3 . (A.8)

Appendix A.1.3. Second order derivative of the damaged transverse isotropic966

elasticity tensor967

Using equation (A.8), the second derivative of CD reads

∂2CD
I

∂d2
I

=
∂2CD

I

∂D2
I

(
∂DI

∂dI

)2

+
∂CD

I

∂DI

∂2DI

∂d2
I

, (A.9)
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with968

∂2CD
I 11

∂D2
I

=
∂2CD

I 22

∂D2
I

= −2E1
I ν

1 3
I ν3 1

I

∆D 2

∂∆D

∂DI

+
2E1

I (1− ν1 3
I ν3 1 D

I )

∆D 3

(
∂∆D

∂DI

)2

,

∂2CD
I 12

∂D2
I

=
∂2CD

I 21

∂D2
I

=
2E1

I ν
1 3
I ν3 1

I

∆D 2

∂∆D

∂DI

+
2E1

I (ν1 2
I + ν1 3

I ν3 1 D
I )

∆D 3

(
∂∆D

∂DI

)2

,

∂2CD
I 13

∂D2
I

=
∂2CD

I 31

∂D2
I

=
∂2CD

I 23

∂D2
I

=
∂2CD

I 32

∂D2
I

,

=
2E3

I (ν1 3
I + ν1 2

I ν1 3
I )

∆D 2

∂∆D

∂DI

+
2E3 D

I (ν1 3
I + ν1 2

I ν1 3
I )

∆D 3

(
∂∆D

∂DI

)2

,

∂2CD
I 33

∂D2
I

=
2E3

I (1− ν1 2
I ν1 2

I )

∆D 2

∂∆D

∂DI

+
2E3 D

I (1− ν1 2
I ν1 2

I )

∆D 3

(
∂∆D

∂DI

)2

. (A.10)

Appendix A.2. Matrix non-local damage model969

Appendix A.2.1. Radial return mapping of enhanced J2 plasticity970

During the occurrence of plastic flow, f = 0 in Eq. (32), ṗ0 is positive,971

and the normality rule yields the plastic strain tensor increment972

ε̇pl = ṗ0N0 , with N0 =
∂f

∂σ̂
=

3

2

dev(σ)

(1−D0)σ̂eq
, (A.11)

where N0 is the normal to the yield surface in the effective stress space, and973

where the equivalent plastic strain ṗ0 = [2
3
ε̇pl : ε̇pl]1/2. The set of internal974

variables Z0 is thus {p0, ε
pl}.975

In order for the incremental-secant operator CSr
0 in the MFH scheme to be976

naturally isotropic, it has been suggested in [27, 43] to consider the normal to977

the plastic flow from the residual state, i.e. usingN = 3
2

dev(σ̂−σ̂res
n )√

3
2

dev(σ̂−σ̂res
n ):dev(σ̂−σ̂res

n )
978

as a normal direction in Eq. (A.11).979

Appendix A.2.2. Algorithmic operators of the matrix damage model980

Because of the existence of the non-local damage variable p̃0, the damage-981

enhanced elasto-plastic response can be stated as σ(ε, p̃0), with the lineari-982
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sation983

δσ = Cεε
0 : δε+Cεp̃

0 δp̃0 , (A.12)

with the material operators of the constitutive law (33) reading984

Cεε
0 =

∂σ

∂ε
= (1−D0)Calg

0 − σ̂ ⊗
∂D0

∂ε
, (A.13)

Cεp̃
0 =

∂∆σ

∂p̃0

= −σ̂∂D0

∂p̃0

, (A.14)

where Calg
0 = ∂σ̂

∂ε
is the algorithmic operator of the undamaged stress detailed985

here below. Besides, in order to solve the coupled system of equations, Eq.986

(38) also has to be linearised, which requires the evaluation of the following987

terms988

Cpε
0 =

∂p0

∂ε
=

2µ0

h0

N0 and (A.15)

Cpp̃
0 =

∂p0

∂p̃0

= 0 , (A.16)

with h0 = 3µ0 + ∂R0

∂p0
as detailed here below.989

In the case of the radial return mapping assumption, the derivative of the990

undamaged stress increment with respect to the strain increment reads (e.g.991

[64, chapter 12])992

Calg 0
0 =

∂∆σ̂

∂∆ε
= Cel

0 −
(2µ0)2

h0

N0 ⊗N0 −
(2µ0)2(∆p0)

σ̂eq, tr

(
3

2
Idev −N0 ⊗N0

)
,

(A.17)

with σ̂eq, tr =
√

3
2
dev (σ̂tr) : dev (σ̂tr) the equivalent stress of the elastic pre-993

dictor σ̂tr = σ̂n + Cel : ∆ε used in the radial return mapping, ∆p0 the accu-994

mulated plastic strain increment, the coefficient h0 = 3µ0 + ∂R0

∂p0
> 0 and the995

normal direction which reads N0 = 3
2

dev(σ̂)
σ̂eq , with σ̂eq =

√
3
2
dev (σ̂) : dev (σ̂).996
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When performing the incremental-secant formulation, and in order to de-997

fine the incremental-secant operator as isotropic in the case in which the998

residual was not neglected, the radial return mapping was modified to point999

to the residual stress, with N = 3
2

dev(σ̂−σ̂res
n )

(σ̂−σ̂res
n )eq

, where the equivalent effec-1000

tive stress increment reads (σ̂ − σ̂res
n )eq =

√
3
2
dev (σ̂ − σ̂res

n ) : dev (σ̂ − σ̂res
n ).1001

Equation (A.17) thus becomes1002

Calg r
0 =

∂∆σ̂

∂∆ε
= Cel

0 −
(2µ0)2

h
N ⊗N − (2µ0)2(∆p0)

(σ̂tr − σ̂res
n )eq (

3

2
Idev −N ⊗N ) ,

(A.18)

with h = 3µ0 + 1
3
N : N−1

0
∂R0

∂p0
> 0. We note that h and N reduces to h0 and1003

N0 when the residual stress vanishes.1004

In the following, Calg
0 holds for either Eq. (A.17) or (A.18).1005

The material operators of the constitutive law are then obtained, first for1006

the derivatives of the Cauchy stress tensor (A.12), as1007

Cεε
0 =

∂∆σ

∂∆ε
= (1−D0)Calg

0 − σ̂ ⊗
∂D0

∂ε
, (A.19)

Cεp̃
0 =

∂∆σ

∂p̃0

= −σ̂∂D0

∂p̃0

. (A.20)

and then for the derivatives of the equivalent local plastic strain (38) with1008

the operators (A.15-A.16) reading1009

Cpε
0 =

∂p0

∂∆ε
=

2µ0

h0

N0 or Cpε
0 =

2µ0

h
N , (A.21)

Cpp̃
0 =

∂p0

∂p̃0

= 0 . (A.22)

These expressions are completed by the linearisation of the damage law1010

(35) written in the incremental form following [42]:1011

∆D0 = (
ψ0n+α

S0

)s0∆p̃0 , (A.23)
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where1012

ψ0 =
1

2
εe : Cel

0 : εe and ψ0n+α = (1− α)ψ0n + αψ0n+1 . (A.24)

It can be easily deduced that1013

∂ψ0n+α

∂εe
:
∂εe

∂ε
: δε = αεe : Calg

0 : δε , (A.25)

leading to1014

δD0(ε, p̃0) ≈ ∂∆D

∂ψ0n+α

∂ψ0n+α

∂εe
:
∂εe

∂ε
: δε+

∂∆D0

∂p̃0

δp̃0

= αs0∆p̃0

ψs0−1
0n+α

Ss00

εe : Calg
0 : δε+

(
ψ0n+α

S0

)s0
δp̃0 . (A.26)

When considering the damage law (37), during the damage increase χ0 =1015

p̃0 and one has1016

D0 =
Dmax0

1− 1

1+exp (s0pC0)

(
1

1 + exp (−s0(p̃0 − pC0))
− 1

1 + exp (s0pC0)

)
,(A.27)

whose derivative reads1017

δD0(ε, p̃0) = 0 : δε+
Dmax0

1− 1

1+exp (s0pC0)

(
s0 exp (−s0(p̃0 − pC0))

[1 + exp (−s0(p̃0 − pC0))]
2

)
δp̃0 .

(A.28)

Appendix B. Tensors derivatives1018

Appendix B.1. Jacobian matrix of MFH resolution1019

We here recall the expression of F (71):

F = CS D
0 :

[
〈∆ε〉rI −

1

v0

S−1(I, CS D
0 ) : (〈∆ε〉rI −∆εr

M)

]
−CS D

I : 〈∆ε〉rI . (B.1)
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The Jacobian matrix (74) reading

J =
∂F

〈∆ε〉rI
− vI

v0

∂F

〈∆ε〉r0
, (B.2)

is detailed as1020

∂F

∂〈∆ε〉rI
= CS D

0 :

[
I− 1

v0

S−1(I, CS D
0 )

]
− CS D

I − ∂CS D
I

∂〈∆ε〉rI
3,4 : 〈∆ε〉rI ,

∂F

∂〈∆ε〉r0
=

∂CS D
0

∂〈∆ε〉r0
3,4 :

[
〈∆ε〉rI −

1

v0

S−1(I, CS D
0 ) : (〈∆ε〉rI −∆εr

M)

]
+

1

v0

CS D
0 ⊗ (〈∆ε〉rI −∆εr

M) ::
(
S−1 ⊗ S−1

)
::

∂S
∂〈∆ε〉r0

. (B.3)

Besides, the other required derivatives read1021

∂F

∂∆εr
M

=
1

v0

CS D
0 : S−1 (B.4)

∂F

∂p̃0

=
∂CS D

0

∂p̃0

:

[
〈∆ε〉rI −

1

v0

S−1(I, CS D
0 ) : (〈∆ε〉rI −∆εr

M)

]
+

1

v0

CS D
0 ⊗ (〈∆ε〉rI −∆εr

M) ::
(
S−1 ⊗ S−1

)
::
∂S
∂p̃0

(B.5)

∂F

∂dI

= −∂C
S D
I

∂dI

: 〈∆ε〉rI . (B.6)

Appendix B.2. Derivatives of the secant operators1022

Appendix B.2.1. Derivatives of the matrix secant operator1023

The derivatives of the matrix phase damaged incremental-secant operator1024

(64) read [43]1025

∂CS D
0

∂〈∆ε〉r0
= (1−D0)

∂CS
0

∂〈∆ε〉r0
− CS

0 ⊗
∂D0

∂〈∆ε〉r0
, and (B.7)

∂CS D
0

∂p̃0

= −∂D0

∂p̃0

CS
0 . (B.8)
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The derivative of the matrix phase effective incremental-secant operators

(62) reads

∂CS
0

∂〈∆ε〉r0
= 2Idev ⊗

[
1

6µS
0 ((〈∆ε〉r0)eq)

2 ∆σ̂r
0 : Idev : Calg

0 −
2

3
µS

0

Idev : 〈∆ε〉r0
((〈∆ε〉r0)eq)

2

]
,

(B.9)

with (〈∆ε〉r0)eq =
√

2
3
dev(〈∆ε〉r0) : dev(〈∆ε〉r0). In the case in which CSr

0 is1026

used, Calg
0 is obtained from Eq. (A.18), µS

0 is defined by Eq. (58), and1027

∆σ̂r
0 = σ̂0− σ̂res

0 . In the case in which CS0
0 is used, Calg

0 is obtained from Eq.1028

(A.17), µS
0 is defined by Eq. (61), and ∆σ̂r

0 = σ̂0.1029

Finally the missing terms ∂D0

∂〈∆ε〉r0
and ∂D0

∂p̃0
are developed in Eq. (A.26) or1030

Eq. (A.28).1031

Appendix B.2.2. Derivatives of the fibre bundle secant operator1032

The derivatives of the fibre bundle phase damaged incremental-secant1033

operator (69) read1034

∂CS D
I

∂〈∆ε〉rI
=

∂CD
I

∂DI

⊗ ∂DI

∂〈∆ε〉rI
= 0 , and (B.10)

∂CS D
I

∂dI

=
∂CD

I

∂DI

∂DI

∂dI

, (B.11)

where the last term is obtained from Eq. (A.8).1035

Appendix B.2.3. Derivatives of the Eshelby tensor1036

One has1037

∂S
∂〈∆ε〉r0

=
∂S
∂ν0

⊗
(
∂ν0

∂κD
0

∂κD
0

∂〈∆ε〉r0
+

∂ν0

∂µS D
0

∂µS D
0

∂〈∆ε〉r0

)
=

∂S
∂ν0

⊗
[
∂ν0

∂κD
0

(
−κ0

∂D0

∂〈∆ε〉r0

)
+

∂ν0

∂µS D
0

(
(1−D0)

∂µS
0

∂〈∆ε〉r0
− µS

0

∂D0

∂〈∆ε〉r0

)]
, (B.12)
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and similarly1038

∂S
∂p̃0

=
∂S
∂ν0

⊗
[
∂ν0

∂κD
0

(
−κ0

∂D0

∂p̃0

)
+

∂ν0

∂µS D
0

(
−µS

0

∂D0

∂p̃0

)]
, (B.13)

where the derivative
∂µS0

∂〈∆ε〉r0
is obtained as for Eq. (B.9), and ∂D0

∂〈∆ε〉r0
and the1039

derivatives ∂D0

∂p̃0
are developed in either Eq. (A.26) or Eq. (A.28).1040

Appendix C. Determination of matrix non-local length1041
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(b) Dissipated energy

Figure C.20: Test performed to evaluate the matrix non-local length from the fracture

energy: (a) Geometry of the specimen of length L = 10
√
c01 , width l = 0.2

√
c01 and of

curvature radius R >>
√
c01 ; and (b) Failure diagram representing the evolution of the

energy dissipation D with respect to the loading stress σ. The dissipated energy scales

with the volume up to localisation onset Dloc and then with the cross-section S0 (here the

width l).

The critical energy release rate of a material failure process under specific

loading conditions, usually denoted by Gc, measures the total fracture energy

released per unit crack surface opening. In our case, as a non-local formalism

is adopted, Gc is directly related, not only to the damage evolution law

chosen, but also to the characteristic lengths
√
c0i of the non-local matrix
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model. The non-local length can be evaluated by studying a virtual uni-

axial traction test in which localisation is triggered by a centred defect as

suggested in [36]. The geometry of the virtual specimen is defined by its

length L, its width l as well as by the curvature radius R which introduces

the imperfection, see Fig. 20(a). It has been shown in [36] that the dissipated

energy D scales with the test volume up to localisation onset and, providing

L� √c01 and R� √c01 , with the cross-section S0, here the width l, between

the localisation onset and the total failure, see Fig. 20(b). The critical energy

release rate Gc can be then be estimated from the failure diagram as shown

in Fig. 20(b), during the post-peak localisation period, by computing the

total energy dissipation and the surface of the cross-section in consideration

Gc =
Dend −Dloc

S0

, (C.1)

where Dloc and Dend are respectively the accumulated dissipated energies at1042

the onset point of localisation and at the total failure point.1043

We have performed this virtual test successively on a specimen made of1044

either the bulk epoxy matrix or the UD reinforced epoxy resin. In the latter1045

case, the material law is the damage enhanced MFH scheme with the fibres1046

direction perpendicular to the loading direction. Besides, both the Lemaitre-1047

Chaboche damage law and the saturation damage law described in Section1048

2.2.2 have been examined for the matrix phase. Figure C.21 illustrates the1049

evolution of the energy release rate Gc with respect to the loading stress σ1050

on the specimen. It can be seen in Fig. 21(a) that for the failure of the1051

composite material modelled with the damage enhanced MFH scheme, for1052

a given damage law, different values of the non-local length
√
c01 do not1053

change the peak stress, i.e. the localisation onset, but a longer
√
c01 leads1054
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Figure C.21: Evaluation of the matrix non-local length in order to recover the fracture

energy: (a) Effect of the non-local length
√
c1 on the transverse failure of the AS4 reinforced

8552 epoxy modelled using the saturation damage enhanced MFH; and (b) Recovery of

GcT ' 100 J/m
2

for the transverse failure of, on the one hand, the AS4 reinforced 8552

epoxy and of, on the other hand, the bulk matrix; The cases of a Lemaitre-Chaboche

model and of a saturation damage law are successively studied.

to a larger GcT , which is in agreement with the physical meaning of the1055

non-local characteristic length.1056

It appears from Fig. 21(a) that to recover the transverse critical energy1057

release rate GcT reported in Table 5, the non-local length with the saturation1058

law should be selected as
√
c01 = 50µm. Furthermore, repeating the same1059

exercise for the different damage laws and for both the bulk matrix and1060

composite material, Fig. 21(b) allows evaluating the non-local lengths of the1061

bulk matrix as reported in Table 3 and of the non-local matrix model when1062

used in the MFH scheme as reported in Table 5.1063
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(a) Full mesh (b) Yarns mesh

Figure D.22: Mesh of a 2-layer 0◦ − 90◦/− 45◦ − 45◦ unit-cell: (a) Full mesh of the unit

cell; and (b) Mesh of the yarn.
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Figure D.23: Comparison of the homogenised stress-strain evolution of the 1-layer 0◦−90◦

unit cell and of the 2-layer 0◦ − 90◦/− 45◦ − 45◦ unit cell submitted to uni-axial tension;

The 1-layer 0◦ − 90◦ unit cell is successively modelled with PBC and KUBC; For the

2-layer 0◦−90◦/− 45◦−45◦ unit cell the stress-strain response of the full 2-layer unit-cell

and of the 0◦ − 90◦ layer are reported; The manufacturing tensile stiffness and strength

are also reported [58].

Appendix D. 2-layer laminate1064

In order to assess the representativity of the boundary conditions on the1065

unit cell deformation, we consider the 2-layer 0◦− 90◦/− 45◦− 45◦ unit-cell1066

depicted in Fig. D.22 and submit it to PBC. We compare its homogenised1067

stress-strain evolution to the 1-layer unit cell in Fig. D.23. Because of its1068
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layup, the 2-layer unit-cell is more compliant, so we extracted the response1069

of the 0◦− 90◦ layer of the 2-layer unit-cell. It can be seen in Fig. D.23 that1070

the 0◦ − 90◦ layer of the 2-layer unit-cell exhibits a strength in-between the1071

ones predicted for the 1-layer unit cell with PBC and KUBC. This demon-1072

strates that the real behaviour of the composite layer in a laminate is better1073

represented by the KUBC than by the PBC.1074
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