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A B S T R A C T

Greater direct electrification of end-use sectors with a higher share of renewables is one of the pillars to power
a carbon-neutral society by 2050. However, in contrast to conventional power plants, renewable energy is
subject to uncertainty raising challenges for their interaction with power systems. Scenario-based probabilistic
forecasting models have become a vital tool to equip decision-makers. This paper presents to the power systems
forecasting practitioners a recent deep learning technique, the normalizing flows, to produce accurate scenario-
based probabilistic forecasts that are crucial to face the new challenges in power systems applications. The
strength of this technique is to directly learn the stochastic multivariate distribution of the underlying process
by maximizing the likelihood. Through comprehensive empirical evaluations using the open data of the Global
Energy Forecasting Competition 2014, we demonstrate that this methodology is competitive with other state-
of-the-art deep learning generative models: generative adversarial networks and variational autoencoders. The
models producing weather-based wind, solar power, and load scenarios are properly compared in terms of
forecast value by considering the case study of an energy retailer and quality using several complementary
metrics. The numerical experiments are simple and easily reproducible. Thus, we hope it will encourage other
forecasting practitioners to test and use normalizing flows in power system applications such as bidding
on electricity markets, scheduling power systems with high renewable energy sources penetration, energy
management of virtual power plan or microgrids, and unit commitment.
1. Introduction

To limit climate change and achieve the ambitious targets pre-
scribed by the Intergovernmental Panel on Climate Change [1], the
transition towards a carbon-free society goes through an inevitable
increase of the share of renewable generation in the energy mix.
However, in contrast to conventional power plants, renewable energy
is subject to uncertainty. Therefore, the operational predictability of
modern power systems has been challenging as the total installed ca-
pacity of renewable energy sources (RES) increases and new distributed
energy resources are introduced into the existing power networks. To
address this challenge point forecasts are widely used in the industry
as inputs to decision-making tools. However, they are inherently un-
certain and in the context of decision-making, a point forecast plus
an uncertainty interval is of genuine added value. In this context,
probabilistic forecasts [2], which aim at modeling the distribution of all
possible future realizations, have become an important tool [3] to equip
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decision-makers [4], hopefully leading to better decisions in energy
applications [5].

The various types of probabilistic forecasts range from quantile to
density forecasts, scenarios, and through prediction intervals [4]. This
paper focuses on scenario generation, a popular probabilistic forecasting
method to capture the uncertainty of load, photovoltaic (PV) genera-
tion, and wind generation. It consists of producing sequences of possi-
ble load or power generation realizations for one or more locations.

Forecasting methodologies can typically be classified into two
groups: statistical and machine learning models. On the one hand,
statistical approaches are more interpretable than machine learning
techniques, sometimes referred to as black-box models. On the other
hand, they are generally more robust, user-friendly, and successful in
addressing the non-linearity in the data than statistical techniques. We
provide in the following a few examples of statistical approaches. More
references can be found in Khoshrou and Pauwels [6] and Mashlakov
et al. [7].
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Multiple linear regression models [8] and autoregressive integrated
moving average [9] are among the most fundamental and widely-
used models. For instance, an autoregressive moving average model is
used by Morales et al. [10] to generate spatiotemporal scenarios with
given power generation profiles at each renewables generation site.
These models mostly learn a relationship between several explanatory
variables and a dependent target variable. Therefore, the performance
of such models is only satisfactory if the dependent variables are
well formulated based on explanatory variables. However, they require
some expert knowledge to formulate the relevant interaction between
different variables. Another class of statistical approaches consists of
using simple parametric distributions, e.g., the Weibull distribution for
wind speed [11], or the beta distribution for solar irradiance [12] to
model the density associated with the generative process. In this line,
the (Gaussian) copula method has been widely used to model the spatial
and temporal characteristics of wind [13] and PV generation [14]. For
instance, the problem of generating probabilistic forecasts for the ag-
gregated power of a set of renewable power plants harvesting different
energy sources is addressed by Camal et al. [15].

Overall, these approaches usually make statistical assumptions in-
creasing the difficulty to model the underlying stochastic process. The
generated scenarios approximate the future uncertainty but cannot
correctly describe all the salient features in the power output from
renewable energy sources. Deep learning is one of the newest trends
in artificial intelligence and machine learning to tackle the limitations
of statistical methods with promising results across various application
domains.

1.1. Related work

Recurrent neural networks (RNNs) are among the most famous deep
learning techniques adopted in energy forecasting applications. A novel
pooling-based deep recurrent neural network is proposed by Shi et al.
[16] in the field of short-term household load forecasting. It outper-
forms statistical approaches such as autoregressive integrated moving
average and classical RNN. A tailored forecasting tool, named encoder–
decoder, is implemented in Dumas et al. [17] to compute intraday
multi-output PV quantiles forecasts. Guidelines and best practices are
developed by Hewamalage et al. [18] for forecasting practitioners on
an extensive empirical study with an open-source software framework
of existing RNN architectures. In the continuity, Toubeau et al. [19]
implemented a bidirectional long short-term memory (BLSTM) archi-
tecture. It is trained using quantile regression and combined with a
copula-based approach to generate scenarios. This methodology is com-
pared with other models in terms of forecast quality and value using a
scenario-based stochastic optimization case study. Finally, Salinas et al.
[20] trained an autoregressive recurrent neural network on several real-
world datasets producing accurate probabilistic forecasts with little or
no hyper-parameter tuning.

Deep generative modeling is a class of techniques that trains deep
neural networks to model the distribution of the observations. In recent
years, there has been a growing interest in this field made possible by
the appearance of large open-access datasets and breakthroughs in both
general deep learning architectures and generative models. Several ap-
proaches exist such as energy-based models, variational autoencoders,
generative adversarial networks, autoregressive models, normalizing
flows, and numerous hybrid strategies. They all make trade-offs in
terms of computation time, diversity, and architectural restrictions. We
recommend two papers to get a broader knowledge of this field. (1)
The comprehensive overview of generative modeling trends conducted
by Bond-Taylor et al. [21]. It presents generative models to forecasting
practitioners under a single cohesive statistical framework. (2) The
thorough comparison of normalizing flows, variational autoencoders,
and generative adversarial networks provided by Ruthotto and Haber
[22]. It describes the advantages and disadvantages of each approach
2

using numerical experiments in the field of computer vision. In the
following, we focus on the applications of generative models in power
systems.

In contrast to statistical approaches, deep generative models such
as Variational AutoEncoders (VAEs) [23] and Generative Adversarial Net-
works (GANs) [24] directly learn a generative process of the data. They
have demonstrated their effectiveness in many applications to compute
accurate probabilistic forecasts including power system applications.
They both make probabilistic forecasts in the form of Monte Carlo
samples that can be used to compute consistent quantile estimates
for all sub-ranges in the prediction horizon. Thus, they cannot suffer
from the issue raised by Ordiano et al. [25] on the non-differentiable
quantile loss function. Note that generative models such as GANs and
VAEs allow generating scenarios of the variable of interest directly.
In contrast with methods that first compute weather scenarios to gen-
erate probabilistic forecasts such as implemented by Sun et al. [26]
and Khoshrou and Pauwels [6]. A VAE composed of a succession of
convolutional and feed-forward layers is proposed by Zhanga et al.
[27] to capture the spatial–temporal complementary and fluctuant
characteristics of wind and PV power with high model accuracy and
low computational complexity. Both single and multi-output PV fore-
casts using a VAE are compared by Dairi et al. [28] to several deep
learning methods such as LSTM, BLSTM, convolutional LSTM networks
and stacked autoencoders, where the VAE consistently outperformed
the other methods. A GAN is used by Chen et al. [29] to produce a
set of wind power scenarios that represent possible future behaviors
based only on historical observations and point forecasts. This method
has a better performance compared to Gaussian Copula. A Bayesian
GAN is introduced by Chen et al. [30] to generate wind and solar
scenarios, and a progressive growing of GANs is designed by Yuan et al.
[31] to propose a novel scenario forecasting method. In a different
application, a GAN is implemented for building occupancy modeling
without any prior assumptions [32]. Finally, a conditional version of
the GAN using several labels representing some characteristics of the
demand is introduced by Lan et al. [33] to output power load data
considering demand response programs.

Improved versions of GANs and VAEs have also been studied in
the context of energy forecasting. The Wasserstein GAN consists of
enforcing the Lipschitz continuity through a gradient penalty term
(WGAN-GP), as the original GANs are challenging to train and suf-
fer from mode collapse and over-fitting. Several studies applied this
improved version in power systems: (1) a method using unsupervised
labeling and conditional WGAN-GP models the uncertainties and varia-
tion in wind power [34]; (2) a WGAN-GP models both the uncertainties
and the variations of the load [35]; (3) Jiang et al. [36] implemented
scenario generation tasks both for a single site and for multiple cor-
related sites without any changes to the model structure. Concerning
VAEs, they suffer from inherent shortcomings, such as the difficulties of
tuning the hyper-parameters or generalizing a specific generative model
structure to other databases. An improved VAE is proposed by Qi et al.
[37] with the implementation of a 𝛽 hyper-parameter into the VAE
objective function to balance the two parts of the loss. This improved
VAE is used to generate PV and power scenarios from historical values.

However, most of these studies did not benefit from conditional
information such as weather forecasts to generate improved PV, wind
power, and load scenarios. In addition, to the best of our knowledge,
only Ge et al. [38] compared NFs to these techniques for the generation
of daily load profiles. Nevertheless, the comparison only considers
quality metrics, and the models do not incorporate weather forecasts.

1.2. Research gaps and scientific contributions

This study investigates the implementation of Normalizing Flows [39,
NFs] in power system applications. NFs define a new class of probabilis-
tic generative models that has gained increasing interest from the deep
learning community in recent years. A NF learns a sequence of trans-

formations, a flow, from a density known analytically, e.g., a Normal
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distribution, to a complex target distribution. In contrast to other deep
generative models, NFs can directly be trained by maximum likelihood
estimation. They have proven to be an effective way to model complex
data distributions with neural networks in many domains such as
speech synthesis [40], fundamental physics to increase the speed of
gravitational wave inference by several orders of magnitude [41] or
for sampling Boltzmann distributions of lattice field theories [42], and
have been applied in the capacity firming framework by Dumas et al.
[43].

This present work goes several steps further than Ge et al. [38]
that demonstrated the competitiveness of NFs regarding GANs and
VAEs for generating daily load profiles. First, we study the conditional
version of these models to demonstrate that they can handle additional
contextual information such as weather forecasts or geographical loca-
tions. Second, we extensively compare the model’s performances both
in terms of forecast value and quality. The forecast quality corresponds
to the ability of the forecasts to genuinely inform of future events by
mimicking the characteristics of the processes involved. The forecast
value relates to the benefits of using forecasts in decision-making, such
as participation in the electricity market. Third, we consider PV and
wind generations in addition to load profiles. Finally, in contrast to the
affine NFs used in their work, we rely on monotonic transformations,
which are universal density approximators [44].

Given that Normalizing Flows are rarely used in the power sys-
tems community despite their potential, our main aim is to present
this recent deep learning technique and demonstrate its interest and
competitiveness with state-of-the-art generative models such as GANs
and VAEs on a simple and easily reproducible case study. The research
gaps motivating this paper are three-fold:

1. To the best of our knowledge, only Ge et al. [38] compared
NFs to GANs and VAEs for the generation of daily load profiles.
Nevertheless, the comparison is only based on quality metrics,
and the models do not take into account weather forecasts;

2. Most of the studies that propose or compare forecasting tech-
niques only consider the forecast quality, such as Ge et al.
[38], Sun et al. [26], and Mashlakov et al. [7];

3. The conditional versions of the models are not always addressed
such as in Ge et al. [38]. However, weather forecasts are essen-
tial for computing accurate probabilistic forecasts.

With these research gaps in mind, the main contributions of this
aper are three-fold:

1. We provide a fair comparison both in terms of quality and
value with the state-of-the-art deep learning generative models,
GANs and VAEs, using the open data of the Global Energy
Forecasting Competition 2014 (GEFcom 2014) [45]. To the best
of our knowledge, it is the first study that extensively compares
the NFs, GANs, and VAEs on several datasets, PV generation,
wind generation, and load with a proper assessment of the
quality and value based on complementary metrics, and an easily
reproducible case study;

2. We implement conditional generative models to compute im-
proved weather-based PV, wind power, and load scenarios. In
contrast to most of the previous studies that focused mainly on
past observations;

3. Overall, we demonstrate that NFs are more accurate in quality
and value, providing further evidence for deep learning prac-
titioners to implement this approach in more advanced power
system applications.

In addition to these contributions, this study also provides open-
ccess to the Python code1 to help the community to reproduce the
xperiments. Fig. 1 provides the framework of the proposed method

1 https://github.com/jonathandumas/generative-models
3

Table 1
Comparison of the paper’s contributions to three state-of-the-art studies using deep
generative models.

Criteria [35] [37] [38] study

GAN ✓ × ✓ ✓

VAE × ✓ ✓ ✓

NF × × ✓ ✓

Number of models 4 1 3 3
PV × ✓ × ✓

Wind power × ✓ × ✓

Load ✓ ∼ ✓ ✓

Weather-based ✓ × × ✓

Quality assessment ✓ ✓ ✓ ✓

Quality metrics 5 3 5 8
Value assessment × ✓ × ✓

Open dataset ∼ × ✓ ✓

Value replicability – ∼ – ✓

Open-access code × × × ✓

✓: criteria fully satisfied, ∼: criteria partially satisfied, ×: criteria not satisfied, ?: no
information, -: not applicable. GAN: a GAN model is implemented; VAE: a VAE model
is implemented; NF: a NF model is implemented; PV: PV scenarios are generated;
Wind power: wind power scenarios are generated; Load: load scenarios are generated;
Weather-based: the model generates weather-based scenarios; Quality assessment: a
quality evaluation is conducted: Quality metrics: number of quality metrics considered;
Value assessment: a value evaluation is considered with a case study; Open dataset: the
data used for the quality and value evaluations are in open-access; Value replicability:
the case study considered for the value evaluation is easily reproducible; Open-access
code: the code used to conduct the experiments is in open-access. Note: the justifications
are provided in Appendix A.1.

Fig. 1. The framework of the paper.
The paper’s primary purpose is to present and demonstrate the potential of NFs in
power systems. A fair comparison is conducted both in terms of quality and value with
the state-of-the-art deep learning generative models, GANs and VAEs, using the open
data of the Global Energy Forecasting Competition 2014 [45]. The PV, wind power,
and load datasets are used to assess the models. The quality evaluation is conducted
by using eight complementary metrics, and the value assessment by considering the
day-ahead bidding of an energy retailer using stochastic optimization. Overall, NFs tend
to be more accurate both in terms of quality and value and are competitive with GANs
and VAEs.

and Table 1 presents a comparison of the present study to three state-
of-the-art papers using deep learning generative models to generate
scenarios.

1.3. Applicability of the generative models

Probabilistic forecasting of PV, wind generation, electrical consump-
tion, and electricity prices plays a vital role in renewable integration
and power system operations. The deep learning generative models
presented in this paper can be integrated into practical engineering
applications. We present a non-exhaustive list of five applications in the
following. (1) The forecasting module of an energy management system
(EMS) [46]. Indeed, EMSs are used by several energy market players
to operate various power systems such as a single renewable plant, a
grid-connected or off-grid microgrid composed of several generations,
consumption, and storage devices. An EMS is composed of several key
modules: monitoring, forecasting, planning, control, etc. The forecast-
ing module aims to provide the most accurate forecast of the variable

https://github.com/jonathandumas/generative-models
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of interest to be used as inputs of the planning and control modules.
(2) Stochastic unit commitment models that employ scenarios to model
the uncertainty of weather-dependent renewables. For instance, the
optimal day-ahead scheduling and dispatch of a system composed
of renewable plants, generators, and electrical demand are addressed
by Camal et al. [15]. (3) Ancillary services market participation. A
virtual power plant aggregating wind, PV, and small hydropower plants
is studied by Camal et al. [15] to optimally bid on a day-ahead
basis the energy and automatic frequency restoration reserve. (4) More
generally, generative models can be used to compute scenarios for any
variable of interest, e.g., energy prices, renewable generation, loads,
water inflow of hydro reservoirs, as long as data are available. (5)
Finally, quantiles can be derived from scenarios and used in robust
optimization models such as in the capacity firming framework [43].

1.4. Organization

The remainder of this paper is organized as follows. Section 2
presents the generative models implemented: NFs, GANs, and VAEs.
Section 3 provides the quality and value assessment methodologies.
Section 4 details empirical results on the GEFcom 2014 dataset, and
Section 5 summarizes the main findings and highlights ideas for fur-
ther work. Appendix A presents the justifications of Tables 1 and 5,
Appendix B provides additional information on the generative models,
Appendices C and D detail the quality metrics and the retailer energy
case study formulation, and Appendix E presents additional quality
results.

2. Background

This section formally introduces the conditional version of NFs,
GANs, and VAEs implemented in this study. We assume the reader is
familiar with the neural network’s basics. However, for further informa-
tion Goodfellow et al. [47], Zhang et al. [48] provide a comprehensive
introduction to modern deep learning approaches.

2.1. Multi-output forecast

Let us consider some dataset  = {𝐱𝑖, 𝐜𝑖}𝑁𝑖=1 of 𝑁 independent
and identically distributed samples from the joint distribution 𝑝(𝐱, 𝐜)
of two continuous variables 𝑋 and 𝐶. 𝑋 being the wind generation,
V generation, or load, and 𝐶 the weather forecasts. They are both

composed of 𝑇 periods per day, with 𝐱𝑖 ∶= [𝑥𝑖1,… , 𝑥𝑖𝑇 ]
⊺ ∈ R𝑇 and

𝐜𝑖 ∶= [𝑐𝑖1,… , 𝑐𝑖𝑇 ]
⊺ ∈ R𝑇 . The goal of this work is to generate multi-

utput weather-based scenarios 𝐱̂ ∈ R𝑇 that are distributed under
𝑝(𝐱|𝐜).

A generative model is a probabilistic model 𝑝𝜃(⋅), with parameters
𝜃, that can be used as a generator of the data. Its purpose is to generate
synthetic but realistic data 𝐱̂ ∼ 𝑝𝜃(𝐱|𝐜) whose distribution is as close as
possible to the unknown data distribution 𝑝(𝐱|𝐜). In our application, it
computes on a day-ahead basis a set of 𝑀 scenarios at day 𝑑 − 1 for
day 𝑑

𝐱̂𝑖𝑑 ∶=
[

𝑥̂𝑖𝑑,1,… , 𝑥̂𝑖𝑑,𝑇
]⊺ ∈ R𝑇 𝑖 = 1,… ,𝑀. (1)

For the sake of clarity, we omit the indexes 𝑑 and 𝑖 when referring to
a scenario 𝐱̂ in the following.

2.2. Deep generative models

Fig. 2 provides a high-level comparison of three categories of gener-
ative models considered in this paper: Normalizing Flows, Generative
Adversarial Networks, and Variational AutoEncoders.
4

Fig. 2. High-level comparison of three categories of generative models considered
in this paper: normalizing flows, generative adversarial networks, and variational
autoencoders.
All models are conditional as they use the weather forecasts 𝐜 to generate scenarios 𝐱̂
of the distribution of interest 𝐱: PV generation, wind power, load. Normalizing flows
allow exact likelihood calculation. In contrast to generative adversarial networks and
variational autoencoders, they explicitly learn the data distribution and directly access
the exact likelihood of the model’s parameters. The inverse of the flow is used to
generate scenarios. The training of generative adversarial networks relies on a min–max
problem where the generator and the discriminator parameters are jointly optimized.
The generator is used to compute the scenarios. Variational autoencoders indirectly
optimize the log-likelihood of the data by maximizing the variational lower bound. The
decoder computes the scenarios. Note: Section 2.3 provides a theoretical comparison
of these models.

2.2.1. Normalizing flows
A normalizing flow is defined as a sequence of invertible transfor-

mations 𝑓𝑘 ∶ R𝑇 → R𝑇 , 𝑘 = 1,… , 𝐾, composed together to create
an expressive invertible mapping 𝑓𝜃 ∶= 𝑓1◦… ◦𝑓𝐾 ∶ R𝑇 → R𝑇 . This
composed function can be used to perform density estimation, using 𝑓𝜃
to map a sample 𝐱 ∈ R𝑇 onto a latent vector 𝐳 ∈ R𝑇 equipped with
a known and tractable probability density function 𝑝𝑧, e.g., a Normal
distribution. The transformation 𝑓𝜃 implicitly defines a density 𝑝𝜃(𝐱)
that is given by the change of variables

𝑝𝜃(𝐱) = 𝑝𝑧(𝑓𝜃(𝐱))| det 𝐽𝑓𝜃 (𝐱)|, (2)

where 𝐽𝑓𝜃 is the Jacobian of 𝑓𝜃 regarding 𝐱. The model is trained by
maximizing the log-likelihood ∑𝑁

𝑖=1 log 𝑝𝜃(𝐱
𝑖, 𝐜𝑖) of the model’s param-

eters 𝜃 given the dataset . For simplicity let us assume a single-step
flow 𝑓𝜃 to drop the index 𝑘 for the rest of the discussion.

In general, 𝑓𝜃 can take any form as long as it defines a bijec-
tion. However, a common solution to make the Jacobian computation
tractable in (2) consists of implementing an autoregressive transforma-
tion [49], i.e., such that 𝑓𝜃 can be rewritten as a vector of scalar
bijections 𝑓 𝑖

𝑓𝜃(𝐱) ∶= [𝑓 1(𝑥1;ℎ1),… , 𝑓𝑇 (𝑥𝑇 ;ℎ𝑇 )]⊺, (3a)

ℎ𝑖 ∶= ℎ𝑖(𝐱<𝑖;𝜑𝑖) 2 ≤ 𝑖 ≤ 𝑇 , (3b)

𝐱<𝑖 ∶= [𝑥1,… , 𝑥𝑖−1]⊺ 2 ≤ 𝑖 ≤ 𝑇 , (3c)

ℎ1 ∈ R, (3d)

where 𝑓 𝑖(⋅;ℎ𝑖) ∶ R → R is partially parameterized by an autoregressive
conditioner ℎ𝑖(⋅;𝜑𝑖) ∶ R𝑖−1 → R|ℎ𝑖| with parameters 𝜑𝑖, and 𝜃 the union
of all parameters 𝜑𝑖.

There is a large choice of transformers 𝑓 𝑖: affine, non-affine,
integration-based, etc. In this work, an integration-based transformer
is implemented by using the class of Unconstrained Monotonic Neural
Networks (UMNN) proposed by Wehenkel and Louppe [50], which
have been demonstrated to be a universal density approximator of
continuous random variables when combined with autoregressive func-
tions. The UMNN consists of a neural network architecture that enables
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Fig. 3. The process of conditional normalizing flows is illustrated with a three-step NF
for PV generation.
The model 𝑓𝜃 is trained by maximizing the log-likelihood of the model’s parameters 𝜃
given a dataset composed of PV observations and weather forecasts. Recall 𝑓𝜃 defines a
bijection between the variable of interest 𝐱, PV generation, and a Normal distribution
𝐳. Then, the PV scenarios 𝐱̂ are generated by using the inverse of 𝑓𝜃 that takes as
inputs samples from the Normal distribution 𝐳 and the weather forecasts 𝐜.

learning arbitrary monotonic functions. It is achieved by parameteriz-
ing the bijection 𝑓 𝑖 as follows

𝑓 𝑖(𝑥𝑖;ℎ𝑖) = ∫

𝑥𝑖

0
𝜏 𝑖(𝑥𝑖, ℎ𝑖)𝑑𝑡 + 𝛽𝑖(ℎ𝑖), (4)

where 𝜏𝑖(⋅;ℎ𝑖) ∶ R|ℎ𝑖|+1 → R+ is the integrand neural network with
a strictly positive scalar output, ℎ𝑖 ∈ R|ℎ𝑖| an embedding made by the
conditioner, and 𝛽𝑖(⋅) ∶ R|ℎ𝑖| → R a neural network with a scalar output.
The forward evaluation of 𝑓 𝑖 requires solving the integral (4) and
is efficiently approximated numerically by using the Clenshaw–Curtis
quadrature. The pseudo-code of the forward and backward passes is
provided by Wehenkel and Louppe [50].

Papamakarios et al. [51]’s Masked Autoregressive Network (MAF)
is implemented to simultaneously parameterize the 𝑇 autoregressive
embeddings ℎ𝑖 of the flow (3). Then, the change of variables formula
applied to the UMMN-MAF transformation results in the following
log-density when considering weather forecasts

log 𝑝𝜃(𝐱, 𝐜) = log 𝑝𝑧(𝑓𝜃(𝐱, 𝐜))| det 𝐽𝑓𝜃 (𝐱, 𝐜)|, (5a)

= log 𝑝𝑧(𝑓𝜃(𝐱, 𝐜)) +
𝑇
∑

𝑖=1
log 𝜏𝑖

(

𝑥𝑖, ℎ
𝑖(𝐱<𝑖), 𝐜

)

, (5b)

that can be computed exactly and efficiently with a single forward pass.
The UMNN-MAF approach implemented is referred to as NF in the rest
of the paper. Fig. 3 depicts the process of conditional normalizing flows
with a three-step NF for PV generation. Note: Appendix B.1 provides
additional information on NFs.

2.2.2. Variational autoencoders
A VAE is a deep latent variable model composed of an encoder and

a decoder which are jointly trained to maximize a lower bound on
the likelihood. The encoder 𝑞𝜑(⋅) ∶ R𝑇 × R|𝐜| → R𝑑 approximates the
intractable posterior 𝑝(𝐳|𝐱, 𝐜), and the decoder 𝑝𝜃(⋅) ∶ R𝑑×R|𝐜| → R𝑇 the
likelihood 𝑝(𝐱|𝐳, 𝐜) with 𝐳 ∈ R𝑑 . Maximum likelihood is intractable as
it would require marginalizing with respect to all possible realizations
of the latent variables 𝐳. Kingma and Welling [23] addressed this issue
by maximizing the variational lower bound 𝜃,𝜑(𝐱, 𝐜) as follows

log 𝑝𝜃(𝐱|𝐜) =𝐾𝐿[𝑞𝜑(𝐳|𝐱, 𝐜) ∥ 𝑝(𝐳|𝐱, 𝐜)] + 𝜃,𝜑(𝐱, 𝐜), (6a)

≥𝜃,𝜑(𝐱, 𝐜), (6b)

𝜃,𝜑(𝐱, 𝐜) ∶=E𝑞𝜑(𝐳|𝐱,𝐜)

[

log
𝑝(𝐳)𝑝𝜃(𝐱|𝐳, 𝐜)
𝑞𝜑(𝐳|𝐱, 𝐜)

]

, (6c)
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Fig. 4. The process of conditional variational autoencoder is illustrated for PV
generation.
The VAE is trained by maximizing the variational lower bound given a dataset
composed of PV observations and weather forecasts. The encoder 𝑞𝜑 maps the variable
of interest 𝐱 to a latent space 𝐳. The decoder 𝑝𝜃 generates the PV scenarios 𝐱̂ by taking
as inputs samples 𝐳 from the latent space and the weather forecasts 𝐜.

as the Kullback–Leibler (KL) divergence [52] is non-negative. Ap-
pendix B.2 details how to compute the gradients of 𝜃,𝜑(𝐱, 𝐜), and its
exact expression for the implemented VAE composed of fully connected
neural networks for both the encoder and decoder. Fig. 4 depicts the
process of a conditional variational autoencoder for PV generation.

2.2.3. Generative adversarial networks
GANs are a class of deep generative models proposed by Goodfellow

et al. [24] where the key idea is the adversarial training of two
neural networks, the generator and the discriminator, during which the
generator learns iteratively to produce realistic scenarios until they
cannot be distinguished anymore by the discriminator from real data.
The generator 𝑔𝜃(⋅) ∶ R𝑑 × R|𝐜| → R𝑇 maps a latent vector 𝐳 ∈ R𝑑

equipped with a known and tractable prior probability density function
𝑝(𝐳), e.g., a Normal distribution, onto a sample 𝐱 ∈ R𝑇 , and is trained
to fool the discriminator. The discriminator 𝑑𝜙(⋅) ∶ R𝑇 × R|𝐜| →

[0, 1] is a classifier trained to distinguish between true samples 𝐱 and
generated samples 𝐱̂. Goodfellow et al. [24] demonstrated that solving
the following min–max problem

𝜃⋆ = argmin
𝜃

max
𝜙

𝑉 (𝜙, 𝜃), (7)

where 𝑉 (𝜙, 𝜃) is the value function, recovers the data generating distri-
bution if 𝑔𝜃(⋅) and 𝑑𝜙(⋅) are given enough capacity. The state-of-the-art
conditional Wasserstein GAN with gradient penalty (WGAN-GP) pro-
posed by Gulrajani et al. [53] is implemented with 𝑉 (𝜙, 𝜃) defined as

𝑉 (𝜙, 𝜃) = −
(

E
𝐱̂
[𝑑𝜙(𝐱̂|𝐜)] − E

𝐱
[𝑑𝜙(𝐱|𝐜)] + 𝜆GP

)

, (8a)

GP =Ẽ
𝐱

[(

‖∇𝐱̃𝑑𝜙(𝐱̃|𝐜)‖2 − 1
)2]

, (8b)

where 𝐱̃ is implicitly defined by sampling convex combinations between
the data and the generator distributions 𝐱̃ = 𝜌𝐱̂+(1−𝜌)𝐱 with 𝜌 ∼ U(0, 1).
The WGAN-GP constraints the gradient norm of the discriminator’s
output with respect to its input, to enforce the 1-Lipschitz conditions,
in contrast to the weight clipping of WGAN that sometimes generates
only poor samples or fails to converge. Appendix B.3 details the suc-
cessive improvements from the original GAN to the WGAN, and the
final WGAN-GP implemented, referred to as GAN in the rest of the
paper. Fig. 5 depicts the process of a conditional generative adversarial
network for PV generation.
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Fig. 5. The process of the conditional generative adversarial network is illustrated for
PV generation.
The GAN is trained by solving a min–max problem given a dataset composed of PV
observations 𝐱 and weather forecasts. The generator 𝑔𝜃 computes PV scenarios 𝐱̂ by
taking as inputs samples from the Normal distribution 𝐳 and the weather forecasts 𝐜,
and the decoder 𝑑𝜙 tries to distinguishes true data from scenarios.

2.3. Theoretical comparison

Normalizing flows are a generative model that allows exact likeli-
hood calculation. They are efficiently parallelizable and offer a valuable
latent space for downstream tasks. In contrast to GANs and VAEs, NFs
explicitly learn the data distribution and provide direct access to the
exact likelihood of the model’s parameters, hence offering a sound and
direct way to optimize the network parameters [54]. However, NFs
suffer from some drawbacks [21]: (1) one disadvantage of requiring
transformations to be invertible is that the input dimension must be
equal to the output dimension, which may make the model difficult to
train or inefficient; (2) each transformation must be sufficiently expres-
sive while being easily invertible to efficiently compute the Jacobian
determinant. The first issue is also raised by Ruthotto and Haber [22]
where it is said that ensuring sufficient similarity of the distribution
of interest and the latent distribution is of high importance to obtain
meaningful and relevant samples. However, in our numerical simula-
tions, we did not encounter this problem. Concerning the second issue,
the UMNN-MAF transformation provides an expressive and effective
way of computing the Jacobian.

VAEs indirectly optimize the log-likelihood of the data by maxi-
mizing the variational lower bound. The advantage of VAEs over NFs
is their ability to handle non-invertible generators and the arbitrary
dimension of the latent space. However, it has been observed that when
applied to complex datasets such as natural images, VAEs samples tend
to be unrealistic. There is evidence that the limited approximation of
the true posterior, with a common choice being a normally distributed
prior with diagonal covariance, is the root cause [55]. This statement
comes from the field of computer vision. However, it may explain
the shape of the scenarios observed in our numerical experiments in
Section 4.

The training of GANs relies on a min–max problem where the
generator and the discriminator are jointly optimized. Therefore, it
does not rely on estimates of the likelihood or latent variable. The
adversarial nature of GANs makes them notoriously difficult to train
due to the saddle point problem [56]. Another drawback is the mode
collapsing, where one network stays in bad local minima, and only a
small subset of the data distribution is learned. Several improvements
have been designed to address these issues, such as the Wasserstein
GAN with gradient penalty. Thus, GANs models are widely used in
computer vision and power systems. However, most GAN approaches
require cumbersome hyperparameter tuning to achieve similar results
6

to VAEs or NFs. In our numerical simulations, the GAN is highly
sensitive to hyperparameter variations, which is consistent with [22].

Each method has its advantages and drawbacks and makes trade-
offs in terms of computing time, hyper-parameter tuning, architecture
complexity, etc. Therefore, the choice of a particular method is de-
pendent on the user criteria and the dataset considered. In addition,
the challenges of power systems are different from computer vision.
Therefore, the limitations established in the computer vision literature
such as Bond-Taylor et al. [21] and Ruthotto and Haber [22] must be
addressed with caution. Therefore, we encourage the energy forecasting
practitioners to test and compare these methods in power systems
applications.

3. Value and quality assessment

For predictions in any form, one must differentiate between their
quality and their value [4]. Forecast quality corresponds to the ability
of the forecasts to genuinely inform of future events by mimicking the
characteristics of the processes involved. Forecast value relates, instead,
to the benefits from using forecasts in a decision-making process, such
as participation in the electricity market.

3.1. Forecast quality

Evaluating and comparing generative models remains a challenging
task. Several measures have been introduced with the emergence of
new models, particularly in the field of computer vision. However,
there is no consensus or guidelines as to which metric best captures
the strengths and limitations of models. Generative models need to
be evaluated directly to the application they are intended for [57].
Indeed, good performance to one criterion does not imply good per-
formance to the other criteria. Several studies propose metrics and
make attempts to determine the pros and cons. We selected two that
provide helpful information: (1) 24 quantitative and five qualitative
measures for evaluating generative models are reviewed and compared
by Borji [58] with a particular emphasis on GAN-derived models;
(2) several representative sample-based evaluation metrics for GANs
are investigated by Xu et al. [59] where the kernel Maximum Mean
Discrepancy (MMD) and the 1-Nearest-Neighbor (1-NN) two-sample
test seem to satisfy most of the desirable properties. The key message
is to combine several complementary metrics to assess the generative
models. Some of the metrics proposed are related to image generation
and cannot directly be transposed to energy forecasting.

Therefore, we used eight complementary quality metrics to conduct
a relevant quality analysis inspired by the energy forecasting and
computer vision fields. They can be divided into four groups: (1) the
univariate metrics composed of the continuous ranked probability score,
the quantile score, and the reliability diagram. They can only assess
the quality of the scenarios to their marginals; (2) the multivariate
metrics are composed of the energy and the variogram scores. They can
directly assess multivariate scenarios; (3) the specific metrics composed
of a classifier-based metric and the correlation matrix between scenar-
ios for a given context; (4) the Diebold and Mariano test statistical
test. The basics of these metrics are provided in the following, and
Appendix C presents the mathematical definitions and the details of
implementation.

Univariate metrics
The continuous ranked probability score (CRPS) [60] is a univariate

scoring rule that penalizes the lack of resolution of the predictive
distributions as well as biased forecasts. It is negatively oriented, i.e.,
the lower, the better, and for deterministic forecasts, it turns out to
be the mean absolute error (MAE). The CRPS is used to compare the
skill of predictive marginals for each component of the random variable
of interest. In our case, for the twenty-four time periods of the day.
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It allows to quantitatively assess the performance of the generative
methods similar to the MAE when considering point forecasts.

The quantile score (QS), also known as the pinball loss score, is
complementary to the CRPS as it permits obtaining detailed infor-
mation about the forecast quality at specific probability levels, i.e.,
over-forecasting or under-forecasting, and particularly those related to
the tails of the predictive distribution [61]. It is negatively oriented
and assigns asymmetric weights to negative and positive errors for each
quantile.

Finally, the reliability diagram is a visual verification used to evalu-
ate the reliability of the quantiles derived from the scenarios. Quantile
forecasts are reliable if their nominal proportions are equal to the
proportions of the observed value.

Multivariate metrics
The energy score (ES) is the most commonly used scoring rule

when a finite number of trajectories represents distributions. It is
a multivariate generalization of the CRPS and has been formulated
and introduced by Gneiting and Raftery [60]. The ES is proper and
negatively oriented, i.e., a lower score represents a better forecast.
The ES is used as a multivariate scoring rule by Golestaneh et al.
[62] to investigate and analyze the spatio-temporal dependency of PV
generations. They emphasize the ES pros and cons. It is capable of
evaluating forecasts relying on marginals with correct variances but
biased means. Unfortunately, its ability to detect incorrectly specified
correlations between the components of the multivariate quantity is
somewhat limited. The ES is selected as a multivariate scoring rule in
this study to quantitatively assess the performance of the generative
methods similar to the mean absolute error when considering point
forecasts.

An alternative class of proper scoring rules based on the geostatis-
tical concept of variograms is proposed by Scheuerer and Hamill [63].
The sensitivity of these variogram-based scoring rules to incorrectly
predicted means, variances, and correlations is studied. The results
indicate that these scores are shown to be distinctly more discrim-
inative to the correlation structure. Thus, in contrast to the Energy
score, the Variogram score captures correlations between multivariate
components.

Specific metrics
A conditional classifier-based scoring rule is designed by implement-

ing an Extra-Trees classifier [64] to discriminate true from generated
samples. The receiver operating characteristic (ROC) curves are com-
puted for each generative model on the testing set. The best generative
model should achieve an area under the ROC curve (AUC) of 0.5, i.e.,
each sample is equally likely to be predicted as true or false, meaning
the classifier is unable to discriminate generated scenarios from the
actual observations. Note: ROC curve is the relationship between True
Positive Rate and False Positive Rate given by different thresholds. AUC
ROC is the area under the ROC curve, and it is the metric used to
measure how well the model can distinguish two classes. We recom-
mend the article of Fawcett [65] that is designed both as a tutorial
introduction to ROC graphs and as a practical guide for using them in
research.

The second specific metric consists of computing the correlation
matrix between the scenarios generated for given weather forecasts.
Formally, let {𝐱̂𝑖}𝑀𝑖=1 be the set of 𝑀 scenarios generated for a given
day of the testing set. It is a matrix (𝑀 × 24) where each row is a
scenario. Then, the Pearson’s correlation coefficients are computed into
a correlation matrix (24 × 24). This metric indicates the variety of
7

scenario shapes. o
Statistical testing
Using relevant metrics to assess the forecast quality is essential.

However, it is also necessary to analyze whether any difference in
accuracy is statistically significant. Indeed, when different models have
almost identical values in the selected error measures, it is difficult to
draw statistically significant conclusions on the outperformance of the
forecasts of one model by those of another. The Diebold–Mariano (DM)
test [66] is probably the most commonly used statistical testing tool
to evaluate the significance of differences in forecasting accuracy. It is
model-free, i.e., it compares the forecasts of models, and not models
themselves. The DM test is used in this study to assess the CRPS, QS,
ES, and VS metrics. The CRPS and QS are univariate scores, and a
value of CRPS and QS is computed per marginal (time period of the
day). Therefore, the multivariate variant of the DM test is implemented
following Ziel and Weron [67], where only one statistic for each pair
of models is computed based on the 24-dimensional vector of errors for
each day.

3.2. Forecast value

A model that yields lower errors in terms of forecast quality may not
always point to a more effective model for forecast practitioners [5].
To this end, similarly to Toubeau et al. [19], the forecast value is
assessed by considering the day-ahead market scheduling of electricity
aggregators, such as energy retailers or generation companies. The
energy retailer aims to balance its portfolio on an hourly basis to avoid
financial penalties in case of imbalance by exchanging the surplus
or deficit of energy in the day-ahead electricity market. The energy
retailer may have a battery energy storage system (BESS) to manage
its portfolio and minimize imports from the main grid when day-ahead
prices are prohibitive.

Let 𝑒𝑡 [MWh] be the net energy retailer position on the day-ahead
market during the 𝑡th hour of the day, modeled as a first stage variable.
Let 𝑦𝑡 [MWh] be the realized net energy retailer position during the 𝑡th
hour of the day, which is modeled as a second stage variable due to the
stochastic processes of the PV generation, wind generation, and load.
Let 𝜋𝑡 [e/MWh] the clearing price in the spot day-ahead market for the
𝑡th hour of the day, 𝑞𝑡 ex-post settlement price for negative imbalance
𝑦𝑡 < 𝑒𝑡, and 𝜆𝑡 ex-post settlement price for positive imbalance 𝑦𝑡 > 𝑒𝑡.
The energy retailer is assumed to be a price taker in the day-ahead
market. It is motivated by the individual energy retailer capacity being
negligible relative to the whole market. The forward settlement price 𝜋𝑡
is assumed to be fixed and known. As imbalance prices tend to exhibit
volatility and are difficult to forecast, they are modeled as random
variables, with expectations denoted by 𝑞𝑡 = E[𝑞𝑡] and 𝜆̄𝑡 = E[𝜆𝑡].
They are assumed to be independent random variables from the energy
retailer portfolio.

A stochastic planner with a linear programming formulation and
linear constraints is implemented using a scenario-based approach. The
planner computes the day-ahead bids 𝑒𝑡 that cannot be modified in the
future when the uncertainty is resolved. The second stage corresponds
to the dispatch decisions 𝑦𝑡,𝜔 in scenario 𝜔 that aims at avoiding
portfolio imbalances modeled by a cost function 𝑓 𝑐 . The second-stage
decisions are therefore scenario-dependent and can be adjusted ac-
cording to the realization of the stochastic parameters. The stochastic
planner objective to maximize is

𝐽𝑆 = E
[

∑

𝑡∈
𝜋𝑡𝑒𝑡 + 𝑓 𝑐 (𝑒𝑡, 𝑦𝑡,𝜔)

]

, (9)

here the expectation is taken to the random variables, the PV gener-
tion, wind generation, and load. Using a scenario-based approach, (9)
s approximated by

𝑆 ≈
∑

𝜔∈𝛺
𝛼𝜔

∑

𝑡∈

[

𝜋𝑡𝑒𝑡 + 𝑓 𝑐 (𝑒𝑡, 𝑦𝑡,𝜔)
]

, (10)

ith 𝛼𝜔 the probability of scenario 𝜔 ∈ 𝛺, and ∑

𝜔∈𝛺 𝛼𝜔 = 1. The
ptimization problem is detailed in Appendix D.
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Fig. 6. Methodology to assess both the quality and value of the GAN, VAE, and NF
models implemented in this study.
The PV, wind power, and load datasets of the open-access Global Energy Forecasting
Competition 2014 are divided into three parts: learning, validation, and testing sets.
The learning set is used to train the models, the validation set to select the optimal
hyper-parameters, and the testing set to conduct the numerical experiments. The quality
and value of the models are assessed by using the scenarios generated on the testing
set. The quality evaluation consists of eight complementary metrics, and the value
assessment is performed by using the simple and easily reproducible case study of the
day-ahead bidding of an energy retailer. The energy retailer portfolio is composed of
PV, wind power generation, load, and a storage system device. The retailer bids on
the day-ahead market by computing a planning based on stochastic optimization. The
dispatch is computed by using the observations of the PV generation, wind power, and
load. Then, the profits are evaluated and compared.

4. Numerical results

The quality and value evaluations of the models are conducted
on the load, wind, and PV tracks of the open-access GEFCom 2014
dataset [45], composed of one, ten, and three zones, respectively. Fig. 6
depicts the methodology to assess both the quality and value of the
GAN, VAE, and NF models implemented in this study.

4.1. Implementation details

By appropriate normalization, we standardize the weather forecasts
to have a zero mean and unit variance. Table 2 provides a summary of
the implementation details described in what follows. For the sake of
proper model training and evaluation, the dataset is divided into three
parts per track considered: learning, validation, and testing sets. The
learning set (LS) is used to fit the models, the validation set (VS) to
select the optimal hyper-parameters, and the testing set (TS) to assess
the forecast quality and value. The number of samples (#), expressed
in days, of the VS and TS is 50 ⋅ 𝑛𝑧, with 𝑛𝑧 the number of zones of the
track considered. The 50 days are selected randomly from the dataset,
and the learning set is composed of the remaining part with 𝐷 ⋅ 𝑛𝑧
samples, where 𝐷 is provided for each track in Table 2. The NF, VAE,
and GAN use the weather forecasts as inputs to generate on a day-ahead
basis 𝑀 scenarios 𝐱̂ ∈ R𝑇 . The hyper-parameters values used for the
experiments are provided in Appendix B.4.
8

Table 2
Dataset and implementation details.

Wind PV Load

𝑇 periods 24 16 24
𝑛𝑧 zones 10 3 –
𝑛𝑓 features 10 5 25
𝐜𝑑 dimension 𝑛𝑓 ⋅ 𝑇 + 𝑛𝑧 𝑛𝑓 ⋅ 𝑇 + 𝑛𝑧 𝑛𝑓 ⋅ 𝑇
# LS (days) 631 ⋅ 𝑛𝑧 720 ⋅ 𝑛𝑧 1999
# VS/TS (days) 50 ⋅ 𝑛𝑧 50 ⋅ 𝑛𝑧 50

Each dataset is divided into three parts: learning, validation, and testing sets. The
number of samples (#) is expressed in days and is set to 50 days for the validation and
testing sets. 𝑇 is the number of periods per day considered, 𝑛𝑧 the number of zones
of the dataset, 𝑛𝑓 the number of weather variables used, and 𝐜𝑑 is the dimension of
the conditional vector for a given day that includes the weather forecasts and the one
hot-encoding variables when there are several zones. Note: the days of the learning,
validation, and testing sets are selected randomly.

Wind track
The zonal 𝐮10, 𝐮100 and meridional 𝐯10, 𝐯100 wind components at

10 and 100 meters are selected, and six features are derived following
the formulas provided by Landry et al. [68] to compute the wind speed
𝐰𝐬10, 𝐰𝐬100, energy 𝐰𝐞10, 𝐰𝐞100 and direction 𝐰𝐝10, 𝐰𝐝100 at 10 and 100
meters

𝐰𝐬 =
√

𝐮 + 𝐯, (11a)

𝐰𝐞 =1
2
𝐰𝐬3, (11b)

𝐰𝐝 =180
𝜋

arctan(𝐮, 𝐯). (11c)

For each generative model, the wind zone is taken into account with
one hot-encoding variable 𝑍1,… , 𝑍10, and the wind feature input
vector for a given day 𝑑 is

𝐜wind
𝑑 =[𝐮10𝑑 ,𝐮100𝑑 , 𝐯10𝑑 , 𝐯100𝑑 ,𝐰𝐬10𝑑 ,𝐰𝐬100𝑑 ,

𝐰𝐞10𝑑 ,𝐰𝐞100𝑑 ,𝐰𝐝10𝑑 ,𝐰𝐝100𝑑 , 𝑍1,… , 𝑍10], (12)

of dimension 𝑛𝑓 ⋅ 𝑇 + 𝑛𝑧 = 10 ⋅ 24 + 10.

PV track
The solar irradiation 𝐈, the air temperature 𝐓, and the relative

humidity 𝐫𝐡 are selected, and two features are derived by computing 𝐈2
and 𝐈𝐓. For each generative model, the PV zone is taken into account
with one hot-encoding variable 𝑍1, 𝑍2, 𝑍3, and the PV feature input
vector for a given day 𝑑 is

𝐜PV
𝑑 = [𝐈𝑑 ,𝐓𝑑 , 𝐫𝐡𝑑 , 𝐈2𝑑 , 𝐈𝐓𝑑 , 𝑍1, 𝑍2, 𝑍3], (13)

of dimension 𝑛𝑓 ⋅ 𝑇 + 𝑛𝑧. For practical reasons, the periods where the
PV generation is always 0, across all zones and days, are removed, and
the final dimension of the input feature vector is 𝑛𝑓 ⋅ 𝑇 + 𝑛𝑧 = 5 ⋅ 16+ 3.

Load track
The 25 weather station temperature 𝐰1,… ,𝐰25 forecasts are used.

There is only one zone, and the load feature input vector for a given
day 𝑑 is

𝐜load
𝑑 = [𝐰1,… ,𝐰25], (14)

of dimension 𝑛𝑓 ⋅ 𝑇 = 25 ⋅ 24.
The number of samples (#), expressed in days, of the VS and TS

is 50 ⋅ 𝑛𝑧, with 𝑛𝑧 the number of zones of the track considered. The
50 days are selected randomly from the dataset, and the learning set
is composed of the remaining part with 𝐷 ⋅ 𝑛𝑧 samples, where 𝐷 is
provided for each track.

4.2. Quality results

A thorough comparison of the models is conducted on the wind
track, and Appendix E provides the Figures of the other tracks for the
sake of clarity. Note: the model ranking slightly differs depending on
the track.
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Wind track
In addition to the generative models, a naive approach is designed

(RAND), where the scenarios of the learning, validation, and testing
sets are sampled randomly from the learning, validation, and testing
sets, respectively. Intuitively, it assumes that past observations are
repeated, and these scenarios are realistic but may not be compatible
with the context. Each model generates a set of 100 scenarios for
each day of the testing set, and the scores are computed following the
mathematical definitions provided in Appendix C. Fig. 7 compares the
QS, reliability diagram, and CRPS of the wind (markers), PV (plain),
and load (dashed) tracks. Overall, for the wind track in terms of CRPS,
QS, and reliability diagrams, the VAE achieves slightly better scores,
followed by the NF and the GAN. The ES and VS multivariate scores
confirm this trend with 54.82 and 18.87 for the VAE vs 56.71 and 18.54
for the NF, respectively.

Fig. 8 provides the results of the DM tests for these metrics. The heat
map indicates the range of the 𝑝-values. The closer they are to zero,
ark green, the more significant the difference between the scores of
wo models for a given metric. The statistical threshold is set to 5%, but
he scale color is capped at 10% for a better exposition of the relevant
esults. For instance, when considering the DM test for the RAND
RPS, all the columns of the RAND row are in dark green, indicating
hat the RAND scenarios are always significantly outperformed by the
ther models. These DM tests confirm that the VAE outperforms the
F for the wind track considering these metrics. Then, the NF is only
utperformed by the VAE and the GAN by both the VAE and NF. These
esults are consistent with the classifier-based metric depicted in Fig. 9,
here the VAE is the best to mislead the classifier, followed by the NF
nd GAN.

The left part of Fig. 10 provides 50 scenarios, (a) NF, (c) GAN, and
e) VAE, generated for a given day selected randomly from the testing
et. Notice how the shape of the NF’s scenarios differs significantly from
he GAN and VAE as they tend to be more variable with no identifiable
rend. In contrast, the VAE and GAN scenarios seem to differ mainly
n nominal power but have similar shapes. This behavior is even more
ronounced for the GAN, where the scenarios rarely crossed over time
eriods. For instance, there is a gap in generation around periods 17
nd 18 where all the GAN’s scenarios follow this trend. These observa-
ions are confirmed by computing the corresponding time correlation
atrices, depicted by the right part of Fig. 10 demonstrating there is
o correlation between NF’s scenarios. On the contrary, the VAE and
AN correlation matrices tend to be similar with a time correlation of

he scenarios over a few periods, with more correlated periods when
onsidering the GAN. This difference in the scenario’s shape is striking
nd not necessarily captured by metrics such as the CRPS, QS, or even
he classifier-based metric and is also observed on the PV and load
racks, as explained in the next paragraph.

ll tracks
Table 3 provides the averaged quality scores for all the datasets

onsidered: wind, PV, and load. The CRPS is averaged over the 24 time
eriods CRPS. The QS over the 99 percentiles QS. The MAE-r is the
ean absolute error between the reliability curve and the diagonal, and

AUC is the mean of the 50 AUC. Overall, for the PV and load tracks in
CRPS, QS, reliability diagrams, AUC, ES, and VS, the NF outperforms
the VAE and GAN and is slightly outperformed by the VAE on the wind
track. On the load track, the VAE outperforms the GAN. However, the
VAE and GAN achieved similar results on the PV track, and the GAN
performed better in terms of ES and VS. These results are confirmed by
the DM tests depicted in Fig. E.16. The classifier-based metric results
for both the load and PV tracks, provided by Fig. E.17, confirm this
trend where the NF is the best to trick the classifier followed by the
VAE and GAN.

Similar to the wind track, the shape of the scenarios differs signif-
icantly between the NF and the other models for both the load and
PV tracks as indicated by the left part of Figs. E.18 and E.19, and
9

Fig. 7. Quality common metrics comparison on the wind (markers), PV (plain), and
load (dashed) tracks.
Quantile score (a): the lower and the more symmetrical the better. Note: the quantile
score has been averaged over the marginals (the 24 time periods of the day). Reliability
diagram (b): the closer to the diagonal, the better. Continuous ranked probability score
per marginal (c): the lower, the better.
NF outperforms the VAE and GAN for both the PV and load tracks and is slightly
outperformed by the VAE on the wind track. Note: all models tend to have more
difficulties forecasting the wind power that seems less predictable than the PV
generation or the load.

the corresponding correlation matrices provided by the right part of
Figs. E.18 and E.19. Note: the load track scenarios are highly correlated
for both the VAE and GAN. Finally, Fig. E.20 provides the average
of the correlation matrices over all days of the testing set for each
dataset. The trend depicted above is confirmed. This difference between
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Fig. 8. Wind track Diebold–Mariano tests of the CRPS, QS, ES, and VS metrics.
The Diebold–Mariano tests of the continuous ranked probability, quantile, energy, and
variogram scores confirm that the VAE outperforms the NF on the wind track for these
metrics. The NF is only outperformed by the VAE and the GAN by both the VAE and
NF.
The heat map indicates the range of the 𝑝-values. The closer they are to zero, dark
green, the more significant the difference between the scores of two models for a given
metric. The statistical threshold is set to 5% but the scale color is capped at 10% for
a better exposition of the relevant results.

Fig. 9. Wind track classifier-based metric.
The VAE (orange) is the best to mislead the classifier, followed by the NF (blue)
and GAN (green). Note: there are 50 ROC curves depicted for each model, each
corresponding to a scenario generated used as input of the classifier. It allows taking
into account the variability of the scenarios to avoid having results dependent on a
particular scenario.

the NF and the other generative model may be explicated by the
design of the methods. The NF explicitly learns the probability density
function (PDF) of the multi-dimensional random variable considered.
Thus, the NF scenarios are generated according to the learned PDF
producing multiple shapes of scenarios. In contrast, the generator of
the GAN is trained to fool the discriminator, and it may find a shape
particularly efficient leading to a set of similar scenarios. Concerning
the VAE, it is less obvious. However, by design, the decoder is trained to
generate scenarios from the latent space assumed to follow a Gaussian
distribution that may lead to less variability.
10
Fig. 10. Wind power scenarios shape comparison and analysis.
Left part (a) NF, (c) GAN, and (e) VAE: 50 wind power scenarios (gray) of a randomly
selected day of the testing set along with the 10% (blue), 50% (black), and 90%
(green) quantiles, and the observations (red). Right part (b) NF, (d) GAN, and (f) VAE:
the corresponding Pearson time correlation matrices of these scenarios with the time
periods as rows and columns. The NF tends to exhibit no time correlation between
scenarios. In contrast, the VAE and GAN tend to be partially time-correlated over a
few periods.

4.3. Value results

The energy retailer portfolio comprises wind power, PV generation,
load, and a battery energy storage device. The 50 days of the testing set
are used and combined with the 30 possible PV and wind generation
zones (three PV zones and ten wind farms), resulting in 1500 indepen-
dent simulated days. A two-step approach is employed to evaluate the
forecast value:

• First, for each generative model and the 1500 days simulated,
the two-stage stochastic planner computes the day-ahead bids of
the energy retailer portfolio using the PV, wind power, and load
scenarios. After solving the optimization, the day-ahead decisions
are recorded.

• Then, a real-time dispatch is carried out using the PV, wind
power, and load observations, with the day-ahead decisions as
parameters.

This two-step methodology is applied to evaluate the three generative
models, namely the NF, GAN, and VAE. Fig. 11 illustrates an arbitrary
random day of the testing set with the first zone for both the PV
and wind. 𝜋𝑡 [e/MWh] is the day-ahead prices on February 6, 2020
of the Belgian day-ahead market used for the 1500 days simulated.
The negative 𝑞𝑡 and positive 𝜆̄𝑡 imbalance prices are set to 2 × 𝜋𝑡,
∀𝑡 ∈  . The retailer aims to balance the net power, red curve in
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Table 3
Averaged quality scores per dataset.

NF VAE GAN RAND

Wind

CRPS 9.07 8.80 9.79 16.92
QS 4.58 4.45 4.95 8.55
MAE-r 2.83 2.67 6.82 1.01
AUC 0.935 0.877 0.972 0.918
ES 56.71 54.82 60.52 96.15
VS 18.54 17.87 19.87 23.21

PV

CRPS 2.35 2.60 2.61 4.92
QS 1.19 1.31 1.32 2.48
MAE-r 2.66 9.04 4.94 3.94
AUC 0.950 0.969 0.997 0.947
ES 23.08 24.65 24.15 41.53
VS 4.68 5.02 4.88 13.40

Load

CRPS 1.51 2.74 3.01 6.74
QS 0.76 1.39 1.52 3.40
MAE-r 7.70 13.97 9.99 0.88
AUC 0.823 0.847 0.999 0.944
ES 9.17 15.11 17.96 38.08
VS 1.63 1.66 3.81 7.28

The best performing deep learning generative model for each track is written in bold.
The CRPS, QS, MAE-r, and ES are expressed in %. Overall, for both the PV and load
tracks, the NF outperforms the VAE and GAN and is slightly outperformed by the VAE
on the wind track.

Fig. 11. Energy retailer case study: illustration of the observations on a random day
of the testing set.
The energy retailer portfolio comprises PV generation, wind power, load, and a storage
device. The PV, wind power, and load scenarios from the testing set are used as inputs
of the stochastic day-ahead planner to compute the optimal bids. The net is the power
balance of the energy retailer portfolio. The day-ahead prices 𝜋𝑡 are obtained from the
Belgian day-ahead market on February 6, 2020.

Fig. 11, by importing/exporting from/to the main grid. Usually, the
net is positive (negative) at noon (evening) when the PV generation
is maximal (minimal), and the load is minimal (maximal). As the day-
ahead spot price is often maximal during the evening load peak, the
retailer seeks to save power during the day by charging the battery to
decrease the import during the evening. Therefore, the more accurate
the PV, wind generation, and load scenarios are, the better is the
day-ahead planning.

The battery minimum 𝑠min and maximum 𝑠max capacities are 0 and
1, respectively. It is assumed to be capable of fully (dis)charging in two
hours with 𝑦dis

max = 𝑦cha
max = 𝑠max∕2, and the (dis)charging efficiencies are

𝜂dis = 𝜂cha = 95 %. Each simulation day is independent with a fully
discharged battery at the first and last period of each day 𝑠ini = 𝑠end = 0.
The 1500 stochastic optimization problems are solved with 50 PV, wind
generation, and load scenarios. The python Gurobi library is used to
implement the algorithms in Python 3.7, and Gurobi2 9.0.2 is used to

2 https://www.gurobi.com/
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Table 4
Total net profit (ke) and cumulative ranking (%).

NF VAE GAN

Net profit (ke) 107 97 93
1 (%) 39.0 31.8 29.2
1 & 2 (%) 69.6 68.3 62.1
1 & 2 & 3 (%) 100 100 100

The stochastic planner using the NF PV, wind power, and load scenarios achieved the
highest net profit with 107 ke, ranked first 39.0%, second 30.6%, and third 30.4%
over 1500 days of simulation. In comparison, the second-best model, the VAE, achieved
a net profit of 97 ke, ranked first 31.8%, second 36,5%, and third 31.7%.

olve the optimization problems. Numerical experiments are performed
n an Intel Core i7-8700 3.20 GHz based computer with 12 threads and
2 GB of RAM running on Ubuntu 18.04 LTS.

The net profit, that is, the profit minus penalty, is computed for the
500 days of the simulation and aggregated in the first row of Table 4.
he ranking of each model is computed for the 1500 days, and the
umulative ranking is expressed in terms of percentage in Table 4. NF
utperformed both the GAN and VAE with a total net profit of 107 ke.
here is still room for improvement as the oracle, which has perfect
uture knowledge, achieved 300 ke. NF ranked first 39.0% during the
500 simulation days and achieved the first and second ranks 69.6%.
verall, in terms of forecast value, the NF outperforms the VAE and
AN. However, this case study is "simple,’’ and stochastic optimization

elies mainly on the quality of the average of the scenarios. Therefore,
ne may consider taking advantage of the particularities of a specific
ethod by considering more advanced case studies. In particular, the

pecificity of the NFs to provide direct access to the probability density
unction may be of great interest in specific applications. It is left for
uture investigations as more advanced case studies would prevent a
air comparison between models.

.4. Results summary

Table 5 summarizes the main results of this study by comparing
he VAE, GAN, and NF implemented through easily comparable star
atings. The rating for each criterion is determined using the following
ules - 1 star: third rank, 2 stars: second rank, and 3 stars: first rank.
pecifically, training speed is assessed based on reported total training
imes for each dataset: PV generation, wind power, and load; sample
peed is based on reported total generating times for each dataset;
uality is evaluated with the metrics considered; value is based on the
ase study of the day-ahead bidding of the energy retailer; the hyper-
arameters search is assessed by the number of configurations tested
efore reaching satisfactory and stable results over the validation set;
he hyper-parameters sensitivity is evaluated by the impact on the qual-
ty metric of deviations from the optimal the hyper-parameter values
ound during the hyper-parameter search; the implementation-friendly
riterion is appraised regarding the complexity of the technique and
he amount of knowledge required to implement it.

. Conclusion

This paper proposes a fair and thorough comparison, both in terms
f quality and value, of normalizing flows with the state-of-the-art deep
earning generative models: generative adversarial networks and varia-
ional autoencoders. The experiments adopt the open data of the Global
nergy Forecasting Competition 2014, where the generative models use
he conditional information to compute improved weather-based PV
ower, wind power, and load scenarios. The results demonstrate that
ormalizing flows can challenge generative adversarial networks and
ariational autoencoders. Overall, they are more accurate in quality
nd value and can be used effectively by non-expert deep learning
ractitioners. In addition, normalizing flows have several advantages
ver more traditional deep learning approaches that should motivate

heir introduction into power system applications:

https://www.gurobi.com/
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Table 5
Comparison between the deep generative models.

Criteria VAE GAN NF

Train speed ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Sample speed ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Quality ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Value ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Hp search ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Hp sensibility ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆
Implementation ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆

The rating for each criterion is determined using the following rules - 1 star: third rank,
2 stars: second rank, and 3 stars: first rank. Train speed: training computation time;
Sample speed: scenario generation computation time; Quality: forecast quality based on
the eight complementary metrics considered; Value: forecast value based on the day-
ahead energy retailer case study; Hp search: assess the difficulty to identify relevant
hyper-parameters; Hp sensibility: assess the sensitivity of the model to a given set of
hyper-parameters (the more stars, the more robust to hyper-parameter modifications);
Implementation: assess the difficulty to implement the model (the more stars, the more
implementation-friendly). Note: the justifications are provided in Appendix A.2.

(i) Normalizing flows directly learn the stochastic multivariate dis-
tribution of the underlying process by maximizing the likeli-
hood. Therefore, in contrast to variational autoencoders and
generative adversarial networks, they provide access to the exact
likelihood of the model’s parameters, hence offering a sound
and direct way to optimize the network parameters. It may
open a new range of advanced applications benefiting from this
advantage. For instance, to transfer scenarios from one location
to another based on the knowledge of the probability density
function. A second application is the importance sampling for
stochastic optimization based on a scenario approach. Indeed,
normalizing flows provide for each generated scenario its like-
lihood making it possible to filter relevant scenarios used in
stochastic optimization.

(ii) In our opinion, normalizing flows are easier to use by non-expert
deep learning practitioners once the libraries are available, as
they are more reliable and robust in terms of hyper-parameters
selection. Generative adversarial networks and variational au-
toencoders are particularly sensitive to the latent space dimen-
sion, the structure of the neural networks, the learning rate,
etc. Generative adversarial networks convergence, by design,
is unstable, and for a given set of hyper-parameters, the sce-
nario’s quality may differ completely. In contrast, it was easier
to retrieve relevant normalizing flows hyper-parameters by man-
ually testing a few sets of values that led to satisfying training
convergence and quality results.

Nevertheless, their usage as a base component of the machine learning
toolbox is still limited compared to generative adversarial networks or
variational autoencoders.
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Appendix A. Additional arguments

A.1. Table 1 justifications

Wang et al. [35] use a Wasserstein GAN with gradient penalty to
model both the uncertainties and the variations of the load. Specifically,
point forecasting is first conducted, and the corresponding residuals
are calculated. Then, the GAN generates residual scenarios conditional
on the day type, temperatures, and historical loads. The GAN model
is compared with the same version without gradient penalty and two
quantile regression models: random forest and gradient boosting regres-
sion tree. The quality evaluation is conducted on open load datasets
from the Independent System Operator-New England3 with five metrics:
(1) the continuous ranked probability score; (2) the quantile score; (3)
the Winkler score; (4) reliability diagrams; (5) Q-Q plots. Note: the
forecast value is not assessed.

Qi et al. [37] propose a concentrating solar power (CSP) configu-
ration method to determine the CSP capacity in multi-energy power
systems. The configuration model considers the uncertainty by scenario
analysis. The scenarios are produced by a 𝛽 VAE that is an improved
version of the original VAE. The weather forecasts are not considered,
and the VAE is trained only by using historical observations. The
quality evaluation is conducted on two wind farms and six PV plants
using three metrics: (1) the leave-one-out accuracy of the 1-nearest
neighbor classifier; (2) the comparison of the frequency distributions
of the real data and the generated scenarios; (3) the comparison of
the spatial and temporal correlations of the real data and the scenarios
by computing Pearson correlation coefficients. The value is assessed by
considering the case study of the CSP configuration model, where the 𝛽
VAE is used to generate PV, wind power, and load scenarios. However,
the VAE is not compared to another generative model for both the
quality and value evaluations. Note: the dataset does not seem to be
in open-access. Finally, the value evaluation case study is not trivial
due to the mathematical formulation that requires a certain level of
knowledge of the system. Thus, the replicability criterion is partially
satisfied.

Ge et al. [38] compared NFs to VAEs and GANs for the generation
of daily load profiles. The models do not take into account weather
forecasts but only historical observations. However, an example is given
to illustrate the principle of generating conditional daily load profiles
by using three groups: light load, medium load, and heavy load. The
quality evaluation uses five indicators. Four to assess the temporal
correlation: (1) probability density function; (2) autocorrelation func-
tion; (3) load duration curve; (4) a wave rate is defined to evaluate
the volatility of the daily load profile. Furthermore, one additional
for the spatial correlation: (5) Pearson correlation coefficient is used
to measure the spatial correlation among multiple daily load profiles.
The simulations use the open-access London smart meter and Spanish
transmission service operator datasets of Kaggle. The forecast value is
not assessed.

3 https://www.iso-ne.com/

https://www.iso-ne.com/
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A.2. Table 5 justifications

The VAE is the fastest to train, with a recorded computation time
f 7 s on average per dataset. The training time of the GAN is approx-
mately three times longer, with an average computation time of 20 s
er dataset. Finally, the NF is the slowest, with an average training time
f 4 min. This ranking is preserved with the VAE the fastest concerning
he sample speed, followed by the GAN and NF models. The VAE and
he GAN generate the samples over the testing sets, 5000 in total, in
ess than a second. However, the NF considered takes a few minutes.
n contrast, the affine autoregressive version of the NF is much faster to
rain and generate samples. Note: even a training time of a few hours
s compatible with day-ahead planning applications. In addition, once
he model is trained, it is not necessarily required to retrain it every
ay.

The quality and value assessments have already been discussed in
ection 4. Overall, the NF outperforms both the VAE and GAN models.

Concerning the hyper-parameters search and sensibility, the NF
ends to be the most straightforward model to calibrate. Compared
ith the VAE and GAN, we found relevant hyper-parameter values
y testing only a few combinations. In addition, the NF is robust
o hyper-parameter modifications. In contrast, the GAN is the most
ensitive. Variations of the hyper-parameters may result in very poor
cenarios both in terms of quality and shape. Even for a fixed set
f hyper-parameters values, two separate training may not converge
owards the same results illustrating the GAN training instabilities. The
AE is more accessible to train than the GAN but is also sensitive to
yper-parameters values. However, it is less evident than the GAN.

Finally, we discuss the implementation-friendly criterion of the
odels. Note: this discussion is only valid for the models implemented

n this study. There exist various architectures of GANs, VAEs, and
Fs with simple and complex versions. In our opinion, the VAE is the
ffortless model to implement as the encoder and decoder are both
imple feed-forward neural networks. The only difficulty lies in the
eparameterization trick that should be carefully addressed. The GAN
s a bit more difficult to deploy due to the gradient penalty to handle
ut is similar to the VAE with both the discriminator and the generator
hat are feed-forward neural networks. The NF is the most challenging
odel to implement from scratch because the UMNN-MAF approach

equires an additional integrand network. An affine autoregressive NF
s easier to implement. Nevertheless, it may be less capable of model-
ng the stochasticity of the variable of interest. However, forecasting
ractitioners do not necessarily have to implement generative models
rom scratch and can use numerous existing Python libraries.

ppendix B. Background

.1. Normalizing flows

ormalizing flow computation

Evaluating the likelihood of a distribution modeled by a normalizing
13

low requires computing (2), i.e., the normalizing direction, as well ∇
as its log-determinant. Increasing the number of sub-flows by 𝐾 of
the transformation results in only (𝐾) growth in the computational
omplexity as the log-determinant of 𝐽𝑓𝜃 can be expressed as

og | det 𝐽𝑓𝜃 (𝐱)| = log
|

|

|

|

𝐾
∏

𝑘=1
det 𝐽𝑓𝑘,𝜃 (𝐱)

|

|

|

|

, (B.1a)

=
𝐾
∑

𝑘=1
log | det 𝐽𝑓𝑘,𝜃 (𝐱)|. (B.1b)

owever, with no further assumption on 𝑓𝜃 , the computational com-
lexity of the log-determinant is (𝐾 ⋅𝑇 3), which can be intractable for
arge 𝑇 . Therefore, the efficiency of these operations is critical during
raining, where the likelihood is repeatedly computed. There are many
ossible implementations of NFs detailed by Papamakarios et al. [72],
obyzev et al. [73] to address this issue.

utoregressive flow
The Jacobian of the autoregressive transformation 𝑓𝜃 defined by (3)

s lower triangular, and its log-absolute-determinant is

og | det 𝐽𝑓𝜃 (𝐱)| = log
𝑇
∏

𝑖=1

|

|

|

|

𝜕𝑓 𝑖

𝜕𝑥𝑖
(𝑥𝑖;ℎ𝑖)

|

|

|

|

, (B.2a)

=
𝑇
∑

𝑖=1
log

|

|

|

|

𝜕𝑓 𝑖

𝜕𝑥𝑖
(𝑥𝑖;ℎ𝑖)

|

|

|

|

, (B.2b)

hat is calculated in (𝑇 ) instead of (𝑇 3).

ffine autoregressive flow
A simple choice of transformer is the class of affine functions

𝑖(𝑥𝑖;ℎ𝑖) = 𝛼𝑖𝑥𝑖 + 𝛽𝑖, (B.3)

here 𝑓 𝑖(⋅;ℎ𝑖) ∶ R → R is parameterized by ℎ𝑖 = {𝛼𝑖, 𝛽𝑖}, 𝛼𝑖 controls the
cale, and 𝛽𝑖 controls the location of the transformation. Invertibility
s guaranteed if 𝛼𝑖 ≠ 0, and this can be easily achieved by e.g. taking
𝑖 = exp (𝛼̃𝑖), where 𝛼̃𝑖 is an unconstrained parameter in which case ℎ𝑖 =
𝛼̃𝑖, 𝛽𝑖}. The derivative of the transformer with respect to 𝑥𝑖 is equal to
𝑖. Hence the log-absolute-determinant of the Jacobian becomes

log | det 𝐽𝑓𝜃 (𝐱)| =
𝑇
∑

𝑖=1
log |𝛼𝑖| =

𝑇
∑

𝑖=1
𝛼̃𝑖. (B.4)

ffine autoregressive flows are simple and computation efficient but
re limited in expressiveness requiring many stacked flows to represent
omplex distributions. It is unknown whether affine autoregressive
lows with multiple layers are universal approximators or not [72], in
ontrast to the UMNN autoregressive transformation implemented in
his paper.

.2. Variational autoencoders

radients computation
By using (6) 𝜃,𝜑 is decomposed in two parts

𝜃,𝜑(𝐱, 𝐜) = E
𝑞𝜑(𝐳|𝐱,𝐜)

[log 𝑝𝜃(𝐱|𝐳, 𝐜)] − KL[𝑞𝜑(𝐳|𝐱, 𝐜) ∥ 𝑝(𝐳)]. (B.5)

𝜃𝜃,𝜑 is estimated with the usual Monte Carlo gradient estimator.
owever, the estimation of ∇𝜑𝜃,𝜑 requires the reparameterization

rick proposed by Kingma and Welling [23], where the random variable
is re-expressed as a deterministic variable

= 𝑔𝜑(𝜖, 𝐱), (B.6)

ith 𝜖 an auxiliary variable with independent marginal 𝑝𝜖 , and 𝑔𝜑(⋅)
ome vector-valued function parameterized by 𝜑. Then, the first right
and side of (B.5) becomes

E
𝜑(𝐳|𝐱,𝐜)

[log 𝑝𝜃(𝐱|𝐳, 𝐜)] = E
𝑝(𝜖)

[log 𝑝𝜃(𝐱|𝑔𝜑(𝜖, 𝐱), 𝐜)]. (B.7)

 is now estimated with Monte Carlo integration.
𝜑 𝜃,𝜑
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Conditional variational autoencoders implemented
Following Kingma and Welling [23], we implemented Gaussian

multi-layered perceptrons (MLPs) for both the encoder NN𝜑 and de-
coder NN𝜃 . In this case, 𝑝(𝐳) is a centered isotropic multivariate Gaus-
sian, 𝑝𝜃(𝐱|𝐳, 𝐜) and 𝑞𝜑(𝐱|𝐳, 𝐜) are both multivariate Gaussian with a
diagonal covariance and parameters 𝝁𝜃 ,𝝈𝜃 and 𝝁𝜑,𝝈𝜑, respectively.
Note: there is no restriction on the encoder and decoder architectures,
and they could as well be arbitrarily complex convolutional networks.
Under these assumptions, the conditional VAE implemented is

𝑝(𝐳) =  (𝐳; 𝟎, 𝐈), (B.8a)

𝑝𝜃(𝐱|𝐳, 𝐜) =  (𝐱;𝝁𝜃 ,𝝈2
𝜃𝐈), (B.8b)

𝑞𝜑(𝐳|𝐱, 𝐜) =  (𝐳;𝝁𝜑,𝝈2
𝜑𝐈), (B.8c)

𝝁𝜃 , log𝝈2
𝜃 = NN𝜃(𝐱, 𝐜), (B.8d)

𝝁𝜑, log𝝈2
𝜑 = NN𝜑(𝐳, 𝐜). (B.8e)

hen, by using the valid reparameterization trick proposed by Kingma
nd Welling [23]

𝝐 ∼ (𝟎, 𝐈), (B.9a)

∶=𝝁𝜑 + 𝝈𝜑𝝐, (B.9b)

𝜃,𝜑 is computed and differentiated without estimation using the ex-
pressions

KL[𝑞𝜑(𝐳|𝐱, 𝐜) ∥ 𝑝(𝐳)] = − 1
2

𝑑
∑

𝑗=1
(1 + log𝝈2

𝜑,𝑗 − 𝝁2
𝜑,𝑗 − 𝝈2

𝜑,𝑗 ), (B.10a)

E
𝑝(𝝐)

[log 𝑝𝜃(𝐱|𝐳, 𝐜)] ≈ − 1
2
‖

‖

‖

‖

𝐱 − 𝝁𝜃
𝝈𝜃

‖

‖

‖

‖

2
, (B.10b)

with 𝑑 the dimensionality of 𝐳.

B.3. Generative adversarial network

Original generative adversarial network
The original GAN value function 𝑉 (𝜙, 𝜃) proposed by Goodfellow

et al. [24] is

𝑉 (𝜙, 𝜃) =E
𝐱
[log 𝑑𝜙(𝐱|𝐜)] + E

𝐱̂
[log(1 − 𝑑𝜙(𝐱̂|𝐜))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=−𝐿𝑑

, (B.11a)

𝐿𝑔 ∶= − E
𝐱̂
[log(1 − 𝑑𝜙(𝐱̂|𝐜))], (B.11b)

where 𝐿𝑑 is the cross-entropy, and 𝐿𝑔 the probability the discriminator
wrongly classifies the samples.

Wasserstein generative adversarial network
The divergences which GANs typically minimize are responsible

for their training instabilities for reasons investigated by Arjovsky and
Bottou [56] theoretically. Arjovsky et al. [74] proposed instead using
the Earth mover distance, also known as the Wasserstein-1 distance

𝑊1(𝑝, 𝑞) = inf
𝛾∈𝛱(𝑝,𝑞)

E(𝑥,𝑦)∼𝛾 [‖𝑥 − 𝑦‖], (B.12)

where 𝛱(𝑝, 𝑞) denotes the set of all joint distributions 𝛾(𝑥, 𝑦) whose
marginals are respectively 𝑝 and 𝑞, 𝛾(𝑥, 𝑦) indicates how much mass
must be transported from 𝑥 to 𝑦 in order to transform the distribu-
tion 𝑝 into 𝑞, ‖⋅‖ is the L1 norm, and ‖𝑥 − 𝑦‖ represents the cost of
moving a unit of mass from 𝑥 to 𝑦. However, the infimum in (B.12)
is intractable. Therefore, Arjovsky et al. [74] used the Kantorovich–
Rubinstein duality [75] to propose the Wasserstein GAN (WGAN) by
solving the min–max problem

𝜃⋆ = argmin
𝜃

max
𝜙∈

E
𝐱
[𝑑𝜙(𝐱|𝐜)] − E

𝐱̂
[𝑑𝜙(𝐱̂|𝐜)], (B.13)

where  = {𝜙 ∶ ‖𝑑𝜙(⋅)‖𝐿 ≤ 1} is the 1-Lipschitz space, and the
classifier 𝑑 (⋅) ∶ R𝑇 × R|𝐜| → [0, 1] is replaced by a critic function
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𝜙

Table B.6
(a) NF, (b) VAE, and (c) GAN hyper-parameters.

Wind PV Load

(a)

Embedding Net 4 × 300 4 × 300 4 × 300
Embedding size 40 40 40
Integrand Net 3 × 40 3 × 40 3 × 40
Weight decay 5.10−4 5.10−4 5.10−4

Learning rate 10−4 5.10−4 10−4

(b)

Latent dimension 20 40 5
E/D Net 1 × 200 2 × 200 1 × 500
Weight decay 10−3.4 10−3.5 10−4

Learning rate 10−3.4 10−3.3 10−3.9

(c)

Latent dimension 64 64 256
G/D Net 2 × 256 3 × 256 2 × 1024
Weight decay 10−4 10−4 10−4

Learning rate 2.10−4 2.10−4 2.10−4

The hyper-parameters selection is performed on the validation set using the Python
library Weights & Biases [71]. This library is an experiment tracking tool for machine
learning, making it easier to track experiments. The GAN model was the most time-
consuming during this process, followed by the VAE and NF. Indeed, the GAN is highly
sensitive to hyper-parameter modifications making it challenging to identify a relevant
set of values. In contrast, the NF achieved satisfactory results, both in terms of scenarios
shapes and quality, by testing only a few sets of hyper-parameter values.

𝑑𝜙(⋅) ∶ R𝑇 ×R|𝐜| → R. However, the weight clipping used to enforce 𝑑𝜙
1-Lipschitzness can lead sometimes the WGAN to generate only poor
samples or failure to converge [53]. Therefore, we implemented the
WGAN-GP to tackle this issue.

B.4. Hyper-parameters

Table B.6 provides the hyper-parameters of the NF, VAE, and GAN
implemented. The Adam optimizer [76] is used to train the genera-
tive models with a batch size of 10% of the learning set. The NF
implemented is a one-step monotonic normalizer using the UMNN-
MAF.4 The embedding size |ℎ𝑖| is set to 40, and the embedding neural
network is composed of 𝑙 layers of 𝑛 neurons (𝑙×𝑛). The same integrand
neural network 𝜏 𝑖(⋅) ∀𝑖 = 1,… , 𝑇 is used and composed of 3 layers
of |ℎ𝑖| neurons (3 × 40). Both the encoder and decoder of the VAE
are feed-forward neural networks (𝑙 × 𝑛), ReLU activation functions
for the hidden layers, and no activation function for the output layer.
Both the generator and discriminator of the GAN are feed-forward
neural networks (𝑙×𝑛). The activation functions of the hidden layers of
the generator (discriminator) are ReLU (Leaky ReLU). The activation
function of the discriminator output layer is ReLU, and there is no
activation function for the generator output layer. The generator is
trained once after the discriminator is trained five times to stabilize
the training process, and the gradient penalty coefficient 𝜆 in (7) is set
to 10 as suggested by Gulrajani et al. [53].

Figs. B.12, B.13, and B.14 illustrate the VAE, GAN, and NF struc-
tures implemented for the wind dataset where the number of weather
variables selected and the number of zones is 10, and 10, respectively.
Recall, 𝐜 ∶= weather forecasts, 𝐱̂ ∶= scenarios 𝐱 ∶= wind power
observations, 𝐳 ∶= latent space variable, 𝝐 ∶= Normal variable (only
for the VAE).

Appendix C. Quality metrics

Recall the PV generation, wind power, and load are assumed to be
multivariate random variables of dimension 𝑇 , 𝐱 ∈ R𝑇 , with 𝑇 the
umber of time periods per day. Let ∪𝑑∈TS{𝐱̂𝑖𝑑}

𝑀
𝑖=1 be the set of #TS×𝑀

cenarios generated with 𝑀 scenarios per day of the testing set, where
̂ 𝑖𝑑 ∈ R𝑇 ∀𝑖, 𝑑. 𝑥̂𝑖𝑑,𝑘 is the component 𝑘 of scenario 𝑖 on day 𝑑 of the
testing set as specified by (1).

4 https://github.com/AWehenkel/Normalizing-Flows

https://github.com/AWehenkel/Normalizing-Flows
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Fig. B.12. Variational autoencoder structure implemented for the wind dataset.
Both the encoder and decoder are feed-forward neural networks composed of one
hidden layer with 200 neurons. Increasing the number of layers did not improve the
results for this dataset. The latent space dimension is 20.

Fig. B.13. Generative adversarial network structure implemented for the wind dataset.
Both the discriminator and generator are feed-forward neural networks composed of
two hidden layers with 256 neurons. The latent space dimension is 64.

C.1. Continuous ranked probability score

Gneiting and Raftery [60] propose a formulation called the energy
form of the CRPS since it is just the one-dimensional case of the energy
score, defined in negative orientation as follows

CRPS(𝑃 , 𝑥𝑘) = E𝑃 [|𝑋 − 𝑥𝑘|] −
1
2
E𝑃 [|𝑋 −𝑋′

|], (C.1)

where and X and X’ are independent random variables with distribution
P and finite first moment, and E𝑃 is the expectation according to the
probabilistic distribution P. The CRPS is computed over the marginals
of 𝐱̂ by using the estimator of (C.1) provided by Zamo and Naveau [77].
For a given day 𝑑 of the testing set, the CRPS per marginal 𝑘 = 1,… , 𝑇
is

CRPS𝑑,𝑘 = 1
𝑀

𝑀
∑

|𝑥̂𝑖𝑑,𝑘 − 𝑥𝑑,𝑘| −
1

2

𝑀
∑

|𝑥̂𝑖𝑑,𝑘 − 𝑥̂𝑗𝑑,𝑘|. (C.2)
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𝑖=1 2𝑀 𝑖,𝑗=1
Fig. B.14. Normalizing flow structure implemented for the wind dataset.
A single-step monotonic normalizing flow is implemented with a feed-forward neural
network composed of four hidden layers with 300 neurons. The latent space dimension
is 40. Note: for the sake of clarity the integrand network is not included but is a feed-
forward neural network composed of three hidden layers with 40 neurons. Increasing
the number of steps of the normalizing flow did not improve the results. The monotonic
transformation is complex enough to capture the stochasticity of the variable of interest.
However, when considering affine autoregressive normalizing flows the number of
steps should be generally more important. Numerical experiments indicated a five-step
autoregressive flow was required to achieve similar results for this dataset. Note: the
results are not reported in this study for the sake of clarity.

Then, it is averaged over the entire testing set

CRPS𝑘 = 1
#𝑇𝑆

∑

𝑑∈𝑇𝑆
CRPS𝑑,𝑘. (C.3)

In Table 3, CRPS𝑘 is averaged over all time periods

CRPS = 1
𝑇

𝑇
∑

𝑘=1
CRPS𝑘. (C.4)

C.2. Energy score

Gneiting and Raftery [60] introduced a generalization of the contin-
uous ranked probability score defined in negative orientation as follows

ES(𝑃 , 𝐱) = E𝑃 ‖𝑋 − 𝐱‖ − 1
2
E𝑃 ‖𝑋 −𝑋′

‖, (C.5)

where and X and X’ are independent random variables with distribution
P and finite first moment, E𝑃 is the expectation according to the
probabilistic distribution P, and ‖⋅‖ the Euclidean norm. For a given day
𝑑 of the testing set, the ES is computed following Gneiting et al. [78]

ES𝑑 = 1
𝑀

𝑀
∑

𝑖=1
‖𝐱̂𝑖𝑑 − 𝐱𝑖𝑑‖ −

1
2𝑀2

𝑀
∑

𝑖,𝑗=1
‖𝐱̂𝑖𝑑 − 𝐱̂𝑗𝑑‖. (C.6)

Then, it is averaged over the testing set

ES = 1 ∑

ES𝑑 . (C.7)

#𝑇𝑆 𝑑∈𝑇𝑆
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Note: when we consider the marginals of 𝐱, it is easy to recognize that
(C.6) is the CRPS.

C.3. Variogram score

For a given day 𝑑 of the testing set and a 𝑇 -variate observation
𝐱𝑑 ∈ R𝑇 , the Variogram score metric of order 𝛾 is formally defined
as

VS𝑑 =
𝑇
∑

𝑘,𝑘′
𝑤𝑘𝑘′

(

|𝑥𝑑,𝑘 − 𝑥𝑑,𝑘′ |
𝛾 − E𝑃 |𝑥̂𝑑,𝑘 − 𝑥̂𝑑,𝑘′ |

𝛾
)2

, (C.8)

here 𝑥̂𝑑,𝑘 and 𝑥̂𝑑,𝑘′ are the 𝑘th and 𝑘′th components of the random
vector 𝐱̂𝑑 distributed according to P for which the 𝛾th absolute moment
exists, and 𝑤𝑘𝑘′ are non-negative weights. Given a set of 𝑀 scenarios
𝐱̂𝑖𝑑}

𝑀
𝑖=1 for this given day 𝑑, the forecast variogram E𝑃 |𝑥̂𝑑,𝑘− 𝑥̂𝑑,𝑘′ |𝛾 can

e approximated ∀𝑘, 𝑘′ = 1,… , 𝑇 by

𝑃 |𝑥̂𝑑,𝑘 − 𝑥̂𝑑,𝑘′ |
𝛾 ≈ 1

𝑀

𝑀
∑

𝑖=1
|𝑥̂𝑖𝑑,𝑘 − 𝑥̂𝑖𝑑,𝑘′ |

𝛾 . (C.9)

hen, it is averaged over the testing set

S = 1
#𝑇𝑆

∑

𝑑∈𝑇𝑆
VS𝑑 . (C.10)

n this study, we evaluate the Variogram score with equal weights
cross all hours of the day 𝑤𝑘𝑘′ = 1 and using a 𝛾 of 0.5, which for most
ases provides a good discriminating ability as reported in Scheuerer
nd Hamill [63].

.4. Quantile score

For a given day 𝑑 of the testing set, a set of 99 quantiles (1, 2,
. . , 99th quantile) {𝐱̂𝑞𝑑}

99
𝑞=1 are computed from the set of 𝑀 scenarios

𝐱̂𝑖𝑑}
𝑀
𝑖=1, with 𝑞 the quantile index (𝑞 = 0.01,… , 0.99). For a given day

of the testing set, the quantile score, per marginal, is defined by

𝑞(𝑥̂
𝑞
𝑑,𝑘, 𝑥𝑑,𝑘) =

{

(1 − 𝑞) × (𝑥̂𝑞𝑑,𝑘 − 𝑥𝑑,𝑘) 𝑥𝑑,𝑘 < 𝑥̂𝑞𝑑,𝑘
𝑞 × (𝑥𝑑,𝑘 − 𝑥̂𝑞𝑑,𝑘) 𝑥𝑑,𝑘 ≥ 𝑥̂𝑞𝑑,𝑘.

(C.11)

Then, it is averaged over all time periods and the testing set

QS𝑞 =
1

#𝑇𝑆
∑

𝑑∈𝑇𝑆

1
𝑇

𝑇
∑

𝑘=1
𝜌𝑞(𝑥̂

𝑞
𝑑,𝑘, 𝑥𝑑,𝑘). (C.12)

n Table 3, QS𝑞 is averaged over all quantiles

QS = 1
99

99
∑

𝑞=1
QS𝑞 . (C.13)

.5. Classifier-based metric

Modern binary classifiers can be easily turned into powerful two-
ample tests where the goal is to assess whether two samples are
rawn from the same distribution [79]. In other words, it aims at
ssessing whether a generated scenario can be distinguished from an
bservation. To this end, the generator is evaluated on a held-out
esting set that is split into a testing-train and testing-test subsets. The
esting-train set is used to train a classifier, distinguishing generated
cenarios from the actual distribution. Then, the final score is computed
s the performance of this classifier on the testing-test set.

In principle, any binary classifier can be adopted for computing clas-
ifier two-sample tests (C2ST). A variation of this evaluation method-
logy is proposed by Xu et al. [59] and is known as the 1-Nearest
eighbor (NN) classifier. The advantage of using 1-NN over other clas-

ifiers is that it requires no special training and little hyper-parameter
uning. This process is conducted as follows. Given two sets of observa-
ions 𝑆𝑟 and generated 𝑆𝑔 samples with the same size, i.e., |𝑆𝑟| = |𝑆𝑔|,
t is possible to compute the leave-one-out (LOO) accuracy of a 1-NN
16
lassifier trained on 𝑆𝑟 and 𝑆𝑔 with positive labels for 𝑆𝑟 and negative
abels for 𝑆𝑔 . The LOO accuracy can vary from 0% to 100%. The 1-NN
lassifier should yield a 50% LOO accuracy when |𝑆𝑟| = |𝑆𝑔| is large.

It is achieved when the two distributions match. Indeed, the level 50%
happens when a label is randomly assigned to a generated scenario. It
means the classifier is not capable of discriminating generated scenarios
from observations. If the generative model over-fits 𝑆𝑔 to 𝑆𝑟, i.e., 𝑆𝑔 =
𝑆𝑟, and the accuracy would be 0%. On the contrary, if it generates
widely different samples than observations, the performance should be
100%. Therefore, the closer the LOO accuracy is to 1, the higher the
degree of under-fitting of the model. The closer the LOO accuracy is to
0, the higher the degree of over-fitting of the model. The C2ST approach
using LOO with 1-NN is adopted by Qi et al. [37] to assess the PV and
wind power scenarios of a 𝛽 VAE.

However, this approach has several limitations. First, it uses the
testing set to train the classifier during the LOO. Second, the 1-NN is
very sensitive to outliers as it simply chooses the closest neighbor based
on distance criteria. This behavior is amplified when combined with the
LOO, where the testing-test set is composed of only one sample. Third,
the euclidian distance cannot deal with a context such as weather fore-
casts. Therefore, we cannot use a conditional version of the 1-NN using
weather forecasts to classify weather-based renewable generation and
the observations. Fourth, C2ST with LOO cannot provide ROC curve
but only accuracy scores. An essential point about ROC graphs is that
they measure the ability of a classifier to produce good relative instance
scores. In our case, we are interested in discriminating the generated
scenarios from the observations, and the ROC provides more informa-
tion than the accuracy metric to achieve this goal. A standard method to
reduce ROC performance to a single scalar value representing expected
performance is to calculate the area under the ROC curve abbreviated
AUC. The AUC has an essential statistical property: it is equivalent to
the probability that the classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative instance [65].

To deal with these issues, we decided to modify this classifier-
based evaluation by conducting the C2ST as follows: (1) the scenarios
generated on the learning set are used to train the classifier using
the C2ST. Therefore, the classifier uses the entire testing set and can
compute ROC; (2) the classifier is an Extra-Trees classifier that can deal
with context such as weather forecasts.

More formally, for a given generative model 𝑔, the following steps
are conducted:

1. Initialization step: the generative model 𝑔 has been trained on
the LS and has generated 𝑀 weather-based scenarios per day of
both the LS and TS: {𝐱̂𝑖LS}

𝑀
𝑖=1 ∶= ∪𝑑∈LS{𝐱̂𝑖𝑑}

𝑀
𝑖=1 and {𝐱̂𝑖TS}

𝑀
𝑖=1 ∶=

∪𝑑∈TS{𝐱̂𝑖𝑑}
𝑀
𝑖=1. For the sake of clarity the index 𝑔 is omitted, but

both of these sets are dependent on model 𝑔.
2. 𝑀 pairs of learning and testing sets are built with an equal

proportion of generated scenarios and observations: 𝑖
LS ∶=

{

{𝐱̂𝑖LS, 0}∪
{

{𝐱𝑖LS, 1}
}

and 𝑖
TS =

{

{𝐱̂𝑖TS, 0}∪
{

{𝐱𝑖TS, 1}
}

. Note:

|𝑖
LS| = 2|LS| and |𝑖

TS| = 2|TS|.
3. For each pair of learning and testing sets {𝑖

LS,
𝑖
TS}

𝑀
𝑖=1 a classi-

fier 𝑑𝑖𝑔 is trained and makes predictions.
4. The ROC𝑖

𝑔 curves and corresponding AUC𝑖
𝑔 are computed for

𝑖 = 1,… ,𝑀 .

This classifier-based methodology is conducted for all models 𝑔, and
the results are compared. Fig. C.15 depicts the overall approach.
The classifiers 𝑑𝑖𝑔 are all Extra-Trees classifier made of 1000 uncon-
strained trees with the hyper-parameters ‘‘max_depth’’ set to ‘‘None’’,
and ‘‘n_estimators’’ to 1000.

C.6. Diebold–Mariano test

For a given day 𝑑 of the testing set, let 𝜖𝑑 ∈ R be the error computed
by an arbitrary forecast loss function of the observation and scenarios.
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Fig. C.15. Classifier-based metric methodology.
Each generative model generates 𝑀 scenarios per day of the learning and testing sets.

hey are used to build 𝑀 pairs of learning and testing sets for a conditional classifier
y including an equal proportion of observations and weather forecasts. 𝑀 conditional
lassifiers, per model, are trained and make predictions. The 𝑀 ROC and AUC are
omputed per model, and the results are compared.

he test consists of computing the difference between the errors of the
air of models 𝑔 and ℎ over the testing set

(𝑔, ℎ)𝑑 = 𝜖𝑔𝑑 − 𝜖ℎ𝑑 , ∀𝑑 ∈ TS, (C.14)

nd to perform an asymptotic 𝑧-test for the null hypothesis that the
xpected forecast error is equal and the mean of differential loss series
s zero E[𝛥(𝑔, ℎ)𝑑 ] = 0. It means there is no statistically significant
ifference in the accuracy of the two competing forecasts. The statis-
ic of the test is deduced from the asymptotically standard normal
istribution as follows

M(𝑔, ℎ) =
√

#TS 𝜇̂
𝜎̂
, (C.15)

ith #TS the number of days of the testing set, 𝜇̂ and 𝜎̂ the sample
mean and the standard deviation of 𝛥(𝑔, ℎ). Under the assumption of
covariance stationarity of the loss differential series 𝛥(𝑔, ℎ)𝑑 , the DM
statistic is asymptotically standard normal. The lower the 𝑝-value, i.e.,
the closer it is to zero, the more the observed data is inconsistent
with the null hypothesis: E[𝛥(𝑔, ℎ)𝑑 ] < 0 the forecasts of the model ℎ
are more accurate than those of model 𝑔. If the 𝑝-value is less than
the commonly accepted level of 5%, the null hypothesis is typically
rejected. It means that the forecasts of model 𝑔 are significantly more
accurate than those of model ℎ.

When considering the ES or VS scores, there is a value per day of
the testing set ES𝑑 or VS𝑑 . In this case, 𝜖𝑑 = ES𝑑 or 𝜖𝑑 = VS𝑑 . However,
when considering the CRPS or QS, there is a value per marginal and per
day of the testing set CRPS𝑑,𝑘 or QS𝑑,𝑘. A solution consists of computing
24 independent tests, one for each hour of the day. Then, to compare
the models based on the number of hours for which the predictions of
one model are significantly better than those of another. Another way
consists of a multivariate variant of the DM-test with the test performed
jointly for all hours using the multivariate loss differential series. In this
case, for a given day 𝑑, 𝝐𝑔𝑑 = [𝜖𝑔𝑑,1,… , 𝜖𝑔𝑑,24]

⊺, 𝝐ℎ𝑑 = [𝜖ℎ𝑑,1,… , 𝜖ℎ𝑑,24]
⊺ are

the vectors of errors for a given metric of models 𝑔 and ℎ, respectively.
Then the multivariate loss differential series

𝛥(𝑔, ℎ)𝑑 = ‖𝝐𝑔𝑑‖1 − ‖𝝐ℎ𝑑‖1, (C.16)

defines the differences of errors using the ‖ ⋅ ‖1 norm. Then, for each
model pair, the 𝑝-value of two-sided DM tests is computed as described
above. The univariate version of the test has the advantage of providing
a more profound analysis as it indicates which forecast is significantly
better for which hour of the day. The multivariate version enables a
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better representation of the results as it summarizes the comparison
in a single 𝑝-value, which can be conveniently visualized using heat
maps arranged as chessboards. In this study, we decided to adopt the
multivariate DM-test for the CRPS and QS.

Appendix D. Value assessment

D.1. Notation

Sets and indexes
Name Description
𝑡 Time period index.
𝜔 Scenario index.
𝑇 Number of time periods per day.
#𝛺 Number of scenarios.
 Set of time periods,  = {1, 2,… , 𝑇 }.
𝛺 Set of scenarios, 𝛺 = {1, 2,… , #𝛺}.

Parameters
Name Description
𝑒𝑚𝑖𝑛𝑡 , 𝑒𝑚𝑎𝑥𝑡 Minimum/maximum day-ahead bid [MWh].
𝑦𝑚𝑖𝑛𝑡 , 𝑦𝑚𝑎𝑥𝑡 Minimum/maximum retailer net position [MWh].
𝑦dis

max, 𝑦cha
max BESS maximum (dis)charging power [MW].

𝜂dis, 𝜂cha BESS (dis)charging efficiency [-].
𝑠min, 𝑠max BESS minimum/maximum capacity [MWh].
𝑠ini, 𝑠end BESS initial/final state of charge [MWh].
𝜋𝑡 Day-ahead price [e/MWh].
𝑞𝑡, 𝜆̄𝑡 Negative/positive imbalance price [e/MWh].
𝛥𝑡 Duration of a time period [hour].

ariables
For the sake of clarity the subscript 𝜔 is omitted.

Name Range Description
𝑒𝑡 [𝑒𝑚𝑖𝑛𝑡 , 𝑒𝑚𝑎𝑥𝑡 ] Day-ahead bid [MWh].
𝑦𝑡 [𝑦𝑚𝑖𝑛𝑡 , 𝑦𝑚𝑎𝑥𝑡 ] Retailer net position [MWh].
𝑦pv
𝑡 [0, 1] PV generation [MW].
𝑦w
𝑡 [0, 1] Wind generation [MW].
𝑦cha
𝑡 [0, 𝑦cha

max] Charging power [MW].
𝑦dis
𝑡 [0, 𝑦dis

max] Discharging power [MW].
𝑠𝑡 [𝑠min, 𝑠max] BESS state of charge [MWh].
𝑑−𝑡 , 𝑑+𝑡 R+ Short/long deviation [MWh].
𝑦𝑏𝑡 {0, 1} BESS binary variable [-].

D.2. Problem formulation

The mixed-integer linear programming (MILP) optimization prob-
lem to solve is

max
𝑒𝑡∈ ,𝑦𝑡,𝜔∈(𝑒𝑡)

∑

𝜔∈𝛺
𝛼𝜔

∑

𝑡∈

[

𝜋𝑡𝑒𝑡 − 𝑞𝑡𝑑
−
𝑡,𝜔 − 𝜆̄𝑡𝑑

+
𝑡,𝜔

]

, (D.1a)

 =
{

𝑒𝑡 ∶ 𝑒𝑡 ∈ [𝑒𝑚𝑖𝑛𝑡 , 𝑒𝑚𝑎𝑥𝑡 ]
}

, (D.1b)

(𝑒𝑡) =
{

𝑦𝑡,𝜔 ∶ (D.2a)- (D.2m)
}

. (D.1c)

The optimization variables are 𝑒𝑡, day-ahead bid of the net position,
∀𝜔 ∈ 𝛺, 𝑦𝑡,𝜔, retailer net position in scenario 𝜔, 𝑑−𝑡,𝜔, short deviation,
𝑑+𝑡,𝜔, long deviation, 𝑦pv

𝑡,𝜔, PV generation, 𝑦w
𝑡,𝜔, wind generation, 𝑦cha

𝑡,𝜔 ,
battery energy storage system (BESS) charging power, 𝑦dis

𝑡,𝜔, BESS dis-
charging power, 𝑠𝑡,𝜔, BESS state of charge, and 𝑦𝑏𝑡,𝜔 a binary variable to
prevent from charging and discharging simultaneously. The imbalance
penalty is modeled by the constraints (D.2a)–(D.2b) ∀𝜔 ∈ 𝛺, that define
the short and long deviations variables 𝑑−𝑡,𝜔, 𝑑

+
𝑡,𝜔 ∈ R+. The energy

balance is provided by (D.2c) ∀𝜔 ∈ 𝛺. The set of constraints that
bound 𝑦pv

𝑡,𝜔 and 𝑦w
𝑡,𝜔 variables are (D.2d)–(D.2e) ∀𝜔 ∈ 𝛺 where 𝑦̂pv

𝑡,𝜔
and 𝑦̂w are PV and wind generation scenarios. The load is assumed
𝑡,𝜔
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Fig. E.16. PV and load tracks Diebold–Mariano tests.
The Diebold–Mariano tests of the CRPS, QS, ES, and VS demonstrate that the NF
outperforms the VAE and GAN. Note: the GAN outperforms the VAE for both the ES
and VS for the PV track. However, the VAE outperforms the GAN on this dataset for
both the CRPS and QS.

Fig. E.17. Classifier-based metric for both the PV and load tracks.
The NF (blue) is the best to fake the classifier, followed by the VAE (orange), and the
GAN (green).
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Fig. E.18. PV scenarios shape comparison and analysis.
Left part (a) NF, (c) GAN, and (e) VAE: 50 PV scenarios (gray) of a randomly selected
day of the testing set along with the 10% (blue), 50% (black), and 90% (green)
quantiles, and the observations (red). Right part (b) NF, (d) GAN, and (f) VAE: the
corresponding Pearson time correlation matrices of these scenarios with the periods as
rows and columns. Similar to wind power and load scenarios, NF tends to exhibit no
time correlation between scenarios. In contrast, the VAE and GAN tend to be partially
time-correlated over a few periods.

to be non-flexible and is a parameter (D.2f) ∀𝜔 ∈ 𝛺 where 𝑦̂l
𝑡,𝜔 are load

scenarios. The BESS constraints are provided by (D.2g)–(D.2j), and the
BESS dynamics by (D.2k)–(D.2m) ∀𝜔 ∈ 𝛺.

−𝑑−𝑡,𝜔 ≤ −(𝑒𝑡 − 𝑦𝑡,𝜔),∀𝑡 ∈  (D.2a)

−𝑑+𝑡,𝜔 ≤ −(𝑦𝑡,𝜔 − 𝑒𝑡),∀𝑡 ∈  (D.2b)
𝑦𝑡,𝜔
𝛥𝑡

= 𝑦pv
𝑡,𝜔 + 𝑦w

𝑡,𝜔 − 𝑦l
𝑡,𝜔

+ 𝑦dis
𝑡,𝜔 − 𝑦cha

𝑡,𝜔 ,∀𝑡 ∈  (D.2c)

𝑦pv
𝑡,𝜔 ≤ 𝑦̂pv

𝑡,𝜔,∀𝑡 ∈  (D.2d)

𝑦w
𝑡,𝜔 ≤ 𝑦̂w

𝑡,𝜔,∀𝑡 ∈  (D.2e)

𝑦l
𝑡,𝜔 = 𝑦̂l

𝑡,𝜔,∀𝑡 ∈  (D.2f)

𝑦cha
𝑡,𝜔 ≤ 𝑦𝑏𝑡,𝜔𝑦

cha
max,∀𝑡 ∈  (D.2g)

𝑦dis
𝑡,𝜔 ≤ (1 − 𝑦𝑏𝑡,𝜔)𝑦

dis
max,∀𝑡 ∈  (D.2h)

−𝑠𝑡,𝜔 ≤ −𝑠min,∀𝑡 ∈  (D.2i)

𝑠𝑡,𝜔 ≤ 𝑠max,∀𝑡 ∈  (D.2j)

𝑠1,𝜔 − 𝑠ini
= 𝜂cha𝑦cha −

𝑦dis
1,𝜔 , (D.2k)
𝛥𝑡 1,𝜔 𝜂dis
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Fig. E.19. Load scenarios shape comparison and analysis.
Left part (a) NF, (c) GAN, and (e) VAE: 50 load scenarios (gray) of a randomly selected
day of the testing set along with the 10% (blue), 50% (black), and 90% (green)
quantiles, and the observations (red). Right part (b) NF, (d) GAN, and (f) VAE: the
corresponding Pearson time correlation matrices of these scenarios with the periods as
rows and columns. Similar to PV and wind power scenarios, NF tends to exhibit no
time correlation between scenarios. In contrast, the VAE and GAN tend to be highly
time-correlated.

𝑠𝑡,𝜔 − 𝑠𝑡−1,𝜔
𝛥𝑡

= 𝜂cha𝑦cha
𝑡,𝜔 −

𝑦dis
𝑡,𝜔

𝜂dis ,∀𝑡 ∈  ⧵ {1} (D.2l)

𝑠𝑇 ,𝜔 = 𝑠end = 𝑠ini. (D.2m)

Notice that if 𝜆̄𝑡 < 0, the surplus quantity is remunerated with a non-
negative price. In practice, such a scenario could be avoided provided
that the energy retailer has curtailment capabilities, and (𝑞𝑡, 𝜆̄𝑡) are
strictly positive in our case study. The deterministic formulation with
perfect forecasts, the oracle (O), is a specific case of the stochastic
formulation by considering only one scenario where 𝑦pv

𝑡,𝜔, 𝑦w
𝑡,𝜔, and

𝑦l
𝑡,𝜔 become the actual values of PV, wind, and load ∀𝑡 ∈  . The

optimization variables are 𝑒𝑡, 𝑦𝑡, 𝑑−𝑡 , 𝑑+𝑡 , 𝑦pv
𝑡 , and 𝑦w

𝑡 , 𝑦cha
𝑡 , 𝑦dis

𝑡 , 𝑠𝑡, and
𝑦𝑏𝑡 .

D.3. Dispatching

Once the bids 𝑒𝑡 have been computed by the planner, the dispatch-
ing consists of computing the second stage variables given observations
of the PV, wind power, and load. The dispatch formulation is a specific
case of the stochastic formulation with 𝑒𝑡 as parameter and by consider-
ing only one scenario where 𝑦pv

𝑡,𝜔, 𝑦w
𝑡,𝜔, and 𝑦l

𝑡,𝜔 become the actual values
of PV, wind, and load ∀𝑡 ∈  . The optimization variables are 𝑦𝑡, 𝑑−𝑡 , 𝑑+𝑡 ,
𝑦pv, and 𝑦w, 𝑦cha, 𝑦dis, 𝑠 , and 𝑦𝑏.
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𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
Fig. E.20. Average of the correlation matrices over the testing set for the three
datasets.
Left: wind power; center: PV; right:load. The trend in terms of time correlation is
observed on each day of the testing set for all the datasets. The NF scenarios are not
correlated. In contrast, the VAE and GAN scenarios tend to be time-correlated over a
few periods. In particular, the VAE generates highly time-correlated scenarios for the
load dataset.

Appendix E. Quality results

See Figs. E.16–E.20.
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