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Abstract. Computation-based approaches have been flourishing in the construc-

tion industry for the past years. From experimental practices to mainstream pro-

duction, usage of digital tools tends to be diverse and versatile. This is especially 

true for Computational Design (CD) which encompasses multiple practices, 

transforming the future of the industry and its stakeholders.  

Through the ever-increasing speed and capacity of computers, computation ena-

bles dealing with geometries and tasks which were traditionally either too time 

consuming or too challenging to be accomplished by human alone. However, CD 

is not just automating existing traditional processes or tedious tasks, it’s about 

shifting the way we think and design. 

To better understand how to unlock the opportunities of CD, this chapter dis-

cusses: 1- the main subsets of CD, called parametric, generative and algorithmic 

design; 2 -presents CD’s different toolsets and their evolutions, and finally 3- 

interrogate how CD is integrated in practice, with its emerging roles and skillsets.  
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1 Introduction 

Computation-based approaches have been flourishing in the construction industry for 

the past years. From experimental practices to mainstream production, usage of digital 

tools tends to be diverse and versatile. This is especially true for Computational Design 

(CD) which encompasses multiple practices transforming the future of the AECO1 in-

dustry and its stakeholders.  

Research and experimentation in computation for architectural and urban design 

emerged early on in the 1960s, with works such as those of Yvan Sutherland, Yona 

Freidman or Nicholas Negroponte [1-3]. But digital tools dedicated to the construction 

industry only made their way in the everyday life of the office later on, especially with 
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the democratization of CAD2 in the late 80s. It was then followed by many other tech-

nologies, such as 3D modelling, rendering, document management systems or digital 

fabrication. Today, technical innovations continue at high speed. 

 

1.1 Computer-aided, Automated, Digitalized or Computational 

CD practices may be diverse, but they share a common foundation: they rely on the 

power of computation as well as on computational thinking. Through the ever-increas-

ing speed and capacity of computers, computation enables dealing with geometries and 

tasks which were traditionally either too time consuming or too challenging to be ac-

complished sustainably by human alone [4]. However, CD is not just automating exist-

ing traditional processes or tedious tasks, it’s about shifting the way we think and design 

[2,5,6]. 

In the 60s, Negroponte highlighted the distinction between “computer aided”, which 

is about traditional processes supported by computation tools, from “computerized” or 

“digitalized”, which is about new processes enabled by computers [3]. Terzidis goes 

one step further with the term “computational”, making the distinction between the uses 

of the technique (the computers, as in computer-aided or digitalized) and the uses of 

the thinking paradigm (the computation, as in computational design) [2,7,8] (fig 2.1). 

 
Fig. 2.1. From Computer-Aided to Computational 

 

This distinction emphasizes that employing computational design requires first and 

foremost a change in mind-set, rather than a simple application of digital tools to an 

existing design or process. In other words, “Algorithms are used, not to enhance archi-

tectural designs, but rather to conceive them” [7]. 

 

 

1.2 Computational thinking 

At the foundation of CD is the power of computation, which relies on algorithms. To 

put it simply, an algorithm is no more than a sequence of instructions3 [1,2,6]. For ex-

ample, a cooking recipe can be considered as an algorithm: “take the ingredients A and 

B, mix them following rule C and then split the result according to rule D” is a sequence 

                                                           
2 CAD: Computer-Aided Design systems such as AutoCAD (Autodesk) or Microstation (Bentley 

Systems). 
3 To be more specific, Menges and Alquist define an algorithm as “a finite sequence of explicit, 

elementary instructions described in an exact, complete yet general manner“(Menges & 

Ahlquist, 2011, p. 13). 
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of well-ordered instructions. From this simplistic definition further subtlety and com-

plexity can be explored. In the context of CD practices, algorithmic technologies and 

thinking are used to define and manipulate both the flow of data and complex geome-

tries of projects. Designers focus on defining a series of instructions, rules and relation-

ships that gives them better control of the design, enabling the analysis, modification 

or generation of a wide range of data and geometries. These significantly powerful ca-

pabilities open up new fields of possibilities for the AECO industry and its stakeholders 

[6, 9-11]. 

 

To better understand how to unlock the opportunities of CD, this chapter discusses 

the main subsets of CD, called parametric, generative and algorithmic design; presents 

CD’s different toolsets and their evolutions, and finally interrogate how CD is inte-

grated in practice, with its emerging roles and skillsets.  

This chapter aims to give a beginner in the field some pointers on the fundamentals 

of CD practices. The following chapter called: “Advanced Applications in Computa-

tional Design” gives further contemporary case studies of these practices.  

2 Defining Computational Design subsets: Parametric, 

Generative or Algorithmic 

Menges and Ahlquist stated that the “understanding of how systems operate is funda-

mental to computational design”, allowing for a very open definition of CD. To enable 

a more specific characterization, three key subsets of CD can be identified : parametric, 

generative and algorithmic. These subsets are useful to contextualize the different CD 

capabilities, although their definitions are sometimes controversial in both industry and 

academic literature [12]. 

2.1 Parametric design 

There is no clear consensus amongst specialists on a definition of parametric design per 

se [12-17], but recurring characteristics can be identified.  

Parametric design relies on the design and modeling of parametric systems. A paramet-

ric system is an association of clear rules and constraints in a specific order. Inputs can 

be fed into the system, and rules and constraints are then solved by propagating these 

inputs through every rule that depends on them, allowing the production of consistent 

outputs (see figure 2.2.a). 

 
Fig. 2.2.a Inputs, rules and outputs in a parametric system: Main dependencies 
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Fig. 2.2.b Inputs, rules and outputs in a parametric system: Complex systems through simple 

rules and parameters combinations 

 

The range of possible inputs (the parameters), the rules (which can be mathematic, ge-

ometric, etc.) and the relationships between them constitute the parametric system (fig 

2.2.b). For the same parametric system, different inputs will generate different outputs. 

The relationships between outputs and rules are explicitly defined by the users, prior to 

execution [15]. These relationships create constraints and dependencies between the 

different elements of the system. The propagations of data between dependencies in 

parametric systems are always unidirectional, so there are no loops possible in a para-

metric model, also referred as acyclic. Despite this limitation, complex systems can be 

defined through simple rules and parameters, associated through clear relationships (fig 

2.2.b).  

In parametric design, the designer works on two levels: the definition of the para-

metric system, as well as the exploration of meaningful results produced by the system, 

called instances [14]. These two levels interlace and the designer goes through multiple 

iterations and explorations between system and instances (fig 2.3). Creativity and de-

sign are needed at both these levels. 

 
Fig. 2.3. From designing a parametric system to exploring instances and back 

 

London’s Waterloo station designed by Grimshaw in the early 90’s is an interesting 

legacy example of parametric design. The highly constrained site and program led to a 

need for major variability in the width of the station. Indeed, the span of the roof con-

tinuously changes from one end of the station to the other, getting wider towards the 

entrance, allowing more space for train platforms (fig. 2.4.a). In this changing geome-

try, the logic of the structural truss remains consistent. This was solved using a para-

metric design of the truss system (fig 2.4.b).  
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Fig. 2.4.a Waterloo Station: external view of a very dense site in central London, the roof 

span gets wider toward the station pedestrian entrance (credits: Grimshaw) 

 

 
Fig. 2.4.b Waterloo Station’s truss geometry (credits for the geometry diagram: Shane 

Burger) 

 

The truss geometry is expressed in terms of geometrical relationships and constraints, 

forming two asymmetrical arcs (fig 2.4.b). With the site boundary lines as input, the 

parametric design enables a fast and easy exploration and definition of the roof and its 

trusses (fig. 2.5.a) [18,19]. It also allows the control of the geometry and its explora-

tions, enabling a rationalized and ruled fabrication of the trusses [20] (see fig 2.5.b).  
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Fig. 2.5.a Example of possible iterations of the parametric system 

 

 

 
 Fig. 2.5.b Waterloo Station, internal view (credits: Grimshaw) 

 

We can observe here some of the main characteristic of parametric design as dis-

cussed in the literature: the design relies on the definition of geometric relationships 

between specific inputs, allowing for the exploration of a wide range of options while 

maintaining relevance for the project. This shows the shift from designing a specific 

geometry to designing the system which controls the geometry, as well as the construc-

tion workflow. Designing fabrication and construction relevant workflows is a recur-

ring theme in CD practices in general, not just in parametric design. Some further point-

ers on fabrication, materiality and workflows can be found in the works of Menges, 

Garber, Peters and De Kestellier amongst others [21- 25]. 
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Because parametric system’s constraints dependencies are unidirectional, they are rel-

atively easy to apprehend and anticipate. It makes parametric design an easier CD prac-

tice to access for beginners, but also a more constraint one because not all design intents 

can be approached through acyclic algorithms. Generative Design however presents 

more flexibility in its approach but also more complexity.  

2.2 Generative Design 

As in parametric design, generative design is a ruled-based approach capable of gener-

ating a wide range of outputs. But the algorithmic approaches used in generative design 

can be more diverse than in parametric design, which is constrained to be acyclical. 

Generative design allows designers to define problem spaces through sets of well-or-

dered rules and instructions, and ranges of possible inputs clearly defined in domains. 

From these definitions, generative systems will create ranges of outputs, also called the 

solution space. 

 

  
Fig. 2.6 Generative system principles with embedded optimization process 

 

The solution space (the range of outputs) is ranked according to a specific set of 

targeted criteria, also known as objectives. The solution space can then be explored or 

searched4, in order to optimize these selected objectives [12, 26, 27] (fig 2.6). These 

optional optimizations can balance multiple objectives and enabling the systems to sup-

port the designer in better understanding the effects and intricacies of competing goals 

of the generative process [28-31].  

In the early 2000’s, EZCT developed a chair5 based on generative design strategies 

[32]. Based on a matrix of voxels with the overall dimensions of a chair (the “Definition 

domain” in the fig 2.7.b), the chair material is being added or removed at each iteration 

of the algorithm (fig 2.7.b and fig 2.6). The performance of the chairs produced is being 

evaluated at each iteration (fig 2.7.c) with regard to structural stability in a multiple 

                                                           
4 About the difference between explore or search: “Search is a process for locating values of 

variables in a defined state space while exploration is a process for producing state spaces” 
27. 

5 EZCT Architecture & Design Research (with Hatem Hamda and Marc Schoenauer) Studies on 

Optimization: Computational chair design using genetic algorithms, 2004, Chair Model ‘T1-

M’ after 860 generations (86,000 structural evaluations). 
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load strategy (fig 2.7.a), as well as with regard to their resulting weight and volume (fig 

2.7.c). The balance between these two conflicting objectives (a light chair versus a 

strong chair) is driven by the algorithm. The chairs with the best performance are se-

lected at each iteration and input back in the system to improve the next iteration, 

through what is called a genetic algorithm [32] . These multiple feedbacks loops allow 

an optimization of the overall chair generation. A wide range of chairs is being gener-

ated and optimized from one iteration to another, constituting the solution space of the 

design (2.7.b). From this solution space, instances can be selected according to the de-

sired performances, to be then fabricated (fig 2.7.d). 

 
Fig. 2.7.a. EZCT preliminary structural studies for a structural chair, a multiple loads strat-

egy (credits: Philippe Morel) 

 

 

 
Fig. 2.7.b.  EZCT computational chair, Extracts from the solution space geometries (credits: 

Philippe Morel) 
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Fig. 2.7.c.  EZCT computational chair, Extracts from the solution space evaluations (credits: 

Philippe Morel) 

 

 
Fig. 2.7.d. Chair Model "T1-M 860" (fabricated instance) (Credits : Philippe Morel) 

 

This EZCT project leverages generative design through a genetic algorithm, but mul-

tiple generative design approaches exist. We can’t name them all, but some useful ref-

erences can be found through the following terms: shape grammars, cellular automata, 

L-systems or swarm systems [12].  

While the example shown here is a relatively small scale project, generative Design 

is also widely used for architectural and urban design. Platforms such as Testfit.io, 

SpaceMakerAI or ArchiStar are relying on generative design to provide automated ar-

chitectural layout options as well as feasibility studies at urban scale [33-35]. These 

platforms are discussed further in section 3.2.  

Furthermore, Anderson demonstrate how generative design can provide efficient 

desk layouts for office spaces [27]. In particular, it shows how it can successfully ad-

dress specific design requirements (such as required adjacencies, clearances require-
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ments for desks and doors, maximum and minimum density etc.) as well as the irregu-

larities of existing spaces (irregularly shaped offices, difficult edge conditions, obsta-

cles in the space). When analyzing the performance of the algorithm, the authors ob-

serve that the layouts generated achieve a 97% match rate with the performance of what 

architects previously designed for existing offices of the same company [27]. 

In the end, Generative Design can be considered as more autonomous than paramet-

ric design, allowing complex explorations where multiple objectives and requirements 

are difficult to predict for humans without computation support.  

 

2.3 Algorithmic Design 

The Algorithmic Design approach is widely quoted in the CD literature, although its 

scope often overlaps with Parametric Design and Generative Design.  

Algorithmic Design approaches seem to especially leverage computational methods 

and thinking, beyond the use of computer as formal tools. Terzidis highlights for ex-

ample how algorithmic Design allows the designer to “go beyond the common and pre-

dictable” [7, 36]. In the end, Algorithmic Design allows more freedom than Parametric 

Design or Generative Design in the balance between intention and emergence [2, 36].   

To some extent, the computational chair from EZCT (fig 2.7) can be considered a 

relevant algorithmic design case as well as generative design one. Indeed, its design 

strategy is widely based on emergence more than on intention, leading to some unex-

pected instances of the chair (fig 2.7.b). Meanwhile, the work from Anderson [27], 

discussed previously in section 2.2, shows a generative design of desk layouts where 

the outputs are widely expected. 

The characterization of a design approach in one subset or another is not always 

straightforward, and some overlap can be noticed.  
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Fig. 2.8. Parametric, Generative and algorithmic design: Toward practices of computational 

thinking and emergence 

 

In this section, we discussed two particular characteristics of CD: the thinking shift 

toward computation (vertical axis in fig 2.8) as well as the aim towards emergence, 

where outputs are non-predictable (horizontal axis in fig 2.8). These characteristics dis-

tinguish CD from CAD, as well as from designing using existing parametric objects or 

automating well defined workflows, where outputs can be anticipated. They also allow 

the relative positioning of parametric, generative and algorithmic design to one another, 

toward a practice of computational thinking and an aim for emergence.  

3 Computational Design toolsets: From visual programming to 

platformization, a journey toward getting CD into everyday 

practice 

In the following section of this introduction to Computational Design, we interrogate 

the technical characteristics of CD toolsets, their evolution and adoption in professional 

practice. The trajectories of these toolsets for the past few years tells us how CD made 

it into everyday practice and how it might evolve with new emerging platforms. Imple-

menting new technologies in practice implies significant costs, with a large part being 

the development of specific and demanding expertise. This creates an issue with CD 

accessibility and contributes to adoption in practice being fragmented. This is why the 

evolution of toolsets into becoming more accessible to beginners is significant for the 

deployment of CD, and the rise of visual programming tools in the industry has espe-

cially been a game changer.  
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3.1 Programming toolsets for designers 

In the 60’s, early experimentation of computation in architecture required a big deal 

of computer science knowledge and skills. The designer toolset first evolved through 

the appropriation of tools from other industries (such as aerospace or industrial design 

amongst others), and later to the development of tools dedicated to artists and to the 

construction industry.  

Today, visual programming tools enable beginners in computation to get started 

much more easily. Visual programming allows users to describe parameters and rules 

visually, using a language of blocks, and to create relationships between these blocks 

using connecting wires (fig 2.9). The produced visual program is often called a script 

or a graph. Visual programming tools currently used in the AECO industry often come 

with already defined rules but can also be extended with custom functionality, which 

can require coding. Visual programming tools and their extensions through external 

libraries, plugins, etc. enable a wide range of CD practices, including the three dis-

cussed subsets: parametric design, generative design and algorithmic design. As dis-

cussed in section 2.1, parametric systems are a bit simpler to apprehend because they 

are unidirectional. They are also easy to implement in visual programming. Indeed, the 

loops and feedback needed in generative design or algorithmic design can be difficult 

to manipulate through wires, while textual programming is more adapted to their im-

plementations.  

 

  
Fig. 2.9. Examples of a visual programming interface: Grasshopper (McNeel) 

 

Generative Components, developed in the 90’s by Bentley Systems [37], and Grass-

hopper, developed in the late 2000’s by McNeel [38] (fig 2.9), were, and still are, very 

successful visual programming tools that have had a significant impact on the CD field 

of practice. In more recent years, Autodesk developed its own visual programming sys-

tem called Dynamo [39] as has Dassault System with XGen [40].  

Some authoring tools such as Revit or ArchiCAD use embedded propagation sys-

tems to enable parametric objects and a reactive design environment. However, they 

rely widely on predefined objects, with limited sets of rules and constraints possible. 

pre-sets rules and constraints. While it is very helpful to structure data in models and 

provide an accessible user experience, it constrains the designer to rely on the existing 
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library of rules and relationships. That’s why, most of the time, they are not recognized 

as being flexible enough to enable CD without the use of programming or visual pro-

gramming [41, 42]. 

 

3.2 Computational Design platforms   

With the increase of computationally demanding processes, it’s getting more and more 

important to enable non-specialists to access CD toolsets. Tools are constantly improv-

ing user access to algorithms. For example, HumanUI [43, 44] proposes some toolsets 

to develop custom user interfaces in order to make complex CD developments accessi-

ble to non-specialists. Improvements are also made through library management sys-

tems, like Dynamo Player for example [39], allowing non-specialist users to easily run 

existing scripts developed by colleagues, with little or no visibility of the code itself.  

A new generation of CD tools is currently emerging to address these issues too, tak-

ing a relatively different direction. These are cloud-based platforms and propose to 

make the CD experience easy to access to a more general audience and not just special-

ists. Today, platforms like Hypar allow designers to make their scripts available with a 

user-friendly interface on a web page [45] (fig 2.10). Non-specialist users can access 

these web “toolkits”, and explore CD processes in a relatively easy manner. Hypar is 

especially designed as a customizable platform allowing any algorithm to be imple-

mented by specialists, while also allowing non-specialist users to access it. 
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Fig. 2.10. Screenshot from the Hypar interface (2020), on the right the preview of the resulting 

instance, on the left the rules are ordered vertically, from top to bottom, with user friendly in-

puts exploration capability 

 

Other platforms like SpaceMaker, ArchiStar or Testfit propose specialized cloud 

based tools [33-35] to provide CD as a service. They develop powerful algorithms for 

various purposes (such as different building configurators, urban feasibility generation 

and evaluation, automated parking layouts, etc.) and make them available to non-spe-

cialists, whether they are architects or engineers, but also property developers, town 

planners, investors etc. With these platforms, in just a few steps, any user can select a 

construction site and evaluate thousands of design options according to bespoke per-

formance objectives, such as unit mix, expected density, compliance with local regula-

tions or environmental factors. This could be soon leading the way to different business 

models for designers. But although these platforms are promising, they are still very 

new in the industry and their adoption is just getting started.  

3.3 Computational Design and data 

Furthermore, these CD platforms (especially ArchiStar and SpaceMaker) claim de-

veloping and embedding artificial intelligence (AI) in their generation and optimization 

algorithms [33-34] 33,34. While embedding AI in CD algorithms is still relatively new 

in the industry, it seems to be developing at high speed. But AI requires very large and 

detailed datasets, which the industry doesn’t fully have yet, even if CD practices focus 

on data is important.  
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Indeed, as the adage says, “garbage in, garbage out” which means that if the inputs 

of an algorithm are not well controlled and well structured, the outputs are likely not to 

be up to the designer’s expectations. CD practices are using and producing loads of data 

sets, datas which can be geometric but also alpha numeric or semantic (for example as 

in the EZCT projet in fig 2.7.c).  

3.4 Designing the practice’s toolset  

To address the current challenges of the AECO industry, designers shouldn’t be afraid 

of designing their own technological environment, and especially to develop their tools 

when the current ones do not meet their needs. With the growing impact of algorithms 

and computation on architecture, running a practice with ill-suited tools is becoming 

increasingly risky. Developing tools and ecosystem of tools should now be a part of the 

designer’s job [10, 25, 46].  

The development of CD toolsets goes in parallel with the rise of communities of 

users and developers. These communities of professionals and amateurs alike share 

problems and advise each other, creating significant knowledge bases on forums, blogs, 

podcasts and videos. It worth highlighting that supportive communities are a significant 

driver for both the CD practice and its adoption.  

While the digital transformation of the construction industry is moving so many as-

pects of collaboration and ownership [47], it is quite surprising to observe that Open 

Source Software is still barely used in the AECO industry. Apart from a projects such 

as Speckle [48, 49] or Blender [50], most software used in the building industry is pro-

prietary, sometimes creating governance issues [51, 52].  

4 Computational Design in practice: roles and skillsets  

CD adoption in everyday work, as well as the evolutions of those practices and or-

ganizations, is a key topic to understand CD [10, 11]. While the evolution of practices, 

with its organization, roles and competencies is well studied for Building Information 

Modeling6 (BIM) practices [53-55], the same cannot be said about CD. After discussing 

what CD entails in section 2, and its toolsets characteristics and evolutions in section 3, 

in the following section we further discuss the human and organizational aspect of CD 

practices, especially around its related roles and skillsets.  

4.1 Existing and emerging roles in the field of computational design 

Currently, CD practices are still very much “niche” and fragmented and can’t be yet 

described as business as usual for the AECO industry. We can observe that CD prac-

tices are very much led by individuals, either as a full specialisation, or as integrated in 

wider scopes. These two polarities, specialisation versus integration, are representative 

of the roles currently available to the CD savvy designer [56]. 

                                                           
6 See Chapter “Building Information Modelling and Information Management” 
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In integrated roles, most of the time, computational designers are designers with a 

particular expertise in computation and operate in the office in the same way as their 

colleagues. Their primary role is to work on projects, and if the project to which they 

are allocated does not lend itself to computational developments, they will potentially 

have to put their CD skills on hold. They often go from one project to another without 

much time to consolidate the development of methods or tools carried out. If they leave 

the practice, their knowledge often leaves with them. If they train their colleagues, it is 

often based on their own individual good will and free time, without systematic recog-

nition by the practice management. Whitehead called them “architect plus” [Whitehead 

in 57]. 

When in dedicated roles, people get to specialize further on CD and software devel-

opment in general, often referred to as “Computational Design Specialists”. Computa-

tional Design Specialists provide training for their colleagues and develops tools and 

assets (methods, scripts, etc.) for the office. They can work on projects, but mostly on 

contributions related to their CD expertise, allowing them to further extend their expe-

rience and skills. Large practices can have their own dedicated specialist teams. That’s 

the case at Foster+Partners with the Specialist Modeling Group and the Applied Re-

search and Development one [26, Whitehead in 57], at Zaha Hadid Architects with the 

Code Group, or at Grimshaw with the Design Technology Department [56]. Consul-

tancy practices have been flourishing too, opening the way for different business mod-

els and practices, like with the experiences of Gehry Technologies or Case [11]. 

Both integrated and dedicated roles have their advantages and disadvantages, and 

today there is no one-size-fits-all solution. When establishing a CD resourcing strategy, 

the office’s ambition, needs and investment capacity should all be carefully considered. 

In particular, CD resourcing strategy should be defined in close relation to a wider dig-

ital transformation plan for the office.  

Currently, specialised and integrated roles are cohabitating in practices, allowing a 

wide range of possible positions and integration strategies. Unfortunately, these blurred 

lines between roles also means that Computational Designers are not always as well 

recognized as they could be, and their career paths and perspectives often lack visibility 

[10].   

4.2 Skillsets and competencies: the figure of the superuser 

The figure of the superuser proposed by Deutsch in 2019 has been quite successful 

amongst computational designers. The superuser finally described and crystallised a 

complex and not very well documented professional reality, in terms of skills, roles and 

career. It highlights the cultural and technical transformation underway and puts a name 

on a series of characteristics of new actors of the digital transformation, to finally rec-

ognize and make visible the complexity of their roles and skillsets. Anyone can identify 

as a superuser, whether they are project manager, architect, engineer, or others, and, 

ultimately, whether they are specialists or not. 

Superusers are experts in CD and digital design technologies in general and are de-

fined by their skills rather than by their roles. While very strong technical knowledge 

is recognized in superusers, it’s not what identifies them most. The competences of a 



17 

superuser should comprise: firstly the ability for computational thinking, but also inter-

personal skills, such as the ability to communicate, connect and collaborate [10, 57, 

58], and an ability to conceptualize and structure strategies for a project or for an office 

[10]. The figure of the superuser therefore goes beyond the distinctions between CD 

subsets (parametric, algorithmic and generative), or between CD and other digital prac-

tices such as BIM. 

Many fears and uncertainties exist regarding the transformation of the building in-

dustry and its jobs, especially with regards to automation [9, 59, 60]. But the increase 

in expertise and the evolution of means of production are not new phenomena for de-

signers. For sociologist Olivier Chadouin, the architectural profession has always en-

countered new skills and new scopes, and persists in time and through difficulties 

thanks to its great heterogeneity [61]. As such, the construction industry shouldn’t be 

afraid to embrace new skills such as computational ones. Nevertheless, integrating het-

erogeneous skillsets and roles within practice must be thoughtfully considered. Most 

practices are still struggling with digital transformation, and have difficulties in identi-

fying opportunities for the application of CD, as well as difficulties with recognition 

and career paths for the superusers [10].  

 

5 Conclusions : The futures of CD practices 

5.1 Computational capabilities for design: a new paradigm 

In this chapter, we have discussed how important it is to distinguish computational 

thinking from a computer-aided mindset. While computer-aided systems supports mak-

ing traditional existing processes faster, Computational ones enable completely new 

processes and ways of thinking. Computational Design (CD) is not just automating ex-

isting traditional processes or tedious tasks; it’s about shifting the way we think and 

design. 

CD systems can be grouped into three main categories. Parametric systems are prop-

agation based, allowing the designer to organize rules, inputs and relationship in spe-

cific orders, and enabling the exploration of a wide ranges of solutions. Generative de-

sign systems are ruled-based too, but use more diverse algorithmic approaches and in-

troduce goals. They enable the designer to define a problem space and the algorithms 

that will produce the solution space, which can then be widely explored or searched. 

Algorithmic Design usually describes systems that fits neither in the parametric or gen-

erative categories. In the end, it is a broader CD subset, allowing more freedom in the 

balance between intention and emergence, enabling explorations of unpredictable out-

puts. 

5.2 Toward a platformization of CD 

 In its early development in the 60’s, the coding knowledge needed in order to lev-

erage computational thinking was a limitation to its adoption in the day to day practice. 
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It’s not the case anymore thanks to various toolsets development. In particular, visual 

programming has been a game changer for the adoption of CD in the AECO industry. 

Some further developments, especially in cloud based platform, seems to be next in line 

to transform the involvement of computation in practice. These platforms propose a 

new kind of CD service, enabling access to powerful CD algorithms to non-specialists. 

5.3 CD and data centric practices: a possible reconciliation with BIM? 

Data centric approaches are on the rise [5, 6, 26] in the construction industry, espe-

cially with AI related targets [6, 62]. Data quality is a major issue for all industries 

today. In data science, it is usually considered that the work consists of 80% of prepar-

ing the data and only 20% of exploiting it [63]. In the construction industry, for most 

firms, the data is neither controlled nor unified, and remains disparate and partial from 

one project to another. BIM practices arise as a powerful means of defining a base of 

practices aimed at ensuring the quality of data and its exchanges, making it feasible that 

the data produced can be used during and after the project as needed. 

This makes it even more surprising to see the Chinese wall that seems to exist be-

tween CD and BIM. BIM can be regarded as focused on data-oriented collaborative 

practices. When we see the rise of interrogations around CD & data as well as CD & 

data exchange [26, 64, 65], the lack of interaction between the two fields can be sur-

prising.  

Several explanations could be discussed. One differentiating aspect is that while 

BIM is involved all along the project lifecycle, the early design stages don’t seem to be 

its strongest use-case. If BIM is key in the expansion of architectural workflows [24], 

it is often criticised for missing the point of design by an often too strong focus on 

production means instead of design objective [66] and by having technological foun-

dations too rigid to address the flexibility required by early design stages [6, 42].  

For some authors, it’s not that BIM and CD must be kept apart, but that they should 

merge as they evolve. That’s the case for Aish and Bredella, for whom BIM must evolve 

towards CD in order to fully integrate with it, otherwise it will remain locked in its 

technological premises, ill-suited to architectural design [42]. On the other hand, sev-

eral authors interrogate BIM and CD through the angle of communication, interopera-

bility and data sharing issues [26, 49, 64, 67]. This opens very interesting fields of re-

search and practice, opening the possibility of breaking the silos between BIM and CD 

in order to develop strong data centric practices for the AECO industry.  

 

5.4 The importance of the digital transformation for CD adoption  

Despite the numerous opportunities and advantages of computation, the adoption of 

CD in everyday practice is still very niche. The general digital transformation of the 

AECO industry is slow, as is the adoption of CD. This greatly impacts the opportunities 

for designers to nurture their skills and get recognition for it. The recent success of the 

book Superuser from Deutsch [10] is a good indicator: very little attention is given to 

the actors and the drivers of the AECO’s digital transformation. Their skills, roles and 
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career opportunities are neither clear nor easy. Further to solid technical and cultural 

knowledge on computation in general, interpersonal skills as well as leadership ones 

are greatly needed for these CD actors, whether they work in a CD dedicated team, or 

in design positions with CD exposure. 

In the coming years, it is likely that the challenges the AECO industry faces will 

continue to multiply. We will need all the intelligence and means possible, and CD is 

enabling great possibilities.  However, implementing CD requires the industry to go 

through a significant digital transformation, which is costly in terms of investments, 

and its factors for success or failure are complex and resource intensive. Confusion, 

anxiety, resistance, frustration: if poorly led, the effects of risky change management 

are harmful. Yet multiple companies rely on enthusiastic individuals to drive change, 

without fully supporting their efforts over time. If practices’ leadership do not seriously 

engage in the process, then these computational designers will face many difficulties, 

causing frustration and disillusion. These computational skills take a long time to de-

velop, and if they can’t flourish and struggle to have an impact in AECO as it is cur-

rently, they might leave the industry.   

Resilience and adaptation are key in our world today, and the multiple capabilities 

CD enables can help current and future AECO stakeholders to not be victims of the 

upcoming industry’s challenges, but rather be empowered actors bringing about 

change. 

 

References 

 

1. Picon, A. Digital culture in architecture : an introduction for the design 

professions. Birkhauser Architecture (2010). 

2. Menges, A. & Ahlquist, S. Computational Design Thinking. Wiley (2011). 

3. Negroponte, N. Towards a humanism through Machines. in Computational 

design thinking (eds. Menges, A. & Ahlquist, S.) AD Readers (1969). 

4. Denning, P. J. & Tedre, M. Computational thinking. MIT Press (2019). 

5. Bernstein, P. G. Architecture, design, data : practice competency in the era of 

computation. Birkhauser Architecture (2018). 

6. Carpo, M. The second digital turn : design beyond intelligence. (MIT Press, 

2017). 

7. Terzidis, K. Algorithmic Design: A Paradigm Shift in Architecture? in 

Proceedings of the 22nd eCAADe Conference 201–207 (2004). 

8. Terzidis, K. Algorithmic Architecture. Architectural Press (2006). 

9. Susskind, R. E. & Susskind, D. The Future of the Professions: How Technology 

Will Transform the Work of human experts. Oxford University press (2015). 

10. Deutsch, R. Superusers : design technology specialists and the future of 

practice. Routledge (2019). 

11. Shelden, D. The disruptors : Technology-driven architect-entrepreneurs. 

Wiley (2020). 



20 

12. Caetano, I., Santos, L. & Leitão, A. Computational design in architecture: 

Defining parametric, generative, and algorithmic design. Frontiers of 

Architectural Research (2020)  

13. Davis, D. The Future of Architectural Discourse. https://www.danieldavis.com/ 

https://www.danieldavis.com/the-future-of-architectural-discourse/ (2013). 

last accessed 2021/01/31. 

14. Aish, R. & Woodbury, R. Multi-level interaction in parametric design. Lect. 

Notes Comput. Sci. 3638, 151–162 (2005). 

15. Janssen, P. & Stouffs, R. Types of parametric modelling. CAADRIA 2015 - 20th 

Int. Conf. Comput. Archit. Des. Res. Asia Emerg. Exp. Past, Present Futur. 

Digit. Archit. 157–166 (2015). 

16. Woodbury, R. Elements of Parametric Design. Routledge (2010). 

17. Schumacher, P. Parametricism: A new global style for architecture and urban 

design. Archit. Des. 79, 14–23 (2009). 

18. Burger, S. Natural and intuitive. http://shaneburger.com/2011/08/designing-

design/ (2011). last accessed 2021/01/31. 

19. Carlos, C. & Richard, N. Beyond modelling : Avant-garde Computer 

Techniques in Residential Buildings. Jornadas Investig. en Constr. (2005). 

20. Kolarevic, B. Architecture in the Digital Age: Design and Manufacturing. Spon 

Press (2003). 

21. Menges, A. Integral formation and materialisation, Computational form and 

material gestalt. in Computational design thinking Wiley (2008). 

22. Migayrou, F. Architecture non standard. Centre Pompidou ed (2003). 

23. Krüger, S. & Borsato, M. Developing knowledge on Digital Manufacturing to 

Digital Twin: A bibliometric and systemic analysis. Procedia Manuf. 38, 1174–

1180 (2019). 

24. Garber, R. Workflows: Expanding architecture’s territory in the design and 

delivery of of building. Wiley (2017). 

25. Peters, B. & De Kestelier, X. Computation works : The building of algorithmic 

thought. Wiley (2013). 

26. Thomsen, M. R. & Tamke, M. Design Transactions. UCL Press (2020).  

27. Anderson, C., Bailey, C., Heumann, A. & Davis, D. Augmented space 

planning: Using procedural generation to automate desk layouts. Int. J. Archit. 

Comput. 16, 164–177 (2018). 

28. Pottman, H., Asperl, A., Hofer, M., Kilian, A. & Bentley, D. Architectural 

Geometry. Bentley Institute Press (2007). 

29. Burry, J. & Burry, M. The New Mathematics of Architecture. Thames & 

Hudson (2010). 

30. Leach, N. Digital cities. Wiley (2009). 

31. DeLanda, M. The limits of urban simulation. in Digital Cities. Wiley (2009). 

32. Morel, P., Agid, F. & Feringa, J. Studies on Optimization : Computational chair 

design using genetic algorithms. http://transnatural.org/wp-

content/uploads/2011/09/EZCT_Booklet-Screen.pdf (2004). last accessed 

2021/01/31. 

33. SpaceMakerAI. Early stage planning. Re-imagined. 



21 

https://www.spacemakerai.com/ (2020). last accessed 2021/01/31. 

34. ArchiStar. ArchiStar Property Insights. https://archistar.ai/ (2020). last ac-

cessed 2021/01/31. 

35. Testfit. TestFit: The World’s Most Powerful Building Configurator. 

https://testfit.io/ (2020). last accessed 2021/01/31. 

36. Terzidis, K. Algorythmic form. in Computational design thinking (2003). 

37. GenerativeComponents. An Overview of GenerativeComponents. 

https://communities.bentley.com/products/products_generativecomponents/w/

generative_components_community_wiki (2003). last accessed 2021/01/31. 

38. Grasshopper. Grasshopper, Algorithmic modeling for Rhino. 

https://www.grasshopper3d.com/ (2007). last accessed 2021/01/31. 

39. DynamoBIM. Open source graphical programming for design. 

https://dynamobim.org/learn/ (2016). last accessed 2021/01/31. 

40. XGenerativeDesign. Generative Design Engineering. 

https://ifwe.3ds.com/media/generative-design-engineering (2018). last ac-

cessed 2021/01/31. 

41. Davis, D. Modelled on Software Engineering: Flexible Parametric Models in 

the Practice of Architecture. RMIT University (2013). 

42. Aish, R. & Bredella, N. The evolution of architectural computing: From 

Building Modelling to Design Computation. arq Archit. Res. Q. 21, 65–73 

(2017). 

43. Berg, N. NBBJ Releases Human UI to Bring Parametric Modeling to the 

Masses. Archictet, The journal of the American Institute of Architects (2016). 

44. Heumann, A. Human UI. Github https://github.com/andrewheumann/humanui 

(2016). last accessed 2021/01/31. 

45. Hypar. Hypar live. https://www.youtube.com/watch?v=VAFXAcwXNDU 

(2020). last accessed 2021/01/31. 

46. Davis, D. Design Ecosystems: Customising the Architectural Design 

Environment with Software Plug-ins. https://www.danieldavis.com/design-

ecosystems-customising-the-architectural-design-environment-with-software-

plug-ins/ (2013). last accessed 2021/01/31. 

47. Fok, W. & Picon, A. Digital property : Open-source architecture. Wiley 

(2016). 

48. Speckle. Introduction to Speckle. https://github.com/speckleworks (2020). last 

accessed 2021/01/31. 

49. Stefanescu, D. Alternative Means of Digital Design Communication. in Design 

Transactions. eds. Sheil, B., Thomsen, M. R., Tamke, M. & Hanna, S. UCL 

Press (2020). 

50. Blender Foundation. Blender.org. https://www.blender.org/foundation/ (2002). 

last accessed 2021/01/31. 

51. Davis, D. Architects Versus Autodesk. The magazine of the American Institute 

of Architects (2020). 

52. Collective. An open letter that reflects customer perspectives on Autodesk in 

2020. (2020). 

53. Succar, B. & Kassem, M. Macro BIM adoption: conceptual structures. Autom. 



22 

Constr. 57, 64–79 (2015). 

54. Hochscheid, E. & Halin, G. A framework for studying the factors that influence 

the BIM adoption process. Adv. ICT Des. Constr. Manag. Archit. Eng. Constr. 

Oper. Proc. 36th CIB W78 2019 Conf. 275–285 (2019). 

55. Ahmed, A. L., Kawalek, J. P. & Kassem, M. A Comprehensive Identification 

and Categorisation of Drivers, Factors, and Determinants for BIM Adoption: A 

Systematic Literature Review. Comput. Civ. Eng. 2017 220–227 (2017). 

56. de Boissieu, A. Super-utilisateurs ou super-spécialistes ? Cartographie des 

catalyseurs de la transformation numérique en agence d’architecture. Les 

Cahiers de la Recherche Architecturale urbaine et paysagère 10, (2020). 

57. de Boissieu, A. Modélisation paramétrique en conception architecturale : 

Caractérisation des opérations cognitives de conception pour une pédagogie. 

(Universite Paris-Est, 2013). 

58. Davies, K., McMeel, D. & Wilkinson, S. Soft skills requirements in a BIM 

project team. in Proceedings of the 32nd International Conference of CIB W78  

(2015). 

59. McAfee, A. & Kestenbaum, D. Experts Debate: Will Computers Edge People 

Out Of Entire Careers? . NPR (2015). 

60. Davis, D. Why Architects Can’t Be Automated. Architect Magazine (2015). 

61. Chadoin, O. Etre architecte, les vertus de l’indétermination. Presses 

Universitaire Limoges (2013). 

62. Miller, N. & Stasiuk, D. Negotiating Structured Building Information Data. in 

Design Transactions. eds. Sheil, B., Thomsen, M. R., Tamke, M. & Hanna, S. 

UCL Press (2020). 

63. Anderson, C. Creating a data-driven organization. O’Reilly (2015). 

64. Poinet, P. Enhancing Collaborative Practices in Architecture , Engineering and 

Construction through Multi-Scalar Modelling Methodologies. Aarhus School 

of Architecture (2020) 

65. Miller, N. [make]SHIFT: Information Exchange and Collaborative Design 

Workflows This. in ACADIA 139–144 (2010). 

66. Fano, D. & Davis, D. New models of building, The business of technology. in 

The disruptors. ed. Shelden, D. Wiley (2020). 

67. Boeykens, S. Bridging building information modeling and parametric design. 

eWork Ebus. Archit. Eng. Constr. - Proc. Eur. Conf. Prod. Process Model. 

2012, ECPPM 2012 453–458 (2012) 

 

 

 


