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Abstract 

We study the influence of a logarithmic Van Hove singularity on the electronic specific heat C e of a 2D superconductor. 
The theoretical results are obtained for an isotropic s-wave gap parameter or an anisotropic dx2 y2-wave gap parameter. The 
specific heat jump at T c observed in high-T c superconductors can be reproduced by considering both gap parameter 
symmetries. However the very low temperature behavior of Ce as observed in a single crystal of YBa2Cu307_ ~ is only 
consistent with a gap parameter of dx2_y2 wave type. 
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1. Introduction 

High resolution angle-resolved photoemission data 
on high-T c superconductors (HTS) [1-3]  have re- 
cently allowed to identify the presence of  a saddle 
point in the band structure corresponding to a loga- 
rithmic Van Hove singularity (VHS) located in the 
density of  states within 100-200 K of the Fermi 
energy. 

The effect of  such a singularity in the BCS theory 
[4] is known to allow for an increase of the critical 
temperature T c to about 100 K [5-7]  and to explain 
several properties of  high-T~ cuprates like the doping 
dependence of  T~ [5] and the linear temperature 
behavior of  the in-plane resistivity P~b [7]. 

On the other hand, Dagotto et al. [8] have recently 
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proposed a theoretical model including both the ef- 
fect of  a VHS and antiferromagnetic fluctuations 
which might be responsible for the formation of  
Cooper pairs and which allows one to explain the 
main features of  high-T c materials [8]. This model 
predicts a gap parameter of  dx2_y2 w a v e  type, the 
symmetry of  which seems the most probable one in 
the cuprates [9-12]. 

One of  the main properties to be investigated in 
superconducting materials is the specific heat [13] 
near T~ or at low temperature. In this paper, we 
analyse the influence of  a VHS on the temperature 
dependence of  the electronic component of  the spe- 
cific heat C e for a 2D superconductor. We consider 
both isotropic s-wave and anisotropic d-wave gap 
parameters as seem to be the alternative in HTS. The 
specific heat jump at T~ is reproduced in both mod- 
els but the analysis of  the very low temperature 
behavior of  C e in a single crystal of  YBa2Cu307_ 8 
[14] is only consistent with an anisotropic d-wave 
gap. 
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The theoretical model is described in Section 2. In 
Section 3, we compare the results obtained for re- 
spectively s-wave and d-wave gap parameters and 
discuss the very low temperature behavior of C e in a 
single crystal of YBa2Cu307_ a [14]. Conclusions 
are finally drawn in Section 4. 

2. Theoretical model 

The electronic specific heat Ce of a superconduc- 
tor is calculated using the following expression [15] 

d 
c e = Ok E ( k ) f ( k ) ,  ( I )  

where E ( k )  = ¢( e - eF):  + ,4(k)  2 is the quasipar- 
ticle energy spectrum near the Fermi energy % ,  and 
f ( k )  = 1/[1 + e x p ( E / k a T ) ]  is the Fermi-Dirac dis- 
tribution function. 

We consider a two-dimensional band structure 
with a saddle point located at the Fermi level. This 
electronic spectrum is given by [5,7] 

e (  k )  - eF = ( h 2 / 2 m *  )kxky ,  (2) 

where m* is the effective mass of electrons in the 
ab (Cud 2) plane. The spectrum described by Eq. (2) 
gives a logarithmic singularity in the density of 

states at the Fermi energy N(e )  = ( l / D )  In l eF/ 
( e -  eF)l where D is the bandwidth [5,7]. 

We consider two different symmetries for the gap 
parameter, i.e. an isotropic s-wave gap parameter 
[13] 

A~(T)=A(O) tanh(cq/(Tc- r ) / r  ), (3) 

where A(0) is the superconducting energy gap at 
zero temperature and a =  2, and an anisotropic 
dx2y2 wave gap parameter [9,16] 

: A(o  [cos( ,x) - 

X tanh(oq/( T¢ - T)/T) (4) 

where kx = kxa and ky = kyb, with a(b) the crystal 
parameter along the a(b) axis. In the next section, 
we compare the numerical results obtained for both 
gap parameter symmetries. 

3. Results and discussion 

3.1. s-wave gap parameter 

The temperature dependence of the electronic spe- 
cific heat C e for the isotropic s-wave gap parameter 
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Fig. I. Normalized electronic specific heat Ce//Ce.N(Tc ) versus reduced temperature T/T c for the s-wave gap parameter as a function of the 
zero temperature gap A(0). Inset: low exponential temperature behavior of Ce/Ce.N(T c) for an s-wave gap. 
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Fig. 2. Temperature dependence of the normalized electronic specific heat difference A Ce/Ce,N(T c) = (Ce, s - Ce. N ) / C e , N ( T c )  in the s-wave 
case as a function of A(0). Inset: ACe/Ce,N(Tc) as a function of A(0). 

Eq. (3) is shown in Fig. 1 as a function of the 
reduced temperature T/T~ and for different zero 
temperature energy gaps A(0). One can see that the 
jump at T c for this 2D system increases with A(0) 

and is of the order of ACe(Tc)/Ce,N(T c) = 4 for 
A(0) = 30 meV compared to the well-known BCS 
universal value of 1.43 [13] in 3D. At low tempera- 
tures, C e decreases exponentially, see inset of Fig. I. 
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Fig. 3. In f luence  o f  the e f fec t ive  mass  m*  on the t empera tu re  d e p e n d e n c e  o f  Ce/Ce.N(T c) for the s - w a v e  gap  pa ramete r .  Inset: e lec t ronic  

specif ic  hea t  j u m p  at TcACe(T c) versus  m * .  
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This is known in 3D systems as being due to the 
exponential decrease of the number of quasiparticles 
characteristic of  an s-wave gap parameter [13]. The 
same argument goes for 2D systems. 

The specific heat difference ACe(T) = C~,s(T) - 
C~.N(T), plotted in Fig. 2, changes sign between 
T =  0.6-0.8T~, depending on the value of A(0). 
Notice that the 3D BCS prediction for ACe(T) = 0 is 

0.55 L [13]. 
The influence of A(0) on the specific heat jump at 

T~ is plotted in the inset of  Fig. 2. We observe that 
AC e ¢x (/1(0)) 2 for an s-wave gap parameter. 

The effect of  the Van Hove singularity on the 
electronic specific heat of  an s-wave superconductor, 
namely the increase of the value of the specific heat 
jump at T~ and the increase of  the temperature at 
which there is a sign change of  the specific heat 
difference AC e compared to the BCS predictions are 
in agreement with experimental data on YBa2Cu 3 
O7_ a for which AC(Tc)//CN(Tc) = 4.8 and AC(T) 
= 0 at T = 0.82T c [17]. However, we stress here that 
YBa2CU3OT_ ~ is one of  the least layered high-T c 
materials and consequently the strictly two dimen- 
sional spectrum given by Eq. (2) could be not quite 
appropriate for discussing features in this material. 

A test of  the quantitative finding stability with 
respect to parameter changes is made by varying the 
effective mass. The effect of  the electron mass m* 
variation on Ce(T) is shown in Fig. 3. The jump at 
T e is decreased when the effective mass decreases. 
From the inset of  Fig. 3, one can see that ACe(T c) ct 

(m*/m0) .  

3.2. dx2_y2 wave gap parameter 

The electronic specific heat C e versus the reduced 
temperature T / T  c for the d-wave gap parameter case 
is presented in Fig. 4 for several values of  A(0). The 
specific heat jump at T c is of  the order 
ACe(T~)/Ce,N(T~) = 1.8 for A ( 0 ) =  40 meV and is 
smaller than in the s-wave case. This is probably 
because there are a few more non-superconducting 
particles when a d-wave gap parameter opens com- 
pared to an s-wave gap. The jump magnitude is in 
fine agreement with experimental data on Bi2Sr 2 
CaCu208 [18-20] which is much more two dimen- 
sional than YBa2Cu307_ a indeed. Experimental data 
gives a smaller specific heat discontinuity of the 
order of AC(Tc) /CN(Tc)  = 1.3-1.5 [18-20]. 
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Fig. 4. Normalized electronic specific heat Ce/Ce.N(T c) versus reduced temperature T/T~ for the d-wave gap parameter as a function of 
A(0). lnset: low linear temperature behavior of CdCe.N(T c) for a d-wave gap. 
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Fig. 5. Temperature dependence of the normalized elecuonic specific heat difference ACe/Ce.N(Tc) = (Ce. s - Ce.N)//Ce,N(Tc ) in the d-wave 
case as a function of  A(0). Inset: ACe/Ce, N versus A(0). 

The low temperature behavior of  C e is quite 
different from the s-wave case: C e follows approxi- 
mately a linear temperature behavior (see inset of 

Fig. 4). This is attributed to the presence of low 
energy excitations characteristic of  a superconduct- 
ing gap with lines of  nodes. 
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Fig. 6. Influence of the effective mass m ° on the temperature dependence of Ce/Ce.N(T c) for the d-wave gap parameter. Inset: electronic 
specific heat jump at TcACe(Tc) versus m*. 
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The temperature dependence of the specific heat 
difference AC e is of interest and shown in Fig. 5. 
One observes that AC e crosses the temperature axis 
at about 0.5-0.6 T~, depending on the value of A(0). 
This lower temperature range where a change of sign 
occurs does not seem to have been investigated in 
quasi two dimensional materials like Bi2 Sr2CaCu 2 08 
(see Section 4 for comments). 

The specific heat jump at T c is found to increase 
linearly with A(0) for a d-wave gap parameter, see 
the inset of Fig. 5. 

The influence of the effective mass m* variation 
on Ce(T) is presented in Fig. 6. Like in the s-wave 
case, we observe that ACe(T ~) decreases when the 
effective mass is lowered and behaves approximately 
like AC¢(T c) ot (m*/mo), cf. the inset of Fig. 6. 

3.3. Low temperature behavior of C e 

The very low temperature behavior of the total 
specific heat C(T) is of interest. The case of a single 
crystal of YBaECU3OT_ a [14] is shown in Fig. 7a. 
C(T) can be usually separated into two main contri- 
butions, namely a phonon contribution Cph which 
behaves like T 3 and an electronic contribution C e 
markedly depending on the electronic features, i.e., 

C( T) = f iT  3 + Ce( T ). (5) 

The phonon contribution can be obtained by 
analysing the magnetic field behavior of C(T, B) 
assuming that this contribution is not altered by the 
magnetic induction [14,21]. The authors of Ref. [14] 
then obtain /3 = 0.392 m J / m o l  K 4. The electronic 
contribution Ce(T) obtained by substracting this 
phonon background is shown in Fig. 7b on a log-log 
plot. Ce(T) behaves almost linearly with tempera- 
ture, in fine agreement with the above theoretical 
prediction for a d-wave gap parameter in presence of 
a Van Hove singularity. Notice also that this linear 
term should be absent if the gap parameter was of 
isotropic s-wave type since Ce decreases exponen- 
tially for such a gap even in the presence of a VHS, 
see Fig. 1. 

We point out that Moler et al. [ 14] introduced an 
extra T 2 term in Ce(T) in order to fit their data and 
claimed that such a T 2 term might arise from a 
d-wave gap parameter. We did not find here any 
evidence for the need of a T 2 and from our theoreti- 

400 

350 

~" 300 
0 

E 250 

E 200 

150 

£ 100 t.) 

50 

100 

I I I I I 

O 
0 

0 
o 

oo 

ocOI  I I I I I 

3 4 5 T&) 7 8 

I 

9 10 

E 
- D  

EIO 

I -  
T 
( J  

Ce(T ) -T 113 

J i i t , i i 

10 
T(K) 

Fig. 7. (a) Temperature dependence of the specific heat of a single 
crystal of YBa2Cu307 _ 6 from Ref. [11]. (h) Temperature depen- 
dence of the electronic specific heat Ce(T)= C(T) -  f iT 3 of a 
single crystal of YBa2Cu307_ ~ from data in Ref. [11]. 

cal results, the effect of a VHS on a d-wave super- 
conductor does not seem to give a T 2 term. 

Notice also that there seems to be no need for the 
Schottky T -2 term in absence of magnetic field and 
for such a pure single crystal. 

Finally, it is worth to mention that Junod et al. 
[22] recently analysed the very low temperature be- 
havior of the specific heat of a single crystal of 
Bi2SrECaCu208. These authors also found a quasi 
linear electronic contribution C e at T, in agreement 
with our findings for a two dimensional d-wave 
superconductor. 

4. Conclusions 

In this work, we have analysed the influence of a 
logarithmic Van Hove singularity on the electronic 
specific heat of a two dimensional superconductor. 
The experimental results in high-T c superconductors, 



30 S. Dorbolo et a l . /  Physica C 267 (1996) 24-30  

mainly the specific heat jump at T~ and the tempera- 
ture crossover of AC e can be explained by consider- 
ing either isotropic s-wave or anisotropic d-wave gap 
parameters. Notice however that the experimental 
results on BizSr2CaCu~O 8 for which our two dimen- 
sional model should be quite appropriate, can be 
better described by considering a d-wave gap param- 
eter with reasonable values of the physical parame- 
ters, i.e. a zero temperature gap parameter A(0) = 30 
meV [23] and an effective mass m* of the order of 
8m 0 [24]. 

Furthermore, the very low temperature behavior 
of the electronic specific heat of a single crystal of 
YBa2CU3OT_ ~ is incompatible with an isotropic 
s-wave gap parameter. This strongly supports the 
d-wave scenario in high-T c compounds. 

As a final point we should mention that the 
AC = 0 value consists in an experimental point of 
interest in more complex parameter fits. It is also 
clear that the band structure of such HTS is more 
complex than Eq. (2). However, we believe that the 
overall temperature dependence will not be modified 
by using more complex spectra (quantitative values 
of the parameters might be modified). More self 
consistent calculations will be now of interest, to- 
gether with new data analysis in the vicinity of the 
critical temperature for extracting the critical fluctua- 
tions. It is known indeed in such an endeavour that 
the correct background should be extracted. A d-wave 
mean field approximation is thus necessary at first. 

Finally, we received a paper from Newns et al. 
[25] during the preparation of this manuscript. These 
authors have studied the influence of a VHS on 
various features, among them being the specific heat 
jump of a d-wave superconductor and they have 
found similar results as ours for that case. 
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