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Abstract

The ductile fracture behavior of a high strength steel is addressed in this two-part study
using a micromechanics-based approach. The objective of Part II is to propose, identify, and
validate a numerical model of ductile fracture based on the Gurson-Tvergaard-Needleman
model. This model is enhanced by the Nahshon-Hutchinson shear modification in combina-
tion with the Thomason coalescence criterion within a fully nonlocal form and relying on a
damage-to-crack transition technique. The material model involves parameters of different
nature either related to the micro-mechanics of porous materials or to semi-empirical for-
malisms. The void nucleation model and elastoplastic behavior have been developed and
identified in Part I. The other parameters are identified in this part using inverse modeling
based on both the numerical results of void cell simulations and the experimental measure-
ments. The model is shown to adequately predict the effect of stress triaxiality and Lode
parameter on the fracture strain as well as the fracture anisotropy. While the cup-cone and
slant fracture paths in the round bars and in the plane strain specimens, respectively, cannot
be captured using the pure continuum approach, the damage-to-crack transition framework
reproduces these experimental observations.
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1. Introduction

Ductile fracture is the most common type of failure in metallic structures. The prediction
of ductile fracture is crucial for structural optimization and design. An extensive number of
studies has been devoted in the literature to predict this fracture mode under a large range of
stress states for more than 5 decades now. Nevertheless the capabilities of numerical models
are consistently challenged by the increasing complexity of the constitutive models and the
number of parameters when dealing with complex failure scenarios. This involves complex
loading paths, shear failure modes - transition from flat to slant paths in particular, length
scale effect, microstructure anisotropy, and damage-to-crack transition. Our work focuses
on using a model relying as much as possible on micromechanics and physical grounds while
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considering several empirical simplifications in order to maintain an acceptable computational
complexity.

The material investigated in this study is a high strength steel (HSS), which was received
as hot forged hollow cylindrical pieces. In the companion paper - Part I [1] of the work,
microstructural analyses of samples taken at various locations in the cylinders did not show
heterogeneities along the thickness length. A strong anisotropy on the fracture strain was
however found, due to the morphological anisotropy of the MnS inclusions, but with no
significant plastic anisotropy. A test campaign conducted under different stress states char-
acterized by the stress triaxiality and Lode parameter, and under different morphological
directions, was presented. Part I divulgated the first step in the modeling effort with the
determination of the elastoplastic behavior and with the development and the identification
of an anisotropic void nucleation law that captures the morphological anisotropy.

The literature provides many options to build a predictive model for ductile fracture, see
the comprehensive reviews in [2, 3, 4, 5] and references therein. The ductile fracture models
follow either phenomenological or micromechanical approaches.

From a phenomenological point of view, the fracture starts when a damage indicator,
which is phenomenologically constructed, exceeds a certain critical value. On the one hand,
the coupled models (so-called Continuum Damage Mechanics - CDM) have been developed
within a thermodynamically consistent framework. The material degradation is character-
ized by a damage variable related to the irreversible internal state evolution of the material
microstructure. This class of models has been continuously developed and widely used, see
e.g. the works by [6, 7, 8, 9, 10, 11]. The difficulty with these models is to link the parameters
to the physical mechanisms. In contrast to coupled models, on the other hand, uncoupled
models (so-called fracture criteria) assume that the damage indicator is independent of the
material elastoplastic behavior, see e.g. the works by [12, 13, 14, 15]. In this class of models,
the damage indicator is generally expressed by a cumulative function along the loading paths,
e.g. an integral with respect to the equivalent plastic strain, of a function of the stress state.
Because of their simplicity, the uncoupled models have been increasingly developed, espe-
cially for industrial applications [5]. However, the uncoupled models can lead to erroneous
predictions of the post-damage behavior as the damage indicator does not interact with the
material behavior.

Micromechanical models constitute the alternative approach. The models can sometimes
be sophisticated, leading to additional numerical complexity, including in their implementa-
tion, as compared to CDM models. They rely on a description as realistic as possible of the
ductile fracture processes of nucleation, growth, and coalescence of voids. The most popular
micromechanical ductile fracture model was pioneered by Gurson [16], who introduced the
void volume fraction into the macroscopic yield criterion to account for the material degra-
dation; this introduction was based on an upper bound analysis of a spherical void embedded
in an elastic-perfectly plastic matrix. This original form of the Gurson model was further
extended to take into account different aspects: a better representation of the void growth
and coalescence phases in the so-called Gurson-Tvergaard-Needleman (GTN) model [17, 18];
the introduction of void nucleation [19]; the effects of the void shape [20, 21, 22], void size
[23], or again void rotation [24]; the plastic anisotropy [25, 26]; and the shear effect [27, 28].
Although the predictive capability of the micromechanical model was improved, very few of
the extensions mentioned above, at the exception of the GTN model, were applied to large
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scale structural modeling due to their numerical complexity.
The GTN model suffers from some limitations. On the one hand, the GTN model alone

does not correctly predict fracture under low stress triaxiality. This limitation was partly
resolved by modifying the void evolution law with a shear modified term as suggested by
Nahshon and Hutchinson [27] in the so-called GTN-NH model. This shear modified term
accounts for the effect of the Lode parameter at low triaxiality. On the other hand, although
the GTN-NH model provides a complete computational methodology for all stages of void
evolution, its description of void coalescence remains phenomenological: a critical value of
the porosity is used to predict the onset of void coalescence beyond which the porosity
growth rate is artificially accelerated through an effective porosity. This phenomenological
void coalescence model does not provide a realistic description of the void coalescence [29],
which motivates the use of micromechanics-based coalescence models as pioneered by [30, 31]
with the so-called Thomason model. This Thomason model considers that coalescence starts
when plastic deformation localizes in the ligaments between neighboring voids. After this
transition, the plastic deformation is governed by a plastic flow completely different than the
one during the void growth phase and is correctly modeled neither with the GTN model, nor
with the GTN-NH model. The Thomason model was further extended to better represent the
internal necking coalescence process, see e.g. the works by [29, 32, 33, 34]. The Thomason
model and its extended forms can be used either to detect the onset of coalescence while
using the GTN or GTN-NH frameworks [35, 36], or as an additional yield surface governing
the coalescence process, see e.g the works by [29, 37, 25, 38, 39, 40]. While the Thomason
model captures coalescence by necking, shear-driven coalescence can also be accounted for in
the micro-mechanical model by introducing an extra yield surface governed by the maximum
shear stress [40]. Note also that the GTN-NH model does not include the void shape effect
requiring the fitting of some adjustment parameters, see [20, 21].

When dealing with problems involving material strain softening, loss of ellipticity at
the onset of softening results in strain localization within a band whose thickness depends
on the mesh size. Consequently, the boundary value problem formulated in a standard
local continuum becomes ill-posed and the finite element unique solution does not exist
[41]. Nonlocal formulations, in which intrinsic lengths are incorporated into the constitutive
relations, accounting for interactions between neighboring material points [42, 43, 44], recover
solution uniqueness. In particular, several nonlocal versions of the GTN frameworks can be
found in the literature, see e.g. [45, 46, 47, 48, 49, 50, 40, 39]. The implicit gradient
enhanced nonlocal formulation pioneered in [51] is employed in this work since it can be more
easily integrated into a standard finite element formulation as considered in [39]. Besides,
the various GTN frameworks have been shown to successful predict the cup-cone and slant
fracture paths in round bars and plane strain specimens, respectively, either by considering
a strain controlled void nucleation function [52, 53, 46] or by combining the yield surfaces
of the GTN with a shear-driven coalescence model [40]. Recently, these complex fracture
patterns were also captured by using a damage-to-crack transition framework in which the
creation of the free surfaces at coalescence produces such complex fracture patterns [39]. This
damage-to-crack transition framework is employed in this work.

In this paper, designated as Part II, the numerical modeling of the fracture behavior of the
HSS material is investigated using the micromechanical approach, focusing on micromechan-
ical grounds as much as possible while maintaining some empirical simplifications in order to
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obtain an efficient predictive model with an acceptable computational cost. As a result, the
GTN-NH/Thomason model developed in the work [39] is chosen. In this model, the diffuse
plasticity corresponding to the growth of voids is described by the GTN-NH model while the
localized plasticity corresponding to the coalescence of voids is described by the Thomason
model derived from the Thomason coalescence condition. To resolve the mesh-dependency
issue in the precoalescence stage, when dealing with material softening, the nonlocality of the
porosity is considered using the implicit gradient enhanced nonlocal model [51]. However,
the ligament ratio can localize in a single-element thick band during the post-coalescence
stage for such a nonlocal model, which could be prevented by considering a multiple-nonlocal
variable framework as in [40] or by considering, alongside the nonlocal GTN-NH/Thomason
model, a damage-to-crack transition framework. Such a framework was developed in [39] in
the context of the discontinuous Galerkin method and is also considered to model the crack
propagation during the post-coalescence stage of voids through a cohesive band model [54],
hence avoiding the mesh dependency issue during the whole failure process. In this damage-
to-crack transition framework, cracks are inserted at the onset of the coalescence, while the
local version of the Thomason model is considered instead of using a fully nonlocal version of
the GTN-NH/Thomason model to govern the crack opening. Since a mixed nonlocal/local
constitutive law is used in the damage-to-crack transition framework, an additional parame-
ter, so-called cohesive band thickness, plays the role of the characteristic length during crack
propagation, ensuring the mesh-independence during that final stage as well.

Since the elastoplastic behavior and the void nucleation law were identified in the com-
panion paper [1], this Part II focuses on the identification of the remaining parameters of the
GTN-NH/Thomason model in both the nonlocal form and in the damage-to-crack transition
framework, and on the validation of the full model:

• Since the GTN-NH/Thomason model derives from a micromechanical basis, several
of its adjustment parameters can be calibrated using void cell simulations, see e.g.
[55, 56, 29, 57, 58]. This calibration process is based on the solutions of two unit cell
problems: (i) a unit cell containing a discrete void embedded in a matrix obeying the
constitutive behavior of the undamaged material and (ii) a unit cell obeying the GTN
constitutive behavior and with the same initial void volume fraction. Both unit cells
are subjected to the same loading conditions and the parameters of the GTN model can
be calibrated by minimizing the differences between their response prior to the onset of
void coalescence. However, this identification approach assumes the macroscopic strain
equivalence and disregards the energy dissipation consistency, which is considered to
couple the scales when developing the micro-mechanical models. In this paper the
void growth and void coalescence parameters of the GTN-NH/Thomason model are
calibrated using void cell simulations by postulating the plastic dissipation equivalence.

• The values of the characteristic nonlocal length and of the cohesive band thickness are
taken from microstructure characterization to assess whether these lengths are indeed
related to the physical length scales at play.

• Finally, the shear enhanced contribution is identified using inverse modeling.

This Part II is organized as follows. In Section 2, the nonlocal GTN-NH/Thomason
model and the associated damage-to-crack transition technique developed in the work [39]
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are recalled. In Section 3, the identification of the GTN-NH/Thomason parameters based
on void cell simulations and of the remaining parameters are detailed. Once all material
parameters of the nonlocal GTN-NH/Thomason model are available, the experimental tests
presented in the companion paper [1] are simulated and the results comparison is conducted
in Section 4. The damage-to-crack transition framework is considered in Section 5 to model
the crack propagation. Finally, the problem of stable crack propagation is studied in Section
6 on a compact test (CT) specimen, both numerically and experimentally, in order to validate
the model characteristic lengths.

2. Porous plasticity model

The nonlocal coupled GTN-NH/Thomason model and the damage-to-crack transition
framework essentially developed in the work [39] are summarized in this section.

2.1. Nonlocal GTN-NH/Thomason model

Figure 1: The geometrical description of a spherical void embedded in a cylindrical unit cell: the cell aspect

ratio λ, the ligament ratio χ, and the porosity fV = 2χ3

3λ .

The constitutive model is specified within a finite strain setting as the evolution of the
first Piola-Kirchhoff stress tensor (denoted by P) in terms of the deformation gradient tensor
(denoted by F) and a set of internal variables Z to capture the history and path dependencies
as

P = P (F,Z) , and evolution laws for Z . (1)

The behavior of the pristine matrix obeys the J2 flow theory. The underlying damage mech-
anism is assimilated to the growth and coalescence of voids under the assumption (for the
treatment of coalescence) that the voids are periodically distributed in the matrix and stay
spherical during the entire loading process. As a result, the geometrical state of a void is
fully described by three parameters: the porosity (denoted by fV ), the void ligament ratio
(denoted by χ), and the void aspect ratio (denoted by λ) as illustrated in Fig. 1. These three
parameters are related by the following relationship

χ =

(
3

2
fV λ

)1/3

. (2)
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A rate-independent, isotropic elastic, and isothermal behavior is assumed. Additionally, an
inelastic deformation does not affect the elastic material response.

The nonlocal GTN-NH/Thomason model is based on two solutions: the void growth
solution corresponding to a diffuse mode of plastic flow around the growing voids is governed
by the GTN-NH model and the solution corresponding to the void coalescence phase by
localized plasticity between voids is governed by the Thomason model. These two solutions
are considered under the form of two distinct plastic yield functions supplemented by the
evolution laws of the internal variables Z: plastic deformation Fp, mean yield stress of the
matrix τy, porosity fV , void ligament ratio χ, and void aspect ratio λ.

2.1.1. Elastic behavior

A multiplicative decomposition of the deformation gradient is supposed as

F = Fe · Fp , (3)

where Fe is its elastic part and Fp is its plastic part. The elastic behavior is based on a
hyperelastic formulation, in which the elastic potential is given by

ψ =
K

2
(ln Je)2 +

G

4
dev (ln Ce) : dev (ln Ce) , (4)

where Ce is the elastic right Cauchy strain tensor, dev (A) represents the deviatoric part of
an arbitrary second order tensor A, Je = det Fe > 0 is the elastic Jacobian, and K and G are
respectively the bulk and shear moduli of the material. The first Piola-Kirchhoff stress tensor
P is estimated from the hyperelastic potential (4) under a purely elastic state (constant Fp)
as

P =
∂ψ

∂F
= KF−T ln Je + Fe ·

[
GCe−1 · dev (ln Ce)

]
· Fp−T . (5)

In terms of the elastic logarithmic strain measure, defined as Ee = 1
2

ln Ce, Eq. (4) leads to
the definition of the logarithmic stress measure τ , which is energetically conjugate to Ee, as

τ =
∂ψ

∂Ee
= Ktr (Ee) I + 2Gdev (Ee) , (6)

where tr (A) represents the trace of an arbitrary second order tensor A. One can demonstrate
that τ is interpreted as the Kirchhoff stress represented in the elastic corotational space [59].
This stress measure relates to the first Piola-Kirchhoff stress tensor P as a result of Eqs. (5,
6) through the following relation

τ = FeT ·P · FpT . (7)

2.1.2. Yield functions

The corotational Kirchhoff stress tensor τ is used as the driving stress in the yield func-
tions. The yield function (denoted by Φnl) is selected among the GTN yield function (denoted
by Φg) and the Thomason yield function (denoted by Φc) depending on the active mecha-
nism of the void evolution, respectively either the growth phase or the coalescence phase.
Mathematically, one considers

Φnl = max (Φg,Φc) . (8)
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The void growth phase is governed by the GTN yield function Φg, which is expressed as

Φg =

(
τeq

τy

)2

+ 2f̃ ?V q1 cosh

(
3

2
q2
p

τy

)
− q2

1 f̃
?
V

2 − 1 , (9)

in which τeq =
√

3
2
dev (τ ) : dev (τ ) is the von Mises equivalent stress, p = tr(τ )

3
is the pressure,

q1 and q2 are two material constants, and f̃ ?V is the so-called yield porosity, whose evolution
law is given as

˙̃f ?V =

{
˙̃fV during a nonlocal update ,

ḟV during a local update ,
(10)

where f̃V denotes the nonlocal porosity. In the case of a nonlocal simulation without crack in-

sertion, the yield porosity f̃ ?V is always updated from the nonlocal porosity ˙̃fV . However, when
considering the damage-to-crack transition, since a local form of the GTN-NH/Thomason
model governs the Cohesive Band Model, this requires to shift from a nonlocal formalism to
a local one at the interface Gauss points where the crack is inserted. The porosity used in the
yield surface ought to remain continuous at crack insertion. To this end, the yield porosity
f̃ ?V is incremented from the increment in the nonlocal porosity f̃V before crack insertion and
from the increment in the local porosity fV beyond crack insertion [39].

The void coalescence stage is governed by the Thomason yield function Φc, which is
expressed as

Φc =
2

3

τeq

τy

+
|p|
τy

− CTf (χ) , (11)

with CTf being the load concentration factor

CTf (χ) =
(
1− χ2

) [
α

(
1

χ
− 1

)2

+
β
√
χ

]
, (12)

where α and β are material constants. Following [29], α is calibrated as a function of the
representative strain hardening exponent of the matrix and β = 1.24. An increase of χ results
in a shrinkage of the yield surface, leading to a reduction of the stress carrying capability. The
Thomason yield function (11) is extended from the Thomason criterion [30, 31] which assumes
an axisymmetric configuration [3]. If the stress state is not axisymmetric, the prediction
could be erroneous since this formulation does not account for the Lode effect. Despite of
this limitation, the Thomason yield function (11) was applied to arbitrary orientations of
the localization band in order to model void coalescence by internal necking at moderate
and high stress triaxialities showing good predictions [37, 60, 25, 61] and it is thus used
as such in this work. However, in order to gain accuracy, an extension of the Thomason
condition accounting for the Lode effect was suggested in [40], in which an extended version
based on the maximum principal stress was investigated. The Thomason yield function (11)
exhibits singularities at p = 0 (under pure shear) and at τeq = 0 (under hydrostatic pressure).
These corners are rounded using an interpolation-based regularization scheme [38] in order
to produce a smooth normal evolution along the yield surface.
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The nonlocal porosity f̃V considered in Eq. (10) is estimated from its local counterpart
fV through the resolution of an additional Helmholtz-type boundary value problem [51]

˙̃fV − l2∆0
˙̃fV = ḟV , (13)

where l is the nonlocal length and ∆0 is the Laplace operator with respect to the reference
configuration. The differential equation (13) is completed by a natural boundary condition
[51]. It is noted that Eq. (13) is often written without using the incremental form in
the literature. When the initial porosity is uniformly distributed and the damage-to-crack
transition is not considered, the two formulations, with and without time derivatives, are
equivalent. However if a nonuniform initial porosity is prescribed, the use of the rate form
as considered in Eq. (13) avoids the artificial smoothing arising because the additional
Helmholtz-type Eq. (13) is not initially satisfied. Besides, when considering the damage-to-
crack transition, as a result of the natural boundary condition at the evolving free surface
created by the crack opening during loading, the formulation with time derivatives does not
lead to a jump of the normal component of the nonlocal flux. Indeed, in the formulation
without time derivatives, such a jump appears at these crack interfaces at the insertion
time since the nonlocal variable starts becoming discontinuous, leading to the numerical
convergence issues. As a result, this study considers the formulation with time derivatives
in which the damage-to-crack transition can be smoothly carried out [39]. Moreover, since a
local form of the GTN-NH/Thomason model governs the Cohesive Band Model, this requires
to shift from a nonlocal formalism to a local one at the interface Gauss points where the crack
is inserted. This transition is achieved by considering the increment of the yield porosity used
in the yield surface (9), which comes either from the nonlocal form before crack insertion or
from the local form beyond crack insertion, see Eq. (10). It is thus more natural to consider
incremental form for the Helmholtz type equation as well. The additional Helmholtz-type
boundary value problem (13) is solved monolithically with the classical mechanical equations
in a fully coupled form. The implementation details can be found in [39].

The use of the Laplace operator with respect to the reference configuration in Eq. (13)
leads to a so-called material nonlocal formulation. The Laplace operator could also have been
considered with respect to the current configuration, leading to a so-called spatial nonlocal
formulation [62]. Mathematically, a material nonlocal formulation is always equivalent to
a spatial nonlocal formulation but the corresponding nonlocal lengths are neither the same
nor proportional since their relationship evolves as a function of the state of the deformation
gradient. On the one hand, the numerical study performed in [62] shows that a spatial non-
local formulation with a constant spatial length parameter cannot resolve pathological mesh
dependence, while a material nonlocal formulation provides all the targeted regularization
features. On the other hand, a material nonlocal formulation facilitates the numerical im-
plementation since the resulting stiffness matrix does not require an additional geometrical
term, motivating the choice of a material nonlocal formulation.

The constitutive material law is integrated following an incremental and fully implicit
scheme [39]. In order to remove surface vertices at the intersection between the two yield
functions specified by Eq. (8) and to ensure a unique plastic flow normal during each time
step, the onset of coalescence is checked after every time step, and when activated, the model
switches to the coalescence yield surface for the rest of the loading history.

8



2.1.3. Evolution laws

Plastic deformation gradient Fp: an associative and irrotational plastic flow1 is assumed,
resulting into

Dp = Ḟp · Fp−1 = Λ̇
∂Φnl

∂τ
, (14)

where Dp denotes the plastic strain rate and Λ is the plastic multiplier.
Mean yield stress of the matrix τy: the evolution law for τy is first expressed through εm,

the so-called mean equivalent plastic strain of the matrix, following an explicit hardening
law:

τy = τy (εm) . (15)

The evolution law for εm is then determined under the assumption that the rate of current
plastic work is equal to the rate of plastic work in the matrix [16, 17, 18]

τ : Dp = (1− fV 0) τyε̇m , (16)

where τ : Dp characterizes the total plastic dissipation and fV 0 is the initial porosity.
Local porosity fV : different contributions are accounted for, following

ḟV = (1− fV ) tr (Dp)︸ ︷︷ ︸
ḟV gr

+ḟV nu + kω
(
1− ζ2

)
fV

dev (τ ) : Dp

τeq︸ ︷︷ ︸
ḟV sh

, (17)

where the first term ḟV gr (so-called growth term) is the usual term associated to the plastic
incompressibility of the matrix [17, 18]; the second term ḟV nu (so-called void nucleation term)
is the contribution of new voids nucleated due to particle debonding or cracking [19]; and
the third term ḟV sh (so-called shear term) corresponds to an effective change of porosity
due to void deformation and reorientation occurring under low stress triaxiality and shear-
dominated distortions [27]. In the shear term, kω is a material constant [27] and ζ is the
Lode parameter defined by

ζ =
27J3

2τ 3
eq

, (18)

where J3 = det (dev (τ )).
Void aspect ratio λ: following [32], one has

λ̇ = κε̇mλ , (19)

where κ is a user parameter, so-called void spacing growth factor, which depends on the
distribution of voids: κ = 1.5 for a periodic distribution under tension, κ = 0 for a random
distribution, and 0 ≤ κ ≤ 1.5 for a clustered distribution.

1For isotropic elastoplastic materials, when using the decomposition of the deformation gradient following
Eq. (3), it is widely assumed [63], without loss of generality, that the plastic flow is irrotational –i.e. the
plastic spin vanishes– since this simplifies the developments.
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Void ligament ratio χ: it is assumed that the voids remain spherical as considered in [38]

and, considering the yield porosity f̃ ?V in Eq. (2), one has χ =
(

3
2
f̃ ?V λ

)1/3

, or, in a rate form,

χ̇ =
χ

3

(
˙̃f ?V
f̃ ?V

+
λ̇

λ

)
, (20)

in which either the nonlocal or the local formalism for the Thomason yield surface (11) can
be embedded according to the update of f̃ ?V in Eq. (10). We however note that, during the
coalescence stage, the nonlocality of χ is not always enough to prevent the localization to
occur in a single-element thick band as it will be shown in Section 4. This mesh dependency
can be prevented by considering a multiple-nonlocal variable framework as in [40] or by
introducing a crack through a Cohesive Band Model as discussed here below. When χ =
1, the Thomason yield function (11) shrinks to a zero stress state and the load carrying
capacity is totally lost. In order to avoid high mesh distortions, the value of χ is limited at
each integration point by a critical value smaller and close enough to 1. The effect of this
tolerance has a negligible contribution to the internal forces.

2.2. Damage-to-crack transition

Alongside the nonlocal coupled GTN-NH/Thomason model described above, which pro-
vides a complete computational methodology for all stages of void evolution until final frac-
ture, the damage-to-crack transition framework developed in [39] is an interesting alternative.
This framework introduces real discontinuities and can capture complex failure modes. Here,
crack surfaces are introduced in the mechanical problem through a cohesive band model
(CBM) as soon as the void coalescence process has started.

𝒖(𝑿)

Ω0
+Ω0

−

𝑵I 𝒖 𝑿, 𝑡

Ωb

𝛤I0
𝒏I

ΓI
U

ΓI
C

Figure 2: Discontinuity surface ΓI0 embedded in a fictitious cohesive band Ωb0 in the reference configuration
(left) and in the current configuration (right). The discontinuity separates the volume Ω0 into two parts Ω−

0

and Ω+
0 .

Let us consider a discontinuity ΓI0 embedded in a body Ω0 as illustrated in Fig. 2, the
volume Ω0 is divided into two parts Ω−

0 and Ω+
0 , with the unit normal vector in the reference

configuration (denoted by NI) at each point of ΓI0 oriented towards Ω+
0 . At each material

point X ∈ ΓI0, one can define the jump and the mean operators respectively by

J•K = •+ − •− and 〈•〉 =
1

2

(
•+ + •−

)
, (21)

that link arbitrary variables •+ and •− from both sides of ΓI0. In general, the general form
of a cohesive law at a material point X ∈ ΓI0 can be expressed as

T = T
(
JuK ,F+,F−,NI; ZI

)
, (22)
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where T is the cohesive traction, u is the displacement field, F+ and F− are respectively the
deformation gradient tensors from both sides of ΓI0, and ZI is a vector of internal variables
which is used to model the history-dependency.

Here, the cohesive law described in Eq. (22) is derived using the Thomason model fol-
lowing [39]. Prior to crack insertion, on ΓU

I , Eq. (22) can be written as

T = 〈P〉 ·NI , (23)

in which P−, P+ in 〈P〉 are estimated by Eq. (1). After the crack insertion, on ΓC
I , Eq. (23)

still holds but P−, P+ are respectively estimated using the underlying constitutive law (1)
from F−

b and F+
b , so-called band deformation gradient tensors, instead of F− and F+. Prior

to the crack insertion, one has F∓
b = F∓, and after the crack insertion, F∓

b are enriched with
the jump of the displacement field as

Ḟ∓
b = Ḟ∓ +

Ju̇K⊗NI

hb
+

1

2
∇0I ⊗ Ju̇K , (24)

where hb is the thickness of the cohesive band which controls the total dissipated energy, and
∇0I is the gradient operator projected onto the crack surface. The last term in Eq. (24)
represents the variation of the displacement jump JuK along the crack surface, but is herein
omitted. As the cracks are inserted at the onset of the coalescence, the predictor of the
Thomason yield condition, i.e. Φc ≥ 0, acts as the criterion of the crack insertion. Once a
crack is inserted, the local form of the Thomason model is used at these interface Gauss points
to govern the plastic flow during the crack propagation. Indeed, on the one hand the cohesive
band model does not suffer from mesh dependency in a local form, and on the other hand,
physically, the neighboring elements are subjected to an elastic unloading while the damaging
process concentrates within the cohesive band, which cannot be captured by considering a
nonlocal formulation spanning the cohesive band and the neighboring elements. Besides, the
void evolution is also blocked on the neighboring volume elements (but not the plastic flow),
in order to favor elastic unloading instead of further volume softening. Consequently, the
damage-to-crack transition at a material point X ∈ ΓI0 is made through two simultaneous
transitions:

(i) From the deformation gradient tensor F∓ to the band deformation gradient tensor F∓
b ;

and

(ii) From the nonlocal GTN-NH model to the local Thomason model by considering the
incremental update in Eq. (10).

Although a local constitutive law is used during crack propagation, cohesive zone and cohesive
band models do not suffer from mesh-dependency, since a finite amount of energy is dissipated
during the crack opening. In the case of the cohesive band model, this amount depends on
the cohesive band thickness hb. We note that the loss of ellipticity is sometimes met well
before the onset of coalescence [64] justifying the need to consider the nonlocal form of the
GTN-NH model to regularize the problem in that regime as well.

The damage-to-crack transition is implemented in the framework of the discontinuous
Galerkin method, see [39] for details. The use of the cohesive band model in the damage-to-
crack framework is more advantageous compared to the use of the conventional cohesive zone
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model since it allows accounting for the in-plane deformation, hence for the stress triaxiality
effect, and since it does not need the definition of a traction-separation law. However an
additional parameter, the cohesive band thickness hb, needs to be calibrated.

2.3. Model summary

The parameters of the nonlocal GTN-NH/Thomason model and of the damage-to-crack
transition to be identified are summarized in Tab. 1. The numerical integration follows a
predictor-corrector scheme as detailed in [39]. In the following, the GTN/Thomason model
is used to mention the GTN-NH/Thomason model in the absence of the shear-induced void
growth term in the void evolution, i.e. when kω = 0.

Table 1: Material parameters to be calibrated.

K Bulk modulus (see Eq. (4))
G Shear modulus (see Eq. (4))
fV 0 Initial porosity

χ0 (or λ0) Initial ligament ratio (or initial spacing ratio)
q1, q2 GTN coefficients (see Eq. (9))
α, β Thomason load factors (see Eq. (12))
l Nonlocal length (see Eq. (13))

τy (εm) Yield stress function (see Eq. (15))
kω Shear-induced growth factor (see Eq. (17))

ḟV nu Nucleation law (see Eq. (17))
κ Void spacing growth factor (see Eq. (19))
hb Cohesive band thickness (see Eq. (24))

3. Parameters identification for the nonlocal GTN-NH/Thomason model

The parameters of the nonlocal GTN-NH/Thomason model reported in Tab. 1 can be
divided into different categories:

(i) The elastoplastic parameters are the following: the elastic compressibility and shear
moduli, respectively K and G, and the hardening law τy = τy (εm), which is expressed
under the following form as proposed in Part I [1]2:

τy (εm) =



τ 0
y + hεm if εm ≤ p1

τy1

(
εm

p1

)n1

if p1 < εm ≤ p2

τy2

(
εm

p2

)n2

if εm > p2

, (25)

where τ 0
y is the initial yield stress, h, p1, p2, n1, and n2 are the hadening parameters,

and τy1 = τ 0
y + hp1 and τy2 = τy1

(
p2
p1

)n1

;

2For confidentiality reasons, the numerical values of these parameters were not provided.
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(ii) The porous-plasticity related parameters: fV 0, λ0, χ0, q1, q2, α, β, kω, κ, and the
nucleation evolution law ḟV nu; and

(iii) The characteristic lengths: the nonlocal length l and the cohesive band thickness hb.

The elastoplastic parameters, the initial parameters of the void characteristics and the nucle-
ation evolution law ḟV nu, which corresponds to an anisotropic nucleation model to take into
account fracture anisotropy and which remains to be validated in this Part II, were calibrated
in Part I [1].

The correction constants α and β entering the coalescence limit load (12) of the Thomason
model are obtained using the relationship established in [29] by fitting void cell simulations
as

α = 0.1 + 0.217n2 + 4.83n2
2 = 0.129 and β = 1.24 . (26)

The value of n2 is considered in the last equation because the onset of coalescence occurs at
plastic strains usually much larger than p2 as shown in Part I. The value of p2 is close to the
equivalent plastic strain at the onset of necking of the SRB specimens.

The nucleation term ḟV nu was worked out in Part I [1] as an anisotropic nucleation law in
order to capture the effect of the morphological anisotropy on the fracture strain as observed
in the experimental tests. Its expression reads

ḟV nu =

{
Anε̇m once Φn ≥ 0 has been met during the loading history ,
0 otherwise ,

(27)

in which Φn is a void nucleation activation function whose expression is derived using the
Beremin nucleation model [65] but which accounts for failure anisotropy and An is the pa-
rameter controlling the void nucleation intensity. This last term is expressed as a Gaussian
distribution in the spirit of the Chu and Needleman pioneering model [19] and whose inten-
sity is directional. The nucleation activation function Φn is defined under the assumption
that the failure anisotropy originates from the porosity nucleation triggered by the fracture of
the elongated MnS inclusions: when loaded in the longitudinal direction, the MnS inclusions
nucleate by particle cracking, while, when loaded in the perpendicular direction, the porosity
is generated by matrix/particle decohesion. Since the loading direction is considered in both
the nucleation activation function Φn and the void nucleation intensity An, the void nucle-
ation always occurs early in the loading process but the voids nucleate differently depending
on the loading direction, from which the failure anisotropy emerges. The parameters of this
anisotropic nucleation law and their corresponding calibrated values are reported in Part I
of the work.

This section describes the identification of the remaining parameters. The values q1, q2,
and κ are first calibrated using unit cell simulations. The values of the nonlocal length l
and of the cohesive band thickness hb are then provided by microstructure characterization.
Finally, the value of kω is calibrated by fitting the fracture strain predicted by the numerical
simulations with the experimental results obtained from the plane strain specimens in Part
I.
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3.1. Identification of q1, q2, and κ from unit cell simulations
This work proposes to use the plastic dissipation equivalence based on Eq. (16) to cali-

brate not only q1 and q2 but also κ. On the one hand, the void cell simulations under constant
stress triaxiality are considered with a unit cell containing a discrete void and obeying the
constitutive behavior of the undamaged matrix. On the other hand, the response driven by
the plastic dissipation through Eq. (16) of a material point obeying to the GTN/Thomason
model is considered. The plastic dissipation equivalence between the two models reads

τ : Dp =
1

V0

∫
V0

τ local : Dp,local dV0 , (28)

where V0 is the initial volume of the unit cell and where τ local and Dp,local are respectively
the local corotational Kirchhoff stress tensor and the local plastic strain rate distributed
over the unit cell. The left hand side term of Eq. (28) is the plastic dissipation rate of the
GTN/Thomason model while the right hand side term of Eq. (28) is the average of the
plastic dissipation rate over the unit cell. In terms of the hardening law of the undamaged
matrix, τy (εm), described in Eq. (25), Eq. (28) can be rewritten as

(1− fV 0) τy (εm) ε̇m =
1

V0

∫
V0

τy

(
εlocal

m

)
ε̇local

m dV0 , (29)

where fV 0 is the initial porosity and εlocal
m is the local equivalent plastic strain distributed

over the unit cell.
Since the right hand side term of Eq. (29) is known from the unit cell solution, the value

of εm and then the one of τy (εm) can be easily estimated by solving one nonlinear equation.
Clearly, εm is the overall measure that quantifies the plastic dissipation in the entire unit
cell. The macroscopic quantities (homogenized stress and porosity) evaluated from the unit
cell simulation can then be expressed in terms of εm. As shown in the next section, the
GTN/Thomason model under a constant stress triaxiality and driven by the plastic dissipa-
tion can be analytically solved leading to the corresponding solutions expressed in terms of
εm. The values of q1, q2, and κ are then calibrated by minimizing the differences between the
porosity and macroscopic stress evolution with respect to εm, on the one hand, predicted by
the unit cell simulations and, on the other hand, corresponding to the analytical predictions
of the GTN/Thomason model at a material point. The plastic dissipation equivalence avoids
considering a homogeneous unit cell simulation to evaluate the material response with the
GTN/Thomason model.

3.1.1. Solution of the coupled GTN/Thomason model under constant stress triaxiality

The local form of the GTN/Thomason model described in Section 2.1 can be obtained by

considering the local update ˙̃f ?V = ḟV in Eq. (10). In terms of the stress tensor τ , the yield
surface Φnl following Eq. (8) depends only on the two invariants τeq and p. As a result, the
plastic flow described in Eq. (14) can be rewritten as 3

Dp = Λ̇

[
∂Φnl

∂τeq

3dev (τ )

2τeq

+
∂Φnl

∂p

I

3

]
. (30)

3The relations
∂τeq

∂τ
=

3dev (τ )

2τeq
and

∂p

∂τ
=

I

3
are used.
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One can define respectively the volumetric plastic strain rate (denoted by ε̇v) and the devi-
atoric plastic strain rate (denoted by ε̇d) as

ε̇v = tr (Dp) = Λ̇
∂Φnl

∂p
, and (31)

ε̇d =

√
2

3
dev (Dp) : dev (Dp) = Λ̇

∂Φnl

∂τeq

. (32)

By eliminating Λ̇ in the two equations above, the normality rule of the yield surface results
in the following relationship

ε̇d = Rε̇v with R =
∂Φnl

∂τeq

(
∂Φnl

∂p

)−1

. (33)

The stress triaxiality T is defined as the ratio between the pressure and the von Mises
stress i.e. T = p

τeq
. Under constant positive stress triaxiality T , Eqs. (9, 11) can be

respectively rewritten as

Φg = X2 + 2q1fV cosh (1.5q2TX)− q2
1fV

2 − 1 , and (34)

Φc = X

(
2

3
+ T

)
− CTf (χ) , (35)

where X = τeq
τy

. Since the condition Φc < 0 acts as a criterion for the void growth phase, one

has the expression of R in Eq. (33) as

R =

{
2

3q1q2
X

fV sinh(1.5q2TX)
if Φc < 0

2
3

otherwise
= R (X, fV , χ;T, q1, q2) . (36)

Moreover using Eqs. (34, 35), Eq. (8) results in the solution of X in terms of fV and χ as

X =

{
L−1 (fV ;T, q1, q2) if Φc < 0
CTf(χ)

T+ 2
3

otherwise
= X (fV , χ;T, q1, q2) , (37)

where the function L−1 is the inverse of the function L, the solution of Eq. (34), with

fV =
cosh (1.5q2TX)−

√
X2 + sinh2 (1.5q2TX)

q1

= L (X;T, q1, q2) . (38)

With neither the nucleation of voids nor the shear-induced void growth terms in Eq.
(17), the evolution laws of the internal variables followings Eqs. (14, 16, 17, 19, 20) can be
rewritten as 

ε̇d = Rε̇v ,

(1− fV 0) ε̇m = X (ε̇d + T ε̇v) ,

ḟV = (1− fV ) ε̇v ,

λ̇ = λκε̇m and

χ̇ = χ
3

(
ḟV
fV

+ κε̇m

)
,

(39)
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where the functions R = R (X, fV , χ;T, q1, q2) and X = X (fV , χ;T, q1, q2) are available from
Eqs. (36, 37). As the problem is driven by the plastic dissipation, i.e. by ε̇m, Eqs. (39) can
be rewritten as 

ε̇v

ε̇d

ḟV
λ̇
χ̇

 =


A
RA

(1− fV )A
λκ

χ
3

[
(1−fV )A

fV
+ κ
]

 ε̇m , (40)

where

A =
1− fV 0

X (R + T )
. (41)

Equation (40) combined with Eqs. (36, 37) is solved by using an explicit Euler scheme with
as initial solution the set (εv = 0, εd = 0, fV = fV 0, λ = λ0, and χ = χ0) for the sake of
simplicity. The step size is decreased until reaching a converged solution. This yields the
solution of X, εv, εd, fV , λ, and χ as a function of the plastic dissipation driven by εm for
a given set of material parameters (fV 0, q1, q2, and κ) without the need of considering the
explicit form of the hardening law of the matrix described by Eq. (15).

The solution provides the true von Mises equivalent stress σeq as

σeq =
τeq

J
=
Xτy

J
, (42)

where τy = τy (εm) is the hardening function, and where J is the Jacobian. Following Eq.
(3), the Jacobian can be decomposed into an elastic part Je = det Fe and a plastic part
Jp = det Fp, such that

J = JeJp . (43)

Using Eq. (6) and the identity ln (det A) = tr (ln A) valid for an arbitrary symmetrical
second-order tensor A, one has

p = K ln (Je) = TXτy , (44)

leading to

Je = exp

(
TXτy

K

)
. (45)

From the definition Jp = det Fp, one has

J̇p = JpFp−T : Ḟp = JpFp−T : (Dp · Fp) = Jptr (Dp) = Jpε̇v , (46)

leading to

Jp = exp (εv) , (47)
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Figure 3: Solution of the GTN/Thomason model at constant stress triaxiality for an initial porosity fV 0 =
2 × 10−3: (a) influence of q1 for q2 = 1, κ = 1.5, and T = 1, (b) influence of q2 for q1 = 1.5, κ = 1.5, and
T = 1, (c) influence of κ for q1 = 1.5, q2 = 1, and T = 1, and (d) influence of T for q1 = 1.5, q2 = 1,
and κ = 1.5. The symbol “+” indicates the onset of coalescence. The results obtained with the unit cell
simulations, see Appendix A for details, are also reported.

since Jp (εv = 0) = 1. The calibration process only requires the solutions for σeq and for fV ,
which can be expressed under their general forms:{

σeq = σeq (εm; fV 0, T, q1, q2, κ) , and

fV = fV (εm; fV 0, T, q1, q2, κ) .
(48)

The two functions above cannot generally be expressed explicitly but result from the solution
for X, εv, εd, fV , λ, and χ for given material parameters.

Considering an initial porosity fV 0 = 2×10−3, which is the onset of the nucleated porosity
measured in Part I, the solutions of the GTN/Thomason model in terms of σeq and fV versus
εm as described in Eqs. (48), are shown in Fig. 3, in which the effects of the q1, q2, κ, and T
are demonstrated. The description of the unit cell simulations is given in Appendix A while
only the results are reported here. Since κ does not affect the void growth response but only
the onset and post behavior of the coalescence stage, q1 and q2 are calibrated using the void
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growth response while κ is calibrated using the data at the onset of coalescence obtained
from the unit cell simulations.

3.1.2. Calibration methodology based on the dissipation equivalence

The results of the unit cell simulations before the onset of coalescence, i.e. for εm ≤ εcell
mc ,

are considered as reference solutions to calibrate the values q1, q2 of the GTN model while
the data at the onset of coalescence are used to calibrate the value κ of the Thomason model.

Defining the dimensionless equivalent stress Y = σeq
τy

= X
J

where J is the Jacobian, the

quantities (Y GTN, fGTN
V ) and (Y cell, f cell

V ) are used to indicate the corresponding solutions
obtained with the GTN model and with the unit cell simulations, in which case the superscript
“cell” refers to the homogenization of the unit cell problem. The errors on Y and fV are
respectively measured by the following functionsξY =

∣∣∣Scell
Y −SGTN

Y

Scell
Y

∣∣∣ = ξY (fV 0, T, q1, q2) , and

ξf =
∣∣∣Scell

f −SGTN
f

Scell
f

∣∣∣ = ξf (fV 0, T, q1, q2) ,
(49)

where SY (Sf ) measures the surface limited by the curve Y = Y (εm) (f = f (εm)) and the
horizontal axis from the beginning (εm = 0) to the onset of coalescence εm = εcell

mc , and where
“cell” and “GTN” denote a quantity estimated either by homogenization of the unit cell
model or by the GTN model, respectively. The matrix plastic strain εm results from the
energy equivalence (29) in the case of the “cell” solution. The two errors defined by Eqs.
(49) can be combined, leading to an effective error as

ξeff =

√
1

2
ξ2
Y +

1

2
ξ2
f = ξeff (fV 0, T, q1, q2) . (50)

By performing the unit cell simulations for different values of fV 0 ranging in the interval
[fV 0min fV 0max] and of T ranging in the interval [Tmin Tmax], the accumulated error ξacc

is defined by averaging the effective error given by Eq. (50) over the initial porosity and
triaxiality ranges. One has

ξacc (q1, q2) =
1

fV 0max − fV 0min

∫ fV 0max

fV 0min

(
1

Tmax − Tmin

∫ Tmax

Tmin

ξeff dT

)
dfV 0 . (51)

The values of q1, and of q2 can be obtained by minimizing the accumulated error ξacc, ac-
cording to

min
q1,q2

ξacc (q1, q2) . (52)

With fV 0 ∈ [1× 10−3 2× 10−3], T ∈ [1 4], the value of the accumulated error ξacc is shown
in Fig. 4a. The optimum is found for q1 = 1.414 and for q2 = 1. These values of q1 and q2

are close to the typically utilized set q1 = 1.5 and q2 = 1, and the value of q1 is close to the
theoretical value q1 = 1.47 derived by Perrin and Leblond [66] using a differential scheme.

The GTN/Thomason model described in Section 2.1 cannot capture the evolution of a
true void in the unit cell. Instead, it is the evolution of an effective spherical void that leads
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Figure 4: Calibration of q1, q2, and κ: (a) accumulated error ξacc in the (q1, q2) space in which the optimum
point is marked and (b) curve fitting at the onset of coalescence for κ.

to the same constitutive behavior. As a result, the value of κ is calibrated using the values
of σcell

eqc , f cell
V c , and εcell

mc obtained at the onset of coalescence from the unit cell simulations with
different values of fV 0 and of T . For this purpose, one assumes that the onset of coalescence
occurs at Φc = 0 where Φc is given by Eq. (35), leading to an estimation of the void ligament
ratio at the onset of coalescence χc through the following equation(

2

3
+ T

)
Jcσ

cell
eqc

τy (εcell
mc )
− CTf (χc) = 0 , (53)

where Jc is the Jacobian at εm = εcell
mc . Using Eq. (53), χc can be easily deduced from

χc = C−1
Tf

((
2

3
+ T

)
Jcσ

cell
eqc

τy (εcell
mc )

)
, (54)

where C−1
Tf denotes the inverse function of CTf in Eq. (12). Using Eq. (2), the void spacing

ratio at coalescence λc follows as

λc =
2χ3

c

3f cell
V c

. (55)

Moreover, λc can be estimated as a function of εmc following Eq. (19) as

ln
λc
λ0

= κεcell
mc . (56)

Since both ln λc
λ0

and εcell
mc are known, the value of κ is given by linear regression. The value

κ = 1.22 is found as shown in Fig. 4b from the unit cell simulations and when considering
the values of q1, q2 calibrated here before.

Using the calibrated values of q1 = 1.414, q2 = 1, and κ = 1.22, the solutions of both the
GTN model and the GTN/Thomason model can be reproduced and compared with the ones
obtained with the unit cell simulations. The results are shown in Fig. 5. A good agreement
between the GTN/Thomason model and the unit cell simulations is observed as needed to
safely proceed with the full model.
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Figure 5: Comparison between the results obtained with unit cell simulations, the GTN model only, and the
coupled GTN/Thomason model at different stress triaxiality values: (a) σeq in terms of εm and (b) fV in
terms of εm. The points at which the results obtained with the GTN/Thomason model deviate from the ones
obtained with the GTN model correspond to the onset of coalescence in the GTN/Thomason model.

3.2. Identification of l and hb
The nonlocal length l controls the dissipated energy during the void evolution through

the nonlocal diffusion Eq. (13). The value of l should scale or be commensurable with the
inter-distance of the relevant heterogeneities [67], i.e. the inter-void spacing in the current
context. For the material under consideration, the inter-void spacing is almost similar in the
longitudinal and transverse directions and approximately equal to 100 µm. As a result, the
length l = 100 µm is selected for the subsequent analyses to see if a physically motivated
choice is appropriate in the context of the present nonlocal formulation.

The cohesive band thickness hb should be representative also of the mechanisms at play.
Scheyvaerts et al. [24] have analyzed in details the void geometry at, and, during coalescence.
Since the plastic flow during coalescence localizes inside the ligament between voids, the
characteristic length can be related to the void size. As a matter of fact, the band thickness
can be either smaller or larger than the diameter of the voids. From the microstructural
analysis, this average radius of MnS inclusions along the longitudinal axis is approximately
equal to 8 µm. Therefore, the cohesive band thickness hb = 8 µm is taken. However,
this first choice will have to be validated either by cell simulations or by mechanical tests
performed on controlled crack propagation specimens as the compact test specimens, as it
will be done in Section 6, or as the double edge notched specimens. One can obtain a more
accurate estimate for the coalescence characteristic size by evaluating the relative thickness
inside which the plastic flow localizes during the unit cell simulations. Alternatively, the
fitting between the numerical and the experimental dissipated energies allows the hb values
to be estimated. Moreover, an anisotropy effect is likely to appear because of the fracture
anisotropy extracted along different orientations.

3.3. Identification of kω
The last remaining parameter, the shear-induced void growth factor kω of the nonlocal

GTN-NH/Thomason model, is calibrated by fitting the fracture strain predicted by the GTN-
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Figure 6: Influence of kω in the response of the plane strain specimens: (a) normalized engineering stress in
terms of the engineering strain and (b) fracture strain and corresponding experimental measurements. The
experimental curves correspond to average responses obtained for different specimens with the same geometry
and are truncated once one of the specimen responses exhibits a sudden drop.

NH/Thomason model with the ones measured from the experimental tests performed on the
plane strain (PE) specimens, see the full description provided in the next Section. These
experimental results are preferred among all the available tests because of their underlying
stress state, in which the Lode parameter ζ is equal to 0 at the center of the specimen. This
stress state maximizes the effect of kω on the void evolution following Eq. (17).

The numerical simulations model only the central part of the plane strain specimens within
the gauge length L0. The finite element meshes are similar to the elastoplastic simulations
performed in Part I [1]. The presence of the notch is characterized by the shape factor,
denoted by γ, which is defined as the ratio between the half thickness at the notch section
( t0

2
with t0 being the initial thickness at notch) and the notch radius (denoted by Rn), i.e.

γ =
t0

2Rn

. (57)

The numerical simulations are performed with γ = 0.1, 1/3, and 1. The value of kω is varied
from 0 to 6.

The evolution of the engineering stress as a function of the engineering strain is shown
in Fig. 6a. The onset of coalescence for each case is also reported with a fast stress drop
observed after this point. As expected, a larger value of kω enhances the porosity growth
rate, leading to an earlier onset of coalescence. For each case of given γ and kω, the fracture
strain is estimated in a similar way as in the experimental tests with

ε̄f =
2√
3

ln
t0
tc
, (58)

where tc is the specimen thickness measured at its center, at the occurrence of the onset of
coalescence. The corresponding fracture strains of all the numerical simulations are summa-
rized in Fig. 6b. The experimental values obtained in Part I [1] are also reported. Increasing
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kω decreases the value of ε̄f. However, a smaller effect for a smaller notch radius (higher γ) is
observed as the stress triaxiality is higher in that specimen. Using a rule of thumb to choose
a value between kω = 4 and kω = 6, the value of kω = 5 is chosen. The numerical predictions
with kω = 5 are reported in Section 4.3.

4. Validation of the nonlocal GTN-NH/Thomason model

All the material parameters required for the nonlocal coupled GTN-NH/Thomason model
summarized in Tab. 1 were identified above or in Part I, see Tab. 2. In the following, the
GTN-NH/Thomason model with the identified parameters is used to simulate the experimen-
tal tests. The simulations are performed without the damage-to-crack transition formalism.

Table 2: Porous plastic parameters of the nonlocal GTN-NH/Thomason model.

q1 q2 α β l fV 0 λ0 kω κ
1.414 1 0.129 1.24 100 µm 0 1 5 1.22

4.1. Summary of the specimen geometries

For the ease of readability, the specimen geometries considered in the experimental cam-
paign performed in Part I are reminded. Three different geometry types were tested including
round bars (denominated by RB) specimens, plane strain (denominated by PE) specimens,
and plane stress (denominated by PS) specimens, see Fig. 7. The presence of a notch in the
specimens (including RB, PE, and PS types) is characterized by the shape factor, denoted
by γ and given by

γ =
a0

Rn

, (59)

where Rn is the notch radius and a0 is defined based on the specimen type: (i) for RB, a0 = R0

where R0 is the initial radius at the notch section, (ii) for PE, a0 = t0/2 where t0 is the initial
in-plane thickness at notch section, see also Eq. (57), and (iii) for PS, a0 = W0/2 where W0

is the initial width at the notch section. For smooth specimens, γ = 0 since Rn → ∞. In
order to assess the influence of material anisotropy, the RB specimens are extracted in both
the longitudinal direction (notation prefixed by L) and the transverse direction (notation
prefixed by T). Since the other specimens are extracted following the longitudinal direction
only, the prefix L- is omitted for conciseness. The specimen names and corresponding shape
factors are summarized in Tab. 3.

The RB specimens are modeled with axisymmetric finite elements using 6-node triangular
elements. Plane strain 6-node triangular elements are used to model the PE specimens. The
PS specimens need 3-dimensional finite element simulations in which 10-node tetrahedral
elements are used. All the meshes are refined within the necking region with at least 2
elements covering the nonlocal length in order to capture the large local stress and strain
gradients. Moreover, mesh size sensitivity analyses were systematically performed to ensure
a sufficient refinement and to present converged results of the fracture strain. As a result, the
finite element meshes are the same as the one used in the elastoplastic analysis performed in
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Part I. The numerical integration is performed using an implicit time integration so that the
inertial forces can stabilize the local snapbacks that could possibly occur, in particular when
introducing the cracks in the next section.

(a) Round bars specimens

(b) Plane strain specimen

(c) Plane stress specimen

Figure 7: Sample geometries used in this study consist of (a) round bar (RB) specimens with R0 = 3 mm,
(b) plane strain (PE) specimens with t0 = 2 mm, and (c) plane stress (PS) specimens with W0 = 7 mm and
thickness equal to 2 mm.

4.2. Tensile tests on the RB specimens

Figures 8a and 8b show the comparison for the RB specimens between the results of the
GTN-NH/Thomason model and the experimental results. The result of the elastoplastic sim-
ulation for the SRB specimens is also reported in Fig. 8a. After the onset of coalescence, with
the GTN-NH/Thomason model, the force drops until almost zero, signifying full specimen
fracture. The fracture strain can then be approximately evaluated at that time as

ε̄f = 2 ln
R0

Rc

, (60)

where Rc is the notch radius when the onset of coalescence occurs at the specimen center. The
predicted fracture strains of the RB specimens are compared in Fig. 8c to the experimental
data. A good agreement is obtained within 20 % relative error maximum for almost all
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Table 3: Sample names with the corresponding shape factor [1].

Type Test case Extracted direction Shape factor γ
Smooth Round Bar SRB L, T 0
Notched Round Bar NRB-1 L, T 0.75
Notched Round Bar NRB-2 L, T 1.5
Notched Round Bar NRB-3 L, T 2
Notched Round Bar NRB-4 L 3

Notched Plane Strain NPE-1 L 0.1
Notched Plane Strain NPE-2 L 0.33
Notched Plane Strain NPE-3 L 1
Smooth Plane Stress SPS L 0
Notched Plane Stress NPS-1 L 0.75
Notched Plane Stress NPS-2 L 1.5
Notched Plane Stress NPS-3 L 2.9

cases (except for the T-SRB and T-NRB-3 specimens that exhibit a higher relative error
respectively equal to 26% and 35%). The capability of the anisotropic nucleation model in
capturing the anisotropic fracture behavior is demonstrated with a higher predicted fracture
strain in the longitudinal specimens.

For the case of the L-RB specimens reported in Fig. 8c, when increasing the shape factor
γ, the fracture strain first decreases before stabilizing and exhibiting even a slight increase
for values of γ in the range [2 4]. For larger values of γ, the fracture strain decreases again.
This trend of the fracture strain results from the competition between the plastic flow and
the stress triaxiality effects, whose distributions depend on the shape factor of the specimen.
The impact of the plastic deformation at the free surface of the notched section becomes
dominant on setting the magnitude of the fracture strain for increasing values of γ. At low
values of γ (γ ≤ 2), the center of the specimen is subjected to a higher stress triaxiality
state and lower plastic deformation, while the free surface of the notched section involves
a lower stress triaxiality and a higher plastic deformation. As a result, the initiation of
the void coalescence process occurs at the center of the specimen for values of γ ≤ 2. In
the intermediate range, 2 < γ ≤ 4, the void coalescence still initiates at the center of the
specimen, but the plastic flow at the free surface of the notched section becomes more intense,
leading to a slight increase of the observed fracture strain due to the globally more important
plastic deformations at coalescence onset at the specimen center. It is noted that Eq. (60)
is also used to estimate the fracture strain in the experimental tests for the RB specimens
as shown in Part I. When the value of γ is large enough (γ ≥ 4), because of the increase of
the plastic flow at the free surface, the location of the initiation of void coalescence moves to
the free surface of the notched section. In a limit case when γ →∞, a crack initiates at the
free surface and the plastic deformation localizes at the crack front where coalescence occurs.
Although such a range of γ is not considered, the experimental fracture strains for the L-RB
specimens with γ = 2 and γ = 3 also exhibit a slight increase after the considerable decrease
observed for γ ≤ 2 as shown in Fig. 8c.

The distributions along a transverse middle cross section of several internal variables
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Figure 8: RB specimens simulated with the nonlocal coupled GTN-NH/Thomason model: (a) normalized
engineering stress in terms of the engineering strain in the case of the SRB specimens, (b) normalized
engineering stress in terms of the engineering strain in the case of the NRB specimens, and (c) fracture strain
for all the RB specimens. The experimental curves correspond to average responses obtained for different
specimens with the same geometry and are truncated once one of the specimen responses exhibits a sudden
drop.

in the cases of the SRB specimens are compared for both specimen orientations in Fig. 9
at the onset of coalescence and in Fig. 10 at the final fracture stage. The plastic strain
values εm are higher in the longitudinal specimen compared to the transverse one due to
the higher ductility while the effective nonlocal porosity4 value f̃V is higher for the latter.
Comparable values are observed for the ligament ratio χ at the onset of coalescence showing
that this parameter is the one controlling coalescence. Besides, beyond the initiation of void
coalescence, the simulations produce a flat fracture path for both specimen orientations, see
Fig. 10. The predicted fracture path does not agree with the experimental observations, in
which cup-cone fracture paths were observed. Indeed the current GTN-NH/Thomason model

4The GTN-NH model considers the effective porosity which characterizes effective spherical voids and is
different from the apparent porosity by a factor related to the void aspect ratio as explained in Part I.
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Figure 9: SRB specimens simulated with the nonlocal coupled GTN-NH/Thomason model: distributions
of (a-b) the matrix plastic strain εm, (c-d) the nonlocal porosity f̃V , and (e-f) the ligament ratio χ in the
deformed configuration at the onset of coalescence for specimens cut in the longitudinal direction (left) and
in the transverse direction (right).
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Figure 10: SRB specimens simulated with the nonlocal coupled GTN-NH/Thomason model: distributions
of (a-b) the matrix plastic strain εm, (c-d) the nonlocal porosity f̃V , and (e-f) the ligament ratio χ in the
deformed configuration at final fracture for specimens cut in the longitudinal direction (left) and in the
transverse direction (right).
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Figure 11: PE specimens simulated with the nonlocal coupled GTN-NH/Thomason model: (a) normalized
engineering stress in terms of the engineering striction and (b) fracture strain. The experimental curves
correspond to average responses obtained for different specimens with the same geometry and are truncated
once one of the specimen responses exhibits a sudden drop.

does not include the possibility for a shear coalescence mode. The cup-cone fracture paths
will come naturally using the damage-to-crack transition framework [39] as shown later.

4.3. Tensile tests on the PE specimens

Figure 11a shows the overall response of the PE specimens in terms of the force versus
thickness reduction at the notch section. A smaller notch radius results in a higher stress
level and earlier cracking initiation. The onset of coalescence at the specimen center is
also marked. After this point, material softening is visible due to the propagation of the void
coalescence. The values obtained for all the PE specimens are shown in Fig. 11b compared to
the experimental measurements. The numerical predictions underestimate the experimental
results for γ = 0.1 and 1/3 while the experimental result is overestimated for γ = 1.

The distributions of some representative internal variables are shown in Fig. 12 at the
onset of coalescence and in Fig. 13 near the last fracture stage. Although inclined plastic
bands develop at the onset of the coalescence, flat crack paths are predicted during the
post-coalescence stage. This erroneous fracture path arises because the Gurson-Thomason
model does not include the shear coalescence mode as explained above for the SRB specimen.
However, the slant path will be captured with the damage-to-crack transition framework as
shown in Section 5.

The sets of simulation results for both the RB and PE specimens do not present an
extended artificial diffusion of damage as it can be observed for some nonlocal damage model,
see respectively Figs. 9, 10 and Figs. 12, 13. Indeed, considering a pure GTN-NH model,
since the porosity which controls the damage evolution is considered as the nonlocal variable,
such a artificial spread could be expected and could be avoided by decreasing the nonlocal
length [67, 68], but the yield surface acts as filter limiting this phenomenon. Besides, in the
considered case of the GTN-NH/Thomason model, the Thomason coalescence yield function
(11) shrinks fast and much faster than the GTN-NH one, allowing for the elastic unloading,
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Figure 12: PE specimens simulated with the nonlocal coupled GTN-NH/Thomason model: distributions
of (a-c) the matrix plastic strain εm, (d-f) the nonlocal porosity f̃V , and (g-i) the ligament ratio χ in the
deformed configuration at the onset of coalescence.
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Figure 13: PE specimens simulated with the nonlocal coupled GTN-NH/Thomason model: distributions
of (a-c) the matrix plastic strain εm, (d-f) the nonlocal porosity f̃V , and (g-i) the ligament ratio χ in the
deformed configuration near last fracture stage.
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which is governed by the GTN-NH model, outside of the localization band to occur despite
the fact that the nonlocal porosity spreads. We can observe for the PE specimens, see Fig. 13,
that the ligament ratio χ localizes in a single-element thick band. Finally, the introduction
of the crack in the next section will totally prevent the artificial diffusion of the porosity and
will circumvent the issue of ligament ratio localization in a single-element thick band.

4.4. Tensile tests on the PS specimens

As only the fracture strain is of interest, the simulations of the PS specimens are in-
terrupted at the onset of coalescence. The evolution of the applied force in terms of the
reduction of the notch section is shown in Fig. 14a. Based on the rough assumption that the
minimum cross-section at failure remains rectangular, the fracture strain for this geometry
can be approximated by

ε̄f =
2√
3

√
ln2 W0

Wf

+ ln2 t0
tf

+ ln
W0

Wf

ln
t0
tf
, (61)

where W0 and Wf are respectively the initial specimen width at the notch and the width
at failure, and where t0 and tf are respectively the initial thickness at the notch and the
thickness at failure. It is noted that Eq. (61) is also used to estimate the fracture strain
in the experimental test specimens as shown in Part I. The numerical fracture strains are
estimated at the onset of coalescence in the specimen center and are reported in Fig. 14b
where they are compared to the experimental measurements, showing a good agreement as
well.
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Figure 14: PS specimens simulated with the nonlocal coupled GTN-NH/Thomason model: (a) normalized
engineering stress in terms of the engineering striction and (b) fracture strain. The experimental curve of
the SPS specimen is not available. The experimental curves correspond to average responses obtained for
different specimens with the same geometry and are truncated once one of the specimen responses exhibits
a sudden drop.
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4.5. Summary of the fracture strains for all specimens

The fracture strain data for all specimens reported in Figs. 8c, 11b and 14b are sum-
marized in Fig. 15 in terms of the stress triaxiality and Lode parameter. For the RB and
PE specimens, as the Lode parameter remains constant, the fracture strain decreases with
increasing stress triaxiality, see Fig. 15a. Although the range of the stress triaxiality in these
specimens is similar, the fracture strains differ since the values of the Lode parameter are
different. For the PS specimens, both the stress triaxiality and the Lode parameter vary with
the notch radius and the fracture strain increases as the Lode increases as already discussed
in Part I, see Fig. 15b. As shown in Fig. 15b, the Lode parameter can be smaller than 0.2
for some PS specimen geometries, in which case the effect of kω in the void growth expression
(17) is significant, which validates the choice of kω = 5. Besides, the choice of the nonlocal
length scale which was physically motivated according to the microstructure characterization
as discussed in Section 3.2, leads to numerical predictions of the fracture strain in reason-
able agreement with the experimental measurements, which confirms the selection of such a
physically motivated length scale parameter for the considered microstructure.
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Figure 15: Comparison between the fracture strain predicted by the GTN-NH/Thomason model and the
corresponding experimental results in terms of the true stress state at the onset of fracture: (a) dependence
on the stress triaxiality and (b) dependence on the Lode parameter.

5. Validation of the damage-to-crack transition

The nonlocal coupled GTN-NH/Thomason formalism is now enriched by the damage-
to-crack transition framework presented in Section 2.2 in order to assess the capability of
this framework to recover the experimentally observed crack paths. Comparatively to the
simulations of the previous sections, a scatter of 1% is applied on the nucleation intensity
to promote crack kinking as it is often the case for fracture simulations involving cohesive
models. The combination of the creation of the free surfaces due to the damage-to-crack
transition with this scatter, which introduces imperfections in the model to avoid the crack
path to be artificially guided by the mesh regularities, promotes crack kinking [39].
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Figure 16: Damage-to-crack transition for the L-SRB specimen: (a) comparison of the normalized engineering
stress in terms of the engineering strain, in which the numerical results provided with the nonlocal GTN-
NH/Thomason model, with and without the damage-to-crack transition, and the experimental result are
reported, and (b) comparison of the cup-cone failure pattern obtained with the numerical simulation and
with the experimental test.

5.1. Tensile test on the L-SRB specimen

The deformation of the L-SRB specimen has been simulated using the damage-to-crack
transition framework. The numerical simulation requires about 1000 increments for a total
of 32 hours computational time on a single processor, to be compared with 2h30 of compu-
tational time for the nonlocal GTN-NH/Thomason model. The force evolution as a function
of the engineering strain is represented in Fig. 16a for the nonlocal model with and without
using a crack insertion mechanism. Before crack insertion, no difference is found as only the
nonlocal GTN-NH is activated. After crack insertion, the differences are significant as the
local form of the Thomason model governs the crack opening. The drop of the load carrying
capacity is steeper with the transition.

The distributions of the matrix plastic strain εm, the nonlocal porosity f̃V and the ligament
ratio χ are illustrated in Fig. 17 in the deformed configuration at different stages of the failure
process: at the onset of coalescence, before the bifurcation of the crack into a slant mode, and
at final fracture. Before crack insertion, the results are identical to the nonlocal model, see
Fig. 9. A crack then initiates at the center of the specimen and propagates radially, following
the elements boundary. At some point, near the free surface, shear bands appear ahead of the
crack front and the crack kinks at around 45◦ to propagate until it reaches the surface. This
results in the so-called cup-cone fracture, typically observed in the literature [4] for different
types of tensile test specimens. The fracture pattern predicted by the numerical method is
found to be in good agreement with the experimental broken specimen as illustrated in Fig.
16b.

5.2. Tensile test on the NPE-1 specimen

The damage-to-crack transition is now applied for a different stress state on the NPE-1
specimen. The numerical simulation requires about 3200 increments for a total computational
time of 15 hours on a single processor. The evolution of the applied force is shown in Fig. 18.
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Figure 17: Distributions predicted by the nonlocal GTN-NH/Thomason model with the damage-to-crack
transition of (a-c) the matrix plastic strain εm, (d-f) the nonlocal porosity f̃V , and (g-i) the ligament ratio χ
in the deformed configuration for the L-SRB specimen at different stages: (left) at the onset of coalescence,
(center) before crack kinking and (right) at final fracture.
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Figure 18: Comparison of the normalized engineering stress in terms of the engineering striction with the
NPE-1 specimen. The numerical results are provided with the nonlocal GTN-NH/Thomason model with and
without the damage-to-crack transition.

Oscillations are also visible. They are due to the propagation of stress waves resulting from
the dynamic integration scheme and from the lower dissipation associated to the transition
resulting from the total absence of spurious damage diffusion. The damage dissipation is more
limited after crack initiation than without the crack insertion formalism. The distributions
of the matrix plastic strain εm, the nonlocal porosity f̃V and the ligament ratio χ in the
deformed configuration are shown on Fig. 19. By opposition to the previous case, the plastic
strain localizes inside shear bands. The crack also initiates at the center and then propagates
towards the surface, forming a slant crack. Comparatively to the smooth round bar, fracture
occurs at a lower level of plastic strain while the porosity is higher. This observation is due to
a higher triaxiality level compared to the smooth round bars, amplified by a contribution in
shear. A slant crack is observed on the numerical simulations, coherently to the experimental
observation, see Part I [1], providing another validation of the predictive character of the
model.

6. Application to a stable crack propagation: compact tension specimen

In this section, the case of stable propagation is studied both numerically and experimen-
tally on a compact test (CT) specimen in order to validate the model characteristic lengths,
i.e. the non-local length controlling the GTN-NH/Thomason model and the cohesive band
thickness governing the crack opening once inserted upon coalescence onset.

The geometry and the extraction direction of the specimens are reported in Fig. 20.
The extraction direction of the specimens results in a crack opening under the transverse
direction of the material. An initial fatigue crack was obtained by cyclic loading. Three
different specimens were tested. The reaction force F at the loading spins vs. the crack
mouth opening ∆ was recorded as sketched in Fig. 20a. The crack was observed to propagate
straight ahead in all the experimental tests.

The finite element simulations are performed with the damage-to-crack transition under
two-dimensional plane strain condition. Four different finite element meshes with different
mesh sizes are considered to assess the mesh influence: Mesh 1 (the coarsest), Mesh 2, Mesh
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Figure 19: Distributions predicted by the nonlocal GTN-NH/Thomason model with the damage-to-crack
transition of (a-c) the matrix plastic strain εm, (d-f) the nonlocal porosity f̃V , and (g-i) the ligament ratio χ
in the deformed configuration for the NPE-1 specimen at different stages: (left) at the onset of coalescence,
(center) before crack kinking and (right) at final fracture.

36



  

(a)

  

(b)

Figure 20: Compact test (CT) specimen: (a) geometry in mm and (b) extraction direction of the specimen
from the hollow cylindrical piece. The thickness of the CT specimen is equal to 13 mm. The reaction force
F vs. the crack mouth opening ∆ is recorded during the experimental tests.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 21: Mesh discretizations of the compact test (CT) specimen: (a) Mesh 1 with element size of 60 µm
at fatigue crack tip, (b) Mesh 2 with element size of 30 µm at fatigue crack tip, (c) Mesh 3 with element size
of 20 µm at fatigue crack tip, and (a) Mesh 4 with element size of 10 µm at fatigue crack tip.

3, and Mesh 4 (the finest), respectively consisting of 1800, 3270, 5200, and 13860 quadratic
quadrangles, see Fig. 21. Since the crack is propagating straight ahead, quadrangle meshes
are used for simplicity.

The comparison between the numerical and the experimental results in terms of the
normalized reaction force vs. crack opening is reported in Fig. 22. The peak of the curve
requires a very fine mesh to be captured since the number of integration points is limited
along the future crack path. Since the crack insertion is delayed due to this limited number of
integration points, the peak corresponding to the crack insertion occurs with a delay, which
is more pronounced for a coarser mesh, and this induces a snapback yielding the observed
oscillations which result from the dynamic integration scheme. Nevertheless, it can be seen
that the force response during the crack propagation converges with a refinement of the
mesh size and is within the range of experimental curves. Figures 23a and 23b report the
distribution of the ligament ratio χ in the deformed configuration respectively at the onset
of crack propagation and for an opening ∆ = 1 mm, in which the crack propagation can also
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Figure 22: Compact test (CT) specimen: normalized reaction force vs. the crack mouth opening ∆ for
different discretization meshes and comparison with the experimental results.
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Figure 23: Compact test (CT) specimen: the distribution of the ligament ratio χ in the deformed configuration
of Mesh 4 at (a) the onset of crack insertion, and (b) an opening ∆ = 1 mm.

38



be seen.
The damage-to-crack transition is still time consuming. The simulation with the Mesh 4

takes nearly 15 days with a single processor while the simulation with Mesh 1 requires almost
two days to be completed. In the future, the computational efficiency needs to be improved.
Moreover, the three-dimensional simulations will be considered in order to account for true
specimen geometries.

7. Conclusion

This Part II of the work is dedicated to the identification of the porosity-related parame-
ters of the GTN-NH/Thomason model for an HSS material, not only within a fully nonlocal
form, but also when relying on a damage-to-crack transition framework. The choice of the
GTN-NH/Thomason model allows balancing between strong micromechanics grounds and
maintaining an acceptable computational complexity. An efficient identification strategy is
proposed, which combines direct material characterization and inverse modeling. The main
contributions of the work are the followings:

• The parameters of the porous model are identified using mainly micromechanical ar-
gumentation. On the one hand, void cell simulations are exploited to identify the
constants q1 and q2 of the GTN yield surface and the void spacing growth factor κ by
postulating the dissipation equivalence. On the other hand, the characteristic lengths
of the coupled nonlocal GTN-NH/Thomason model not only within a fully nonlocal
form but also when relying on a damage-to-crack transition framework, are deduced
from microstructure characterization.

• Once all the parameters of the GTN-NH/Thomason framework are identified, the model
is found to predict correctly the fracture strain evolution for different triaxialities
and Lode parameters. However, the cup-cone and the slant fracture paths respec-
tively observed in the round bars and in the plane strain specimens are not correctly
predicted by the fully nonlocal GTN-NH/Thomason model, which gives flat fracture
paths perpendicular to the loading direction. This arises from the limitation of the
GTN-NH/Thomason model in the fracture prediction under shear-dominated loading
conditions. Nevertheless, the cup-cone and slant fracture paths can be captured with
the use of the damage-to-crack transition framework because of the creation of the free
surfaces and the introduction of some scatter of the material parameters, namely the
nucleated porosity.

As a matter of fact, other localization mechanisms and criteria come into play in shear-
dominated conditions and affect the failure process. In a future work, formalism accounting
explicitly for shear-driven coalescence modes [40] will be used to enhance the actual microme-
chanical description in order to include these additional failure modes.
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Figure A.24: Axisymmetric cylindrical unit cell (left) and corresponding axisymmetric finite element mesh
for fV 0 = 2× 10−3(right).
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Appendix A. Axisymmetric unit cell computation under constant stress triaxi-
ality

A micromechanical analysis is performed on a unit void cell to actually quantify the effect
of the stress state on the void growth and coalescence mechanisms similarly to the work of
Koplik and Needleman [55] and many others [3, 4, 69]. The overall responses obtained from
unit cell simulations are considered as the reference solutions from which the GTN/Thomason
parameters, i.e. q1, q2, and κ, can be identified. In this work, an axisymmetric unit cell
[29, 57] is considered as shown in Fig. A.24, from which simple finite element simulations
under an axisymmetric stress state can be performed. Under an axisymmetric stress state,
one has the Lode parameter ζ = 1 following Eq. (18). Consequently, the effect of kω in the
void growth expression (17) cannot be addressed.

The unit cell consists of a spherical cavity located at its center, see Fig. A.24. Since the
material is assumed to be isotropic, the height and the diameter of the cylinder are equal,
corresponding to an initial void aspect ratio λ0 = 1. The initial porosity fV 0 and the initial
void ligament ratio χ0 are respectively given as

fV 0 =
2

3

(
2R0

L0

)3

and χ0 =
2R0

L0

=

(
3

2
fV 0

) 1
3

. (A.1)

The material of the unit cell is the one of the elastoplastic matrix as described in Eq. (25).
Periodic condition implies that the unit cell boundary remains straight [29]. The unit cell
simulations are performed for different values of fV 0 and under different stress triaxiality
states. The finite element mesh consists of 9-node axisymmetric quadrilateral elements, see
e.g. Fig. A.24 (right) where only the case for fV 0 = 2× 10−3 is shown.

The resulting macroscopic principal stresses following the axial direction Σz and following
the radial direction Σr are respectively estimated by the average forces at cell boundaries
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respectively following z and r (see Fig. A.24) per current area. The equivalent stress measures
are computed by

pcell =
1

3
(Σz + 2Σr) , σ

cell
eq = |Σz − Σr| , and T cell =

pcell

σcell
eq

, (A.2)

where pcell is the homogenized pressure, σcell
eq is the homogenized von Mises equivalent stress,

and T cell is the macroscopic stress triaxiality, which is equal to the prescribed value T . The
current porosity is directly computed from the finite element mesh in the current configura-
tion, such that

f cell
V =

V −
∫
V s
0
J dV0

V
, (A.3)

where V is the current cell volume whose initial value is V0 = πλ0L
3
0 and where V s

0 is the
initial volume occupied by the solid part. With the use of Eq. (29), the value of εm can be
estimated since the value of the right hand side term is known.

The arc-length path-following method [70, 71, 72] is used to load the unit cell under a
constant stress triaxiality T cell. For the axisymmetric finite element model sketched in Fig.
A.24(right), a constant stress triaxiality T cell can be obtained with the following boundary
loading conditions:

bc1) On the axisymmetric (z-) axis: the left edge is horizontally (r-displacement) con-
strained;

bc2) Symmetrical boundary condition: the bottom edge is vertically (z-displacement) con-
strained;

bc3) Periodic boundary condition implies that the unit cell boundary remains straight [29]:
the vertical displacement (z-displacement) of the top edge is uniform and the horizontal
displacement (r-displacement) of the right edge is uniform;

bc4) Pressure boundary condition is applied on the top edge with a value of −Σz;

bc5) Pressure boundary condition is applied on the right edge with a value of −Σr;

where Σz and Σr are respectively the principal components of the homogenized stress fol-
lowing respectively the axial direction and the radial direction. Assuming Σz > Σr, i.e.
T cell ≥ 1/3, in order to facilitate the internal necking mode [29], Eq. (A.2) results into

Σr =
3T cell − 1

3T cell + 2
Σz . (A.4)

As a result, the ratio Σr/Σz remains constant during the whole loading and depends on the
prescribed triaxiality T cell only. Consequently, the boundary value problem is fully controlled
by Σz since Σr is known from the values of Σz and T cell. However, since the response of the
unit cell exhibits softening, a monotonic pressure increase cannot be used to model the whole
loading process, motivating the use of the arc-length path-following method.

Under given fV 0 and T cell = T , the results obtained from the unit cell simulations can be
expressed as the functions {

σcell
eq = σcell

eq (εm; fV 0, T ) , and

f cell
V = f cell

V (εm; fV 0, T ) ,
(A.5)
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Figure A.25: Unit cell simulations in the case of fV 0 = 2×10−3 for different stress triaxiality states: evolution
of the (a) equivalent von Mises stress σcell

eq and (b) porosity f cellV . The symbol “×” indicates the onset of
coalescence.

where εm results from the energy equivalence (29). The onset of coalescence occurs when
the deformation mode transitions into a uniaxial deformation mode [29, 57]. The values at
the onset of coalescence of σcell

eqc and f cell
V c , and εcell

mc are thus easily found. The evolutions of
σcell

eq and fV
cell with respect to εm are shown in Fig. A.25 for different values of the stress

triaxiality and for fV 0 = 2 × 10−3. The onset of coalescence is also marked. An increase of
the stress triaxiality results in a faster void growth and an earlier onset of void coalescence
in terms of εm.
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