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1. Abstract

We consider topology optimization of elastic continuum structures including a bound on the perimeter of
the structure’s domain. Such a bound is known to ensure existence of solutions and it stabilizes the behavior
of numerical finite element (FE) solutions. However, the straightforward way of calculating the perimeter
is rotationally mesh-dependent. In this paper we present new perimeter formulae with weaker rotational
dependence, i.e. perimeters that are “almost isotropic”. An overview of some theoretical results as well as
numerical tests are given.
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3. Problem Formulation

The considered optimization problem is concerned with designing shapes, holes and connectivities of a
structure contained in a given open domain Q C R? to achieve maximum stiffness with respect to given
boundary conditions. Each point x € Q is assigned a displacement u(x) and an amount of material p(x).
For fixed p we denote by a(p, -, -) the internal work symmetric bilinear form and ¢(-) the external load linear
form. Then the design problem can be written as

Minimize £¢(u) (compliance)
p, uev
subject to: a(p,u,v) =4(v), foral veV,
Jopdx <V, TV(p)<P, p(x)e{p,p} ae inQ

(P)

in which p signifies the p-value for full material and p signifies void'. The first constraint is the principle
of virtual work for the structure with material distribution p. The last line of (P) represents the design
constraints. The problem (P) can be understood as optimizing over all measurable subsets of 2 with volume
(area) bounded by V and perimeter not greater than P. To bound the perimeter, i.e. the “total variation”
(TV) of p, was introduced in topology optimization by Haber et al. [1] and then further developed by
Beckers (e.g. [2]) and Duysinx (e.g. [3]). This bound will ensure existence of solutions [4] and consequently
one obtains numerical FE solutions that are convergent with mesh-refinement [5]. This means that one
achieves reliable values for displacements and stresses by refining the mesh, since poorly approximated
structural parts (e.g. “bars” with maybe only one or two FE’s width) will not split up into several poorly
approximated parts as a finer mesh is utilized. Moreover, for basically any choice of FEs, formations of
checkerboard patterns in the design picture will disappear for sufficiently refined grids [5].

4. Some Theory on T'V-measures
The total variation in Q of a function p € L*(Q) is defined as

TV(p)zs;p{ / pdivso\soecé(m, e(x) € B() vxenf (1)

where B(r) is the closed ball in R? with radius r, and the perimeter of a measurable set Qs in  is defined
as P(Qs) = TV(xag).- In a measure-theoretical sense one has P(Qs) = |0s N Q| where | - | denotes the
(d — 1)-dimensional Hausdorff measure.

Using (1) on FE-approximated functions, such as piecewise constants, actually results in numerical
solutions that approach exact solutions to a version of (PP) where T'V has to be replaced by a “taxi-cab”
perimeter [5,6]. When d = 2 this perimeter equals the sum of the structure’s edge lengths projected onto
the coordinate axes. Hence this version of (P) and its FE-approximations are formulated in terms of frame-
dependent and rotationally mesh-dependent perimeters respectively. In order to reduce this dependence we
will present T'V-measures similar to what has been proposed in image segmentation [7].

n general it will be necessary to avoid singularities by setting p > 0, which means that structural holes are
modelled with a very compliant material.



The tazi-cab total variation introduced in [5] is denoted T'V> and is defined by (1) with B(1) replaced
by Q(1) where Q(r) is the closed d-cell with side length 2r. Assume that d = 2 and p is smooth. Then

0 0
1Vip) = [ 90l doana Tv) = [ (15214 1521) d. (2)

The second of (2) can be interpreted as computing the sum of the variation of p in the two directions e,
and e,,. We now generalize this to more than two directions. Given a set of directions {e1, ..., e} where
e; = CoS i€y, + Sin;es,, 0 < a; < m, define a multidirectional measure

TV (p) = Cm Z/ |Vp-ei| de, whereeg. ¢, = Z | cos a]. (3)
i=1 70 i=1

Let a denote the vector of the angles o;. Choosing a” = (0, 7/2) the general definition (3) reduces to the
second of (2) for m = 2. Let x be a positive number and define the angles ~, 6 and § through tan~y = x/2,
tanf = x and tand = 2k. We now also choose

o’ =(0,0,7/2, n—0)form=4,and o =(0,v,0,0,7/2, n—86,7—0, 7 —~) for m =S8.

It then follows that c;' = 1+ 2|cosf| and cg' =1+ 2|cosf| + 2| cos~y| + 2| cos .

To illustrate the properties of these multidirectional measures, let the function pg be such that Vpg =
cos e, + sin Be.,, take k =1 and |Q| = 1. Then TV (pg) = 1 for all 8, but for the other measures one has
TVi(pp) = cm > ivy | cos(oi — B)], cf. Fig. 1. This picture indicates how the length of a structural edge —
in the new multidirectional measures — will depend on the rotation. The maximum value is v/2 for TV5,
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Figure 1: TV,.(pg) as a function of 3 for m = 2,4, 8.

(V4 +2v?2)/(1+V?2) = 1.0824 for TV, and ~ 1.01906 for T'Vs. The minimum value for T'Vz is & 0.969895.
The “degree of anisotropy”, based on the ratio between the largest and smallest value, is hence about 41.4%
for TVa, 8.24% for TV4, and 5.06% for T'Vs.

Assume that a rectangular domain Q C R? is partitioned into a uniform mesh of m = (n; + 1)(n2 + 1)
rectangles of equal size, i.e., n; + 1 finite elements in the horizontal direction and ns + 1 in the vertical. All
edges of the elements 2;; are parallel to the coordinate axes, and the element width is h; and the height is
ha. Let II, be an operator which gives the elementwise constant interpolation such that the value of II,p in
Q;; is the integral mean of p over ;;.

A crucial point for FE-solutions to really approximate exact ones, is that the interpolant should remain
in the proper set, e.g. if a continuous displacement u € V C HI(Q), then the piecewise linear interpolant
mru belongs to V. For p this means that TV (p) < ¢ should imply TV (I1,p) < c¢. However, by considering
e.g. an edge which is parallel to neither e,, nor e.,, it is easy to see that this is generally not the case. It
can be shown that TV (Il,p) = TVa(Il,p) < TVa(p), and therefore traditional perimeter methods converge
to (P) furnished with the anisotropic taxicab perimeter [5]. As shown in Fig. 1 the anisotropy for T'V,, is
much weaker for higher m, and in addition, if kK = ha/hi1, one can, using the techniques in [8], prove the
approximation property

TV (Tap) < TVin(p),  (m =4,8). (4)

This inequality should be possible to generalize to non-smooth functions by approximation arguments, cf.
Lemma 3.1 in [5]. However, the complete proofs for T'V,,, m > 2, are still to be done.



Let p be a piecewise constant function. The formula for m = 4 reads

TVin(p /C4—22h2pz,—pl 1,,|+Zzh1m] pii-1l
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where h = \/h2 + hZ, and for m = 8,
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5. Numerical Examples

In order to compare the perimeter measures, the theoretical study is followed by two numerical implement-
ations of the different perimeter measures. This implementation has been realized in two software programs
based on two different approaches of topology optimization. The first approach [9] is the “classical” topology
optimization approach of continuum structures in which the density is allowed to vary continuously from
void to solid. The second approach is based on a pure discrete valued optimization [2,10] in which one
considers only the solid and a very low density material. In both programs the solution procedure relies on
the mathematical programming approach also called sequential convex programming. The initial implicit
problems are replaced with a sequence of explicit, convex and separable subproblems based on approxim-
ation schemes. Then each of these subproblems is solved in the dual space, with continuous or discrete
mathematical programming algorithms.

Cantilever Beam
In order to show the advantages of the proposed less anisotropic measures of perimeter, we consider first
a benchmark that is a variant of the classical Michell benchmark (Fig. 2). The difficulty of the problem
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Figure 2: Short cantilever beam problem and its rotated counterpart

comes from the 45 degrees rotation of the mesh with respect to the directions of the supports and of the
load. The domain is discretized in 3600 square finite elements. A discrete valued optimization is performed.
The first solution (shown to the left in Fig. 3) uses the T'V> measure which favours the presence of structural
edges that are parallel to the mesh direction. In a second stage a better solution is reached with the new TV,
measure (mid picture of Fig. 3). Its compliance is smaller and the internal structural members are nearly
perpendicular to each other. Thus the structural topology of the T'V} solution is closer to the theoretical and
numerical solutions known from literature. The optimization has also been performed with a refined mesh
composed of 8100 elements while keeping the same bound on the T'V4 perimeter (to the right in Fig. 3).

It was suggested originally in [9] that no additional strategy to alleviate the checkerboards is necessary
when the perimeter bound is used. The checkerboards fade away from the solution for a sufficiently bounded
perimeter, which is clearly illustrated in Fig. 4. The illustration problem is based on a continuum topo-
logy optimization with a low penalization of intermediate densities (exponent p = 1.6) which allows large
composite zones in the design. The checkerboards are massively present when one does not constrain the



Figure 3: Solutions with discrete approach: T'V> and T'V4 for coarse mesh, and T'V, for fine mesh

Figure 4: Solutions with continuous approach: No T'V-bound, and TVi(p) < 90

perimeter (as shown to the left in Fig. 4). They fade away progressively when the perimeter restriction
becomes more and more restricting and they disappear totally for a bound of T'V4 < 90 (to the right in Fig.
4).

Industrial Benchmark

This application is based on an industrial benchmark proposed by the french steel maker SOLLAC. Topology
optimization is used to design a pillar that supports crash barriers which are placed alongside roads and
bridges. As the barrier volume is not part of the design, the pillar takes place in the remaining L-shaped
part (Fig. 5). A pressure distribution modelling a car crash is applied on its upper part. The design
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Figure 5: Geometry of the design domain and boundary conditions

domain is discretized by a regular mesh of 102 by 40 finite elements. Material data are given by steel. The
volume bound is set to 25 percents. In this application, the perimeter constraint allows us to reduce the
manufacturing complexity.

At first we consider the continuous variable approach. Optimal material distributions have been produced
with the three proposed perimeter measures (see Fig. 6). We have grouped results that have been generated
with different T'V;, measures and different bounds P, but that have the same topology. From a comparison
of density maps, one can observe the influence of the measure upon the geometrical details (circled for
easiness). As predicted by the theoretical study, T'V> favors the directions along coordinate axes (horizontal



and vertical directions) whereas the quasi-isotropy property of T'V4 and TV leads to introduce inclined lines
and curves. The conclusions that can be deduced from these numerical experiments match perfectly with
the theoretical conjectures of the first part.

TV8=45

Figure 6: Comparison of TV, TV, and T'Vs

Remarks
As a first remark we can underline the practical difficulty to find similar topologies with the different T'V,,
measures because they do not have the same numerical values and no relationship is available to relate them.
We just know the ordering relationship TVs < TV, < T'V,. For precise numerical connection between the
different P-values, we had to proceed by trials and errors until we got similar topologies. This is not very
convenient for industrial applications.

As a second remark we observed that the TV, measure is easier to control than the T'V> perimeter from
a numerical point of view. From previous study of the perimeter we know that the TV, measure is generally
difficult to manage in the numerical procedure. It usually leads to a lot of constraint violations and we
have to select quite ”careful” optimization procedures based on a small move-limits strategy and small trust
region approximations. As explained in [3], a special procedure has been tailored for the T'V> perimeter
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Figure 7: Results obtained with different bounds on TV - continuous approach

constrained problems. When the same strategy is used for T'V}, the solution procedure gains in efficiency,
reliability and stability. We interpret this observation as the result of the better quality of the perimeter
measure, in which the influence of the whole neighborhood around each element is considered. This good
quality acts also on the ability to control the topology complexity while playing with the perimeter bound.
The controllability of the quasi-isotropic measure T'V} is high as illustrated in Figs 7 and 8, for the continuous
and the discrete approaches respectively. Moreover, as it is suggested in the theoretical part, checkerboards
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Figure 8: Results obtained with different bounds on T'V4 - discrete approach

fade out for a sufficiently low perimeter. The checkerboard patterns of the unconstrained distribution of
Figs 7 and 8 disappear quite immediately with a perimeter bound. This is true with any T'V,, measure, but
the controllability of T'Vs4 makes it easier.

6. Conclusions
This numerical application has illustrated three aspects of the perimeter approach:

e the solution tends to be rotationally mesh-independent when using less anisotropic perimeter measures;
e the bound on the perimeter helps to reach a solution with the same topology while mesh-refinement;

e the checkerboards fade away for sufficiently bounded perimeter.
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