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�� Abstract

We consider topology optimization of elastic continuum structures including a bound on the perimeter of
the structure�s domain� Such a bound is known to ensure existence of solutions and it stabilizes the behavior
of numerical �nite element �FE� solutions� However� the straightforward way of calculating the perimeter
is rotationally mesh�dependent� In this paper we present new perimeter formulae with weaker rotational
dependence� i�e� perimeters that are �almost isotropic�� An overview of some theoretical results as well as
numerical tests are given�
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The considered optimization problem is concerned with designing shapes� holes and connectivities of a
structure contained in a given open domain � � R

d to achieve maximum sti	ness with respect to given
boundary conditions� Each point x � � is assigned a displacement u�x� and an amount of material ��x��
For �xed � we denote by a��� �� �� the internal work symmetric bilinear form and ���� the external load linear
form� Then the design problem can be written as

�P�

����
���

Minimize ��u� �compliance�
�� u � V

subject to
 a���u�v� � ��v�� for all v � V�R
�
� dx � V � TV ��� � P� ��x� � f�� �g a�e� in �

in which � signi�es the ��value for full material and � signi�es void�� The �rst constraint is the principle
of virtual work for the structure with material distribution �� The last line of �P� represents the design
constraints� The problem �P� can be understood as optimizing over all measurable subsets of � with volume
�area� bounded by V and perimeter not greater than P � To bound the perimeter� i�e� the �total variation�
�TV � of �� was introduced in topology optimization by Haber et al� 
�� and then further developed by
Beckers �e�g� 
��� and Duysinx �e�g� 
���� This bound will ensure existence of solutions 
�� and consequently
one obtains numerical FE solutions that are convergent with mesh�re�nement 
��� This means that one
achieves reliable values for displacements and stresses by re�ning the mesh� since poorly approximated
structural parts �e�g� �bars� with maybe only one or two FE�s width� will not split up into several poorly
approximated parts as a �ner mesh is utilized� Moreover� for basically any choice of FEs� formations of
checkerboard patterns in the design picture will disappear for su�ciently re�ned grids 
���

�� Some Theory on TV �measures

The total variation in � of a function � � L���� is de�ned as

TV ��� � sup
�

�Z
�

� div �

���� � � C
�
����� ��x� � B��� �x � �

�
���

where B�r� is the closed ball in Rd with radius r� and the perimeter of a measurable set �s in � is de�ned
as P ��s� � TV ���s�� In a measure�theoretical sense one has P ��s� � j��s � �j where j � j denotes the
�d� ���dimensional Hausdor	 measure�

Using ��� on FE�approximated functions� such as piecewise constants� actually results in numerical
solutions that approach exact solutions to a version of �P� where TV has to be replaced by a �taxi�cab�
perimeter 
����� When d � � this perimeter equals the sum of the structure�s edge lengths projected onto
the coordinate axes� Hence this version of �P� and its FE�approximations are formulated in terms of frame�
dependent and rotationally mesh�dependent perimeters respectively� In order to reduce this dependence we
will present TV �measures similar to what has been proposed in image segmentation 
���

�In general it will be necessary to avoid singularities by setting � � �� which means that structural holes are

modelled with a very compliant material�



The taxi�cab total variation introduced in 
�� is denoted TV� and is de�ned by ��� with B��� replaced
by Q��� where Q�r� is the closed d�cell with side length �r� Assume that d � � and � is smooth� Then

TV ��� �

Z
�

jr�j dx and TV���� �

Z
�

�
j ��
�x�

j� j ��
�x�

j
�

dx� ���

The second of ��� can be interpreted as computing the sum of the variation of � in the two directions ex�
and ex� � We now generalize this to more than two directions� Given a set of directions fe�� � � � � emg where
ei � cos�iex� � sin�iex� � � � �i � �� de�ne a multidirectional measure

TVm��� � cm

mX
i��

Z
�

jr� � eij dx� where e�g� c��m �
mX
i��

j cos�ij� ���

Let � denote the vector of the angles �i� Choosing �
T � � � � �	� � the general de�nition ��� reduces to the

second of ��� for m � �� Let 
 be a positive number and de�ne the angles �� � and 
 through tan � � 
	��
tan � � 
 and tan 
 � �
� We now also choose

�
T � �� � � � �	� � � � � � for m � �� and �

T � � � � � � � � 
 � �	� � � � 
 � � � � � � � � � for m � ��

It then follows that c��� � � � � j cos �j and c��� � � � � j cos �j� � j cos �j� � j cos 
j�
To illustrate the properties of these multidirectional measures� let the function �� be such that r�� �

cos �ex� � sin �ex� � take 
 � � and j�j � �� Then TV ���� � � for all �� but for the other measures one has
TVm���� � cm

Pm

i��
j cos��i � ��j� cf� Fig� �� This picture indicates how the length of a structural edge �

in the new multidirectional measures � will depend on the rotation� The maximum value is
p
� for TV��
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Figure 	
 TVm���� as a function of � for m � �� �� ��

�
p

� � �
p
��	���

p
�� � ������ for TV�� and � ������� for TV�� The minimum value for TV� is � ���������

The �degree of anisotropy�� based on the ratio between the largest and smallest value� is hence about �����
for TV�� ����� for TV�� and ����� for TV��

Assume that a rectangular domain � � R
� is partitioned into a uniform mesh of m � �n� � ���n� � ��

rectangles of equal size� i�e�� n� � � �nite elements in the horizontal direction and n� �� in the vertical� All
edges of the elements �ij are parallel to the coordinate axes� and the element width is h� and the height is
h�� Let �h be an operator which gives the elementwise constant interpolation such that the value of �h� in
�ij is the integral mean of � over �ij �

A crucial point for FE�solutions to really approximate exact ones� is that the interpolant should remain
in the proper set� e�g� if a continuous displacement u � V � H����� then the piecewise linear interpolant
�hu belongs to V� For � this means that TV ��� � c should imply TV ��h�� � c� However� by considering
e�g� an edge which is parallel to neither ex� nor ex� � it is easy to see that this is generally not the case� It
can be shown that TV ��h�� � TV���h�� � TV����� and therefore traditional perimeter methods converge
to �P� furnished with the anisotropic taxicab perimeter 
��� As shown in Fig� � the anisotropy for TVm is
much weaker for higher m� and in addition� if 
 � h�	h�� one can� using the techniques in 
��� prove the
approximation property

TVm�h��h�� � TVm���� �m � �� ��� ���

This inequality should be possible to generalize to non�smooth functions by approximation arguments� cf�
Lemma ��� in 
��� However� the complete proofs for TVm� m � �� are still to be done�



Let � be a piecewise constant function� The formula for m � � reads

TV��h���	c� �

n�X
j��

n�X
i��

h�j�ij � �i���j j�
n�X
j��

n�X
i��

h�j�ij � �i�j��j

�

n���X
j��

n���X
i��

h�h�
h

j�ij � �i���j��j �
n���X
j��

n�X
i��

h�h�
h

j�ij � �i���j��j� ���

where h �
p
h�� � h��� and for m � ��

TV��h���	c� � TV��h���	c� �

n���X
j��

n�X
i��

h�h�p
�h�� � h��

j�ij � �i���j��j �
n�X
j��

n�X
i��

h�h�p
�h�� � h��

j�ij � �i���j��j

�

n�X
j��

n�X
i��

h�h�p
h�� � �h��

j�ij � �i���j��j�
n�X
j��

n���X
i��

h�h�p
h�� � �h��

j�ij � �i���j��j� ���

�� Numerical Examples

In order to compare the perimeter measures� the theoretical study is followed by two numerical implement�
ations of the di	erent perimeter measures� This implementation has been realized in two software programs
based on two di	erent approaches of topology optimization� The �rst approach 
�� is the �classical� topology
optimization approach of continuum structures in which the density is allowed to vary continuously from
void to solid� The second approach is based on a pure discrete valued optimization 
����� in which one
considers only the solid and a very low density material� In both programs the solution procedure relies on
the mathematical programming approach also called sequential convex programming� The initial implicit
problems are replaced with a sequence of explicit� convex and separable subproblems based on approxim�
ation schemes� Then each of these subproblems is solved in the dual space� with continuous or discrete
mathematical programming algorithms�

Cantilever Beam
In order to show the advantages of the proposed less anisotropic measures of perimeter� we consider �rst
a benchmark that is a variant of the classical Michell benchmark �Fig� ��� The di�culty of the problem
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Figure �
 Short cantilever beam problem and its rotated counterpart

comes from the �� degrees rotation of the mesh with respect to the directions of the supports and of the
load� The domain is discretized in ���� square �nite elements� A discrete valued optimization is performed�
The �rst solution �shown to the left in Fig� �� uses the TV� measure which favours the presence of structural
edges that are parallel to the mesh direction� In a second stage a better solution is reached with the new TV�
measure �mid picture of Fig� ��� Its compliance is smaller and the internal structural members are nearly
perpendicular to each other� Thus the structural topology of the TV� solution is closer to the theoretical and
numerical solutions known from literature� The optimization has also been performed with a re�ned mesh
composed of ���� elements while keeping the same bound on the TV� perimeter �to the right in Fig� ���

It was suggested originally in 
�� that no additional strategy to alleviate the checkerboards is necessary
when the perimeter bound is used� The checkerboards fade away from the solution for a su�ciently bounded
perimeter� which is clearly illustrated in Fig� �� The illustration problem is based on a continuum topo�
logy optimization with a low penalization of intermediate densities �exponent p � ���� which allows large
composite zones in the design� The checkerboards are massively present when one does not constrain the



Figure �
 Solutions with discrete approach
 TV� and TV� for coarse mesh� and TV� for �ne mesh

Figure �
 Solutions with continuous approach
 No TV �bound� and TV���� � ��

perimeter �as shown to the left in Fig� ��� They fade away progressively when the perimeter restriction
becomes more and more restricting and they disappear totally for a bound of TV� � �� �to the right in Fig�
���

Industrial Benchmark
This application is based on an industrial benchmark proposed by the french steel maker SOLLAC� Topology
optimization is used to design a pillar that supports crash barriers which are placed alongside roads and
bridges� As the barrier volume is not part of the design� the pillar takes place in the remaining L�shaped
part �Fig� ��� A pressure distribution modelling a car crash is applied on its upper part� The design

Figure �
 Geometry of the design domain and boundary conditions

domain is discretized by a regular mesh of ��� by �� �nite elements� Material data are given by steel� The
volume bound is set to �� percents� In this application� the perimeter constraint allows us to reduce the
manufacturing complexity�

At �rst we consider the continuous variable approach� Optimal material distributions have been produced
with the three proposed perimeter measures �see Fig� ��� We have grouped results that have been generated
with di	erent TVm measures and di	erent bounds P � but that have the same topology� From a comparison
of density maps� one can observe the in�uence of the measure upon the geometrical details �circled for
easiness�� As predicted by the theoretical study� TV� favors the directions along coordinate axes �horizontal



and vertical directions� whereas the quasi�isotropy property of TV� and TV� leads to introduce inclined lines
and curves� The conclusions that can be deduced from these numerical experiments match perfectly with
the theoretical conjectures of the �rst part�

TV2 = 5.5 TV4 = 4.5 TV8 = 4.5

Figure �
 Comparison of TV�� TV� and TV�

Remarks
As a �rst remark we can underline the practical di�culty to �nd similar topologies with the di	erent TVm
measures because they do not have the same numerical values and no relationship is available to relate them�
We just know the ordering relationship TV� � TV� � TV�� For precise numerical connection between the
di	erent P �values� we had to proceed by trials and errors until we got similar topologies� This is not very
convenient for industrial applications�

As a second remark we observed that the TV� measure is easier to control than the TV� perimeter from
a numerical point of view� From previous study of the perimeter we know that the TV� measure is generally
di�cult to manage in the numerical procedure� It usually leads to a lot of constraint violations and we
have to select quite �careful� optimization procedures based on a small move�limits strategy and small trust
region approximations� As explained in 
��� a special procedure has been tailored for the TV� perimeter

Unconstrained TV4 = 6.0 TV4 = 5.5 TV4 = 5.0 TV4 = 4.5

Figure �
 Results obtained with di	erent bounds on TV� � continuous approach

constrained problems� When the same strategy is used for TV�� the solution procedure gains in e�ciency�
reliability and stability� We interpret this observation as the result of the better quality of the perimeter
measure� in which the in�uence of the whole neighborhood around each element is considered� This good
quality acts also on the ability to control the topology complexity while playing with the perimeter bound�
The controllability of the quasi�isotropic measure TV� is high as illustrated in Figs � and �� for the continuous
and the discrete approaches respectively� Moreover� as it is suggested in the theoretical part� checkerboards



Not bounded perimeter TV = 7.4 TV = 5.84
TV = 4.84

Figure �
 Results obtained with di	erent bounds on TV� � discrete approach

fade out for a su�ciently low perimeter� The checkerboard patterns of the unconstrained distribution of
Figs � and � disappear quite immediately with a perimeter bound� This is true with any TVm measure� but
the controllability of TV� makes it easier�

�� Conclusions

This numerical application has illustrated three aspects of the perimeter approach


� the solution tends to be rotationally mesh�independent when using less anisotropic perimeter measures�

� the bound on the perimeter helps to reach a solution with the same topology while mesh�re�nement�

� the checkerboards fade away for su�ciently bounded perimeter�
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