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Abstract

The effect of spin-orbit coupling on phonon band structures can be profound for materials con-

taining heavy elements. We describe our implementation of Density Functional Perturbation The-

ory with the spin-orbit interaction, for norm-conserving pseudopotentials. We show that the spin-

orbit effect on the phonon frequency at the X point in face-centered cubic Pb is very large: it

explains the discrepancy between calculated and experimental frequencies previously observed by

De Gironcoli [Phys. Rev. B 53, (1996) R7575]. Several technical issues (the exchange-correlation

functional, the presence of semicore states, the pseudization scheme, and the real-space range of

inter-atomic force constants) are also investigated.
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I. INTRODUCTION

Density functional perturbation theory[1–3] (DFPT) is a widely used method to calculate

the response of a system of electrons to an external perturbation. Initially developed as

an efficient approach to the treatment of electric fields and atomic vibrations[4, 5] within

Density Functional Theory (DFT), the method has been generalized for many other types of

perturbations such as applied strains[6, 7], alchemical perturbation[8] (changing the nature

of an atomic species), magnetic field[9, 10], or to compute more involved material properties

like superconducting and transport coefficients [11], thermodynamic properties[12] including

thermal expansion[13], or higher order (non-linear) responses, such as Raman intensities[14,

15], or electro-optic coupling[16, 17].

In this article, we present a DFPT implementation for vibrational properties that includes

the Spin-Orbit (SO) interaction, a relativistic effect. Formally the SO effect is always present,

and gives corrections to the total energy and its derivatives. Actually, the strength of the

SO coupling increases quickly with the atomic number Z: as inner-shell electrons are pulled

closer to the nucleus, their kinetic energy increases and relativistic effects become very

important. In many cases, for light elements, these can be neglected, or approximated by

the scalar relativistic terms in the Dirac equation[18]. However, for specific properties, SO

effects might be important even when only light elements are present, as for graphite [19].

In second-row transition metals and heavier elements, but also for some lighter elements,

the SO effect is essential to reproduce correctly the electronic structure of materials. Classic

examples include the valence band splitting of GaAs[20], and the multiplet structure of the

f-band metals[21]. For heavier elements, in general, the SO effect becomes as important for

structural and dynamical properties as for electronic properties.

We will consider the common norm-conserving pseudopotential approximation, which

“freezes out” the core electrons, replacing their effect on the valence electrons with a (usually

non-local) pseudo-potential operator. In this approach the SO effect is contained in modified

pseudopotentials which depend on the spinorial state of an electron, that can be factored out

explicitly as a L.S term[22]. The application of such a term on spinor wavefunction can be

done on the basis of spherical harmonics, as described in Ref. 23, or on Legendre functions,

as outlined in Ref. 24. In both cases, the modifications to be applied to the DFPT treatment

for phonons (atomic displacements) are particularly simple, as will become apparent in the
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present paper. Indeed the atomic displacements do not modify the pseudopotential, but only

the structure factor governing the contribution of each pseudopotential to total potential.

We will always consider in the following that the pseudopotential is separable, as in the

construction of Kleinman and Bylander[25].

The SO coupling within DFT and DFPT, norm-conserving pseudopotentials and

planewaves, has been implemented by some of us (2001-2002) in the ABINIT software pack-

age (version 3.1) [24, 26]. It has been used for several phonon-based studies : Thorium

[27], Bismuth[28–30] including Bismuth specific heat[31], and for the first full phonon band

structure of Uranium[32]. In Ref. 30, the phonon band structure of Bismuth has been

specifically investigated with and without the SO interaction, isolating the direct effect due

to the modification of the dynamical matrix at fixed crystallographic parameters from the

indirect effect arising from the change of crystallographic parameters. Taking into account

the spin-orbit coupling modified by 10%-20% the phonon frequencies throughout the Bril-

louin zone. Most of the modifications were due to the direct effect, except for the acoustic

mode frequencies along the Γ − T line, for which the indirect effect dominated.

A formalism for inclusion of SO in ultrasoft pseudopotentials[33] has recently been pre-

sented by Dal Corso and Mosca Conte[34, 35]. They examined the phonon band structures

of Au and Pt. In both cases, the SO had an effect much smaller than in Bismuth, on the

order of 1%.

In the present paper, after a brief presentation of the DFPT formalism for computing

phonons (Sec. II), we describe our formalism (Sec. III), which is simpler than the ultrasoft

pseudopotential case. Because we have tested several approximations within DFT, see below,

the next section (Sec. IV) focuses on the pseudopotential generation procedure. We then

continue by examining the effect of SO on the phonon band structure of Pb (Sec. V). Like

Bi, the Pb atom has an incomplete 6p shell, which is strongly affected by the SO interaction

(6p1/2-6p3/2 splitting on the order of 1 eV). By contrast, Au and Pt expose a 6s incomplete

shell or a filled 5d shell, which exhibit smaller changes in bonding or dynamical matrices

due to the SO coupling. We will show that for Pb the SO induces a modification of some

phonon frequencies at X by as much as 60%. In the remainder of the Brillouin Zone, the

modification of the phonon frequencies is smaller than in Bismuth, but still on the order of

5%-10%, and much larger than for Au or Pt.

We consider different technical issues, not questioned in previous studies. We base our
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study mainly on pseudopotentials of the Troullier and Martins [36] (TM) flavor (made fully

separable thanks to the Kleinman and Bylander transformation[25]), with some comparison

with Hartwigsen, Goedecker and Hutter pseudopotentials [22] (HGH) when appropriate. We

have examined the effects of the exchange-correlation (XC) functional (the Generalized Gra-

dient Approximation for the TM pseudopotential, and the Local Density Approximation),

and of the 5d electrons (treated as semicore states explicitly included in the self-consistent

treatment, or treated as core states).

II. DENSITY FUNCTIONAL PERTURBATION THEORY

DFPT builds on the calculation in Density Functional Theory[37, 38] (DFT) of the total

energy of a system of electrons in a given external potential. It calculates the derivatives

of the total energy with respect to different perturbations of the potential (e.g. an electric

field, atomic displacement, strain). DFPT for phonons was reviewed comprehensively by

Baroni and coworkers[4]. In this section we summarize the elements of DFPT we will need,

and introduce standard notation used in Refs. 2 and 3.

If the strength of the perturbation is characterized by a parameter λ, then the energy,

potentials, and wavefunctions have an expansion as a function of that parameter. The energy

reads:

E = E(0) + λE(1) + λ2E(2) + ... (1)

The forces and stresses are first-order derivatives of the energy (contained in E(1)) with

respect to the appropriate perturbation (atomic displacement or strain). Many experiments,

such as Raman and infra-red spectroscopy, linear optics, and elastic constants measurements,

probe E(2). The major step in obtaining E(2) is the computation of the first-order change of

wavefunctions ψ(1), derived either from a variational principle for E(2) (see Ref. 39) or from

a Sternheimer equation[40]:

Pc(H
(0) − ǫ(0)n ) | ψ(1)

n 〉 = −PcH
(1) | ψ(0)

n 〉, (2)

where Pc is the projector on the conduction bands, ǫ(0)n and ψ(0)
n the ground state eigenen-

ergies and eigenfunctions, and H(1) the first-order perturbed Hamiltonian. The knowledge

of ψ(1) is also the major step in the computation of E(3) thanks to the so-called “2n + 1”,

applied to DFT[41].

4



The perturbation often has a directional dependence, described by a vector ~q in reciprocal

space. This could be the wavevector of an electric field or of a phonon (see below). The

most primitive approach to calculating a perturbation (without perturbation theory) is

to freeze a finite perturbation into the system, and to calculate the energies for different

values of λ in order to numerically extract the derivatives. This method is known as the

frozen-phonon technique for atomic perturbations. Calculating a frozen phonon for ~q 6= 0

requires a supercell to describe the full fluctuation of the perturbation (which is modulated by

exp(−i~q ~r)). As a result calculations become unwieldy for small or unsymmetrical ~q vectors,

and are impossible if ~q is not commensurate with the reciprocal lattice. DFPT does not suffer

from this drawback and can be used with arbitrary ~q. It must be noted that for the specific

~q = 0 the calculational weight of the frozen-phonon technique can be comparable to that of

DFPT, and that the finite perturbation method then has the advantage of giving access to

higher-order responses without involved formalism or time-consuming implementation.

The presence of the SO coupling will not modify profoundly the above-mentioned equa-

tions. A first difference will come from the replacement of scalar wavefunctions ψ(0)
n and

ψ(1)
n by spinor wavefunctions ψ(0)

n,σ and ψ(1)
n,σ. Then, an additional SO term will be present

in the H(0) and H(1) terms of the Sternheimer equation, and finally, there will be a direct

(frozen-wavefunction) contribution to the second-order derivative of the total energy E(2).

The Hamiltonian and energy modifications will be described in Sec. III.

In the case of phonons, one wants to calculate all the second derivatives of E with respect

to the displacements of two atoms. This derivative gives the inter-atomic force constants

(IFC)[42], which can be understood as the change in the force on one atom if another atom

is displaced from its original position. The IFC can be defined as:

Cκα;κ′β(a, b) =
∂2E

∂Ra
κα∂R

b
κ′β

, (3)

where a and b label unit cells, κ, κ′ label atoms in the unit cells, and α, β label the reduced

directions in which the atoms are displaced. The atomic positions are ~Ra
κ and ~Rb

κ′ . In many

systems, the IFC die off slowly with the distance between the atoms: the movement of an

atom can influence the force on an atom many cells away[43].

The Fourier transform (FT) of Cκα;κ′β(a, b) with respect to the cell lattice positions a

and b gives the dynamical matrix D̃κα;κ′β(~q) (with an additional factor of 1/
√
MκMκ′).

Diagonalizing D̃ gives eigenvalues, which are the square of the phonon frequencies ω2
m~q, and
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the phonon polarization vectors. If ~q = 0 one can compare the frequencies to Raman and

infra-red frequencies, and the full phonon band structure can be obtained from different

techniques, such as inelastic X-Ray scattering.

III. INCLUSION OF THE SPIN-ORBIT INTERACTION IN DFPT

The inclusion of the full Dirac equation in an all-electron framework is technically diffi-

cult, and most calculations are performed at the spin-orbit coupling level, that is, they are

accurate to order Z2α2. In contrast, as has been shown a long time ago by Kleinman [44],

in the pseudopotential framework the Dirac equation is pseudized as a Pauli-like equation,

which is then accurate up to order α2.

A. Spin-Orbit coupling in the planewave basis context

In a fully relativistic separable pseudopotential approach, the spin-orbit coupling term

appears only in the electron-ion potential. In our case the potential has the form [45] (for a

single atom system):

Vei(r, r
′) =

∑

l

V SR
l (r, r′)|ls >< ls|

+
∑

l

V SO
l (r, r′)L.S|ls >< ls|, (4)

where |ls >< ls| is the projector on the tensor product L⊗S (dimension 2(2l+1)) of functions

of a given angular momentum times the spin space. The terms V SR
l (r, r′) or V SO

l (r, r′)

are spin independent potential parts which we assume separable, as in the construction

of Kleinman and Bylander[25] (for sake of simplicity, we suppose only one projector per

angular-momentum channel):

V x
l (r, r′) = fx

l (r)EKB,x
l fx

l (r′), (5)

where EKB,x
l is the Kleinman-Bylander energy [46], and x is either SO or SR.

The HGH pseudopotentials[22] are fully relativistic pseudopotentials directly available

within this formulation. The transformation that must be done to obtain such a formulation

for Troullier-Martins pseudopotentials is explained in Appendix I.
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In each |ls > space, the V SR
l (r, r′) or V SO

l (r, r′) and L.S operators commute, so the order

of operations is irrelevant. Indeed, in many texts, the projector is not explicitly written.

The standard planewave basis is extended to the spinor planewave basis, whose elements

are two components planewaves denoted by < G, σ|. A generic matrix element takes the

form:

VSR
l (Gσ,G′σ′) =< G, σ|V SR

l |l, s >< l, s|G′, σ′ >, (6)

for the scalar-relativistic part, and

VSO
l (Gσ,G′σ′) =< G, σ|V SO

l L.S|l, s >< l, s|G′, σ′ >, (7)

for the spin-orbit part.

The result for the scalar-relativistic part is well known [25]:

VSR
l (Gσ,G′σ′) =

4π

Ω
(2l + 1)δσσ′EKB,SR

l

× Pl(Ĝ.Ĝ
′)fSR

l (G)fSR
l (G′), (8)

where Ĝ = G
|G| , G = |G|, and fSR

l (G) =
∫ ∞
0 fSR

l (r)jl(Gr)r
2dr. jl is a spherical Bessel

function, and Pl is a Legendre polynomial.

This results from the addition theorem, which states:

< G|l, s >< l, s|G′ > =
∑

m

< G|Y ∗
lmYlm|G′ >

=
(2l + 1)

4π
Pl(Ĝ.Ĝ

′). (9)

To achieve an analog formula for the spin-orbit term, we first consider the vector L|G′ >.

Using the definition, L = r × p, and the identity p|G′ >= G′|G′ >, we obtain: L|G′ >=

−iG′ ×∇G
′ |G′ >. We therefore transform the matrix element Eq.(7) in

VSO
l (Gσ,G′σ′) = −i < σ|S|σ′ > ·G′ ×∇G

′

< G|V SO
l |l, s >< l, s|G′ > . (10)

Noting that the ∇G
′(|G′|) terms do not contribute, due to the cross product with G′,

we finally obtain:

VSO
l (Gσ,G′σ′) = −i4π

Ω
(2l + 1)EKB,SO

l

× P ′
l (Ĝ.Ĝ

′)fSO
l (G)fSO

l (G′)

× (< σ|S|σ′ > ·G × G′

GG′ ), (11)
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where P ′
l is the first derivative of Pl and S the spin operator represented by the Pauli

matrices.

Although perfectly analogous in principle, the inclusion of relativistic effects in the USPP

case is much more involved (see Refs 34, 35). The equivalent of the Kleinman-Bylander

energies (usually called D) become matrices as a function of l. The augmentation functions,

overlap matrices, and D all acquire new terms due to spin-orbit interactions.

B. Spin-Orbit coupling and phonons

In the case of a system containing several atoms κ, the previous non-local matrix elements

can be expressed by the simple inclusion of structure factors in a sum over ionic positions

Rκ. The scalar-relativistic part becomes:

VSR
l (Gσ,G′σ′) =

4π

Ω
(2l + 1)δσσ′

∑

κ

EKB,SR
κ,l Pl(Ĝ.Ĝ

′)

× fSR
κ,l (G)fSR

κ,l (G′)ei(G
′−G)Rκ . (12)

Similarly, the spin-orbit part becomes

VSO
l (Gσ,G′σ′) = −i4π

Ω
(2l + 1)

∑

κ

EKB,SO
κ,l

× P ′
l (Ĝ.Ĝ

′)fSO
κ,l (G)fSO

κ,l (G′)

× (< σ|S|σ′ > ·G × G′

GG′ )

× ei(G
′−G)Rκ . (13)

As emphasized in section II the determination of phonon frequencies involve the first-

order perturbed Hamiltonian due to an atomic displacement as well as the second derivative

of E with respect to the displacements of two atoms[2, 3]. As spin-orbit coupling is only

involved in the separable non-local term of Hamiltonian, the only impacted terms are 〈ψ(0)
n |

∂2Vei

∂Rκα∂Rκ′β
| ψ(0)

n 〉 and ∂Vei

∂Rκα
| ψ(1)

n 〉.
The expressions for these two terms are rather simple, because atomic displacements do

not modify the pseudopotential but only the structure factors. They are directly connected

with the following derivatives:

〈Gσ | ∂V
SR
l

∂Rκα

| ψ(1)
nσ′〉 = i

4π

Ω
δσσ′(2l + 1)EKB,SR

κ,l
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×
∑

G
′

Pl(Ĝ.Ĝ
′)fSR

κ,l (G)fSR
κ,l (G′)

× c
(1)
nσ′(G′)(G′

α −Gα)

× ei(G
′−G)Rκ , (14)

〈Gσ | ∂V
SO
l

∂Rκα

| ψ(1)
nσ′〉 =

4π

Ω
(2l + 1)EKB,SO

κ,l

×
∑

G
′

(< σ|S|σ′ > ·G × G′

GG′ )

× P ′
l (Ĝ.Ĝ

′)fSO
κ,l (G)fSO

κ,l (G′)c
(1)
nσ′(G′)

× (G′
α −Gα)ei(G

′−G)Rκ , (15)

∂2ESR
ei

∂Rκα∂Rκβ

=
∑

n,l,σ,σ′

fn 〈ψ(0)
nσ | ∂2VSR

l

∂Rκα∂Rκβ

| ψ(0)
nσ′〉

= −4π

Ω

∑

n,l

fn (2l + 1)EKB,SR
κ,l

×
∑

Gσ,G
′

σ′

δσσ′Pl(Ĝ.Ĝ
′)fSR

κ,l (G)fSR
κ,l (G′)

× 2 ℜ[(G′
α −Gα)G′

β e
i(G

′−G)Rκ

× c(0)∗nσ (G)c
(0)
nσ′(G′)], (16)

∂2ESO
ei

∂Rκα∂Rκβ

=
∑

n,l,σ,σ′

fn 〈ψ(0)
nσ | ∂2VSO

l

∂Rκα∂Rκβ

| ψ(0)
nσ′〉

= i
4π

Ω

∑

n,l

fn (2l + 1)EKB,SO
κ,l

×
∑

Gσ,G
′

σ′

P ′
l (Ĝ.Ĝ

′)fSO
κ,l (G)fSO

κ,l (G′)

× (< σ|S|σ′ > ·G × G′

GG′ )

× 2 ℜ[(G′
α −Gα)G′

β e
i(G

′−G)Rκ

× c(0)∗nσ (G)c
(0)
nσ′(G′)]. (17)

|ψ(0)
nσ 〉 (resp. |ψ(1)

nσ 〉) is a spinorial component of wavefunction ψ(0)
n (resp. first-order wave-

function ψ(1)
n ). fn is the occupation number and c(0)nσ(G), c(1)nσ(G) are planewave coefficients.
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IV. CONSTRUCTION OF THE PSEUDOPOTENTIALS

A number of different variables must be considered in the construction of our TM pseu-

dopotential. Linear response quantities are more delicate to access and converge than the

ground state, and careful consideration is needed: we must choose which electrons will be

treated explicitly as valence in the self-consistent run, which level of relativistic approxi-

mation we will use (scalar relativistic or full spin-orbit), and which XC functional will be

employed (the LDA[38] or PBE-GGA[47] in our study). Our main result, namely the no-

ticeable effect of SO on phonon frequencies, especially at the X point (see next section) is

unaffected by these, despite some fluctuations.

reference, Å GGA sc LDA sc GGA LDA HGH

(GGA sc SO)

4.958 SO 0% -3.4% -0.2% -4.8% -2.3%

no SO -0.2% -3.5% -0.3% -4.8% -2.4%

TABLE I: Comparison of lattice parameters in LDA and GGA, with and without the SO interac-

tion, and with and without the semicore (SC) 5d electrons treated as valence electrons. In the first

column of numerical values the reference is presented (in Å): a GGA Troullier-Martins pseudopo-

tential with semicore electrons. The other columns give the percent change with respect to this

reference. The HGH column refers to HGH pseudopotentials, with LDA and no semicore electrons.

We have generated eight TM pseudopotentials: with and without SO, with and without

semicore 5d electrons, and using LDA or GGA. The pseudopotential matching radius was

set to 1.7 bohr in all cases. For the ground state properties, the semicore electrons have little

effect, which could have been expected in this homogeneous system. The LDA TM potential

strongly underestimates the experimental volume (109 Å3 instead of 121 Å3). Worse, it

predicts the wrong phase ordering: the diamond phase is lower in energy than FCC. The SO

interaction does not affect the structure strongly, but we will see below that the electronic

and vibrational properties change substantially. Comparison with structural and vibrational

data show that the best result are obtained with the most complete pseudopotential: GGA

with semicore and with SO interaction.

The relaxed lattice parameter with the GGA SO 5d pseudopotential is 4.958 Å, in excel-

lent agreement with the experimental 4.951 Å. The presence of semicore states necessitates a
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FIG. 1: The phonon band structure of lead, with (solid) and without (dashed) spin-orbit inter-

action. The circles are experimental data from Ref. 48. Note the dramatic effect of SO for the

lowest branch around X and K. Side panel: phonon density of states with (solid line) and without

(dashed) SO coupling.

fairly high kinetic energy cutoff, of 30 Ha, which we use for the other TM potentials as well.

We have performed all phonon band structure calculations at the correspondingly relaxed

lattice parameters, given in Table I. The largest difference is between LDA and GGA for the

TM cases. The SO coupling has almost no effect on the volume. The inclusion of semicore

states has an effect for the LDA case.

To verify whether the LDA approximation itself is in question, we have also tested an-

other type of pseudopotential which incorporates SO interaction, of the HGH[22] flavor,

which converges with a plane wave cutoff of 16 Ha. The HGH published parametrization

has no semicore electrons, but we have seen above that the semicore have a rather small

effect, and the same is true for the phonons below. The HGH LDA pseudopotential predicts

the correct ordering of the diamond and FCC phases, and yields a better lattice parameter

of 4.84 Å(volume 113 Å3). The worse quality of the LDA TM potential is thus not due

exclusively to the LDA, but to the combination of the TM scheme with LDA volume un-

derestimation. It is the absence of semicore electrons which allows for convergence with a

lower planewave cutoff than the TM pseudopotential. In the following we will focus mainly

on the reference GGA TM pseudopotential with semicore electrons.
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V. THE EFFECT OF SPIN ORBIT ON PHONONS IN FCC LEAD

The phonon band structure of lead was calculated as one of the first application of

DFPT to metals, and broadly gave good agreement[11, 49] except at the X point. It was

suggested in Ref. 49 that the discrepancies could be due to the lack of spin-orbit coupling.

This is indeed the case: in Fig. 1 we show the phonon dispersion curves for FCC Pb with

and without the spin-orbit effect, compared to experiment. The phonon modes at many ~q

change appreciably with the SO effect, but at the X point the effect is dramatic, and the

X transverse frequency softens by more than 10 cm−1. As a whole the lowest branch is

the most affected. Also the highest branch is largely affected along the Γ − K and Γ − L

directions.

The Fermi surface (FS) of lead is quite complicated, with small pockets of electrons and

holes, and it is necessary to sample the electronic and vibrational degrees of freedom in the

Brillouin zone with at least a 12×12×12 Monkhorst-Pack[50] grid (72 qpoints in the IBZ).

This dense grid was necessary to resolve the Kohn anomalies and non-sinusoidal behavior of

the phonon bands. We examined this effect, in the case of the HGH[22] pseudopotentials,

using even better Monkhorst pack grids, up to a 32×32×32 grid (897 kpoints in the IBZ)

for the electronic degrees of freedom. In this case we relied on a somewhat coarser 8×8×8

BZ sampling (29 qpoints in the IBZ) for the vibrational degrees of freedom, thanks to the

approximation scheme presented in Appendix II, using a cutoff of the IFC in real space.

This details of the scheme are presented because it is simple and may be of interest for other

implementations of DFT phonon calculations (the cutoff was only used for the comparison

calculations using the HGH pseudopotential). It remains, however, quite a severe approx-

imation (neglecting slowly converging long range IFC), which must be used with care. In

this way, reducing the sampling of vibrational degrees of freedom from 12×12×12 to 8×8×8

does not affect the precision of the phonon frequencies.

The phonon frequencies calculated with the different pseudopotentials are compared in

Table II, for selected high symmetry points. The effect of the SO interaction is remarkably

strong, almost halving the frequencies at the X point, and softening the transverse modes

at K and L as well. The longitudinal modes are much less sensitive to the SO effect.

As we explained in Ref. 51 for monoatomic wires of Pb, the SO interaction has the

effect of shifting part of the Fermi surface to a ~k point which gives a Kohn anomaly[52] at
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FIG. 2: The electronic band structure of lead (in eV), with (solid) and without (dashed) spin orbit

interaction. The Fermi level is at 0.

2kF = X. The electronic effect is similar but more subtle in 3D bulk Pb, as can be seen

from the comparison of the electronic band structures with and without SO in Fig. 2. The

change of the bands at the Fermi level is quite small, but around the W point the bands

nearest to EF are affected. Doubling the W kpoint brings us to a wavevector which folds

back to X.

In Table II we also compare phonon frequencies for the potential with and without semi-

core d electrons, and for different XC approximations. The results depend more on the

inclusion of the SO effect than on the XC method. The presence of the d states does not

modify the results strongly, and in particular the LDA HGH frequencies are very close to the

GGA TM ones. Overall, we can say that potentials which produce good ground state struc-

tural data also give good vibrational properties, and in any case, the effect of SO, as deduced

from the GGA TM case with semi-core states, is confirmed, despite some fluctuations, that
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are to be expected from the differing constructions of the norm-conserving pseudopotentials.

Phonon Reference, cm−1 Spin-orbit GGA sc LDA sc GGA LDA HGH

mode (GGA sc SO) treatment rel. diff. rel. diff. rel. diff. rel. diff. rel. diff.

X TA 23.6 SO 0% 6% 26% 23% 19%

no SO 68% 74% 84% 73% 65%

X LA 62.9 SO 0% 18% -7% 7% 1%

no SO -1% 14% 7% 15% 6%

K TA 39.3 SO 0% 7% 7% 16% 1%

no SO 22% 29% 29% 32% 5%

K LA 67.3 SO 0% 12% -4% 6% -3%

no SO -3% 8% 4% 11% -6%

L TA 24.5 SO 0% 8% 23% 33% 22%

no SO 33% 37% 42% 41% 30%

K LA 67.3 SO 0% 12% -4% 6% -3%

no SO -3% 8% 4% 11% -6%

L LA 73.6 SO 0% 16% -6% 9% -6%

no SO -4% 10% 1% 13% 4%

TABLE II: Comparison of phonon frequencies with different pseudopotentials, with and without

the SO interaction. Columns and notation as in Table I. The GGA reference is presented (in

cm−1). The LDA/GGA difference is relatively constant, and the effect of spin-orbit coupling is

very strong, particularly for the TA mode at X.

VI. CONCLUSIONS

We have laid to rest an important discrepancy in the phonons of Pb, which had been

recognized over 10 years ago[49]. The phonon band structure of face-centered-cubic lead is

profoundly affected by the inclusion of the spin-orbit interaction.

We have shown how this interaction can be incorporated into norm-conserving pseudopo-

tential based DFPT calculations of dynamical matrices and phonon frequencies. The nature
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of the pseudopotential also affects the phonon band structure, but to a lesser extent, through

the construction scheme, the approximation used for the exchange-correlation functional and

the relaxed lattice parameter. The presence or absence of the 5d states in the set of valence

electrons does not alter strongly the electronic or vibrational properties of pure lead; this

was expected as the d electrons are quite inert, 4.6 eV below the s bands, and the d shell is

always filled in elemental Pb.

The method exposed here has opened the possibility of accurately simulating the vibra-

tional properties of heavy atoms, including d and f row elements, as witnessed by several

previous phonon band structure calculations including SO interaction. The further inclusion

of SO with strong correlation methods, such as LDA+U, in phonon calculations, must be

considered, in order to complete the accurate description of heavier elements. Some work

in this direction has begun[53] but much remains to be done, in particular in application to

efficient DFPT methods.

Finally, the somewhat fluctuating behavior and quality shown for different combina-

tions of pseudopotential scheme and XC approximation combinations calls for more precise

methodologies to calculate phonon frequencies. For the Ultrasoft scheme, the implementa-

tion of SO within DFPT has been published[35]. The DFPT implementation of the Projector

Augmented Wave (PAW) formalism [54, 55] should be complemented by taking into account

SO effects.

Appendix I. Description of the treatment of spin-orbit coupling in the case of

Troullier-Martins pseudopotentials.

In the case of norm-conserving Troullier-Martins pseudopotentials, the non-local pseu-

dopotential can be written [56]:

VNL =
∑

l

|ls >
(

|vion
l >< vion

l |
)

< ls|

+
∑

l

|ls >
(

|vion
l >< vso

l | + |vso
l >< vion

l |
)

L.S < ls|

+
∑

l

|ls >
(

|vso
l > (

1

4
l(l + 1) − 1

2
L.S) < vso

l |
)

< ls|

(18)
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with the same notations as in Ref. 56 (we assume that the Kleinman-Bylander energy factors

have been absorbed in the definition of vion
l and vso

l ):

vion
l =

1

(2l + 1)
[(l + 1)vl,l+ 1

2

+ (l)vl,l− 1

2

], (19)

vso
l =

2

(2l + 1)
[(vl,l+ 1

2

− vl,l− 1

2

], (20)

where vl,l+ 1

2

and vl,l− 1

2

are the lj components of a pseudopotential coming from the resolution

of the Dirac equation.

This can be rewritten:

VNL =
∑

l

|ls >
(

|vion
l >< vion

l |

+ |vso
l >

1

4
l(l + 1) < vso

l |
)

< ls|

+
∑

l

|ls >
(

|vion
l >< vso

l | + |vso
l >< vion

l |

− 1

2
|vso

l >< vso
l |

)

L.S < ls|. (21)

Defining the quantities:

Q1 =






1 0

0 1
4
l(l + 1)




Q2 =






0 1

1 −1
2




 ,

and

V 0
l =






|vion
l >

|vso
l >




 ,

we have:

VNL =
∑

l

|ls > [tV0Q1V0]
︸ ︷︷ ︸

V SR
l

< ls|

+
∑

l

|ls > [tV0Q2V0]
︸ ︷︷ ︸

V SO
l

L.S < ls|. (22)

The Q1 matrix being diagonal, we can use a Kleinman-Bylander [25] approach with two

projectors: the first one is associated with an effective Kleinman-Bylander energy EKB,SR
l,1 =

1 and a semilocal potential vion
l . The second one is associated with a Kleinman-Bylander

energy EKB,SR
l,2 = 1

4
l(l + 1) and a semilocal potential vso

l .

The Q2 matrix can be diagonalized. Its eigenvalues are −1
4
(1 +

√
17) and 1

4
(−1 +

√
17)

and its eigenvectors, respectively:
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v1 =






1
4
(−1 +

√
17)

1




 v2 =






1
4
(1 +

√
17)

1




 .

In this eigenbasis, we have:

V 0
l =






− 2√
17

[vion
l − (1+

√
17)

4
vso

l ]

2√
17

[vion
l + (

√
17−1)
4

vso
l ].






We can then use again a Kleinman-Bylander [25] approach with two projectors: the first one

is associated with a Kleinman-Bylander energy EKB,SO
l,1 = −

√
17
2

and a semilocal potential

− 2√
17

[vion
l − (1+

√
17)

4
vso

l ]. The second one is associated with a Kleinman-Bylander energy

EKB,SO
l,2 =

√
17
2

and a semilocal potential 2√
17

[vion
l + (

√
17−1)
4

vso
l ].

Appendix II. Cutoff scheme for interatomic force constants

The Fourier interpolation of phonon bands in Pb is complicated by the softenings at

several points in the BZ. This gives the bands non-sinusoidal behavior, and higher harmonic

contributions appear, i.e. larger long ranged inter-atomic force constants. As the longest-

ranged IFC which are calculated are not small, by Fourier transforming back we acquire

artificial wiggles in the interpolated band structure, in particular near the Γ point. This

can be seen in the thin dashed line of Fig. 3, which represents the normally interpolated

phonon bands. In this case we have employed the LDA HGH pseudopotential with SO, which

compares well with the full GGA TM data with semicore d electrons (thick solid line). This

feature of the Fourier Transform is analogous to aliasing errors in normal transform theory.

The normal solution to this kind of problem is to increase the grid (in our case the density

of qpoints in the irreducible Brillouin Zone) until the longest-range IFC decay properly.

However, this would entail much heavier calculations.

Using a cutoff in real space for the IFC (neglecting those beyond a certain distance)

eliminates the low-q oscillations and gives the thick dot-dashed lines in Fig. 3. As can be

seen in the figure, the IFC which are neglected using the cutoff contribute very little to

the bulk of the band structure. In this way we have an approximation which gives a good

quality band structure without the aliasing effects. Obviously it must be known in advance

that the “wiggles” are aliasing, and that physical negative modes are not being eliminated.
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FIG. 3: The phonon band structure of lead, with different cutoffs in real space for the inter-atomic

force constants. Thick solid line: phonon bands calculated from the GGA TM SO pseudopotential

; Thick dot-dashed line: bands for the HGH pseudopotential with a 30 a.u. cutoff on the IFC;

Thin dashed line: same with a 85 a.u. cutoff.

The cutoff also smooths some of the physical features in the rest of the Brillouin Zone,

so it must be the subject of a convergence study, at the same time as the sampling grid. We

emphasize that relying on a cutoff is not the same as using a coarser BZ sampling : all the

qpoints contribute to improve the convergence of all of the IFC, including the short-ranged

ones. Converging the grid density will of course improve the phonon band structure near

points that are calculated explicitly, but a controlled use of the IFC cutoff gives similar

precision with many fewer wavevectors. Here controlled means ensuring that the negative

modes which are eliminated are indeed spurious. An alternative method, intermediate in

computational weight between full convergence and our cutoff, has been proposed by Gaál-

Nagy[57] adding wavevectors selectively in regions where instabilities appear.
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