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1. Abstract  
This paper describes an original and robust method to optimize the design of closed-loop mechanisms, especially parallel 
manipulators.  In other words, these mechanisms include assembling constraints we solved using a Newton-Raphson algorithm 
which may fail when the Jacobian matrix of the constraints is ill-conditioned.  Therefore, the technique we propose takes advantage 
of that conditioning to penalize properly the objective function.  Applications are shown: on the one hand, a simple example about 
the design of a planar ejector and, on the other hand, more realistic examples about the kinematical properties of parallel robots, in 
particular Delta-type and HexaSlide-type manipulators. 
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3. Introduction 
Most of present issues in the field of multibody system (MBS) dynamics involve other scientific disciplines in order to enlarge and 
enrich the results of the system analysis.  Combining multibody analysis and optimization techniques has sometimes been exploited 
in the literature, but the few existing results are still not able to cope with some limitations and/or conflicts when applied to 
multibody systems (MBS).  Several issues are addressed in recent researches : applicability of optimization methods for some 
families of MBS, problem formulation in terms of cost function, especially for constrained systems, computer efficiency and resort to 
parallel computation, etc.  With this respect, current researches mainly produce guidelines rather than rigid rules regarding the 
marriage of these two disciplines (multibody dynamics and optimization) in a given context, i.e. a family of applications and a given 
type of objective function (ex. : [1],[2],[3]). 
 

 
 

Fig. 1. Examples of closed-loop mechanisms 
 

The present research tackles the problem of geometrical optimization of MBS containing three-dimensional closed loops as shown in 
Fig. 1.  In this case, the question is : how to build a robust cost function for those systems in such a way that a classical optimization 
method can iterate with a good convergence and without troubleshooting in terms of loops closure (or “system assembling”) ?  For 
simple systems, we can obviously circumvent the problem by expressing explicitly some optimization constraints on the geometrical 
parameters (length of segments, amplitude of motion, etc.).  However, as soon as complex multi-loops systems (ex. 3D parallel 
manipulators) are involved, such a method is not realistic or too restrictive.  Thus, we propose an approach that uses an original cost 
penalty technique in which unreachable configurations (i.e. configuration where it is not possible to assemble or to control the 
mechanism) and other design constraints are properly pushed away in the cost function itself.  The proposed method extends the cost 
function definition on the basis of elements like the conditioning of the constraints Jacobian matrix of the MBS, leading to a 
continuous and rather well-defined cost function.  Hence, this allows the use of unconstrained optimization methods (BFGS method, 
Nelder-Mead Simplex…) which make the solution progress in an artificially extended parameter space. 
The approach will be illustrated at first on the basis of a quite academic example (the torque minimization of a planar ejector) and 
then on more realistic applications : the dexterity optimization of Delta-type and HexaSlide-type parallel manipulators, whose goal is 
to maximize the mean robot isotropy over a cube with respect to design parameters (lengths of segments, radii of base and mobile 
platforms of the robot, distance between the cube and the base, etc.). 
Once optimization of closed-loop mechanisms will be robustly achieved, the present research aims at tackling topological 
optimization of mechanisms.  Emphasize will be shortly made on the advantages in using a dedicated symbolic multibody software to 
build cost and constraints functions for MBS, and to “procreate” new models straightforwardly, within a few milliseconds, which 
represents a real asset in the context of topological optimization. 
 
 
 



4. Optimization and Assembling Constraints 
The main issue with closed-loop MBS concerns assembling constraints.  Generally speaking, the latter are highly non-linear and can 
be expressed by a set of implicit algebraic equations : 
 

(1) 
 

where q is the vector of joint variables.  Thus, assembling the mechanism means solving the set of constraints (1).  And this has to be 
done each time the configuration of the mechanism changes.  The technique we used to solve them is the “coordinates partitioning” 
method proposed in [4].  Joint variables q are first partitioned into independent variables u and dependent ones v :  
 

        (2) 
 

Then, we compute v by means of the Newton-Raphson iterative algorithm : 
 

(3) 
 

where 
 

(4) 
 

 
In some cases, we may meet problems of convergence of the assembling constraints during the optimization process. 
•  A first case may occur when the solution is not unique for a given vector u.  A way to prevent from that is to start the algorithm 

with initial values close to the expected solution. 
•  A second problem may also happen if the mechanism reaches a singular configuration, the constraints Jacobian Jv becoming 

singular.  Mathematically speaking, this can be avoided by modifying the chosen partitioning, which requires to reformulate the 
model.  In practice, some of those singularities correspond to a loss of mobility of the actuator and are considered as unreachable 
points in the parameter space. 

•  Finally, it is also impossible to close the mechanism simply when a constraint hi has no root : the Newton-Raphson algorithm 
stops when the maximum iteration number is reached.  In that case, the mechanism doesn’t exist and any objective function to 
optimize it has to be penalized as explained in the next section. 

The second and third cases will be thus treated in the same way. 
 
5. Penalty Optimization Method 
 
5.1. How to extend the objective function outside the closed-loop border ? 
In order to perform a smooth penalization of the objective function, it is important to find the closed-loop border in the parameter 
space.  The idea here is to observe the conditioning of the constraints Jacobian Jv which indicates the proximity of that border where 
the determinant of Jv vanishes to zero. 
Let’s take a theoretical example with two parameters P1,P2 (see Fig.2).  Let suppose that the optimizer is calling the objective 
function outside the closed-loop border, at point X.  Then a fixed point G is chosen inside the boundaries and the penalization is 
computed along the direction GX from a point F.  The latter is located close to the border, where the absolute value of the 
determinant of Jv reaches a threshold (different from zero), to avoid singular configurations. 
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Fig. 2. Penalization along direction GX 

 
The search of F is simply done by dichotomy on the segment [G,X].  Finally, the value of the objective function in X is an 
extrapolation of its value in F.  This extension is continuous, monotonous (linear for instance), with a derivative which is not 
necessarily continuous in F. All those properties depend on the needs of the optimization algorithm.  As proposed in [5], we apply 
here a continuous linear extension from F to X with a derivative discontinuity in F, and the algorithm used is the simplex (Nelder-
Mead) which is robust but slowly converging.  Later on, we intend to try other types of extension to be compatible with more 
sophisticated algorithms. 

( ) 0h q =

[ ]q u v=

( )ivii qhJvv 1
1

−
+ −=








∂
∂= Tv v

hJ



 
5.2. The objective function algorithm 
Globally, the previous development takes place during the optimization process represented on the next diagram (Fig.3). 
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Fig. 3. Objective function calling algorithm 
 

Each time the optimizer calls the objective function, design constraints, clearly identified in advance (or even imposed by the 
designer), are first evaluated.  If  they are satisfied, the mechanism is assembled by the Newton-Raphson algorithm described before.  
If it converges, the objective can be computed for that configuration and possibly more times for other ones.  Otherwise, if one of 
both tests is unsatisfied, the penalization process begins.  First, the border is found by dichotomy and then, the objective function is 
continuously extended to return an artificial value to the optimizer. 
 
6. First example : design of a planar ejector 
The system (drawn in gray, Fig. 4) consists of two bodies : a ball (radius : 7 cm, mass : 300g) and a simple articulated arm (mass : 
100g) which has to push the ball over a distance L (20 cm, slope : 30°).  The contact point is supposed fixed on the right arm tip 
thanks to a roller (whose axial rotation is disregarded).  This first - quite academic - example can thus be modeled as a slider-crank 
mechanism whose optimization parameters are the position (x,y) of the rotation axis and the length of the crank larm (see Fig. 4). 
 

 
 

Fig. 4. Planar ejector model 
 

Two different cost functions are tested. 
•  The first one to minimize is the maximum torque obtained for a given constant acceleration from a null velocity (i.e. a velocity 

ramp from 0 m/s to 0.4 m/s). 
•  The second objective to maximize is the velocity of ejection for a given constant torque (i.e. 1.4 Nm). 

The restrictions of the optimization problem are the assembling constraints and a so-called “pushed-ball” constraint.  The latter 
ensures that the ball is pushed instead of being pulled, meaning that the crank (the arm) must always be located behind the ball. 
The results for both objective functions are shown in the next table. 



Table 1. Optimization results of the planar ejector problem 
 Max. torque 

(acc. = 0.4 m/s2) 
Velocity 

(T = 1.4 Nm) 
Final value 0.168 Nm 5.03 m/s 

x -1.46 cm -3.08 cm 
y 7.04 cm 6.58 cm 

larm 9.57 cm 8.21 cm 
 
Starting with x = -2 cm, y = 12 cm and larm = 12 cm, the optimal values are found with 1108 and 390 evaluations of both objective 
functions respectively.  This corresponds to computation times respectively of 94 sec. and 113 sec. on a processor AMD Duron 750 
MHz, using the Matlab Optimization Toolbox (the objective function is written in Matlab language). 
 
6. Application To Parallel Manipulators :  Kinematic Conditioning Optimization 
Dexterity of a manipulator is a kinetostatic performance that can be measured from the condition number κ of its forward-kinematics 
Jacobian J [6].  In other words, if this Jacobian J is defined by :   

(5) 
 

where q� is the joint velocity vector and x� the velocity vector of the end-effector Cartesian coordinates (position and orientation), 
this dexterity index is the ratio of the largest singular value of J to the smallest one. 
It assumes that all entries of J have the same units.  Otherwise, this dimensional inhomogeneity is resolved by introducing a 
normalizing characteristic length, as suggested in [6].  The latter is used to divide the positioning rows of J, making it dimensionnaly 
homogeneous.  Let us note that its value itself comes from the minimization of the condition number over all the reachable 
configurations. 
Coming back to our application, the goal is to optimize a global posture-independent performance index which is the mean of the 
inverses of κ over a volume V in the Cartesian space of the end-effector, also called Global Dexterity Index (GDI) [7] : 
 
 
 

(6) 
 
In the case of positioning and orientating manipulators (for instance, the HexaSlide robot), the value of κ is obviously computed after 
normalizing the Jacobian matrix, as previously explained.  By analogy with the optimization proposed in [6], the characteristic length 
becomes thus an additional parameter of our optimization problem. 
 
6.1. Three dof Delta-type robot              
Since the Delta robot (Fig. 5) is a positioning manipulator, there is no need of normalizing J to compute κ.  The optimization 
parameters are the lengths (la, lb) of the legs (identical for the three legs), the characteristic radius of the base Rb, the characteristic 
radius of the mobile platform Rp, and finally the distance z between the base and the center of the desired workspace volume (here, a 
2cm-sided cube). 

 
  

Fig. 5. Delta robot model 
 

The restrictions of this optimization problem are obviously the 3D assembling constraints.  Moreover, the legs lengths are limited to a 
maximum value of 20 cm (design constraints).  The results of the optimization process are shown in the table below.  Initial and 
optimum designs are compared in Fig. 6. 

Table 2. Optimization results of the Delta manipulator 
 Initial Optimum 

 Average dexterity 36 % 95 % 
la 10 cm 13.6 cm 
lb 10 cm 20 cm 
z 10 cm 13.3 cm 

Rb 5 cm 6.26 cm 
Rp 2 cm 3.29 cm 
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Fig. 6. Initial and optimum designs of the Delta robot optimization 
 

That optimization result is obtained with 395 evaluations of the objective function which takes 40 sec. on a processor AMD Duron 
750 MHz.  Note that in this case, the function is written in C-mex langage and compiled using the “mex” Matlab compiler.  In order 
to validate this result, other optimization processes are run, starting with random initial conditions : over 100 runs, this optimal result 
is found 77 times, which may reasonably convince us that this optimum is global. 
 
6.2. Six dof HexaSlide robot 
The HexaSlide manipulator (Fig. 7) has 3 positioning and 3 orientating degrees of freedom which requires to normalize J before 
computing κ each time the parameters change, i.e. at each call of the objective function.  As described above, this involves an 
additional optimization parameter : the characteristic length. 
The other parameters of this optimization problem (cfr Fig. 7) are the legs length l, the characteristic radius of the platform RB, the 
gap H, the horizontal and vertical slant angles α and β of the prismatic actuator rail axes, the separation angle y between ball-and-
socket joints on the platform, and finally the distance Gz between the base and the center of the desired workspace volume (see [8] 
for more details).  The actuator range lmax and radius RA of the base are predetermined to sufficiently large values.  
 

 
  

Fig. 7. Hexaslide robot model 
 

An interest of that application is to compare the results of those obtained in a similar paper talking about architecture optimization for 
accuracy or the HexaSlide [8].  In that paper, the objective function is based on a global volumetric error analysis which is more 
detailed than here.  But the search of the optimum seems too restrictive from our point of view since the workspace volume is fixed 
at one third, from the bottom, of the distance between the upper and the lower limits of the whole translational workspace.  Here, that 
distance is part of the optimization parameters. 
The results are shown in table 3 below and you can also compare initial and optimum design in Fig. 8. 
 

Table 3. Optimization results of the HexaSlide manipulator 
 Initial Optimum 

Average dexterity 0.1 % 50 % 
Gz 100 cm 45.6 cm 
l 0.9928 m 1.676 m 

RB 16.5 cm 52.1 cm 
α 0° 48° 
β 30° 47° 
H 22 cm 27.6 cm 
ψ 83.6° 104.4° 
Lc 1 mm 0.002 mm 



 
 

Fig. 8.  Initial and optimum designs of the HexaSlide robot optimization 
 
Let’s remark that the optimization process doesn’t take into account the problem of collisions since the legs of the optimum design 
are crossed.  Actually, we haven’t set any such constraint to let the maximum freedom to the optimizer. 
 
7. Conclusion 
In this paper, a penalization method has been developed to optimize the design of closed-loop mechanism.  The issue of such 
problem lies in the assembling constraints and the way to solve them.  So, we have shown how to exploit the conditioning of the 
constraints Jacobian to penalize the objective function.  Finally, applications are proposed :  first, an academic example of planar 
ejector to illustrate the method, and  finally, 3D more realistic applications dealing with parallel robot dexterity. 
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