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1. Abstract

This paper presents a simple approach to optimize the dimensions and the positions of 2D mechanisms
for path or function-generator synthesis. The proposed method is particularly adapted to assembled
mechanisms since time-varying dimensions always satisfy the assembly conditions which may represent
a real difficulty when dealing with closed-loop mechanisms. The objective is to minimize the strain
energy of the bars - considered as flexible - of the mechanism when this one follows perfectly the desired
path. Two optimization strategies are developed and criticized. The first one is based on separated
optimizations of design parameters and point coordinates. The second one is more global and is per-
formed in two stages : multiple local synthesis are needed first to find the initial point coordinates, and
then a global synthesis stage is undertaken to find both the best dimensions and coordinates. The use
of natural coordinates is also particularly interesting since the only non linear functions to optimize are
distance functions, and the objective function is rather well-conditioned for a gradient-based optimizer.

The question of finding the global optimum is addressed and discussed. Since a standard genetic
algorithm may fail to find it, a different approach is proposed: exploring the design space to find several
local optima among which the designer will choose the most relevant one taking other design constraints
into account. A simple technique is applied which consists in running multiple optimization processes
starting from uniformly-distributed initial dimensions (full-factorial design of experiments) across the
parameter space. Three applications are presented: a simple four-bar path synthesis to illustrate the
optimization strategies, a four-bar steering linkage synthesis for function generation – Ackermann rela-
tion – to highlight the limits of both strategies, and eventually a six-bar steering mechanism to explore
the design space and find different local optima.
2. Keywords: optimal synthesis, natural coordinates, closed-loop mechanisms

3. Introduction

Optimization of complex multibody systems represents a real present interest along with the increasing
development of computer resources. This is particularly true considering closed-loop mechanisms whose
assembling constraints have to be satisfied before any analysis. They thus need a special attention when
evolving the optimization process strategy. A few solutions have been proposed to deal with them. For
example, the authors have suggested to penalize properly the objective function using the conditioning
of the constraints Jacobian matrix [1]. This extends the parameter space and leads to a well-defined
objective function but remains difficult to optimize. Another well-known approach in mechanisms path
synthesis is to deform the mechanism subject to a perfect following of the desired path [2, 3, 4]. From
this point of view, the path-following objective becomes a optimization constraint while the deformation
energy is the actual objective to minimize. Therefore, the mechanism naturally assembles during the
optimization process while the objective is fulfilled.

In optimal synthesis, a second issue is the choice of the formalism to describe the geometry of the
mechanism. Among the different possibilities, one can mention the common use of relative coordinates in
real [5, 6, 7, 8] or complex [9] form. This formalism has the advantages to limit the number of assembling
constraints but it introduces trigonometric functions involving angular variables. This enhances the non-
linearity of the problem and makes the optimization more tricky. The use of natural or point coordinates
is also wide-spread [2, 4, 10, 11]. In comparison with relative coordinates, natural coordinates involve
additional algebraic constraints. However, these equations only consist of linear or distance functions.
This coordinates system is thus well suited to gradient-based optimization techniques such as least
squares methods.

The proposed method tries to combine these two features: deformable mechanisms and natural
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coordinates. The first one enables to solve the problem of non-assembly while the second one greatly
simplifies the type of objective function. The optimization strategy is based on the minimization of the
deformation energy over the followed path, and a subsequent update of the mean lengths as suggested in
[5]. This minimization-update sequence is repeated until convergence when the total deformation energy
does not vary anymore or is sufficiently low. The method has a rather slow convergence rate but shows
a monotonic decrease, and may sometimes fail to find the global optimum. To improve the convergence
rate, the technique is extended to a global synthesis approach as proposed by [4]. Afterwards, this
improvement has enabled to outline different local optima starting from different initial parameters.
The choice of the optimal mechanism among these local optima relies on other design constraints which
are difficult to compute and not taken into account in the original problem. By the way, it is also shown
that the use of a standard genetic algorithm does not nexessarily enable to reach the global optimum.
Since it is interesting for the designer to find all the best mechanisms, a mapping of the design space is
proposed to explore most of the possible optima.

Different kinds of requirements may be encountered in dimensional mechanisms synthesis: path
or function generation, body guidance, or mixed problems. Most applications concern path synthesis
problems [5, 6, 7, 8, 9] and the four-bar mechanism will constitute a running example in the following.
More realistic applications of function-generation synthesis will also be given based on the Ackerman
steering linkage problem: a four-bar and then a six-bar synthesis. These last ones have been suggested
by [12, 13, 14].

The paper is organized as follows: in Section 4, the general optimization problem is formulated in
terms of objective function and sensitivity analysis. In Section 5, we develop the optimization strategy
applying two methods to the path synthesis of a four-bar mechanism as running example. Section 6
presents a more realistic application of function generation synthesis for the four-bar Ackerman steering
linkage. Section 7 deals with the mapping of the design space to find different local optima. Before
some conclusions and prospects in Section 9, the application of the mapping technique is performed on
a six-bar steering linkage in Section 8.

4. Problem formulation

The problem formulation is divided into two subsection: first, the objective function is evolved and then
the corresponding sensitivity analysis is worked out.

4.1. Objective function
Let us consider the well-known 2D example of a four-bar mechanism which has to follow a desired path
in dotted line (see Figure 1.a). In order to make the mechanism exactly follow the given path, the
four-bar is modeled by a deformable mechanism replacing the bars and triangle by five springs whose
stiffness are kj and natural lengths lj , j = 1 . . . 5 (see Figure 1.b).

→

a. Four-bar mechanism. . . b. . . . modeled by a deformable mechanism

Figure 1: Path synthesis of a four-bar mechanism

The desired path is discretized in N points, leading to N different configurations of the mechanism.
When it moves, the different points P0 . . . P4 composing the mechanism have different behaviors: P0
and P4 stay at the same place, P3 follows exactly the N points on the path and P1 and P2 are free.
These points can thus be arranged in three groups: the static points P0, P4, the moving point P3 and
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the floating points P1, P2. Their absolute coordinates are saved respectively in the following vectors:
SP , MP and FP . As the moving point and the floating points may have different coordinates at each
configuration, MP and FP are referenced by the index i: MPi and FPi, i = 1 . . . N .
Grouping the natural lengths lj in the column vector L and the stiffness parameters kj on the diagonal
of the stiffness matrix K, we define the global strain energy as a scalar cost function:

E (SP,MP1, . . . ,MPN , FP1, . . . , FPN , L,K) =
1

2

N
∑

i=1

(Di − L)
T

K (Di − L) (1)

where Di is a column vector containing five distance functions dj(SP,MPi, FPi), j = 1 . . . 5, between
each couple of points. For the moment, the only known parameters are the 2N coordinates of the
moving point. The stiffness parameters kj may be chosen by the user. A priori, they are all equal to
unity but this may change afterwards making some bars stiffer than others if necessary. Therefore, the
optimization problem is stated as follows:

min
SP,FP1,...,FPN ,L

1

2

N
∑

i=1

(D (SP,MPi, FPi) − L)
T

K (D (SP,MPi, FPi) − L) (2)

where the actual design parameters are SP and L. This constitutes an obvious non-linear least squares
optimization problem. In the following, two propositions are given to improve the homogeneity of the
problem and to avoid multiple closed-loop configurations.

Firstly, remark that the actual design parameters SP and L are located in different parts of the
objective function. This makes the objective differently sensitive to both of them. We propose to
transform each static point coordinates into the natural lengths of two springs (see Figure 2). In this
way, a new floating point is inserted in FP , the vector SP is appended to the vector L and two new
stiffness parameters are added to the diagonal of matrix K. Note that the corresponding distance
functions dj becomes actually the two coordinates which are not always positive: this introduces so-
called oriented springs according to the sign of their natural lengths. Doing this transformation, all the
design parameters are grouped in the same vector L.

→

a. Static point. . . b. . . . transformed into a floating point and two springs

Figure 2: New model of static points

The second proposition relates to the three springs composing the triangle P1, P2, P3. Fixing the
points P1 and P2, two stable positions remain for P3: above or below the P1−P2 line. To remove the
ambiguity, the use of oriented springs (see above) is proposed to locate univoquely P3 with respect to
P1 and P2. Thus, the two springs P1 − P3 and P2 − P3 are replaced by two perpendicular oriented

springs as shown in Figure 3.
Finally, taking both propositions into account, the objective function (see Eq. 1) becomes:

E
(

MP1, . . . ,MPN , FP1, . . . , FPN , L̃, K̃
)

=
1

2

N
∑

i=1

(

D̃i − L̃
)T

K
(

D̃i − L̃
)

(3)

leading to the following rearranged optimization problem:

min
FP1,...,FPN ,L̃

1

2

N
∑

i=1

(

D̃ (MPi, FPi) − L̃
)T

K̃
(

D̃ (MPi, FPi) − L̃
)

(4)
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→

a. Triangle element. . . b. . . . transformed by replacing two springs

Figure 3: New model of triangle element

where the tilde symbol stands for both modifications described above.

4.2. Sensitivity analysis
Two kinds of optimization variables are now considered (see Eq. 4): L̃ and FPi, i = 1 . . . N . The
gradients of the global energy function with respect to these both vector are given by:

∂E

∂FPi

=
∂D̃T (MPi, FPi)

∂FPi

K
(

D̃ (MPi, FPi) − L̃
)

(5)

∂E

∂L̃
= −

N
∑

i=1

K̃
(

D̃ (MPi, FPi) − L̃
)

(6)

Remark that Eq. 5 only depends on the ith configuration if the design parameters L̃ are fixed. This
means that the sensitivity of the global energy function with respect to the ith floating point coordinates
vector is independent of the other configurations if the design parameters are known. This is the basis
of the optimization strategy described in the next Section.

5. Optimization strategy

The optimization strategy has been developed from a first simple approach to a more global synthesis.
The original idea relies on multiple local optimization followed by the update of the length parameters.
This update strategy is then extended to make the method more global.

5.1. Mean values update
This strategy is inspired from Hansen [5] who proposed to minimize the deviation of each variable
dimensions over a cycle and to update the mean value after each cycle. The main difference here is
the use of natural coordinates instead of relative coordinates. The corresponding algorithm flowchart is
summarized in Figure 5.a. Starting from given values of the design parameters L̃, the algorithm begins
minimizing the total energy with respect to the FPi. This is equivalent to solving N local optimization
problems because the FPi are independent and L̃ is constant:

min
FP1,...,FPN

1

2

N
∑

i=1

(

D̃i − L̃
)T

K̃
(

D̃i − L̃
)

⇔
1

2

N
∑

i=1

min
FPi

(

D̃i − L̃
)T

K̃
(

D̃i − L̃
)

(7)

These optimum distance functions D̃i enable to compute new design parameters L̃ by taking their mean
values L̄

N
. This is done in the second step of the algorithm (see Figure 5.a) and refers to the necessary

condition for a local minimum (see Eq. 6):

∂E

∂L̃
= 0 ⇔ L̃ =

1

N

N
∑

i=1

D̃ (MPi, FPi) (8)

Note that a simple Levenberg-Marquardt algorithm is used for the local least squares optimization
problems which only involve a few variables (e.g. 9 design parameters in the case or the four-bar).

Figure 4 presents a four-bar path synthesis example excerpted from [5]. The initial, desired and
resulting path are shown in Figure 4.a. In Figure 4.b, the global energy evolution is plotted. Figure 4.c
presents the initial and resulting mechanisms as well as the one obtained in [5].
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Figure 4: Optimization example with the ”Mean update” algorithm

As it can be observed in the Figure 4.b, this algorithm works well but is slow convergent. Moreover,
it may fail in some cases, e.g. when the minimum energy function draws a valley in the parameters space
(see Section 6.2., Figure 8). This explains the new improvement developed in the next Section.

a. ”Mean update” algorithm b. Local and global synthesis

Figure 5: Optimization algorithm flowcharts

5.2. Global synthesis
What is proposed here is to replace the natural lengths update by the global synthesis proposed by [4].
The new algorithm is represented in Figure 5.b. The beginning is the same as for the previous algorithm
but the multiple local optimizations (see Eq. 7) are performed only once. They are used as hot starting
points for the global optimization which involves all the floating points coordinates as well as all the
design parameters. The number of optimization parameters may increase rapidly (e.g. 9 + 4N = 49 for
the four-bar mechanism and 10 synthesis points) if the mechanism and/or the path get more complex.
As the parameters space is larger, a more robust optimization algorithm is needed: for instance, the
so-called dog-leg algorithm described by Powell [15]. This trust-region method is well-known to solve
systems of nonlinear equations. Applied to the four-bar steering synthesis, this method gives better
results than the previous one as shown in Section 6.2.
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6. Application to steering linkage synthesis

This Section presents an interesting application of function generation synthesis. The goal is to optimize
steering linkage of vehicles. In the first subsection, the function to generate is established from the
Ackermann condition. Secondly, both previous optimization strategies are applied to a four-bar steering
linkage and then compared.

6.1. The Ackermann condition
One of the main requirements of the steering mechanism of a vehicle is to give to the steerable wheels
a correlated turning, ensuring that the intersection point of their axis lies on the extension of the rear
wheel axis (point P in Figure 6). The Ackermann relation of correct turning is:

cot δo − cot δi =
l

L
(9)

where δo and δi are the outer and inner wheel angles respectively, l is the wheel track and L the wheel-
base of the vehicle. Only the wheel track-wheelbase ratio influences this Ackermann steering relation.

Figure 6: The Ackermann condition

6.2. Four-bar steering linkage synthesis
The modeling of the four-bar steering linkage is worked out according to the rules depicted in Section
4.1. To satisfy the Ackermann condition of Eq. , the correlated path-following of the wheel centers are
imposed while the inner wheel angle takes 20 different values between 0 and the maximum (See Figure 7).
Also observe in the Figure that the static points are not transformed into floating points because they
do not belong to the design parameters . These parameters are made of three natural lengths a priori:
a, b and l. However, the problem symmetry reduces their number to only two – a and b – because:

l =
∥

∥

∥

−−−→
P0P5

∥

∥

∥
− 2a. Note that this is particularly interesting to visualize the objective function in two

dimensions once minimized with respect to the FPi.

→

a. Four-bar steering linkage. . . b. . . . modeled by a deformable steering linkage

Figure 7: Function generation with a four-bar mechanism

As announced before, this nice example can show some drawbacks of both previous strategies. As
the minimum energy function (see Eq. 7) draws a valley in the design parameters space, the evolution
of the mean update algorithm may not converge to the local optimum (see Figure 8.a). Starting from
a = −0.5m and b = 0.5m, the process stops after 3250 iterations because the total energy does not
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change anymore (see Figure 8.b). Remark that the function is penalized around the origin to avoid
singular configurations of the mechanism.
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Figure 8: Wrong convergence of the ”mean values update” strategy

As for the global synthesis algorithm, it is observed that the optimization process may reach one of
both local optima [13]. Starting from different initial parameters, it is sometimes hard to guess where
it converges. The Figure 9 shows that running the algorithm from initial points located on a uniform
7-by-7 grid, these processes lead to 47 relevant optimization results. Among these results – symbolized
by non-bold ”o” and ”x” –, 11 of them converge to one local optimum – symbolized by bold ”x” –
while the 36 others reach another one – symbolized by bold ”o” – which is actually the global one. The
optimization method is thus not global.

Figure 9: Optimization of the steering linkage from different starting points

The two best linkages are drawn in Figure 10: a trailing one and a leading one. Their steering error
functions are plotted in Figure 11 which represents the deviation of the outer wheel angle with respect to
the Ackermann condition when the inner wheel turns from 0◦ to 40◦. The small difference between both
mechanisms performances do not justify the selection of one instead of the other. The last decision comes
to the designer who will perhaps choose the worse trailing mechanism because of its smaller dimensions.

Figure 10: Two local optima found for the 3-bar steering linkage

7. Exploration of the design space

Finding the unique global optimum is not easy even with genetic algorithms as shown in the next
Subsection. However, as explained in the previous example, it may be interesting to propose several
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Figure 11: Steering error of both optimum linkages

local optima to the designer. The second Subsection describes a simple method to explore the entire
parameters space in order to do that. This method is applied to a more complex six-bar steering linkage.

7.1. Global optimization may fail with genetic algorithms
How to find the global optimum ? Always a tricky question. One may propose to use a standard genetic
algorithm to explore the design space at best. But this is not as reliable as it could seem to be. The cost
function is the resulting total strain energy after the minimization with respect to the FPi (see Eq.7).
Two subsequent run of the G.A. may give different local optima for the four-bar linkage as shown in
Figure 12 to compare with Figure 9.

Figure 12: Two evolutions of the population distribution along the generations

7.2. Full-factorial design of experiments
The actual most relevant issue is to find not the global optimum but the one that satisfy all design
constraints not necessarily taken into account in the optimization computing. If it may be easy for the
four-bar linkage, this is not the case for the six-bar described in Figure 13. This model is composed of
five design parameters – a, b, l1, l2, y – which are reduced to four because of the symmetry [14]. The idea
is to perform multiple optimization processes starting from points located on a full-factorial design of
experiments in the parameters space. This design has firstly 2 levels leading to 2P processes where P

is the number of parameters. The level number is then increased to 3, 5, or 9 to refine the results. All
these designs reuse the results of the previous levels. For example, in the case of the six-bar linkage, this
gives successively 16, 65 (=81-16), 544 (=625-81) and 5936 (=6561-625) optimization processes at each
of these levels. It is hoped that the number of local optima stabilizes with the increasing levels.

Regarding the six-bar steering example, the number of local optima is reported in Table 1. The
grouping of all the optimization results is undertaken on the basis of the parameters vector norm, after
the rejection of the non-convergent processes. When the starting grid is refined, the number of different
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Figure 13: Six-bar steering linkage

local optima increases much slower than the number of effective processes. It could have been interesting
to continue until the number of different local optima tends to a constant but it is too time-consuming.
Obviously, this promising approach has to be improved in the future.

Table 1: Numerical results of the mapping

Level number of number of convergent number of different number of local optima
optimizations optimization local optima per convergent optimizations

2 16 15 6 0.4
3 81 78 11 0.141
5 625 545 15 0.0275
9 6561 5591 26 0.0047

Figure 14: Five examples of local optima for the six-bar linkage

In Figure 14, five local optimum linkages are shown among the 26 of the level 9 (see Table 1). As
previously explained, the selection of the most relevant one is not straightforward and depends on other
design constraints. For example, one may choose the fourth mechanism because of its compactness.

8. Conclusion and prospects

Based on a strain energy approach of deformable mechanisms coupled with the use of natural coordinates,
a nice optimization method has been developed to solve path synthesis and function generation problems.
Divided into two stage, this method tries to minimize first the total deformation energy with respect
to the point coordinates and updates thereafter the natural lengths of the springs. This first method
has then been extended to cope with some limitations due to the second stage. This stage has been
replaced by a global synthesis approach. It has seemed to be more robust but still not global regarding
the four-bar steering linkage application. Moreover, genetic algorithms have been shown to also miss
the global optimum. The interest of finding this global optimum has been reviewed and replaced by
exploring the design space to find the most of local optima. A simple but time-consuming method
has thus been proposed based on full-factorial design of experiments whose level increases progressively
reusing previous results.

In terms of the prospects, our effort will concentrate on improving the exploring strategy of the
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design space. Other type of design of experiments could be used or the refinement strategy could be de-
veloped further. To cope with the problem of time consuming, a better use of the multiple optimization
processes could be made, saving and exploiting intermediate informations like the function evaluations
during the processes. Extending the application field is also an interesting prospect: other kinematic
objectives instead of path or function-generator synthesis or even dynamical ones could be investigated.
Three-dimensional mechanisms could be modeled. The more challenging issue of topology optimization
of mechanisms could be tackled on the basis of this energy formulation, taking the stiffness parameters
as topological parameters.
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