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Abstract. This paper presents and describes an intermediate appreduth takes its place
between the two classical methods of shape and topology aption. It is based on using
the recent Level Set description of the geometry and thd ed¥ended Finite Element Method
(X-FEM). The method benefits from the fixed mesh work using M-&#&d from the curves
smoothness of the Level Set description. Design varialveeslape parameters of basic ge-
ometric features. The number of design variables of thismfdation remains small whereas
various global and local constraints can be considered. A g®blem which is investigated
here is the sensitivity analysis and the way it can be carriedpoecisely and efficiently. Nu-
merical applications revisit some classical 2D (acaderbefjchmarks from shape optimization
and illustrate the great interest of using X-FEM and Levdl @&sscription together. The paper
presents the results of stress constrained problems ubmgmoposed X-FEM and Level Set
based formulation. A central issue is the sensitivity asialyrelated to the compliance and/or
the stresses) and the way it can be carried out efficiently. ekigpattention is also paid to
stress constrained problems which are often neglected ier atbvel Set Methods works.
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1 INTRODUCTION

Topology optimization has experienced an incredible sioaeshe seminal work of Bendsge
and Kikuchi [2] and is now available within several commal@ackages and finite element
codes. Itis used with great success in industrial apptioati Practically, one major advantage
of the optimal material distribution formulation is to bel@lbo work on a fixed regular mesh.
The drawback is that this formulation comes to very largeesoptimization problems, so that
one generally considers very simple design problems as thanom compliance problem
with a single volume constraint. Introducing local constig can lead to problems that are
hugely difficult to handle, whereas controlling geometraznstraints, which are mainly related
to manufacturing considerations, requires some sopatgiits. Finally the optimal structure
picture needs to be interpreted to construct a parametric @ael.

Meanwhile, shape optimization had received attentionesthe beginning of the eighties,
but remain quite unsuccessful in industrial applicatioNgvertheless, shape optimization of
internal and external boundaries is of great interest taavgthe detailed design of structures
against many criteria as restricted displacements orsstrggria. The shape optimization in-
troduces a few design variables since the design probleworisulated on the parameterized
CAD model level. The major difficulty is related to the mesh @g@ment problems coming
from the large shape modifications. Mesh distorsions andeHitiement errors can be reduced
using remeshing between two iterations and mesh adaptatitsy However a major technical
problem also stems from the sensitivity analysis that megithe calculation of the so-called ve-
locity field because of the moving mesh. It turns out that shggimization remains generally
quite fragile and delicate to use in industrial context.

In order to circumvent the technical difficulties of the mayimesh problems, a couple of
researches have tried to formulate shape optimizationfixild mesh analyses using fictitious
domains as in Ref. [6], based on fixed grid finite elements in Bfor more recently using
projection methods as in Ref. [9]. The present work relieshenrtoveleXtended Finite El-
ement MethodX-FEM) that has been proposed as an alternative to remgshéthods (see
Ref. [3] or [4] for instance). The X-FEM method is naturallysasiated with thé.evel Sefl11]
description of the geometry to provide a very efficient tmeat of difficult problems involving
discontinuities and propagations. Up to now the X-FEM mdthas been mostly developed for
crack propagation problems [3], but the potential intecdshe X-FEM and the Level Set de-
scription for other problems like topology optimizationsvdentified very early in Belytschko
et al. [5], while the advantages of the Level Set method ncstiral optimization was clearly
demonstrated by Wang et al. [14] or Allaire et al. [1].

The authors see the X-FEM and the Level Set description ategarg way to fill the gap
between topology and shape optimization. The method camuakfigd asgeneralized shape
optimizationas it has smooth boundary descriptions while allowing togplmodifications as
holes can merge and disappear. X-FEM enables working on @ ifinesh, as in topology op-
timization, circumventing the technical difficulties ofeghe optimization. The structural shape
description uses basic Level Set features (circles, rgtganetc.) that can be freely combined
to generate any shapes. The design variables are paramkthesLevel Set features, while
constraints can be either global (compliance, volume) call¢stresses) responses as in shape
optimization. A key issue for this problem is the sensijivdéinalysis. A semi analytical ap-
proach has been developed for the compliance, the disp&dsrand the stresses. The work
presents clearly validated solutions and still open qaestand difficulties. For the numerical
applications a complete solution of shape optimizationgitievel Set description and X-FEM
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has been implemented in the object oriented software, OTEEDRpen Object Finite Element
Lead by Interactive User) [10].

The layout of the paper is thus the following. The Extendedit€iElement Method, the
Level Set representation and the interaction between thvesmethods are reminded in sections
2 and 3. Section 4 states the formulation of optimizatiorbf@mm and difficulties introduced by
the X-FEM and the Level Set description. Sensitivity analysaddressed in section 5. Finally
in section 6 the applications are presented to illustragepttoposed extended finite elements
and their application to generalized shape optimization.

2 THE EXTENDED FINITE ELEMENT METHOD

Up to now the eXtended Finite Element Method [3, 4] has beeinlpndeveloped for crack
propagation problems, but the interest of the X-FEM and L&e methods possess large po-
tential for further application fields. Hence, Belytschita:l (see [5]) identified very early the
potential of these methods for shape and topology optinoizat

The main strength of the X-FEM method is its capability t@alldiscontinuities inside the
finite elements. Hence, this one enables to include gearmitindaries, cracks, material or
phase changes that are not coincident with the mesh and theo@kpensive mesh regeneration
for crack evolution problems.

2.1 Thebasisof the method

In the classical Finite Element Method, it is not possiblentodel a discontinuity inside an
element because the trial shape functions used are redaitexlat leasC*. Then, in order to
model a type of discontinuities inside the elements ancetbes to be able to represent discon-
tinuities in the physics fields, it is necessary to add spsbiape functions to the finite element
approximation. Hence, in the case of cracked structuresjigplacement is the discontinuous
field and the modelisation of this field needs therefore tespss discontinuous shape func-
tions in order to represent it precisely. The classicaldieiement approximation used is then
extended to embed the discontinuous shape function as foltb@ing equation:

u(x) = Zu,NZ(X) + Z a;N;(x)H(x) (1)

in this expression)V;(x) are the classical shape functions associated to degres=edbinu;.
The N;(x)H (x) are the discontinuous shape functions constructed byiptyiftg a classical
N;(x) shape function with a Heaviside functidi(x) (presenting a switch value where the
discontinuity lies). Note that this set of extended shapetions are only supported by the
enriched degrees of freedam. Morevover, only the elements near the discontinuity ugual
support extended shape functions whereas the other elemsn&in unchanged (i.e. classical
FE). The modification of the displacement field approximatioes not introduce a new form
of the discretised finite element equilibrium equation leaids to an enlarged problem to solve
(see Ref. [4] for details):

_ Kuu Kua U _ fiwt
camee 2 2][2]- (5
As the elements can now present discontinuous shape fasctize numerical integration
scheme has to be modified in order to take care of the diseotytinin our implementation,

the elements embedding a singularity are divided into sangular elements aligned with this
discontinuity over which an integration is processed (ged.

3
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2.2 Representing holes

The modeling of material-void interfaces with X-FEM [12ffdrs only marginaly from the
cracked structure case. Hence, for void inclusions andshote displacement field is now
approximated by:

u(x) = 3w NV () ©
where F
1 of x € material zone
Vix) = { 0if x € void zone } (4)

One can note that this functidn models perfectly the singularity presented inside theldsp
ment field as this function imposes a value zero when oudtiglenaterial (see Fig. 1).

3

Figure 1: Representation of the shape function of node 1 an element

The elements lying fully outside the material are removednfithe system of equations,
whereas the partially filled elements are integrated usiagke FEM integration procedure over
solid sub-domain (see Fig. 2). Consequently, the size of thlelgm is not augmented regard-
ing to a finite element model.
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Figure 2: Sub-division of a quadrangular element and Gaoisgp

Modeling holes with the X-FEM is a very appealing method fo shape optimization but
also for the topology optimization as no remeshing is neealelbino approximation is done on
the nature of the voids in opposition to the power penabiratif intermediate densities method
used in topology optimization (SIMP). However, the X-FEMtimed needs more complicated
integration procedure and elements.
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3 THELEVEL SET DESCRIPTION

The explicit representation of the structural shape ofpatac CAD representation forbids
deep boundary or topological changes such as creation mnfa$ holes. This limitation is
one of the main reasons of the low performance generallycassd to the shape optimization.
Conversely, the Level Set method developed by Sethian [1idhwdonsists of representing the
boundary of the structure with an implicit method allowsstkind of deep changes.

The Level Set method is a numerical technique first developé&@ck moving interfaces. It
is based upon the idea of implicitly representing the isieet as a Level Set curve of a higher
dimension function)(x, t). The boundaries of the structure is then conventionaflyasented
by the zero level i.ex)(x, t)=0 of this functiony, whereas the filled region is attached to the
positive part of the) function. In practice, this function is approximated on &fixnesh by a
discrete function which is usually the signed distance tiondto the curvd™:

Y(x,t) =+ min x — x| ()
P(x,t) >0« Solid (6)
Y(x,t) <0< Void

The sign is positive (negative) ¥ is inside (outside) the boundary definediby). Applied
to the X-FEM framework, the Level Set is defined on the stmattmesh and a geometrical
degree of freedom representing its Level Set function vel@ssociated at each element node.
The Level Set is then interpolated on the whole design domdinthe classical shape function
of the finite element approximation:

P(x,t) = Z?/fiNi(X) (7)

The combination of different Level Sets is also one of theeatipg characteristic of this
method. This property allows easy treatment of mergingfates and connectivity modifica-
tions. However one drawback of the Level Set descriptios ilethe difficulties encountered
in representing sharp corners with a rather coarse meshoaggin the figure 4 (b). This one
also illustrates the use of a Level Set for the descriptiah@internal boundaries of an X-FEM
model.

OOfelie Graph

Sharp Corner

Figure 3: NURBS curve representing the boundary
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OOfelie Graph u OOfelie Graph

I 7.268-008

| 5.070-00%

l.evel Set

=
’

(a) Level Set representation of NURBS curve (b) Displacement of the X-FEM model

Figure 4: Geometric representation and X-FEM displacemesntlt

To deal with this inherent problem, two solutions exist:

1/ increase the refinement of the mesh, which can be very sikgeim terms of CPU cost
for the X-FEM resolution.

2/ use a higher order of shape functions in order to intetpdlae Level Set boundary with
more accuracy inside the elements.

Inside the cut elements, the Level Set is interpolated tipeghen first order finite element
are used. As a consequence, the representation of the EBIdan overestimate or underesti-
mate the surface (volume) of the structure. Hence, the asbmof the surface depends on the
number of cut elements, on the position of the inteface sthe element and of course on the
mesh refinement. To illustrate this phenomenon, we have otadghe variation of the surface
with respect to the position of a hole on a square plate (F)g.This error can causes some
"zigzagging” problems during optimization if one uses ayeoarse mesh and a constraint or
objective function related to the area (volume).
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Figure 5: Evolution of the surface
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4 FORMULATION OF OPTIMIZATION PROBLEM

The formulation of the considered optimization problemimikar to that of a shape opti-
mization problem, but its solution is greatly simplified mka to the use of the X-FEM and
Level Set description as no velocity field and mesh pertuwhatre needed.

The geometry and the material repartition are specifiedjusenvel Sets representations. The
positive part of the Level Set represents the region whesethie material and the negative part
the void. The user has a library of basic geometric featundssvel Sets) that can be combined
to create almost any structural geometry. The availablengéac features are circles, ellipses
and all polygons. The design variables are chosen amongetbmeajric parameters of these
features.

The optimization problem aims at finding the best shape foimizing a given objective
function while satisfying mechanical and geometrical gesestrictions. The mechanical con-
straints can either be global responses (e.g. compliantane) or local ones such as displace-
ments or stress constraints.

The number of design variables is generally small as in slagienization. However the
number of constraints may be large if many local stressicéisins (e.g. stress constraints) are
considered. Nonetheless, large scale problems as in @polatimization are avoided.

The design problem is stated as a general constrained aption problem:

min  go(x)
X
st gi(x) < gl j=1...m (8)

The solution to this problem is obtained using the so-calkmliential convex programmingt
each iteration, the X-FEM analysis problem is solved andnsitieity analysis is performed.
The solution of the optimization problem is then found byngsa CONvex LINearization ap-
proximation scheme of each constraint functions (CONLIN.[The solution becomes the new
design and the procedure is repeated until convergence.

Because of the X-FEM characteristics, the geometry has ragitwide with the mesh and
the shape optimization problem is carried out dixad mesh One works here in an eulerian
approach and not in a lagrangian approach. This circumyikatmesh perturbation problems
of classical shape optimization. Sensitivity analysissdoat require the velocity field anymore.
The present formulation is then, up to a certain point, sempiiowever, some technical difficul-
ties can be encountered if a finite difference or a semi-dicalyscheme is used for sensitivity
analysis as explained in the next section. Basically, thélpro is that the perturbation must
not change the number of degrees of freedom of the X-FEMe8& matrix.

The Level Set approach is very convenient to modify the gennieecause the Level Sets
(and so the holes) can penetrate each other or disappeatioGrebnew holes is more prob-
lematic since it leads to a non smooth problem. Topologieabdtives have then to be used for
a rigorous treatment of the problem. This capability hasbeen implemented in this study.

5 THE SENSITIVITY ANALYSISMETHOD

As in classical shape optimization, the sensitivity analyg mechanical responses (such
as compliance, displacement, stress) is carried out using a semi-analytic approach. In this
approach the derivatives of stiffness matrk)(and load vectorsf] are calculated by finite
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differences with respect to a small perturbatianof Level Set parameters:

K  K(z+dz) — K(z)

or ox ©)
of  f(x+dx)—f(z)
or ox (10)

These derivatives are then used to compute the sensitivityewvarious objective functions. To
illustrate the procedure, consider the discretized doyuilin equation and the expression of the
complianceC"

1

C = iuTKu (11)

Ku = f (12)

In the case of invariant loading forces, the expression@f#éneralized displacements sensitiv-
ity allows the derivative of the complianceto be expressed as a function of the siffness matrix
derivative:

ou ~,, OK
7 - K (—%u) (13)
oC 1 ,0K
or = M " (1)

Now, if the objective function or constraint involves theesises of the problem, the sensitivity
of this response is needed. Two basic methods are avaitabkd the derivative of the stresses.
The first one, which has the drawback of being very arduoussisbin derivating the expression
of the stressess{ in all the elements:

o = Hlel (15)

whereH is the local Hooke’s matrix aniB; the matrix of the derivated shape functions of
the element. The second method is based on the computation of the Sress¢ed to the
perturbated state by using the expression of the displateseasitivities:

o(z) = HBju(x) (16)

o(z+6x) ~ HBju(r+ ox) (17)
do_ o(x+dx)—o(x)

or Ox (18)

This procedure reduces the sensitivity of the stresses @scidn of the displacement deriva-
tive. In the present paper, it is this second method whiclbleas implemented.

In the classical shape optimization, the computing comfylex the stiffness matrix sensitiv-
ity is due to the modifications of the mesh associated to theifrationdx and to the velocity
field calculation. In the present X-FEM based approach, aeerot to deal with the mesh
perturbations as one works on a fixed grid. However, this otexhibits a different draw-
back with respect to the general shape optimization as th&auof elements may change.
The critical situation happens when the Level Set is vergelm a node (see Fig. 6). Thus,
during the perturbationz of the Level Set, there is a possibility of previously empigneent
becoming partly filled with material and appearing into theulation. The new elements then

8
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introduce some new nodes and their unknown displacemehé&sefore, the number of degrees
of freedom change and the dimension of the stiffness matnxadified between the Level Set
perturbation. However, this situation is extremely unliurafree mesh used in practice but the
problem deserves our attention to be treated correctly.

The strategy that is implemented presently to circumvenifficulty is the following. As
one has only the displacement) for the elements that are present in the reference configura
tion, only these elements are taken into account while timriboitions coming from the new
partly filled elements are ignored. Hence, no new elemestsndroduced and the size of the
stiffness matrix remains unchanged. Of course, the ulgnsatution to the problem should
resort to a fully analytical sensitivity of the stiffness tm& However, this would be rather
restrictive for industrial applications.

OOfelie Graph OOfelie Graph

oo

(a) Reference Level Set and mesh (b) Perturbated level set

Figure 6: Sensitivity difficulty with semi-analytic apprda

An error is obviously introduced by this strategy becausedbntributions related to new
created elements are ignored. However, in practice, theibation of these elements would
remains so small that the neglected contribution to thinsst matrix would not have any sig-
nificant effects on the accuracy of the sensitivity. The tyal the approximation is illustrated
in the application section with the elliptical hole problem

On-going work has already singled out three further stragetp reduce the error of the
semi-analytic approach:

1/ One can keep a narrow band (boundary layer) of elements weity soft mechanical
properties around the Level Se¢t= 0 in order to prevent the variation of the total number of
degrees of freedom.

2/ One could define a tolerance zone around the Level Sete tidgtontinuity in an element
lies inside this zone, add the connected elements to thé sat ones.

3/ One could remark that when one element is created, in fdgtome node is added to the
formulation as depicted on the figure 7 (e.g. the node 4). Elemwe could take into account a
part of the contribution of this new element by only repagtto the global stiffness matrix the
terms involving the nodes already present.
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/N
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(a) Initial geometry (b) Final geometry

Figure 7: Node added to the formulation
The elementary stiffness matrix of triangle 1 and 2 are ddfine

A A A A A A

kjkll k;gl klA?)l k2AQ2 k2A?)2 k2A42

KAl - k2A11 kQAQl szgl KA2 - kSAQQ k:§2 k‘gAZf (19)
kay' kap' kg k' kg kil

Wherekﬁk Is a component of the stiffness matrix modelling the linkwen node andj in
trianglek. The global matrix of the whole problem is for the initial gte

k%? k%l k%l ko
K giobai N kst kss' kst kss (20)
ksi kso  ksz  kss

(21)
and, for the perturbated step:
kY kD kyy ks ]
k' ksy +kay kgy - ksy Kas
Kgiovaly, 4 a, = kit ks + ks ks ks ks (22)
k51 k52 k53 k55

The terms related to the node 4 are then missing in the patkdistiffness matrix but a part
of the triangle 2 stiffness is however taken into accounth®yterms related to node 3 and 2.
Moreover, one can also note that these terms should be mpoetant than the terms involving
the node 4 as the element is filled in the region surroundirmig rdoand 3.

The first two alternative methods have the advantages ofifkgéipe number of degrees of
freedom constant and forbid the creation of elements duhagerturbation step. Hence, the
computation of the sensitivity would lead to a more accuraselt as all elements are taken into
account in the perturbated stiffness matrix. However, tiegegnce of these elements is expected
to introduce a dependency upon the mechanical propertsexiased to the narrow softening
elements band like in topology optimization with the powetoefficient in theS7M P law.
Moreover, using these methods does not take fully advarmkie X-FEM as we re-introduce
an approximation of the void as a weak material. The last atesieems to be very attractive as
this advantage is kept for the modelisation of the void. Hmvea very small error will remain
but is believed not to affect the problem description andtbanefore be neglected.

10
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6 APPLICATIONS

The X-FEM method for the modelisation of material-void distinuity and its Level Set
description have been implemented in an object oriented \@ttiphysics finite element
code, OOFELIE that is commercialized Bypen Engineeringl0].

In OOFELIE, any mechanical result can be chosen as objdeainations and constraints that
is: compliance and potential energy, all stress compondigislacements and geometric results.
Presently, implementation of the X-FEM method is availabl2-D problems with a library of
both quadrangle and triangle elements. The Level Set gi¢iserican be defined different ways.
They can be constructed classicaly from functions or fromt@fpoints which are interpolated
by a NURBS curve. However in this study, solely parameters @ftimctions can be used as
optimization variable. Further work is needed in order tst @ptimization with the control
points of the NURBS. The CONLIN optimizer by C. Fleury [7] has aie®n coupled in the
OOFELIE environment and an optimization framework has hweated.

6.1 Platewith an eliptical hole

The plate with a hole is a classical benchmark from shapenigdtion. To remind the
reader, a large plate with a hole in the middle is subjecteal axial stress field. The goal
of the optimization problem is to find the optimal shape toimire the compliance of the
structure with a constraint on the total surface of the héleom the analytical solution, we
know that the solution is an elliptical hole aligned with fréncipal stresses.

OOfelie Graph OOfelie Graph

(a) Initial geometry (b) Final geometry

Figure 8: Plate with an elliptical hole

Here particular values are considered. The dimension®giltte are Z 2 x 1 m. The domain
is covered with a transfinite mesh with 30 nodes on each sile.applied biaxial stress field
is 0,=20¢ ando,=0,. The material properties associated are: Young modalus 1 N/m?,
Poisson’s ration’=0.3. The plane stress state is assumed. The variableseaengjetd and
the long axisa. Figure 8 left shows the initial design domain, an elliptmlénwith a 45°
orientation. Three iterations with CONLIN optimizer are essary to come to the solution, an
ellipse aligned with the principle stresses (see Fig. 8(b))

11
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Let's remark the discretization of the geometry using tivellset. The boundaries are rep-
resented using the linear finite element shape functionthaddhe boundary is approximated
using piecewise linear segments. This can lead to disat&tizerrors of the geometry as noted
in [13] and in section 3.

Design variables Finite differences Semi-analytical ayjgmh Relative error (%)

a=10.6 3698, 0000 3691, 3344 0, 1802
0 =m/4 478,0000 477,0641 0, 1957
a=0.6 2712,000 2707, 328 0,1722
0=m/6 523, 70000 523,4099 0,0553
a=0.6 783, 8000 781, 3920 0,3072

0=0 11,6239 11,6235 0,0029

Table 1: Validation of semi-analytical sensitivity anasyapproximation.

The elliptical hole also serves as a tool for the validatibthe approximated semi-analytical
sensitivity analysis that has been proposed in section BleTagives the sensitivities of com-
pliance calculated by finite differences and semi-anayapproach for different combinations
of the design variableg andf. The results were obtained with a relative perturbatiorhef t
design variables of = 10~%. The table presents the quality of the proposed semi-adocalyt
approximation.

6.2 Platewith a generalized superelliptical hole

Several works have also been devoted to shape optimizatioroe complicated kind of
holes (see Ref. [15]). One of these is the superellipse wkiahgeneralization of the classical
ellipse. The generalized superellipse is a superellipse/iiich the two exponent andn can
be different and has following expression:
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Figure 9: Various superellipses
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The second application presented is also a plate with a hotean this case, a superelliptical
hole. Figure 10 right shows the initial quarter design deamaisuperellipse with values=5=4,
a=6, b=4 and an orientation angle equal to zero.

OOfelie Graph OOfelie Graph
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(a) Initial configuration of the superellipse (b) Final configuration

Figure 10: Superellise initial and final design

Here the particular values are considered. The dimensibtie@late are 8< 8 x 1 m. The
domain is covered with a delaunay mesh with 26 nodes on edeh sihe applied biaxial
stress field iss,=0(, and o,=0, and the material properties associated are: Young modulus
E = 2.1e11 N/m?, Poisson’s ration=0.3. The plane stress state is assumed. The variables are
the two exponents, 5 and the long and small axis b. The exponents are restricted to values
between 2 and 8 while andb are constrained between 2 and 8. The objective functionstsns

in minimizing the compliance with an upper bound on the vatum

OOfelie Graph
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173.
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Obj Fct
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Iteration nb

Figure 11: Evolution of the objective function for the suglBpse case

Fourteen iterations were necessary with CONLIN optimizeretach the solution (see Fig
11), a perfect circle with parametersb=2 anda=3=2 (see Fig. 10(b)). One can note that the
increasing number of iterations necessary to reach theicoltelated to the previous case is
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mainly due to the form of the volume constraint which sigmifity reduces the advancing step
of the optimization due to the approximation of the constrai

6.3 Stressconstrained optimization

The third application presented is similar to first one as \ge ase an ellipse. The right
hand side of figure 12 shows the initial design domain.

OOfelie Graph OOfelie Graph
Von Mises Von Mises

! 2.16e+007
4

1.68e+007

). VA%
VAV A s A
AT
SOSORINDS
AVAVAMY A
ROSKIARN

(a) Initial geometry (b) Final design

Figure 12: Evolution of the geometry

In a similar fashion to that of the previous two applicatiotiee problem is defined by the
following characteristics : plate dimensions x11 x 1 m), delaunay mesh with 28 nodes on
each side, biaxial stress fietd=0, ando,=0y, E=2.1e11 N/rh, »=0.3. The plane stress state
is assumed. The variables are the axendb and the value of the anglerelated to the axis
x. The objective function consist in minimizing the compbarwith a maximum value for the
volumeV and an upper bound of 80% on the inital maximum Von-Misesstre

OOfelie Graph

1.74e+003
1.71e+003
1.68e+003 7
Obj Fct

1.65e+003

1.62e+003

1.59e+003 T T T T 1
0.000 3.00 6.00 9.00 12.0 15.0

Iteration nb

Figure 13: Geometric representation and X-FEM displacemesult

Ten iterations were necessary for the optimizer to reachstiation (see Fig 13), the final
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configuration is presented on the figure 12(b). As one carc@dtie final solution respects the
constraint imposed on the initial maximum Von-Mises Strreskiction even if the initial model
was considered as infeasible by the optimizer because abti&raint violation.

7 CONCLUSIONS

In this paper, an novel approach based on the Level Set gasariand the X-FEM for
the mechanical optimization of structures has been prederithis new method takes place
between shape and topology optimization as it possessesaineadvantages of this two ones.
The X-FEM method has proven to be very useful as it easilysakivantage of the fixed mesh
work approach of topology optimization whereas the smoatliedescription from the shape
optimization is kept. Moreover, void is not approximatedaasmooth material in opposition
to the SIMP method. Finally, no remeshing process is neededi applications contrary to
shape optimization.

The investigation of a semi-analytic sensitivity analysith X-FEM and Level Set is an
original contribution to the paper as is the use of stresstcaimts. Up to now, a sensitivity
analysis procedure has been developed for the displacenieatcompliance and the stresses.
The problem of elements becoming partially filled has beentified and a first strategy to cir-
cumvent the problem has been validated. On-going work egplother alternative approaches.

The solution of 2-D problems is presently available. Futuoek is devoted to attack 3-D
problems, dynamic problems, and multiphysic (electroimaadcal) problems.
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