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Abstract

DIVAnd (Data-Interpolating Variational Analysis, in n-dimensions) is a tool to
interpolate observations on a regular grid using the variational inverse method. We
have extended DIVAnd to include additional dynamic constraints relevant to sur-
face currents, including imposing a zero normal velocity at the coastline, imposing a
low horizontal divergence of the surface currents, temporal coherence and simplified
dynamics based on the Coriolis force and the possibility of including a surface pres-
sure gradient. The impact of these constraints is evaluated by cross-validation using
the HF (High-Frequency) radar surface current observations in the Ibiza Channel
from the Balearic Islands Coastal Ocean Observing and Forecasting System (SO-
CIB). A small fraction of the radial current observations are set aside to validate
the velocity reconstruction. The remaining radial currents from the two radar sites
are combined to derive total surface currents using DIVAnd and then compared to
the cross-validation data set and to drifter observations. The benefit of the dynamic
constraints is shown relative to a variational interpolation without these dynamical
constraints. The best results were obtained using the Coriolis force and the surface
pressure gradient as a constraint which are able to improve the reconstruction from
the Open-boundary Modal Analysis, a quite commonly used method to interpolate
HF radar observations, once multiple time instances are considered together.

Keywords: HF radar, surface currents, dynamic constraints, Data-Interpolating
Variational Analysis, Ibiza Channel

1 Introduction

High-frequency (HF) radars allow one to derive two-dimensional maps of ocean surface
currents over a wide coastal area by measuring the Doppler shift of electromagnetic waves
undergoing Bragg-scattering (Crombie, 1955; Wait, 1966; Stewart and Joy, 1974; Barrick,
1978) of surface gravity waves whose wavelength is exactly one-half the radar wavelength.
They constitute an essential component of coastal observatories (Roarty et al, 2016, 2019),
with a rapidly expanding network in Europe with 105 sites already deployed or in a plan-
ning stage (Rubio et al, 2017; Roarty et al, 2019). A single HF radar site (composed
typically by a collocated or combined transmitting and receiving antenna) measures the
component of surface current directed radially toward or away from the antenna. In
areas where the coverage of two or more HF radar sites overlap, one can deduce vector
currents by using one of the most commonly adopted combination algorithms, such as
the unweighted least squares fitting (UWLS) method (Lipa and Barrick, 1983; Gurgel,
1994; Graber et al, 1997).

The traditional approach consists in interpolating the radial currents on a common
grid and inverting a linear system (possibly over-constrained if there are more than two
HF radar sites) to compute the zonal and meridional velocity components from the radial
currents. These horizontal current vectors are often referred to as total currents. How-
ever, spurious total vector currents are obtained along the baseline between two radars
where the measurements of radial velocities are nearly aligned and the total currents thus
suffer from geometric dilution of precision, as described in Chapman and Graber (1997),
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and along the edges of the HF radar footprint area.

The spatial coverage of a radial current field is not constant and can exhibit gaps
mainly due to interferences due to e.g. power lines, nearby antennas, metal fences, lack
of Bragg scattering ocean waves, low salinity environments, radio interferences, iono-
spheric and lightning effects (Mantovani et al, 2020). As a consequence, the combined
total current fields also have gaps which can prevent several applications which typically
require full fields such as search and rescue (O’Donnell et al, 2005; Ullman et al, 2003,
2006), oil spill tracking (Abascal et al, 2009), ecological applications (Emery et al, 2006;
Helbig and Pepin, 2002; Zelenke et al, 2009).

Various techniques have been proposed in the scientific literature to deduce total cur-
rents from radial ones and/or to compute interpolated fields without gaps. A commonly
used method is the Open-Boundary Modal Analysis which was firstly implemented by
Lekien et al (2004) and further optimized by Kaplan and Lekien (2007). This method
decomposes the flow field into irrotational and non-divergent modes (as well as boundary
modes) that describe all possible current patterns inside a two-dimensional domain. This
set of linearly independent current modes allow the reconstruction of a full field without
gaps and to reduce noise with a small spatial scale.

Kim et al (2007) showed how optimal interpolation can be used to fill the gaps in
HF radar data. The error covariance can be either an analytical covariance model or
the sampling covariance from the HF radar. A sampling covariance can have spurious
negative eigenvalues but in regions with sufficient data the background variance can be
adjusted to avoid this problem. The weighted and unweighted least-squares fitting of
radial currents can also be seen as a special case of optimal interpolation (Kim et al,
2008).

Alternatively, Yaremchuk and Sentchev (2009) used a variational method with a con-
strain on divergence and curl of the flow field. In a follow-up paper, Yaremchuk and
Sentchev (2011) extended the variational approach by using also empirical orthogonal
functions showing the advantages over local linear interpolations of the variational method
and Open-boundary Modal Analysis (OMA; Kaplan and Lekien, 2007), related to their
ability to reconstruct the velocity field within the gaps in data coverage, near the coast-
lines and in the areas covered only by one radar site.

The penalized least squares regression method based on a three-dimensional discrete
cosine transform method (Fredj et al, 2016) uses both time and space variability to pre-
dict the missing data. Missing data are thus interpolated by using not only data nearby
in space, but also data from previous and subsequent time instances.

As shown by Hernández-Carrasco et al (2018), self-organizing maps (SOMs, Koho-
nen, 1997), extracting common flow patterns, can also be used to reconstruct missing
data in HF radar data. The authors also compared the SOM method to DINEOF - Data
Interpolating Empirical Orthogonal Functions -, initially applied to geophysical data sets
as sea surface temperature, ocean color and surface salinity (Beckers and Rixen, 2003;
Alvera-Azcárate et al, 2005, 2016), by previously extending its application to obtain to-
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tal surface currents. It has been shown that the DINEOF technique presents the lowest
errors in the Eulerian comparison of the velocity field and performs better than the Open-
Boundary Modal Analysis and similar to SOMs in the context of Lagrangian tracking
(Hernández-Carrasco et al, 2018).

Most of these techniques are based on statistical consideration in order to fill missing
data gaps and reduce the noise in the current measurements. The present manuscript
aims to extend these statistical approaches by using dynamical constraints. This ap-
proach heavily uses ideas from 4D-Var assimilation but without requiring the setup of a
full ocean model. The objective of the present manuscript is to quantify the potential
improvements of using dynamical constraints in the context of variational interpolation.

The DIVAnd method (Barth et al, 2014) is an extension of DIVA (Data Interpolating
Variational Analysis, Brasseur and Haus, 1991; Troupin et al, 2012; Beckers et al, 2014)
for more than 2 dimensions. In this work DIVAnd is first applied to radial current
measurements using various dynamical constraints 2. The data used to test this method
is presented in section 3. Results and the validation with drifter data are discussed in
section 4. The findings are presented in the conclusion section 5.

2 Method

The DIVA method aims to derive a continuous field from a series of measurements at
discrete locations. It is commonly used to derive a gridded climatology from in situ obser-
vations (Tyberghein et al, 2012; Lauvset et al, 2016; Troupin et al, 2010). The variational
inverse method minimizes a cost function which ensures that the field is relatively close to
the observations but with constraints on its regularity using its gradients and Laplacian
(Brasseur and Haus, 1991). The method does not perform a pure interpolation, since the
analysed field should not necessarily pass through all observations because observations
are affected by errors and might not be fully representative (Janjić et al, 2018). These
requirements are formalized via a cost function:

J(ϕ) =

Nd∑
j=1

µj[dj − ϕ(xj)]
2 + ‖ϕ− ϕb‖2 (1)

where ϕ is scalar ocean field defined and dj are the Nd measurements of the field ϕ at the
locations xj for a given time instance and their weights µj. ϕb is a background estimate of
the field. The background estimate is a first guess of the field to interpolate. For example
if ϕ represents salinity, the background estimate can be salinity averaged over space and
time. For currents, the background estimate that will be used is zero. The experiments
in the following were also conducted using the mean current over the domain but this did
not change the results in a significant way.

The spatial (and temporal) coherence is introduced in equation (1) by defining a
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particular norm penalizing abrupt spatial (and temporal) variations over the domain Ω:

||ϕ||2 =

∫
Ω

(α2∇∇ϕ : ∇∇ϕ+ α1∇ϕ ·∇ϕ+ α0ϕ
2) dΩ (2)

where the symbol : stands for double summation and the coefficients α control the relative
importance of each contribution (Laplacian, gradient and field value) in the norm.

The variational inverse method naturally decouples basins based on topography: an
observation on one side of an island, isthmus or any type of physical boundary can not
spread directly to the other side (Troupin et al, 2012). When analysing tracers, ocean
currents can also be taken into account by adding to the cost function an additional term
penalising the advection. The aim here is however to derive the current field from HF
radar observations. In a second step such a current field can be used for the analysis of
tracers requiring for instance that the isolines of a tracer align with the currents field.

In this manuscript we extend the formalism of DIVA applied to ocean currents in
the context of HF radar measurements. A single HF radar site provides a radial ve-
locity measurement map. Total vector currents can be only derived in the overlapping
region where radial velocities measured from at least two radars are available. In order to
maximize the amount of provided data and to minimize additional smoothing and inter-
polation, the adopted approach is to directly use radial currents in the analysis procedure.

A suitable defined observation operator links the (unknown) analysed vector field to
the radial velocities of the different radar sites. The cost function includes therefore the
following data term:

Jvel(u) = ||u||2 + ||v||2 +
N∑
i=1

(ui · pi − uri)2

ε2i
, (3)

where u = (u, v) is the velocity vector, pi is the normalized vector pointing toward the
corresponding HF radar site of the i-th radial observation uri (Yaremchuk and Sentchev,
2009), N is the number of available radar sites and ε2i represents the noise of the mea-
surements. The same norm defined in equation (2) is also used for both components of
the velocity field.

In fact, without imposing any spatial (and temporal) coherence and using only the
data constraint, the minimization of the cost function would be equivalent to the least-
square method (Lipa and Barrick, 1983; Gurgel, 1994), which is commonly used to com-
bine several radial current estimates into total current vectors (appendix A). The effect of
the spatial coherence is illustrated in panel (a) of figure 1a where the red vector represents
a hypothetical measurement (in the x-direction) and the black vectors depict the analyzed
field. In this figure, the gray area represents the coastline. The DIVA method, as any
method related to optimal interpolation, naturally allows extrapolation of the measure-
ments. Such plots are useful because they visually represent the underlying background
error covariance matrix (e.g. Keppenne et al, 2008; Barth et al, 2014). The final analysis
is in fact a linear combination of these functions represented in figure 1a - 1c.
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(a) Current analysis (black arrows) for a single
measurement point (red arrow)

(b) Current analysis for a single measurement
point and the presence of a coastline (gray
area)

(c) Current analysis imposing low horizontal
divergence of currents

Figure 1: Current maps obtained for different constraints. The red arrow represents a
single current measurement. The black arrows show the current analysis over the whole
domain. These extrapolated currents are derived using the considered constraints: panel
(a) smooth in space, panel (b) smooth and presence of the coastline and panel (c) smooth
and low horizontal divergence.
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2.1 Coastline effect

It is quite common for numerical ocean models to represent the coastline as an imper-
meable, coastal wall as the horizontal movements for the waterfront are generally much
smaller than the model resolution (Haidvogel and Beckmann, 1999). The velocity com-
ponent perpendicular to the coastline is thus set to zero:

u · n = 0, (4)

where n is the vector normal to the coastline ∂Ω. At the open ocean boundaries, this
constraint is not activated, allowing therefore a flow through the domain.

Internally the presented method uses the staggered Arakawa C grid (Arakawa and
Lamb, 1977) where current components are defined as the interface of a grid cell. If a
given cell interface is between a land and an ocean grid cell, then the boundary condition
requires that the normal current is zero. The same boundary condition is also applied in
the OMA method (Kaplan and Lekien, 2007).

There are different ways to include a constraint in the context of variational analysis,
and it is common to distinguish between strong constraints and weak constraints (e.g.
Ngodock et al, 2017). A solution to the minimization problem has to satisfy exactly
a strong constraint while for a weak constraint, residuals related to this constraint are
added to the cost function. The residuals are typically divided by a scaling parameter,
and as this scaling parameter tends towards zero, the weak constraint tends to a strong
constraint. Here the constraint on the normal velocity at the coastline is added as a weak
constraint to the cost function.

Jbc(u) =
1

ε2bc

∫
∂Ω

(u · n)2ds. (5)

Effectively this constraint can be included as additional measurements. The parameter
ε2bc controls how strongly this constraint is enforced. One could also include it as a strong
constraint (i.e., the normal velocity has to be exactly zero at the coastline), but the
implementation was simplified by using a weak constraint and choosing a very small
value of ε2bc, which is practically equivalent to a strong constraint. The optimization of
this parameter is discussed in Section 4. The effect of the boundary condition constraint
is quite clear from figure 1b as it prevents the current from flowing into the coastline.

2.2 Horizontal divergence

In a stratified ocean, it takes a considerable amount of energy to move water vertically and
therefore in most cases the vertical velocity is relatively small compared to the horizontal
components (even when taking the different horizontal and vertical length-scales into
account). If we integrate the continuity equation over the surface layer and ignore the
vertical velocity, we obtain an additional dynamical constraint on the horizontal velocity:

∇ · (hu) ' 0. (6)

where h is the average depth of the surface mixed layer or the total water depth where
total water depth is shallower and the average depth of the surface layer. As before, this
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constraint is included in the cost function as a weak constraint with the following form:

Jdiv(u) =
1

ε2div

∫
Ω

(∇ · (hu))2 dx (7)

The parameter ε2div controls to which degree a horizontal divergence is allowed. A
similar data constraint was also used by Yaremchuk and Sentchev (2009) to reduce non-
physical flow structures visible in the radial currents. This is the first constraint intro-
duced so far which significantly couples both velocity components. In the presence of a
coastline, this constraint is responsible for deflecting the currents, as shown in figure 1c.

It is important to point out that we do not assume that the interpolated field is
divergence-free but we introduce an additional parameter allowing us to control and
reduce the divergence of the interpolated field. The strength of this constraint will be
determined objectively later by cross-validation. If this constraint would indeed degrade
the result then the corresponding epsilon parameter would have quite a large value and
the RMS error relative to the cross-validation data would not change.

2.3 3D analysis with time dimension

HF radar sites are able to monitor the surface ocean at a relatively high temporal fre-
quency. It can therefore be desirable not to analyze every time instance separately but
several time instances jointly. The correlation between two successive time instances of
the radial current fields are 0.93 and for the two considered HF radar sites (FORM and
GALF respectively, which will be introduced later). When the time dimension is included
in the estimation vector x, the previously introduced concepts remain the same, except
that the ∇ operator has now also a time component and that the regularization operator
now must also have a 3rd order derivative as explained in Barth et al (2014). By increas-
ing the size of the estimation vector, one also significantly increases the CPU time and
memory requirements. With future parallelisation of the algorithm in mind, we limit the
time dimension to 3 time instances (including the data the hour before and after). For
every analysis, only the central time is kept in the final result. The temporal correlation
length is a free parameter that has to be determined.

2.4 Coriolis force

By including the time dimension and imposing a coherence in time, one ensures that the
velocity at a given time is similar to the velocity at a previous and next time instance. In
the Mediterranean Sea (e.g. Vandenbulcke et al, 2017), inertial oscillations can sometimes
be quite energetic being usually of comparable magnitude to the mean slope current (Salat
et al, 1992; Tintoré et al, 1995). The inertial oscillations have also been observed near the
coast (Millot and Crépon, 1981). Moreover, the power spectra of normalized zonal and
meridional components from the HF radar data of the Ibiza Channel present dominant
peaks at the diurnal, inertial (approximately 19 h) and semidiurnal bands as described in
Lana et al (2016). We therefore consider first the special case where inertial oscillations
are dominant, and later in this section we will address other cases. The velocity at a
given time instance should rather be similar to the velocity one hour before and one hour
after, when suitably rotated according to the Coriolis parameter f :
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∂u

∂t
= fv, (8)

∂v

∂t
= −fu. (9)

These equations can be easily integrated in time relating the velocity at time instance
t and t+ ∆t:

u(x, y, t+ ∆t) =

(
cos(∆tf) sin(∆tf)
− sin(∆tf) cos(∆tf)

)
u(x, y, t) = MC u(x, y, t) (10)

where we introduce the matrix MC representing the rotation of the current vector between
two successive time instances. It is clear that the Coriolis force is just one force among
many, so that this constraint should not be imposed as a strong constraint but rather as
a weak constraint:

JC(u) =
1

ε2Coriolis

‖u(x, y, t+ ∆t)−MCu(x, y, t)‖2 (11)

The strength of this constraint is controlled by the factor ε2Coriolis whose optimal value
will be determined later.

2.5 Coriolis force and surface pressure gradient

The mean flow is not subjected to inertial oscillations. To improve the previous constraint,
two options were considered. One could compute time averages and apply the previous
constraint simply on the anomalies relative to this time average. Another approach could
be to extend the simplified momentum equation (8) by a surface pressure gradient term:

∂u

∂t
= fv − g ∂η

∂x
, (12)

∂v

∂t
= −fu− g∂η

∂y
, (13)

where η represents the surface elevation and g the acceleration due to gravity. These
equations thus allow for a geostrophically balanced mean current. However, it is impor-
tant to note that this constraint does not mean that the HF radar currents analysis are
necessarily geostrophically balanced as it is introduced as a weak constraint to account
for neglected forces in the momentum equation and as it allows for a non-stationary field.
The cost function is extended to also include the parameter η

J(u, v, η) = ‖u‖2 + ‖v‖2 + γ‖η‖2 +
N∑
i=1

(ui · pi − uri)2

ε2i
. (14)

Jpgrad(u) =
1

ε2pgrad

∫
Ω

‖z(x, y, t+ ∆t)−Mpgradz(x, y, t)‖2dΩ. (15)
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where the vector field z is defined as:

z(x, y, t) =

 u(x, y, t)
v(x, y, t)
η(x, y, t)

 (16)

The operator Mpgrad (operating on a vector field and producing a vector field of the
same size) is derived by discretizing the equations (12) and (13) and deriving its adjoint.

Knowing the surface elevation is not required (a priori) to apply this method. It is
a free parameter (as the gridded currents) determined by minimizing the cost function
using the radial current observations and the considered dynamical constraints (relating
the gradient of the surface elevation and the velocity). The method could in theory be
extended by also including surface elevation observations which could be tested in follow-
up studies. Such observations are required because we have surface current observations
and know how the surface currents are related to the surface elevation.

When the Coriolis force with and without the pressure gradient is used as a constraint,
the temporal consistency is enforced via the momentum equation and there is no longer a
temporal derivative involved in the regularization penalty in equation 2. Therefore only
in the 3D analysis case, there is an explicit temporal correlation parameter involved.

3 Data

The EMODnet Bathymetry (EMODnet Bathymetry Consortium, 2016) is used to delimit
the coastline for the present HF radar data analysis. The original resolution of this digital
topography is 1/480 degree (1/8 minute) and it is sub-sampled by a factor of 16 both
in longitude and latitude. The bathymetry used in the analysis has thus a resolution of
1/30 degree (approximately 2.9 km by 3.7 km in the considered region) covering the area
from 0.3°W to 1.45°W and from 38.3°N to 39.4°N. From this bathymetry, a binary mask
is derived to distinguish sea and land points. The Coriolis parameter f is assumed to be
constant and computed based on the average latitude equal to a mean latitude of 38.78°N
and the acceleration due to gravity is set to 9.81 m/s2.

Based on the SeaDataNet climatology (Simoncelli et al, 2018) extracted at the center
of the domain, the surface mixed layer h is assumed to have a depth of 50 m or the total
water depth in areas shallower than 50 m.

Surface currents datasets from HF radar and surface lagrangian drifters provided
from the Balearic Islands Coastal Observing and forecasting System (SOCIB, Spain,
http://www.socib.es, Tintoré et al, 2013) have been used in this study. SOCIB oper-
ates a complex network of observing platforms for long-term monitoring of physical and
biogeochemical processes in the Western Mediterranean Sea (Tintoré et al, 2019). The
HF radar system of the Ibiza Channel (Lana et al, 2015, 2016) consists of two CODAR
SeaSonde radial stations located in Ibiza Island (Puig des Galf́ı) at 38.952◦N, 1.218◦E
(GALF) and on Formentera Island (Cap Barbaria) at 38.665◦N; 1.389◦E (FORM) (Fig. 2).
The antennas emit at a central frequency of 13.5 MHz with a bandwidth of 90 kHz, 512-
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Figure 2: SOCIB HF radar system. The blue squares the location of the FORM and
GALF sites, respectively on Formentera and Ibiza islands. The arrows represent the
mean currents over the period 2014-10-01 - 2014-10-31 (without interpolation).

point FFT (Doppler Bins), 2 Hz sweep rate. The radial velocities are processed from the
15-minute Doppler spectra averaging with 10 min output rate. At the specified operating
frequency, measurement depth is approximately 0.9 m (Stewart and Joy, 1974). The
hourly radial velocities are obtained by applying a centered 75-minute running average
and cover a wide coastal area out to a range approaching 85 km. At least two radial
observations were required at each range and bearing in the final radial map. The system
has been working operationally since June 2012 and for this study the selected period
goes from 1 to 31 October 2014 (Tintoré et al, 2020). The number of available radials
for that period is shown in figure 3.

We use the CODAR SeaSonde statistics to filter out outliers in the HF radar data set
(CODAR, 2016). SeaSonde processing software provides spatial and temporal standard
deviation (referred as spatial and temporal quality in the SeaSonde data files) related to
the spatial and temporal averaging of the short-time radials (typically produced every 10
minutes) as well as the maximum and minimum velocity for the averaging.

The retained radial data had to satisfy the following conditions:

� spatial and temporal quality smaller than 7 cm/s

� difference between maximum and minimum velocity (computed over the averaging
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Figure 3: Radials and cross-validation points for the month of October 2014.

period) less than 20 cm/s

� current speed less than 80 cm/s, as it is the established velocity threshold for radial
velocities in the Ibiza Channel..

To assess the accuracy of the reconstruction, cross-validation is used (e.g. Stone, 1974;
Brankart and Brasseur, 1996; Alvera-Azcárate et al, 2015). While in some studies cross-
validation data points are individual scalar data points completely chosen at random (e.g.
Beckers and Rixen, 2003), it is considered preferable that the method is tested on gaps
with a more realistic spatial extent (e.g. Alvera-Azcárate et al, 2009; Beckers et al, 2006).
This is achieved by marking some data points as missing from the 30 current maps with
the best coverage (for each of the two HF radar stations). We use the coverage maps for
the 30 current maps with the least coverage to mark some data points as cross-validation
data in the 30 currents maps with the best coverage. If m1 is the binary mask (indicating
presence or absence of the data) corresponding to the radial currents with the best cov-
erage and m−1 the binary mask of the radial currents with the lowest coverage, then all
measurements where m−1 is masked are considered as cross-validation data and not used
in the subsequent analysis. This procedure is repeated for the dataset with the second
best coverage m2 and the second worst coverage m−2 up the 30th best/worst coverage
map.

In total, there are 639670 radial measurements, from which 27136 have been marked
for validation, representing 4.2% of the total data coverage. The remaining dataset
(95.8%) is used to compute the analysed vector currents. The obtained analysed vector
currents are then interpolated onto the location of the independent validation dataset

12



Table 1: Overview of the different test cases with a description of the activated con-
straints.

Case Description

2D classical 2D-analysis (longitude, latitude)
2D bc as 2D, but with boundary conditions
2D div as 2D, but imposing weak horizontal divergence
3D 3D-analysis (longitude, latitude, time)
3D Coriolis 3D-analysis with the Coriolis force
3D Coriolis pgrad 3D-analysis with the Coriolis force and the surface pressure gradient

to assess the accuracy of the analysis. This general procedure is called cross-validation.
While in some studies the cross-validation data points are chosen at random, here for
all experiments, exactly the same cross-validation data points were used to facilitate the
comparison of the results.

4 Results

Various experiments have been carried out to test the influence of the different constraints
individually described in Section 2. These numerical experiments are summarized in Table
1.

In the 2D case, every time snapshot is reconstructed using only data from the same
time instance. The only parameters for this case are the horizontal correlation length
and the ε2 parameter.

The cost function depends on the gridded velocity field (and on the surface elevation
for the last case), but also on a series of parameters involved in the considered dynamical
constraints. For a fixed value of these analysis parameters, the cost function is quadratic
and we use an efficient solver for this case (sparse matrix inversion or conjugate gradient
method) to obtain the analyzed field.

At a higher level, the analysis parameters (ε and correlation length for the 2D case and
additional parameters used in other experiments) are optimized using the adaptive differ-
ential evolution method (Storn and Price, 1997) implemented in the Julia BlackBoxOptim
package (Feldt, 2019) by minimizing the RMS error computed from cross-validation.

The smallest cross-validation error was obtained using a horizontal correlation length
of 2889 meters and a ε2 parameter controlling the strength of the data constraint in the
cost function equal to 0.032. The 2D case is used as the control case for computing the
relative improvement for the more complex methods presented in the following. Skill
score S for case C is defined in terms of the mean square error RMS2 (Murphy, 1988):

S(C) = 1− RMS2(C)

RMS2(2D)
(17)

A zero skill score means that the reconstruction is as ”good/bad” as the control case
(here the 2D case) and a skill score of 1 means that the reconstruction matches perfectly
the validation dataset, which is of course not possible in practice since also the validation
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dataset is affected by noise.

Figure 4 (2D control analysis) and figure 5 (3D analysis including Coriolis force and
surface pressure gradient) show two example reconstructions for 3 October 2014, 3:00
UTC. The left panels of these figures represent the derived total currents and the center
and right panels are the radial velocities, measured by the HF radar sites located in For-
mentera (i.e. FORM) and Ibiza (i.e. GALF), respectively. Dots are the measured HF
radar radial velocities plotted on top of the reprojected analysed currents for the same
snapshot. Where the analysed radial currents and dots have a similar (resp. different)
color, the corresponding residual is small (resp. large). Such plots give an indication of
the degree of the observed information retained in the analysis and allow one to detect if
the analysis under- or over fits the observations.

In both figures 4 and 5 there are some differences between the radial velocities and
the reprojected analysis currents near the edge of the coverage. It is indeed expected that
the error of the radial current measurements increases far away from the corresponding
HF radar site. Visually both analysis methods give quite similar results, it is therefore
necessary to evaluate the error statistics relative to the cross-validation dataset to quan-
tify the impact of the dynamical constraints.

Table 2 shows the RMS error relative to the validation dataset and the corresponding
skill score of the different experiments. The RMS errors in this table are based on the
reprojected radial currents and the radial current withheld for cross-validation. As for the
reference, the standard deviation of the radial currents (two stations combined) is 0.12
m/s. The first constraint considered is the boundary condition, but it did not produce
any noticeable effect on the validation metric. This can be explained by the fact that
the boundary conditions, per definition, only act on the coastline and thus the effect
is indeed expected to be small on the validated data which is mainly located offshore.
The divergence constraint did not have an impact (compared to the 2D control case)
for this case. However, a more significant improvement was obtained by including the
time dimension and solving the 3D variational problem. For the best results, with a skill
score of 0.441, the surface pressure gradient needed to be considered explicitly as well.
All parameters were optimized as before using the adaptive differential evolution method
(Storn and Price, 1997) and the optimal values are shown in Table 2.
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Figure 4: The reconstructed current velocity for the 2D control analysis. All panels are
valid for the time 2014-10-03T03:00:00. The analysed total currents are shown in panel
(a) where the red arrow represents 0.5 m/s. The radial currents (HF radar measurements
and reprojected analysis) are shown in panel (b) and (c) for the two HF radar sites. The
difference between the HF radar measurements and the reprojected analysis are given in
panel (d) and (e).
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Table 2: RMS errors, skill-score and the value of the optimal parameters for different
experiments. Per definition the skill-score of the control experiment (2D) is zero.

Case RMS Skill Optimal parameter(s)

2D 0.064 0 ε2 = 0.032
2D bc 0.064 0.000 ε2 = 0.05, ε2bc = 0.1
2D div 0.063 0.001 ε2 = 0.04, ε2div = 2.9× 1010 m2

3D 0.048 0.441 ε2 = 0.15, Ltime = 3.5× 104 s
3D Coriolis 0.056 0.24 ε2 = 0.0012, ε2Coriolis = 0.0089
3D Coriolis pgrad 0.048 0.441 ε2 = 0.025, ε2pgrad = 0.0089, γ = 6.71 s-2
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Figure 5: Same as figure 4 for the 3D analysis including Coriolis force and surface pressure
gradient.
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Figure 6: Surface current statistics. Arrows represent the reconstructed mean current
velocity and ellipses their temporal variability. For clarity, only one current vector for
every 3×3 grid cell is shown and the red arrow represents 0.1 m/s. The black arrow
represents the mean currents and the light blue ellipse is the standard deviation (reduced
by a factor of 5 for visibility).

In order to test the robustness of the minimization procedure, we repeated four times
the optimization for the most complete case (3D Coriolis pgrad) with the parameters
strength of the data constraints, strength the dynamical constraints and the normalization
factor γ. We computed the standard deviation normalized by its mean value for the
different minimization experiments for the optimal parameters values and the optimal
RMS value. The optimal RMS error was virtually identical (with a relative deviation
of less than 0.004%). The relative standard deviation of the data constraints was 4%
and the relative standard deviation of the strength of the dynamical constraints and the
normalization factor γ was 14% and 20% respectively.

From the reconstructed surface currents, the mean current and their temporal vari-
ability are also derived (figure 6). The latter is represented as ellipses whose size is related
to the standard deviation and the orientation to the correlation between the zonal and
meridional currents. The standard deviation is scaled down by a factor of 5 to enhance
visibility. The variability is actually quite large compared to the mean current in this
region. The vectors outside the area covered by both antennas are of course much less
reliable. The analysis reveals a quite strong current just in front of Puig des Galfi (GALF).

4.1 Drifter validation

Beside the validation with a subset of HF radar data, the reconstructed surface current
field is also compared to velocity derived from 13 satellite-tracked surface drifters of
three different types (i.e. MetOcean CODE, MD03i, ODI) deployed by SOCIB in the
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Ibiza Channel in September 2014 (Tintoré et al, 2014) as described in Lana et al (2016).
The configuration of the floats was designed to ensure that both measurements, HF
radar and drifters, remain inter-comparable, being both representative of the upper 1 m
surface current. The float configuration was designed to ensure that the measurements are
representative of the upper 1m surface current, hence ensuring that they are compatible
with the HF radar measurements.

� ODI, from Albatros Marine Technologies, has a spherical shape with small diameter
(0.2 m) and low weight (3 kg), with less than 50% of its body emerging. A drogue
of 5 kg was attached at 0.5 m below the sea surface.

� MetOcean CODE is a robust solution to acquire coastal and estuarine water currents
within a meter of the water surface, minimizing wind drag effects (Davis, 1985).
The MetOcean CODE drifters had their drogue between 30 and 100 cm and low
wind-exposure.

� MD03i: is a cylinder shaped drifter, which has a diameter of 0.1 m and a length of
0.32 m, where only approx. 0.08 m are above the water surface when deployed. To
enhance the drag, a drogue was attached 0.5 m below the sea surface with a 0.5 m
length and diameter. Due to the very small sail area above the water surface the
drifter’s path represents the current in the upper meter of the water column.

Only those drifter positions flagged as “good”, following the SOCIB’s quality proce-
dures (Lana et al, 2015; Ruiz et al, 2018), within the HF radar coverage for total surface
currents and for the analyzed period (October 2014) are retained for the drifter valida-
tion, as shown in figure 7. The velocity is derived from the drifter position using the
difference between two successive GPS positions. As the HF radar data also represents
a time averaged current measurement, the velocity is filtered by a low-pass filter with a
cut-off frequency corresponding to 1 hour (which corresponds to the temporal resolution
of the HF radar data). The filter is modeled after a 1D diffusion. RMS values are com-
puted per drifter. In order to obtain an overall estimate of the accuracy, we compute the
RMS value using all drifter data combined for each of the reconstructions.

The combined RMS error between the analyses currents (ui, vi) and the drifter currents
(uobsi, vobsi) are defined as following:

RMS2
c =

1

N

N∑
i=1

(ui − uobsi)
2 + (vi − vobsi)

2 (18)

= RMS2
u + RMS2

v (19)

where the RMS error for each component is defined as:

RMS2
u =

1

N

N∑
i=1

(ui − uobsi)
2 (20)

RMS2
v =

1

N

N∑
i=1

(vi − vobsi)
2 (21)
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It should be noted that different approaches are possible to compute the combined
RMS velocity error. For instance one might divide by 2N instead of N (counting the
zonal and meridional components individually).

Figure 7: Drifter trajectories available inside the HF radar total footprint area during Oc-
tober 2014 used for validation of the reconstructed surface currents (top panel). Temporal
availability of each drifter inside the area and period of interest (bottom panel)
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Table 3: RMS (m/s) and skill-score for all drifter data combined

Case RMS u RMS v Combined RMS skill-score
2D 0.0593 0.0747 0.0954 0.0000
3D (7 hours) 0.0582 0.0718 0.0924 0.0609
3D (15 hours) 0.0583 0.0727 0.0932 0.0456
3D (17 hours) 0.0583 0.0726 0.0931 0.0468
3D Coriolis pgrad (13 hours) 0.0536 0.0680 0.0866 0.1748
OMA 0.0570 0.0756 0.0947 0.0146

Table 3 shows the RMS errors of the two best experiments from the previous cross-
validation tests and corresponding skill scores using again the 2D analysis as a control
experiment. For the experiment using multiple time instances, so far only 3 time instances
(i.e. 3 hours) were considered. In a separate set of experiments the effect of including
more time instances was tested. The 3D reconstruction case had the smallest RMS error
using 7 hours in total and in the case 3D Coriolis pgrad the optimal number of time
instances was 13. Beyond 13 time instances, the RMS error was no longer reduced.

The improvements of the dynamical constraints are not as large as the improvements
obtained using the cross-validation HF radar data. The best results were obtained, as
before, for the case 3D Coriolis pgrad. For the 2D control experiment the RMS error
and skill-score are also computed per drifter (Table 4). The number of hourly data
points ranging from 103 to 2302 is also included. The SOCIB drifter with the name
md03i004 scb is quite representative in terms of skill score for the overall improvement
relative to the drifters and the zonal u and meridional v components are shown in figure
8. Significant inertial oscillations are quite apparent from this time series (and also from
the trajectory plots in 7). The overall match between the drifter currents and the HF
radar currents is quite good. Some spurious variability in the 2D analysis at short time
scales is visible from the analysis. The temporal coherence is improved by including the
time dimension and the discussed dynamical constraints. If a posteriori smoothing of the
results were sufficient, then one would have expected that the 3D experiment would be
of similar accuracy which is clearly not the case as shown in Table 3.
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Table 4: RMS (m/s) and skill-score per drifter

Drifter number of 2D 3D Coriolis pgrad (13 hours) skill-score
data points RMS-u RMS-v RMS-u RMS-v

codei001 scb 507 0.0568 0.0509 0.0532 0.0421 0.2070
codei002 scb 480 0.0848 0.0599 0.0813 0.0503 0.1520
codei003 scb 1035 0.0529 0.0606 0.0474 0.0531 0.2170
codei004 scb 1186 0.0584 0.0637 0.0502 0.0583 0.2080
md03i002 scb 779 0.0529 0.0764 0.0532 0.0740 0.0365
md03i003 scb 1221 0.0374 0.0617 0.0332 0.0572 0.1605
md03i004 scb 2134 0.0737 0.0662 0.0624 0.0592 0.2465
md03i005 scb 608 0.0677 0.0633 0.0553 0.0574 0.2599
odi017 scb 1285 0.0599 0.0962 0.0564 0.0882 0.1463
odi018 scb 1353 0.0545 0.0988 0.0516 0.0877 0.1868
odi004 uib 331 0.0824 0.1030 0.0790 0.0920 0.1549
odi006 uib 388 0.0895 0.0779 0.0763 0.0759 0.1772
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Figure 8: Zonal (upper panel) and meridional (lower panel) of the drifter md03i004 scb

The computation time for the most complete case (using 13 hours of data for a single
reconstruction) is 26 hours to reconstruct 744 current maps on 6 CPUs (Intel Xeon CPU
E5-2660). On average, a single current map is reconstructed in 2 minutes of CPU time.

The improvements resulting from the inclusion of the dynamical constraints are less
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important when comparing the results to the drifter data. There are some inherent differ-
ences between HF radar currents and currents from drifters such as different integration
depth, errors due to geometric dilution of precision, different time and spatial resolutions.
The difference between the interpolated HF radar data and the drifter velocity is due to
i) inherent differences between radar and drifter currents and ii) interpolation error. By
testing different interpolation schemes we can only reduce the contribution of the second
error term. In principle one can also try to reduce the random and non-systematic part
of the inherent differences but not systematic error.

In particular, the longest drifter time series md03i004 scb has an RMS error of 0.0592
m/s and 0.0688 m/s (for the u and v component respectively) when comparing the HF
radar currents (without interpolation) to drifter currents as computed by Lana et al
(2016). This time series (using only HF radar where they are present) is 173 hours long.
The best method gives an RMS error of the interpolation currents of 0.0624 m/s and
0.0592 m/s (for the u and v components respectively). The interpolated time series with
matching drifter data is 233 hours long. It is natural to expect that the interpolated time
series would have a larger RMS error than the original (gappy) data. However, we were
able to show that the interpolated time series has a similar RMS error than the original
data.

We also compared our method to the results from the Open-boundary Modal Anal-
ysis (OMA) which is a quite commonly used method to interpolate HF radar obser-
vations (Kaplan and Lekien, 2007) and which it is part of the HFR Progs package
(https://github.com/rowg/hfrprogs/tree/master/matlab/OMA). The OMA is based on
a set of linearly independent velocity modes (189 in the case of the Ibiza Channel HF
radar) that are calculated before they are fitted to the radial data. OMA considers the
kinematic constraints imposed on the velocity field by the coast since OMA modes are
calculated taking into account the coastline by setting a zero normal flow.

Depending on the constraints of the methodology, it can be limited in representing
localized small-scale features as well as flow structures near open boundaries. Also,
difficulties may arise when dealing with gappy data, especially when the horizontal gap
size is larger than the minimal resolved length scale (Kaplan and Lekien, 2007) or when
only data from one antenna are available. In the case of large gaps, unphysically fitted
currents can be obtained if the size of the gap is larger than the smallest spatial scale (6
km in our case) of the modes, since the mode amplitudes are not sufficiently constrained
by the data (Kaplan and Lekien, 2007).

The RMS error relative to drifter observations for the OMA method has been com-
puted (RMSu = 0.0570m/s, RMSv = 0.0756m/s for all drifters combined). The method
3D Coriolis pgrad (RMSu = 0.0536m/s, RMSv = 0.0680m/s) compares favourably to
the OMA method once multiple time instances are considered together. When using data
from different time instances, it is necessary to specify how they are related. This is done
in the present manuscript using the momentum equation (including the Coriolis force and
the surface pressure gradient). If for instance the Coriolis force would not be taken into
account, the amplitude of the inertial oscillations would be significantly smoothed-out.

22



5 Conclusions

The DIVA framework is extended to handle surface currents and able to deal with obser-
vations when only one component of the velocity vector is measured. In order to check
the importance of dynamical constraints in gridding a velocity field, a 2D analysis is used
as the control experiments for different test cases. Including boundary conditions and
the constraints on small divergence did not improve the accuracy of the constructions.
However, the skill score was improved when taking for every time instance the previous
and the following radial maps into account (i.e. a 3D analysis). By including in the cost
function a momentum balance with the Coriolis force and surface pressure gradient, we
can successively improve the skill score of the analysis. The best analysis procedure was
obtained when considering the Coriolis force and the surface pressure gradient. Dynam-
ical information appears to be quite beneficial when analyzing surface currents.

The main conclusion is also supported when comparing the results to drifter data.
The skill scores relative to the control experiment are not as significant as relative to the
HF radar cross-validation data. However, the best analysis was again obtained by consid-
ering the Coriolis force, the surface pressure gradient and including the time dimension
in the analysis. The comparison of drifter showed that the presented method compares
favourably to the reconstruction from the OMA method.

It should be noted that if the area is well covered by observations and gaps are rela-
tively small and infrequent then many interpolation methods are likely to provide similar
results. But if large gaps exist in space and/or time, using an interpolation algorithm
able to leverage a priori information about the field to interpolate (like dynamical con-
straints and data at different time instances as shown here) can be beneficial and can
avoid excessive smoothing when interpolating over large gaps.

The source code of the analysis is available under the terms of the GPL license at the
address https://github.com/gher-ulg/DIVAnd_HFRadar.jl.
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Alvera-Azcárate A, Barth A, Parard G, Beckers JM (2016) Analysis of SMOS sea sur-
face salinity data using DINEOF. Remote Sensing of Environment 180:137 – 145,
doi:10.1016/j.rse.2016.02.044, special Issue: ESA’s Soil Moisture and Ocean Salinity
Mission - Achievements and Applications

Arakawa A, Lamb V (1977) Computational design of the basic dynamical process of the
UCLA general circulation model. Methods in Computational Physics, Academic Press,
New York, 173–265

Barrick D (1978) HF radio oceanography–a review. Boundary–Layer Meteorology 13:23–
43

Barth A, Beckers JM, Troupin C, Alvera-Azcárate A, Vandenbulcke L (2014) divand-
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Tintoré J, Lana A, Marmain J, Fernández V, Orfila A (2014) SOCIB EXP RADAR
Sep2014 (Version 1.0) [Drifter data set]. Tech. rep., Balearic Islands Coastal Observing
and Forecasting System, SOCIB, doi:10.25704/MHBG-Q265
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A Relationship to the least-square solution

In this appendix, we show that the proposed method to derive total currents from radials
leads to the same solution as the closed-form solution presented in Graber et al (1997)
if the smoothness and dynamical constraints are ignored . As in Graber et al (1997), we
assume that we have two radial measurements at the same location from two HF radar
sites. At this location, we note θ1 (resp. θ2), the angle between the true North and the
first (resp. second) HF radar site counted clockwise. The unit vector pointing to the i-th
radar site is thus pi = (sin(θi), cos(θi)) (for i = 1, 2). In this manuscript, positive radial
currents uri represent water moving toward the HF radar sites as this is the convention
adopted in the SeaSonde radial file format.

If the dynamical and smoothness constraints are ignored, then minimizing equation
(3) is equivalent to minimize Ju,v for two HF radar sites:

Ju,v(u, v) =
2∑

i=1

(u sin(θi) + v cos(θi)− uri)2

ε2i
(22)

where u and v are the total velocity components and ε2i is the expected error variance
of the radial measurement uri . By setting the derivative of this cost function relative to
u and v to zero, one obtains the following system of equations:

(u sin(θ1) + v cos(θ1)− ur1) sin(θ1)

ε21
+

(u sin(θ2) + v cos(θ2)− ur2) sin(θ2)

ε22
= 0(23)

(u sin(θ1) + v cos(θ1)− ur1) cos(θ1)

ε21
+

(u sin(θ2) + v cos(θ2)− ur2) cos(θ2)

ε22
= 0(24)

By variable elimination, this system can be reduced to:

u sin(θ1) + v cos(θ1) = ur1 (25)

u sin(θ2) + v cos(θ2) = ur2 (26)
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This system simply means that the reprojected total current should be simply equal to
the radial currents. Note that the solution does no longer depend on ε2i for this particular
case.

Provided that θ1 − θ2 6= nπ (for all n ∈ Z), the solution to these equations is given
by:

u =
ur1 cos(θ2)− ur2 cos(θ1)

sin(θ1 − θ2)
(27)

v =
ur2 sin(θ1)− ur1 sin(θ2)

sin(θ1 − θ2)
(28)

This solution is identical to the equations 10 and 11 in Graber et al (1997). If
θ1 − θ2 = π, then the two HF radar sites are just in front of each other (relative to
the measurement site) which correspond to the geometric dilution of precision as de-
scribed in Chapman and Graber (1997).

Some authors (e.g. Lipa and Barrick, 1983) determine the total current by minimizing
the cost function expressed as current speed and current direction but it leads to the same
solution as the cost function is expressed an equivalent way (compare equation (22) to
equation 39 of Lipa and Barrick (1983)) as using current speed and current direction
instead of zonal and meridional currents is simply a variable transformation.
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