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I. Davenport series

Let {x} = x − [x ]− 1/2.

De�nition

A Davenport series is a function f of the form

f : R→ R x 7→
∞∑
n=1

an{nx}.

We will suppose that (an) ∈ l1.
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An example from Riemann:

∞∑
n=1

{nx + 1/2}
n2

,

an example from Jordan:

∞∑
n=1

{nx + 1/2}
n3

,
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an example from Lévy:
∞∑
n=1

{2nx + 1/2}
2n

,

another example (Lebesgue-Davenport):

[0, 1]→ [0, 1] x 7→


1 if x = 1

x =
∞∑
n=1

x2n
22n

if x =
∞∑
n=1

xn
2n

,

where x =
∑∞

n=1 xn/2
n is the proper binary expansion of x .
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II. Multifractal analysis

De�nition

Given α ≥ 0 and x0 ∈ R, a locally bounded function f : R→ R belongs
to Λα(x0) if there exist two constant R,C > 0 and a polynomial P of
degree less than α such that

if |x − x0| < R then |f (x)− P(x − x0)| < C |x − x0|α.

The Hölder exponent of f at x0 is

hf (x0) := sup{α ≥ 0 : f ∈ Λα(x0)}.
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The Hölder exponent of a function can vary from one point to another in
a very erratic way. Since the Hölder function x 7→ hf (x) is generally very
irregular, one usually also tries to characterize the importance of a given
Hölder value, i.e. to determine the size of the set of points sharing the
same Hölder exponent.

De�nition

The isoHölder sets of a locally bounded function f are the sets

EH = {x : hf (x) = H}.

The spectrum of singularities of f is then de�ned as

df : R+ → R+ ∪ {−∞} h 7→ dimH(Eh),

where dimH stands for the Hausdor� dimension, with the standard
convention dimH(∅) = −∞.
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Not surprinsigly, the Hölder exponent of these functions at x depends on
how closely x can be approximated by rationals.

More precisely, it involves notions close to the irrationality exponent,
which is the supremum of the real numbers µ > 0 for which

0 < |x − k

q
| < 1

qµ

is satis�ed for an in�nite number of integer pairs (k, q).

This exponent can be read on its continued fraction expansion but it is in
general very di�cult to determine the exact value of µ.

However additional assumptions have to be made on the possible
solutions (k, q) in the previous inequality depending on the considered
function or more precisely on the nature of the considered sequence (an).
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Given a number x , let

µE (x) = sup{µ : |x − k

q
| < 1

qµ

is satis�ed for an in�nite number of integer pairs (k, q)

with (k , q) ∈ E}.

Theorem

If f is the Riemann function, hf (x) = 2/µE (x), where k/q ∈ E i� q is
even.
Moreover df (h) = h if h ∈ [0, 1] and df (h) = −∞ otherwise.
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The connexion between Lévy's function and the irrationality exponent is
less clear.

This Davenport series is lacunary, i.e. many an do vanish.

De�nition

A p-adic Davenport series is a series of the form

∞∑
n=1

an{pnx}.
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Let us consider a p-adic Davenport series

∞∑
n=1

an{pnx}.

In this case, the Hölder exponent at x depends on how closely x can be
approximated by p-adic rationals.

Such a function is continuous at every non p-adic real number and has a
right and left limit at every p-adic rational k/pn (where k and p are
coprime) with a jump of amplitude bn :=

∑
l≥n al .
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The spectrum of singularity of such functions was �rst obtained as a
consequence of general upper and lower bounds for the spectra.

The determination of the Hölder function was later obtained as a
generalisation of a result obtained for Lévy's function.

Samuel Nicolay Multifractal analysis: on the trail of Cantor



The spectrum of singularity of such functions was �rst obtained as a
consequence of general upper and lower bounds for the spectra.

The determination of the Hölder function was later obtained as a
generalisation of a result obtained for Lévy's function.

Samuel Nicolay Multifractal analysis: on the trail of Cantor



Theorem

Let f be a p-adic Davenport series with (an) ∈ l1,
and de�ne bn :=

∑
l≥n al .

If x is not a p-adic rational,

hf (x) = lim inf
n→∞

log |bn|
log dist(x , p−nZ)

.

Otherwise, if x = k/pl with k and p coprime, hf (x) = 0 if bl = 0, else

hf (x) = lim inf
n→∞

log |bn|
log p−n

.
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III. Approximation by p-adic rationals

If x − [x ] = (0; x1, . . .)p is not a p-adic rational, let

δ(n) = sup{l : ∀l ′ ≤ l , xn+l′ = xn}

and (mn)n∈N be the sequence de�ned recursively as follows:

m1 = inf{l : xl = 0 or xl = p − 1}

and

mn = inf{l > mn−1 + δ(mn−1) : xl = 0 or xl = p − 1} (n > 1)

if it makes sense, that is if mn is �nite for every n.
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One also de�nes the sequence (δk)k by δn = δ(mn) if mn is �nitie for
every n. The number δn represents the size of the n-th �gap� made of
numbers 0 or p − 1, while mn points at the position of this gap.

Finally, de�ne

ρp(x) = lim sup
n→∞

δn
mn

if mn is �nitie for every n and ρp(x) = 0 if there exists k such that
mk =∞.
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The number ρp(x) de�nes, in some way, the rate of approximation of the
number x by p-adic rationals

as the following result is a consequence of
the de�nition of ρp.

Proposition

If x is not a p-adic rational, the supremum of the µ > 0 such that the
equation (depending on k and l)

|x − k

pl
| < (

1

pl
)µ

has in�nitely many solutions is ρp(x) + 1.
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If x is a p-adic rational, as δn =∞ for some n if x ∈ (0, 1), one naturally
sets ρp(x) =∞.

The previous proposition leads to the following de�nition.

De�nition

The p-adic irrationality exponent µ(p)(x) of a number x in base p is
given by µ(p)p(x) = ρp(x) + 1.
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One has µ(p)(1/p) =∞ and µ(p)(1/p + 1) <∞.

If x is the Liouville number

x =
∞∑
k=1

1

pk!
,

one easily checks that µ(p)(x) =∞, although x is transcendental.
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Given α ∈ [1,∞], let us de�neMp
α as the set of points whose critical

exponent in base p is α:

Mp
α = {x : µ(p)(x) = α}.

We will often omit the reference to the base p and writeMα instead of
Mp

α.

The Hausdor� dimension ofMα is 1/α.

Theorem

We have

dimH(Mα) =
1

α
,

for any α ∈ [1,∞].
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IV. Regularity of p-adic Davenport series

Given (an), let bn =
∑

l≥n al .

De�nition

Given p ∈ N and l > 0, a sequence (an) is of order l with respect to p if
(pnlan) is bounded. In this case, we will write an ∼ l .
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Given a p-adic Davenport series
∑∞

n=1 an{pnx}, lets us de�ne

µ
(p)
f (x) := 1 + lim sup

n →∞
bmn−1 6= 0

δn
mn

and
M′α :=M′pf ,α := {x : µ

(p)
f (x) = α}.
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Theorem

Let f be a p-adic Davenport series with an ∼ l ; if x belongs toM′α with
α ∈ [1,∞] then hf (x) = l/α.

In particular, the isoHölder sets of f are

EH =M′l
H
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Corollary

If f is a p-adic Davenport series with an ∼ 1/l , the spectrum of
singularities of f is

df (h) =

{
lh if h ∈ [0, 1/l ]
−∞ otherwise

.
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Since {x + 1/2} = {2x} − {x}, the spectrum of singularitues of

f =
∞∑
n=1

{2nx + 1/2}
2n

is df (h) = h if h ∈ [0, 1] and df (h) = −∞ otherwise.

We also haveM′α =Mα, so that EH =M1/H and hf (x) = 1/µ(2)(x).
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The function

f : [0, 1]→ [0, 1] x 7→


1 if x = 1

x =
∞∑
n=1

x2n
22n

if x =
∞∑
n=1

xn
2n

can be rewritten

f (x) =
1

2
+
∞∑
n=1

an{2nx},

with a2n = −2−n and a2n+1 = 2−n.

Therefore df (h) = 2h if h ∈ [0, 1/2] and df (h) = −∞ otherwise.
However,M′α 6=Mα and

hf (x) = 2/(1 + lim sup
n →∞
mn even

δn
mn

)

(one only takes dyadic rationals of the form k/22l−1).
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V. Cantor's bijection

The functions

f1 : [0, 1]→ [0, 1] x 7→


1 if x = 1

x =
∞∑
n=1

x2n−1
22n

if x =
∞∑
n=1

xn
2n

and

f2 : [0, 1]→ [0, 1] x 7→


1 if x = 1

x =
∞∑
n=1

x2n
22n

if x =
∞∑
n=1

xn
2n

was Cantor's �rst attempt to build a one-to-one mapping from [0, 1] to
[0, 1]2.
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The function x 7→
(

f1(x)
f2(x)

)
is onto [0, 1] but not one-to-one.

Let I = [0, 1]−Q; the function

I → I 2 [a1, a2, a3 . . .] 7→
(

[a1, a3, . . .]
[a2, a4, . . .]

)
is one-to-one.

Interestingly, the �rst function gives rise to a one-to-one function thanks
to the Schröder-Bernstein theorem, conjectured by Cantor a few years
later.
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This function is continuous on I .

As a consequence Cantor's bijection is a homeomorphism between I and
I 2. Therefore it is not continuous on [0, 1].

Indeed it is discontinuous at any rational.
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Let f be the �rst component of Cantor's bijection (there is a similar
result for the second component).

Theorem

Let n ∈ N; if x = [a], for the �right� y , we have

1
n

∑dn/2e
k=1 log a2k−1

1
n

∑n+2
k=1 log(ak + 1) + C1(n)/n

≤ log |f (x)− f (y)|
log |x − y |

≤
1
n

∑dn/2e+3

k=1 log(a2k−1 + 1) + C2(n)/n
1
n

∑n+2
k=1 log ak

,

where C1(n) = log 2
2

+ log max{ an+2+2
an+2+1

, an+3+2
an+3+1

} and
C2(n) = log 2

2
+ log max{ adn/2e+3+2

adn/2e+3+1
,
adn/2e+5+2

adn/2e+5+1
}.

Samuel Nicolay Multifractal analysis: on the trail of Cantor



hf ([1, 2, 1, 4, 1, 8, 1, 16, . . .]) = 1,

hf ([2, 1, 4, 1, 8, 1, 16, 1, . . .]) = 0,

hf ([2, 4, 8, 16, . . .]) = 1/2.
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Using the ergodic theorem on continued fractions, we get

Theorem

We have hf ([a]) ∈ [ logK0

2 logK1
, logK1

2 logK0
] almost everywhere,

where Kk =
∏∞

l=1(1 + 1
l(l+2) )log(k+l)/ log 2.
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Proposition

Given a ∈ NN, let a′ = (a2k−1); if

lim
n

1

n
log qn(a) = lim

n

1

n
log qn(a′) (

a.e.
=

π2

12 log 2
),

then hf ([a]) = 1/2.
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How to prove that limn
1
n log qn(a′) = π2

12 log 2 a.e.?

Using Birkho�'s theoem?

Let τ be the left shift operator: τ((ak)) := (ak+1).

We have

1

n
log qn(a) = −1

n

n−1∑
k=0

log[τ k(a)] + Rn(a),

with Rn(a)→ 0 as n→∞.
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From this, we get

1

n
log qn(a′) = −1

n

n−1∑
k=0

log[τ2k(a)] + Sn(a) + Rn(a′),

with Sn(a) =
1

n

n−1∑
k=0

log
[τ2k(a)]

f ([τ2k(a)])
.

And thus

lim
n

1

n
log qn(a′) =

π2

12 log 2
+ lim

n
Sn(a)

almost everywhere.
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Therefore, if

lim
n

1

n

n−1∑
k=0

log
[τ2k(a)]

f ([τ2k(a)])
= 0

almost everywhere, then hf ([a]) = 1/2 almost everywhere.
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The numerical spectrum of f :
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