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Abstract
This paper deals with the problem of modal parameter identification when the measurements are perturbed
by unknown but bounded noise. It is well known that the classical Total Least Square (TLS) solution is the
most accurate one, but that it is quite sensitive to data perturbations. This feature is a big drawback since it is
desirable that the estimated modal parameters should not vary when perturbations on measurements change.
An optimisation technique suited to so-called second-order cone programs [2] is proposed and tested. This
method sets the identification problem in a MIN-MAX formulation [1] and uses an iterative interior-point
primal-dual potential reduction algorithm [3, 4]. The residual error is first maximised over the set of possible
perturbations leading thus to a worst-case residual error. Then, it is minimised over the set of identification
variables. This procedure guarantees the robustness of the solution in the sense that no perturbation of the
considered set could make the residual error bigger. This robustness is obtained to the detriment of an absolute
accuracy. A good compromize between robustness and accuracy may be found through the prior resolution of
the associate TLS problem.
The optimisation program is tested in the case of a clamped-free beam for which closed-form solutions are
available. A comparison with the TLS solution is also performed.

1. Introduction

Identification of modal parameters using experimen-
tal vibration data often leads to the resolution of an
overdetermined linear system of equations :

Ax = b (1)

where matrix An�m and vector bn collect a set of
measurement dependent coefficients. Both A and b
are perturbed by what is commonly called ”noise”. It
can be due to the experimental set up itself, to the data
acquisition procedure or simply to bad environmental
conditions during testing when the measurements are
done on industrial sites. That is why equation (1) is
rewritten as

(A+ �A)x = b+ �b (2)

in which the implicit dependency in the unknown per-
turbations �A and �b appears.
The aim of the research is to develop and test the abil-
ity of an optimisation tool to solve (2) iteratively so
that unknown but bounded perturbations can be di-
rectly taken into account during the modal identifica-
tion step.

Denoting the extended perturbation matrix � =

[�A�b], equation (2) is transformed into a min-max
problem such that

min
x

max
k�kF��

k (A+�A)x� (b+ �b) k (3)

in which subscript F states for the Frobenius norm
and where � is the considered (not necessarily small)
range of action of the perturbation which bounds the
norm of � [1].
In this form, the objective function matches the resid-
ual error of problem (2) except that it is computed in
the worst case inside the sphere of perturbation varia-
tion. Consequently, at the end of the optimisation pro-
cess, the objective function does not tend to zero but
to an upper limit value that no perturbation � in the
sphere of radius � could make bigger. In that sense,
the method proposed here does not lead to an ”accu-
rate” solution like a least squares solution. But, in
opposition to least squares approaches, the solution
x obtained here is less sensitive to noise. This fea-
ture shows the robustness of the method and should
be very interesting in the field of modal identification.



2. Uncertainty model

The radius � of the perturbation sphere cannot be
known a priori . If it is over estimated, the solution x
should be more robust, but also quite less accurate. If
it is under estimated, the loss of robustness can lead to
instabilities in the identification of the parameters. In
particular, when �! 0, problem (3) turns out into the
associate Total Least Squares (TLS) problem which is
known to be very sensitive to data perturbations.
A simple and automatic way to correctly evaluate the
radius � in a given application [1] is to compute the
TLS solution (x�;�A�;�b�). This leads generally
to a good compromise between accuracy and robust-
ness. The nominal data, center of the perturbation
sphere are then taken as

A�
= A+�A� and b� = b+ �b� (4)

and the radius � to consider is given by the norm of
the TLS correction matrix making the system of equa-
tions consistent :

� = �TLS =k (�A�;�b�) kF (5)

But, if the TLS solution was about to be quite wrong,
it would be recommended to keep the measured data
(A;b) as nominal data. Otherwise, the initial prob-
lem to solve could be entirely misrepresented.

3. Optimisation method [1,2]

In the following, the radius of perturbation � will be
taken equal to one. If it is not the case, a preliminary
scaling step of the problem is necessary :

min
x

max
k�kF�1

k (A0

+ �A
0

)x� (b
0

+ �b
0

) k (6)

with A
0

=
A

�
and b

0

=
b

�

3.1 Worst-case residual error

Applying the triangular inequality principle, the
worst-case residue becomes (for � = 1):

"max(A;b;x)

= maxk�kF�1 k (A
0

+�A
0

)x� (b
0

+�b
0

) k
=k A0

x� b
0 k +

p
xTx+ 1 (7)

This function has now to be minimized over the set of
parameters x to be identified.

3.2 Primal optimisation problem

Using two additional variables � and � , the primal
optimisation problem transforms into [1]

min
x;�;�

� (8)

with kAx� b k� �� �

and k (xT ; 1) k� �

Written in this form, the objective function is linear
and the constraints are conic. It is part of the class of
Second Order Cone Programs (SOCP) [2]. Nesterov
and Nemirovsky [4] showed that such problems can
be efficiently solved using an iterative interior point
algorithm which minimises a potential function com-
bining both primal and dual spaces.
Such a method is used in the field of control and
should be well adapted to identification for the fol-
lowing reasons :

� the analytical and differential features of the
problem can be exploited and reduce the itera-
tion cost;

� the number of iterations is independent of the
size n of the system;

� the convergence is monotonic, assuring a stable
and feasible solution ; this is due to the progres-
sion by interior points;

� the problem takes a nearly convex form guaran-
teeing a global minimum.

If one collects the primal variables in vector yT =

(xT ; �; �), the problem is rewritten in the standard
SOCP form [2]:

miny f
Ty (9)

with kA1y � b1 k� c1
Ty

and kA2y� b2 k� c2
Ty

where A1 2 Rn�m+2, A2 2 Rm+1�m+2, b1 2 Rn,
b2 2 Rm+2, c1 2 Rm+2, c2 2 Rm+2 et f 2 Rm+2.

3.3 Associate dual formulation

The dual formulation of problem (9) is [2]

maxZ�(b1T z1 + b2
Tz2) (10)

withAT

1 z1 + w1c1 +AT

2 z2 + w2c2 = f

k z1 k� w1,

and k z2 k� w2

The dual variables are collected in vector ZT
=

(zT1 ; w1; z
T

2 ; w2).



3.4 Duality gap

The difference between the primal objective and the
dual one is called the duality gap [3, 4]. For each
admissible pair (y;Z) (i.e. a pair verifying the primal
and the dual constraints of the optimisation problem),
the duality gap value is given by

�(y;Z) = fTy + (b1
T z1 + b2

Tz2) (11)

This function is always positive and tends to zero
when the solution goes to the optimal point.

3.5 Barrier functions

The interior point feature of the method is obtained
through the moving of all inequality constraints into
the objective function under the form of barrier func-
tions [4]. Logarithmic barriers are built for each conic
constraint in such a way :

B(u; t) =
n � log (t2 � uTu) 8 k u k< t

1 , otherwise
(12)

Barriers act thus as penalty terms preventing from
moving outside the feasible space. Their Jacobian,
Hessian and inverse Hessian may be easily computed
in the following analytical form :

rB(u; t) = 2

t2 � uTu

h u

�t
i

(13)

r2B(u; t) =

2
(t2�uTu)2

h
(t2 � uTu)I �2tu
�2tuT t2 + uTu

i
(14)

r2B(u; t)
�1

=

1
2

h
(t2 � uTu)I+ 2uuT 2tu

2tuT t2 + uTu

i
(15)

3.6 Primal-dual algorithm

Primal and dual optimisation problems take quite the
same form. It is thus easy to handle them in the same
time through the use of a potential function combin-
ing the duality gap which is to be minimised and the
barrier functions. The potential function prescribed
by Nesterov and Nemirovsky [4] is defined as

�(y;Z) = (4+2�) log �+B1;P+B2;P+B1;D+B2;D

(16)

where B1;P , B2;P , B1;D, B2;D denote the barrier
functions associated to the four primal and dual conic
constraints ; � is a numerical parameter allowing to
tune the relative weight of the � term and of the
penalty terms.
The final form of the optimisation problem results in
an unconstrained minimisation problem :

min
y;Z

�(y;Z) (17)

All constraints are included in the objective function
except for the equality constraint of the dual problem.
This last constraint will have to be imposed at each
iteration during the search direction computation step.

3.6.1 Search direction

Starting from a strictly admissible pair (y;Z) and at
each iteration, the primal and dual search directions
�y and �Z must stay correctly paired. This can be
achieved if the equality constraint of dual problem
(10) is verified.
Thus the search direction step combines two matrix
equations [2, 4] :

h H�1 A

A
T

0

ih �Z

�y

i
=

h �H�1
(�Z + g)

0

i
(18)

with

H =

h r2B1;D 0

0 r2B2;D

i
(19)

g =

h rB1;D

rB2;D

i
(20)

and � = (4 + 2�)=�.
The first equation corresponds to a quasi-Newton type
direction for problem (17) : the term (4+ 2�) log � is
concave and its negative contribution to the hessian is
thus neglected. The second equation results from the
differentiation of the equality constraint.

3.6.2 Plane search

The current point is updated by minimizing the po-
tential function � in the plane defined by the paired
search directions (�ZT ; �yT):

min
p;q

�(y+ p�y;Z+ q�Z) = 0 (21)

The primal and dual step lengths p and q vary be-
tween 0 and an upper limit corresponding to the bar-
rier crossings.



4. Application example

The method was tested on simulated measurements
of a clamped-free bending beam. The frequency re-
sponse function (FRF) at the free end of the beam was
generated by modal superposition . Modal damping
ratios were set to 2%. The first 3 exact eigenfrequen-
cies are 8.36 Hz, 52.35 Hz and 146.58 Hz. For in-
stance, the impulse response function (IRF) at the end
of the beam (h1;1) is shown at figure 1.
The modal identification was made using the Least
Squares Complex Exponential method (LSCE)[5, 6].
LSCE leads to the resolution of a system like (1)
where matrix A and vector b are made of digitalised
impulse response functions. The identification of the
first 3 eigenfrequencies was performed using

1. the optimisation method (OPTI),

2. the TLS method.

4.1 Robustness and accuracy

In order to compare both methods, several tests were
realized. At each time, the signal was perturbed by
white noise with a signal to noise ratio (SNR) of

SNR = 10 log

�2
h1;1

�2
noise

= 14 dB (22)

This random perturbation always led to a rather small
TLS correction : �TLS ' 4:2 10�4. Figure 1 displays
the exact signal along with the added perturbation.
Table 1 gives the results of 3 tests. Regarding to the
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Figure 1: Exact signal and added white noise

TLS method, it is observed that the results are more

No OPTI TLS
freq. (Hz) � (%) freq. (Hz) � (%)

8.62 2.46 8.33 -3.26
1 54.05 8.35 52.69 2.99

131.83 2.47 131.89 -0.4
8.42 7.34 8.74 1.39

2 53.03 10.96 50.70 -6.02
152.04 4.67 142.70 -1.06
7.98 13.99 11.36 34.35

3 53.13 1.6 47.04 -2.15
164.31 3.08 164.26 0.07

Table 1: OPTI / TLS comparison

dispersed. The method leads to an accurate solution
in the sense that the residue of the system of equa-
tions is zero, but the final solution strongly depends
on the chosen recorded sample used for the identifi-
cation. The TLS method sometimes leads to nega-
tive values for the modal damping coefficients. The
corresponding poles would normally be considered in
practice as numerical poles and would be rejected.
At the opposite, the OPTI solution is characterized by
a smaller standard deviation and always gives positive
damping ratios. However, the latter may sometimes
be poorly estimated. In this particular example, it can
be explained by

� the relatively high noise level,

� a too small frequency resolution for the first
peak,. . .

For each test, the optimisation method always con-
verges in 7 or 8 iterations. Figure 2 displays an ex-
ample of typical convergence curves for the objective
and the potential functions. It also illustrates the con-
vergence of the duality gap.

4.2 Perturbation radius influence

Starting from exact noise free measurements, the per-
turbation radius � of the OPTI method is progres-
sively increased. Doing this, a larger perturbation
around the data is taken into account and the accu-
racy of the solution decreases. As an example, the
evolution of an identified parameter when � grows is
displayed in figure 3. Again, the robustness of the
method appears.



1 2 3 4 5 6 7
−30

−20

−10

0

10

20

30

Iteration Nr

primal objective
dual objective
potential function

Figure 2: Convergence curves
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Figure 3: Radius � influence on third frequency

5. Conclusion and perspectives

An optimisation toll for the identification of modal
parameters was tested on the basis of an analytical
test case.
An improvement of the algorithm has still to be done
for the computation of the step lengths during the
plane search. At present, the plane search compu-
tation cost is prohibitive because it is done by a di-
chotomy procedure. The analytical feature of the
problem should better be exploited to obtain approxi-
mate step lengths.
In the future, other identification techniques will be
tested in concordance with this optimisation solver.
This tool will also be tested for structural model up-
dating since it leads to solutions much more insensi-
tive to noise.
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