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Abstract

The shape of the firm size distribution (FSD) appears to be similar

in all market economies but its approximation by a parametric distri-

bution, a piece of information needed to model firm dynamics, remains

highly debated. In this paper, we use a comprehensive and proprietary

database of Belgian firms for the period 2006-2012. We first design a sim-

ple estimation method to test the fit of parametric distributions and to

determine the one offering the best fit at different truncation thresholds.

Then we show that the lognormal distribution is a better approximation

of the empirical FSD than the Pareto distribution. This result holds true

at the aggregate, sectoral and regional levels revealing that the shape of

the aggregate distribution is not an aggregation artifact arising from the

potential distributional heterogeneity of sectoral or regional subsets.
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1 Introduction

The firm size distribution (FSD) appears to be similar in all market economies:

many small firms and few large corporations. The shape of this distribution is

the culmination of a historical process, initiated during the Industrial Revolu-

tion, in which self-employed workers, mostly farmers, became over time employ-

ees of private firms of varying sizes, particularly in the industrial sector. Gibrat

(1931) proposed a probabilistic model based on proportional random growth

(known as Gibrat’s law) to replicate and explain the dynamics of firms observed

during this historical period. He found that the lognormal distribution, which

approximates the asymptotic distribution of his random walk model, fitted well

the entire empirical distribution of the number of employees in French estab-

lishments in 1896, 1901, and 1921. By introducing a minimum size in Gibrat’s

model, Champernowne (1953) found that the asymptotic distribution is approx-

imated by a Pareto distribution in its upper tail (i.e., the distribution of the

largest firms). Simon (1955) modified Gibrat’s model by assuming that the

number of firms increases over time at a constant rate. The resulting stochastic

process is no longer a random walk but a Yule process. Simon and Bonini (1958)

apply the Yule process to firm sizes, restrict the constant rate of firm entries to

small firms, and find that the Pareto distribution approximates the asymptotic

distribution of the Yule distribution in its upper tail. Since then, the findings of

the empirical literature have oscillated between the lognormal and the Pareto

distributions.

This paper makes an important contribution to this long-standing debate

in a multidisciplinary literature marked by disputed estimation methods and

databases with incomplete or truncated information. The strengths of our con-

tribution are threefold. First, we address the flaws of the estimation methods

usually found in the literature and propose a simple and more robust method.
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Second, we use a complete database on firm sizes in Belgium for each year from

2006 to 2012, thus ruling out the sampling biases that are frequently suspected

in the literature. Third, our database includes sectoral and regional information

allowing us to study possible aggregation effects arising from the potential dis-

tributional heterogeneity of these subsets. Our results show that the lognormal

distribution is a better approximation of the empirical FSD than the Pareto

distribution at all levels of truncation and disaggregation.

The first major attempt to fit an entire empirical distribution of firm sizes

was made by Axtell (2001) who used a comprehensive database of US firms’

employees, though with grouped data, and concluded that the entire empirical

US distribution of firm sizes fitted well a Zipf distribution, which is a rank-

frequency distribution that Zipf (1949) identified in the frequency of words in

written English texts. The Zipf distribution, linear on a log-log plot, is a discrete

version of a Pareto distribution with a scale parameter equal to one. Since then,

the Pareto FSD distribution has been assumed extensively in heterogeneous

firm models for its appealing analytical convenience1. Nevertheless, Axtell’s

paper did not close the FSD debate for three reasons. First, the approximate

linearity of an empirical distribution on a log-log plot is a necessary but not

sufficient condition to conclude that it is a Pareto distribution. Other parametric

distributions are possible and should be tested for comparison.2 Second, the

fitting method used by Axtell has been questioned for its reliability (Kleiber

and Kotz, 2003; Goldstein et al., 2004; Perline, 2005; Clauset et al., 2009).

1See, for instance: Antras and Helpman (2004); Helpman et al. (2004); Luttmer (2007);

Rossi-Hansberg and Wright (2007); Chaney (2008); Gabaix and Landier (2008); Eaton et al.

(2011). In the trade literature, see among others: Arkolakis et al. (2008), Helpman et al.

(2008), Melitz and Ottaviano (2008) and Melitz and Redding (2015).
2A lognormal distribution with a high enough value of its variance relative to its mean

can look like a straight line in a log-log plot. For an example involving lognormal, Pareto,

and exponential distributions, see Figure 5a in Clauset et al. (2009).
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Third, the result obtained by Axtell could be specific to the distribution of

US firms. Unfortunately, the accessibility of comprehensive national databases

on firm sizes is still too rare to generalize his conclusion. As far as we know,

three other papers use complete ungrouped data. Bee et al. (2017) test the

fit of the distribution of the total revenues of all French firms in 2003 by the

Pareto and lognormal distributions and find that neither of them provides a

good fit to the French entire FSD but the lognormal distribution is a better

approximation of French firm sizes. The other two papers use the method and

algorithm proposed by Clauset et al. (2009) to estimate which of the lognormal

and Pareto distributions best fits the empirical distribution. Montebruno et al.

(2019) find that the Pareto distribution best fits the employment distribution

of the 19th-century firms in England and Wales. Using the same US firm data

as Axtell (2001), a contemporary paper by Kondo et al. (2020) eventually finds

that the lognormal distribution provides a better fit.

Like these last two papers, our work uses a complete database and the algo-

rithm of Clauset et al. (2009) – more precisely its version for R-software written

by Gillespie (2015, 2020) – to estimate the fit of the lognormal and Pareto dis-

tributions to the empirical distribution. However, we question the validity of

the test that Clauset et al. (2009) propose to conclude on the best fit between

the two parametric distributions. Their test allows the two distributions to

be tested on different samples, which violates the assumptions of hypothesis

testing. We modify their test by imposing the same sample on both tested dis-

tributions and apply it to the empirical distribution of ungrouped Belgian firms

each year from 2006 to 2012 at the aggregate, sectoral and regional levels. The

result is unambiguous at the aggregate, sectoral and regional levels: of the two

candidate distributions, the lognormal distribution provides the best fit in all

cases. Thus, the sectoral and regional information in our database allows us
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to conclude that the best fit obtained by the lognormal distribution is not the

result of an aggregation artifact.

The rest of the paper is organized as follows. Section 2 describes our exclusive

complete database on Belgian firm sizes. Section 3 discusses our estimation

approach. We then present the estimation results for the aggregate level (Section

4), the sectoral level (Section 5), and the regional level (Section 6). Section 7

concludes.

2 Data

This paper uses an exclusive complete database of firm sizes in Belgium that

was obtained from the Belgian Ministry of Economy (SPF Economie - Direction

générale Statistique - Statistics Belgium). The database includes the exact

number of employees of all registered firms and establishments of the NACE

sectors A to N in Belgium for each year from 2006 to 2012.3 In Belgium, each

enterprise must provide its list of employees to the social security administration

every quarter. Our database contains the exact number of employees of the last

quarter. In this study, the unit of observation is the firm, which may be a

combination of several legal units if they share a common economic activity.

This choice is justified by the fact that economic decisions, such as hiring and

firing decisions, are made at the firm level. In 2012, for instance, there were

202,480 private firms in Belgium hiring more than 2.28 million employees (Table

1). The average size was 11.2 employees while the median size was 3 employees,

emphasizing the right-skewness of the distribution.

3For the list and description of the 2008 NACE sectors in the European Union, see Ap-

pendix A.

4



Firms Employees Median Mean Std Dev skewness
2006 201,677 2,080,570 3.00 10.32 55.28 39.43
2007 197,731 2,069,337 3.00 10.47 55.75 38.61
2008 204,563 2,264,683 3.00 11.07 59.34 46.57
2009 203,424 2,230,109 3.00 10.96 57.25 44.12
2010 203,963 2,262,225 3.00 11.09 57.04 42.64
2011 203,733 2,277,888 3.00 11.18 57.87 42.46
2012 202,480 2,280,598 3.00 11.26 57.63 41.36

Table 1: Belgian firms’ database: summary statistics

3 Method

Our complete database contains 202,480 firms from 1 employee to 8,198 em-

ployees in 2012. The complementary cumulative frequency distribution of this

sample is represented in a log-log plot in Figure 1. This distribution is the real-

ization in 2012 of a discrete random variable X, where X is the size of the firm

measured by its number of employees. The probability of a firm to be of size x

is

p(x) = P (X = x) (1)
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Figure 1: Complementary cumulative distribution of firm sizes in Belgium in
2012

The scientific literature on firm size distribution has sought to fit the ob-

served frequencies to the probabilities p(x) of a parametric distribution function.

Since Gibrat (1931), two objectives motivate this scientific research. The first

is to use the parameters of the parametric distribution as an indicator of firm

concentration and to measure its variability over time. The second objective

is to use the shape of the parametric distribution as the long-run equilibrium

of a stochastic model of firm dynamics to be identified. Historically, two para-

metric distributions have been proposed corresponding to different models of
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firm dynamics. First, the lognormal distribution, proposed by Gibrat (1931),

is the asymptotic distribution of a stochastic model in which the growth rates

of firms are independent and identically distributed across firms and over time.

The CDF of the lognormal distribution is

FL(x) = P (X ≤ x) = 1√
2π

∫ x

0
exp

[
−1

2

(
ln s− µ
σ
√

2

)2
]
ds x > 0 (2)

where µ is the mean and σ the standard deviation. Gibrat claimed that the

lognormal distribution fitted well the entire distribution of French establish-

ments in grouped data for the years 1896, 1901 and 1921. One may want to fit

only part of the empirical distribution. In this case, the CDF of the truncated

lognormal distribution is

FLxmin
(x) = P (X ≤ x) = FL(x)− FL(xmin)

1− FL(xmin) x ≥ xmin > 0 (3)

where xmin is the cutoff on the domain of the CDF.

The alternative distribution is the Pareto distribution proposed by Cham-

pernowne (1953) and Simon (1955) to fit the upper tail of the firm size dis-

tribution. Champernowne’s model of firm dynamics is essentially identical4 to

Gibrat’s model but assumes a mininum size in the range of firm sizes and finds

that the upper tail of the resulting asymptotic distribution is Pareto.5 Simon

(1955) modifies the two preceding models by assuming that the number of firms

increases over time thanks to a constant flow of entries of new small firms. The

firm dynamics now is like a Yule process whose asymptotic upper tail is Pareto.

4Gibrat’s model is a Markov chain and Champernowne’s model is a Markov chain with a

reflecting barrier.
5Champernowne (1953) proposed such a model to account for the distribution of incomes

and, therefore, assumed a minimum income. However, his model can also be applied to other

asymmetric empirical distributions such as the firm size distribution to fit their upper tail.
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The CDF of the Pareto distribution is

FPxmin
(x) = P (X ≤ x) = 1−

(xmin
x

)α
x ≥ xmin > 0 (4)

where xmin is the cutoff on the domain of the CDF and α > 0 is the scale

parameter of the Pareto distribution function. Simon and Bonini (1958) find

that data on assets of large US firms, i.e. the upper tail of the US FSD, collected

by Fortune in 1955 fit well with a Pareto distribution. They also find that the

Pareto distribution is a good approximation of the FSD in the US steel industry.

More recently, in the first study with comprehensive data on the FSD, Axtell

(2001) concludes that the entire empirical distribution of US firm sizes, grouped

in logarithmic bins, is well approximated by the Zipf distribution, i.e. the Pareto

distribution with α close to 1. Both papers estimate the scale parameter α of

the upper tail or the entire distribution by simple linear regression. Simon and

Bonini (1958) prefer not to conclude on the goodness-of-fit whereas Axtell (2001)

uses the R-squared to evaluate the Zipf fit to the entire US distribution. Given

the linearity of the Pareto pmf and CDF in log-log, it is tempting to want to use

the linear regression model as a fitting method. Since Pareto, many researchers

have adopted this method. Nevertheless, Aigner and Goldberger (1970) show

that one must be careful because the sampling errors are heteroskedastic and

non-independent especially when using the cumulative frequencies of the CDF.

In their paper, they propose different efficient least squares estimators, which

turn out to be neither simpler nor more efficient than the maximum likelihood

estimator (MLE) for estimating the scale parameter α.

Our empirical strategy is based on the MLE for discrete data since our

empirical distribution contains observations on the discrete number of employees

per firm. Therefore, it is necessary to discretize the CDFs (3) and (4). This can
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be done by defining the discrete density of a firm size as

p(x) = P (X = x) = F (x+ 1)− F (x). (5)

Aitchison and Brown (1957) and Seal (1952) provide the derivation of the

MLE to estimate the parameters of the lognormal and Pareto discrete distri-

butions respectively. Both log-likelihood functions can be solved numerically to

obtain the ML estimators. To do so, we use the package for R-software pro-

posed by Gillespie (2015, 2020) based on the MATLAB programme by Clauset

et al. (2009). The goodness-of-fit test for each parametric distribution is based

on the Kolmogorov–Smirnov (KS) distance with the empirical distribution and

the p-value of the test is obtained by bootstrap.

If xmin = 1, we assess the fit of each parametric distribution to the entire

empirical FSD. If we want to fit only the upper tail of the empirical FSD, we

need to choose a value for xmin. Clauset et al. (2009) propose a way to select the

value for xmin that provides the best fit for each parametric distribution. Their

algorithm computes all possible pairs (parameters, xmin) and selects the pair

that minimizes the KS for each parametric distribution. We believe that their

selection process of the optimal lowest bound is questionable because the KS

distances across pairs (parameters, xmin) are not statistically comparable since

the support of the truncated distributions changes with the values of xmin. For

this reason, we proceed differently. We choose some values for xmin, possibly

including the ‘optimal lowest bound’, estimate the parameters by MLE and

perform the goodness-of-fit test for each. Given the large size of our sample,

the power of the goodness-of-fit test is very big and, hence, we expect the

rejection of any candidate parametric distribution as a statistical significant fit

to the empirical distribution. Therefore, there is no reason to repeat the whole

process for all possible values of xmin. Moreover, we do not perform the test
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for high values of xmin as the number of observations and, hence, the power of

the test decreases rapidly as xmin increases.

If one parametric distribution is rejected and the other is not, our study can

conclude. But, in the most likely case where both parametric distributions are

rejected, our investigation must continue and determine which of the two is a

better model to summarize our empirical distribution. Following Clauset et al.

(2009), we can use the log-likelihood ratio:

LLR =
n∑
i=1

[ln pP (xi)− ln pL(xi)] (6)

where pP (xi) and pL(xi) are the probabilities determined respectively by a

Pareto distribution and a lognormal distribution when xmin = 1. If the sign of

(6) is positive, then the log-likelihood of the Pareto fit is higher, which means

that the Pareto fit is better than the lognormal fit. If the sign is negative,

the lognormal fit is better. To conclude that, under the null hypothesis, one

of the two parametric distributions provides a better fit than the other, the

LLR must be statistically different from zero. This depends on the sampling

variance of the LLR. Vuong (1989) proposes the calculation of a p-value of the

likelihood ratio test for non-nested models. If this p-value is sufficiently small, it

can be concluded that the negative or positive value of the LLR is statistically

different from zero. Otherwise, the two parametric fits cannot be statistically

distinguished.

We can continue our investigation by focusing on the upper tail of the em-

pirical distribution, i.e. when xmin > 1, and determine which of the parametric

distributions offers the best fit. The log-likelihood ratio then becomes

LLRxmin =
∑

i:xi≥xmin

[ln pPxmin
(xi)− ln pLxmin

(xi)] (7)
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where the support of the distributions starts with the value of xmin. The sta-

tistical test of this LLRxmin
can be performed as previously for a series of given

values for xmin to conclude about the best candidate parametric distribution in

the upper tail.

4 The Shape of the Belgian Aggregate Firm Size

Distribution

This section presents the fitting estimation results of the Pareto and lognormal

distributions for the entire size distribution of Belgian firms each year from

2006 to 2012. Following the method we detailed in Section 3, we first calculate

the maximum likelihood estimates of the parameters of the entire lognormal

and Pareto distributions for each year. We then compute the KS distance and

the p-value for each parametric distribution. Table 2 reports, for each year

and xmin = 1, the ML estimates of the parameters, the values of the KS and

their p-values for the Pareto and lognormal distributions. As expected due to

the power of the test, the fit of each of the two parametric distributions to

the Belgian empirical distribution is statiscally rejected for all years. We then

repeat the exercise for different values of xmin > 1 to test the goodness-of-fit of

the two parametric distributions in the right tail of the FSD.6 Unsurprinsingly,

the statistical tests give the same results as for xmin = 1: both parametric

distributions are rejected for all tested cases. As an example, Figure 2 shows

the log-log plot of the complementary cumulative distribution of firm sizes in

Belgium in 2006 and 2012 for xmin = 10. It can be checked visually that none of

them fits perfectly the truncated empirical distribution (black line). However,

the figure suggests that the lognormal distribution provides a better fit to the

6The estimation results are available on request.
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Belgian FSD than the Pareto distribution in 2006 and 2012. In order to confirm

it, we perform the Vuong test. As explained in Section 3, a negative value for the

Vuong statistic indicates that, for a given xmin, the fit of the lognormal is better

than the fit of the Pareto. Table 3 shows, for 2012, the maximum likelihood

estimates for the parameters of the Pareto and lognormal distributions and the

Vuong statistic as xmin increases. The LLR ratio is negative and statistically

significant at 10% every year for all values of xmin up to a firm size equal to 200

employees. From a size equal to 300, the LLR remains negative but is no longer

statistically significant because the power of the test decreases with the number

of firms. We repeated the exercise for all years in the database and found similar

results.7 Therefore, we can conclude that the lognormal distribution provides a

better fit of the entire or truncated firm size distribution in Belgium from 2006

to 2012.

Pareto distribution Lognormal distribution
Year α KS p-value R/F µ σ KS p-value R/F
2006 1.58 0.017 0.00 R 0.46 1.69 0.004 0.000 R
2007 1.58 0.018 0.00 R 0.45 1.71 0.004 0.020 R
2008 1.57 0.021 0.00 R 0.47 1.73 0.005 0.000 R
2009 1.57 0.021 0.00 R 0.48 1.72 0.004 0.060 R
2010 1.57 0.022 0.00 R 0.47 1.74 0.004 0.090 R
2011 1.57 0.023 0.00 R 0.48 1.74 0.005 0.000 R
2012 1.57 0.021 0.00 R 0.49 1.75 0.004 0.000 R

Table 2: ML estimates of the parameters and goodness-of-fit test of the Pareto
and lognormal distributions to the annual empirical aggregate FSD when xmin =
1. KS: Kolmogorov-Smirnov statistic; R/F: Reject/Fail to reject.

7The results are available on request.

12



(a) 2006 (b) 2012

Figure 2: Log-log plot of the complementary cumulative distribution of firm
sizes in Belgium in 2006 and 2012: fit of the Pareto (red) and lognormal (green)
distribution to the empirical distribution (black) for xmin = 10.

Aggregate FSD
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 202 480 2 280 598 1.57 0.48 1.75 -95.22 0.00 LN
5 74 470 2 034 564 2.22 0.31 1.99 -20.36 0.00 LN
15 26 416 1 656 133 2.22 0.31 1.99 -12.93 0.00 LN
25 16 126 1 463 591 2.22 0.31 1.99 -8.67 0.00 LN
50 7 336 1 158 748 2.43 0.29 1.99 -5.91 0.00 LN
100 3 211 874 089 2.43 2.40 1.63 -3.33 0.00 LN
200 1 270 608 851 2.75 2.44 1.62 -2.36 0.02 LN
300 714 474 166 2.75 2.12 1.67 -1.64 0.10 None
400 455 384 660 2.77 4.90 1.17 -1.29 0.19 None
500 315 321 947 2.80 4.90 1.17 -1.06 0.28 None
1000 99 176 873 3.17 5.21 1.12 -0.60 0.54 None
2500 17 62 804 4.71 7.33 0.59 -0.57 0.56 None

Table 3: Aggregate FSD in 2012. Number of firms and employees, ML estimates
of the parameters of the Pareto (P) and lognormal (LN) distributions, and
Vuong test results for the year 2012 as xmin increases.
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5 The Shape of the Belgian Firm Size Distribu-

tion by Sectors

The objective of this section is to further our investigation at the sectoral level

and identify possible distributional heterogeneity at this level of disaggregation.

NACE sectors are very diverse, some are much more competitive than others,

have higher average firm sizes than others, are more capital intensive than oth-

ers, or employ more skilled personnel than others. This heterogeneity could

suggest that the distributions of firm sizes might have different shapes across

sectors.

We propose a simple sectoral disaggregation by distinguishing between man-

ufacturing (NACE sector C) and service activities (NACE sectors G, H, I, J ,

K, M and N). The share of manufacturing in total employment is declining

rapidly, as in many developed countries. It was 25 percent in 2006 and is now

only 22 percent six years later (see Appendix 2). As in the aggregate case, we

first test the fit of each of the two parametric distributions to the empirical

distribution for all available years and for different values of xmin. At this level

of disaggregation, the power of the test remains very high and all the tests we

have performed conclude to reject the fit of the two parametric distributions

whatever the value of xmin. Therefore, we perform the Vuong test to determine

which parametric distribution provides the best fit to the empirical distribution.

Tables 4 and 5 present the Vuong test results for manufacturing and services

respectively in 2012. As with the aggregate distribution, the LLR is always

negative regardless of the truncation of the distribution. It is statistically sig-

nificant up to xmin = 200 for both sectors. These results at the sectoral level

therefore confirm our results at the aggregate level, namely that the lognormal

distribution offers a better fit to the distribution of firm sizes in Belgium from
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2006 to 2012 whatever the truncation threshold.

Since services are a large sector, we push the disaggregation a bit further

to ensure that the results we just found are not sensitive to the level of disag-

gregation chosen. To do this, we divide the services into two subsectors. The

first sub-sector includes NACE sectors G, H and I, i.e. services that employ

mainly low-skilled labor. The second sub-sector is composed of NACE sectors

J ,K,M and N , i.e. services that employ a lot of highly educated personnel. We

apply the same method as above to both subsectors. Tables 6 and 7 provide the

results of the Vuong statistical test for each of the two subsectors. These results

show that the lognormal distribution provides a better fit than the Pareto dis-

tribution at this level of disaggregation. As an example, Figures 3 and 4 show

the log-log plots of the complementary cumulative distribution of firm sizes in

Belgium for different sectors in 2012 for xmin = 10.

We performed the Vuong test with different subsectors of the services, pro-

vided the number of observations is sufficiently large, for all the availbale years

and obtained similar results.8 We can conclude that the lognormal distribution

also offers the best fit at the sectoral level of the Belgian FSD.

The objective of this section was to identify possible distributional hetero-

geneity at the sectoral level. Our estimations results show that, while parameter

values may vary across sectors, the shape of the parametric distribution that

best approximates the different sectoral distributions is the lognormal distri-

bution. Therefore, these results rule out the possibility that the shape of the

aggregate FSD is the result of an aggregation artifact.

8Results not presented in this paper are available upon request.
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FSD in manufacturing
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 18 139 507 269 1.42 1.37 1.88 -41.61 0.00 LN
5 9 790 489 904 1.69 0.85 2.09 -15.17 0.00 LN
15 4 971 450 327 1.86 1.39 1.93 -8.93 0.00 LN
25 3 472 421 948 1.97 0.65 2.11 -5.57 0.00 LN
50 1 805 363 707 2.04 2.92 1.58 -5.30 0.00 LN
100 969 304 965 2.23 2.91 1.59 -3.02 0.00 LN
200 447 232 302 2.43 2.95 1.58 -1.66 0.10 LN
300 264 187 722 2.55 3.09 1.56 -1.25 0.21 None
400 176 156 968 2.66 1.43 1.85 -0.77 0.44 None
500 128 135 510 2.78 -10.07 3.12 -0.25 0.80 None
1000 38 75 363 2.81 4.40 1.39 -0.46 0.64 None
2500 12 41 487 4.27 8.05 0.25 -0.99 0.32 None

Table 4: FSD in manufacturing in 2012. Number of firms and employees, ML
estimates of the parameters of the Pareto (P) and lognormal (LN) distributions,
and Vuong test results for the year 2012 as xmin increases.

FSD in services
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 144 759 1 491 550 1.57 0.62 1.64 -86.40 0.00 LN
5 53 240 1 312 744 1.98 -2.57 2.46 -16.31 0.00 LN
15 17 811 1 034 689 2.10 0.01 1.96 -10.66 0.00 LN
25 10 648 900 675 2.21 0.11 1.94 -7.31 0.00 LN
50 4 762 696 549 2.35 -0.97 2.15 -3.63 0.00 LN
100 1 935 502 652 2.48 -2.23 2.34 -1.82 0.07 LN
200 707 335 982 2.55 2.73 1.55 -1.96 0.05 LN
300 399 261 200 2.69 2.42 1.61 -1.23 0.22 None
400 252 210 626 2.75 3.57 1.40 -1.11 0.27 None
500 172 174 804 2.78 4.82 1.16 -1.11 0.27 None
1000 58 98 182 3.30 5.79 0.9 -0.54 0.59 None

Table 5: FSD in services in 2012. Number of firms and employees, ML estimates
of the parameters of the Pareto (P) and lognormal (LN) distributions, and
Vuong test results for the year 2012 as xmin increases.
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FSD in low-skilled services (NACE sectors G, H and I)
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 95 748 801 063 1.58 0.80 1.46 -80.89 0.00 LN
5 35 310 680 692 2.08 -1.36 2.05 -14.34 0.00 LN
15 10 552 486 951 2.29 -1.18 2.02 -5.95 0.00 LN
25 5 664 395 670 2.40 -2.19 2.19 -3.44 0.00 LN
50 2 138 274 433 2.51 -6.95 2.83 -1.31 0.19 None
100 756 180 979 2.57 -1.37 2.14 -1.28 0.20 None
200 258 113 636 2.63 3.58 1.31 -1.59 0.11 None
300 145 86 213 2.85 2.17 1.56 -0.81 0.42 None
400 87 66 407 2.89 4.26 1.18 -0.88 0.38 None
500 54 51 608 2.80 6.23 0.69 -1.41 0.16 None
1000 19 27 558 3.91 7.08 0.34 -1.11 0.27 None

Table 6: FSD in low-skilled services (NACE sectors G, H and I) in 2012.
Number of firms and employees, ML estimates of the parameters of the Pareto
(P) and lognormal (LN) distributions, and Vuong test results for the year 2012
as xmin increases.

FSD in high-skilled services (NACE sectors J , K, M and N)
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 49 011 690 487 1.56 0.11 2.03 -40.91 0.00 LN
5 17 930 632 052 1.82 -1.74 2.56 -12.39 0.00 LN
15 7 259 547 738 1.91 2.03 1.63 -11.67 0.00 LN
25 4 984 505 005 2.05 2.06 1.62 -8.08 0.00 LN
50 2 624 422 116 2.24 1.25 1.81 -3.94 0.00 LN
100 1 179 321 673 2.43 -2.26 2.39 -1.42 0.15 None
200 449 222 346 2.50 2.30 1.67 -1.43 0.15 None
300 254 174 987 2.60 2.85 1.57 -1.07 0.29 None
400 165 144 219 2.68 3.43 1.47 -0.88 0.38 None
500 118 123 196 2.77 3.01 1.55 -0.62 0.54 None
1000 39 70 624 3.09 5.31 1.08 -0.46 0.65 None

Table 7: FSD in high-skilled services (NACE sectors J , K, M and N) in 2012.
Number of firms and employees, ML estimates of the parameters of the Pareto
(P) and lognormal (LN) distributions, and Vuong test results for the year 2012
as xmin increases.
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(a) Manufacturing (b) Services

Figure 3: Log-log plot of the complementary cumulative distribution of firm sizes
in Belgium in 2012: fit of the Pareto (red) and lognormal (green) distribution
to the empirical distribution (black) for xmin = 10.

(a) Low-skilled services (b) High-skilled services

Figure 4: Log-log plot of the complementary cumulative distribution of firm sizes
in Belgium in 2012: fit of the Pareto (red) and lognormal (green) distribution
to the empirical distribution (black) for xmin = 10.
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6 The Shape of the Belgian Firm Size Distribu-

tion by Regions

Our database includes geographic characteristics for each firm that allows us

to extend our investigation at another level of disagregation: the regional level.

Among this information, we have the address of each firm. To the best of

our knowledge, this is the first FSD regional study that uses a comprehensive

database. Belgium has three administrative regions with unequal populations:

58% of the national population lives in Flanders, 32% in Wallonia and 11% in

Brussels, which is the capital city and a region. The Brussels region is an urban

area while the other two regions include cities and rural areas. Flanders is more

densely populated and richer than Wallonia. Despite the differences in density

and income levels between the three regions, the shapes of the regional FSD are

similar.9

The objective of this section is identical to that of the previous section.

Given the specific demographic and economic characteristics of the three Belgian

regions, the aim is to detect possible distributional heterogeneity at the regional

level. Tables 8, 9 and 10 present the results of the Vuong statistical test for the

Brussels region, Flanders, and Wallonia respectively in 2012.10 Again, the LLR

is almost always negative regardless of region and truncation level. It is negative

and statistically significant up to the threshold of xmin = 100 and even beyond.

Therefore, it can be concluded that the lognormal distribution provides the best

approximation to the empirical regional FSDs. As an example, Figures 5 shows

the log-log plots of the complementary cumulative distribution of firm sizes in

Belgium for the three regions in 2012 for xmin = 10.

9See Appendix 3 for descriptive statictics on Belgian regions.
10We repeated the exercise for all the years available in the database and found similar

results which are available on request.
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Our results lead to the same conclusion as before: the lognormal distribu-

tion offers a better approximation than the Pareto distribution to the empirical

FSD of each region. These results offer further evidence that the shape of the

aggregated FSD is not an artifact of aggregation.

FSD in Brussels
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 24 002 331 760 1.59 -0.23 2.09 -23.36 0.00 LN
5 8 115 302 634 1.86 -4.13 2.99 -5.70 0.00 LN
15 3 118 263 015 1.96 -3.98 2.97 -3.21 0.00 LN
25 1 946 240 915 2.01 -4.46 3.06 -2.32 0.02 LN
50 978 207 856 2.05 2.87 2.31 -2.46 0.01 LN
100 481 173 255 2.11 2.98 1.69 -2.53 0.01 LN
200 247 141 001 2.29 3.62 1.53 -1.78 0.08 LN
300 157 119 137 2.41 3.79 1.49 -1.25 0.21 None
400 109 103 003 2.47 5.22 1.14 -1.44 0.15 None
500 82 90 961 2.55 5.70 1.01 -1.28 0.20 None
1000 34 58 850 3.07 7.08 0.52 -1.43 0.15 None

Table 8: FSD in Brussels in 2012. Number of firms and employees, ML estimates
of the parameters of the Pareto (P) and lognormal (LN) distributions, and
Vuong test results for the year 2012 as xmin increases.
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FSD in Flanders
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 120 760 1 407 225 1.56 0.59 1.73 -78.15 0.00 LN
5 46 280 1 262 917 1.92 -1.85 2.39 -17.68 0.00 LN
15 16 688 1 029 070 2.06 0.37 1.93 -11.45 0.00 LN
25 10 282 909 286 2.17 0.42 1.92 -7.90 0.00 LN
50 4 745 717 080 2.29 0.66 1.89 -4.67 0.00 LN
100 2 034 530 590 2.46 0.32 1.95 -2.41 0.02 LN
200 773 358 658 2.60 2.10 1.64 -1.63 0.10 LN
300 419 272 741 2.71 2.71 1.54 -1.2 0.23 None
400 257 216 186 2.75 3.76 1.36 -1.09 0.27 None
500 183 182 834 2.89 1.25 1.77 -0.56 0.57 None
1000 52 94 340 3.19 7.15 1.03 0.18 0.85 None
2500 9 36 506 3.37 7.58 0.63 -0.48 0.63 None

Table 9: FSD in Flanders in 2012. Number of firms and employees, ML esti-
mates of the parameters of the Pareto (P) and lognormal (LN) distributions,
and Vuong test results for the year 2012 as xmin increases.

FSD in Wallonia
Empirical distribution P LN Vuong test

xmin Firms Employees α µ σ LLR p-value Winner
1 57 718 541 613 1.59 0.5 1.65 -51.86 0.00 LN
5 20 075 469 013 1.99 -2.69 2.46 -9.84 0.00 LN
15 6 610 364 048 2.14 -0.18 1.97 -6.34 0.00 LN
25 3 898 313 390 2.25 -0.45 2.02 -4.14 0.00 LN
50 1 613 233 812 2.31 2.02 1.57 -3.50 0.00 LN
100 696 170 244 2.53 1.50 1.68 -1.64 0.10 LN
200 250 109 192 2.69 2.97 1.42 -1.04 0.30 None
300 138 82 288 2.91 0.77 1.76 -0.49 0.63 None
400 89 65 471 3.22 2.54 1.68 0.55 0.58 None
500 50 48 152 3.01 3.15 1.53 0.03 0.97 None
1000 13 23 683 3.05 3.74 1.41 -0.28 0.78 None

Table 10: FSD in Wallonia in 2012. Number of firms and employees, ML
estimates of the parameters of the Pareto (P) and lognormal (LN) distributions,
and Vuong test results for the year 2012 as xmin increases.
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(a) Brussels (b) Flanders

(c) Wallonia

Figure 5: Log-log plot of the complementary cumulative distribution of firm sizes
in Belgium in 2012: fit of the Pareto (red) and lognormal (green) distribution
to the empirical distribution (black) for xmin = 10.
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7 Conclusion

The objective of this paper is to summarize the empirical size distribution of

ungrouped Belgian firms between 2006 and 2012 by the best fitting parametric

distribution between the lognormal and Pareto distributions. To do so, we pro-

pose a simple and robust estimation method which compares the goodness-of-fit

of these two parametric distributions on the same samples. Our estimation re-

sults show that the lognormal distribution provides the best fit at the aggregate,

sectoral and regional levels whatever the truncation threshold. We did not find

any evidence of an aggregation effect on the shape of the FSD.

These results show that the Pareto distribution is not an adequate para-

metric distribution to summarize the Belgian FSD even in its right tail. This

casts doubt, at least for a country such as Belgium, on the models of firm dy-

namics generating the Pareto distribution at equilibrium in its upper tail. The

lognormal distribution provides a better fit and suggests a few candidate un-

derlying models of firm dynamics such as those initiated by Gibrat (1931) or

Kalecki (1945). However, the lognormal fit to the Belgian FSD is far from per-

fect hinting at the possibility that the heterogenous firm model generating this

empirical FSD is more complex than the ones generating a lognormal distri-

bution asymptotically. It seems to us that testing the goodness-of-fit of more

complex parametric distributions is of interest only if these distributions are

related to equilibrium distributions of tractable models of firm dynamics.
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A Appendix 1

Code Economic Area
A Agriculture, Forestry and Fishing
B Mining and Quarrying
C Manufacturing
D Electricity, Gas, Steam and Air Conditioning Supply
E Water Supply; Sewerage, Waste Management and Remediation Activities
F Construction
G Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles
H Transportation and Storage
I Accommodation and Food Service Activities
J Information and Communication
K Financial and Insurance Activities
L Real Estate Activities
M Professional, Scientific and Technical Activities
N Administrative and Support Service Activities
O Public Administration and Defence; Compulsory Social Security
P Education
Q Human Health and Social Work Activities
R Arts, Entertainment and Recreation
S Other Service Activities
T Activities of Households as Employers; Undifferentiate Goods and Services

Producing Activities of Households for Own Use
U Activities of Extraterritorial Organisations and Bodies

Table 11: Statistical classification of economic activities in the European Com-
munity Rev. 2 (2008): Level 1 codes
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B Appendix 2

Manufacturing Services
Year Firms Employees Median Mean Firms Employees Median Mean
2006 20,094 526,258 5.00 26.19 148,073 1, 312,583 3.00 8.86
2007 19,306 499,347 5.00 25.86 144,623 1,327,698 3.00 9.18
2008 19,887 553,291 5.00 27.82 145,600 1,432,516 3.00 9.84
2009 19,460 523,367 5.00 26.89 144,993 1,430,032 3.00 9.86
2010 19,192 516,654 5.00 26.92 144,878 1,462,325 3.00 10.09
2011 18,822 517,531 5.00 27.50 144,750 1,473,427 3.00 10.18
2012 18,139 507,269 5.00 27.96 144,759 1,491,550 3.00 10.30

Table 12: Summary statistics by sector: Manufacturing (NACE sector C) and
Services (NACE sectors G, H, I, J, K, M and N)

Manufacturing Services
Year Employment (%) Firms (%) Employment (%) Firms (%)
2006 25.3 9.9 63.1 73.4
2007 24.1 9.7 64.2 73.1
2008 24.4 9.7 63.3 71.2
2009 23.5 9.5 64.1 71.3
2010 22.8 9.4 64.6 71
2011 22.7 9.2 64.7 71
2012 22.2 8.9 65.4 71.5

Table 13: Manufacturing and Services: share of employment and firms in na-
tional totals
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C Appendix 3

Brussels Flanders Wallonia
Year Firms Employees Firms Employees Firms Employees
2006 24,273 315,183 121,980 1,275,689 55,424 489,698
2007 23,625 315,671 119,111 1,266,477 54,995 487,189
2008 24,241 336,380 123,256 1,400,871 57,066 527,432
2009 23,912 337,252 122,434 1,373,686 57,078 519,171
2010 23,894 337,295 122,202 1,391,019 57,867 533,911
2011 24,110 340,023 121,415 1,395,037 58,208 542,828
2012 24,002 331,760 120,760 1,407,225 57,718 541,613

Table 14: Summary statistics by region

Year Firms Firms Firms
2006 12.04% 15.15% 60.48% 61.31% 27.48% 23.54%
2007 11.95% 15.25% 60.24% 61.20% 27.81% 23.54%
2008 11.85% 14.85% 60.25% 61.86% 27.90% 23.29%
2009 11.75% 15.12% 60.19% 61.60% 28.06% 23.28%
2010 11.71% 14.91% 59.91% 61.49% 28.37% 23.60%
2011 11.83% 14.93% 59.60% 61.24% 28.57% 23.83%
2012 11.85% 14.55% 59.64% 61.70% 28.51% 23.75%

Table 15: Firms and employees by regions as a percentage of the national totals

Brussels Flanders Wallonia
Year Median Mean Median Mean Median Mean
2006 3.00 12.98 3.00 10.46 3.00 8.84
2007 2.00 13.36 3.00 10.63 3.00 8.86
2008 3.00 13.88 3.00 11.36 3.00 9.24
2009 3.00 14.10 3.00 11.21 3.00 9.09
2010 3.00 14.12 3.00 11.38 3.00 9.22
2011 3.00 14.10 3.00 11.50 3.00 9.32
2012 3.00 13.82 3.00 11.65 3.00 9.38

Table 16: Median and mean firm size by region
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