UNIVERSITE DE LIEGE

Vibrations et Identification des Structures

I Rapport VIA-10 |

MODEL UPDATING USING
OPERATING DEFLECTION SHAPES

February 1998

Jean-Claude GOLINVAL @
Professor

Rodrigo PASCUAL @
Research Engineer

Mario RAZETO @
Research Engineer

16™ International Modal
Analysis Conference
(AMAC 16) _
February, 2-5, 1998,

Santa Barbara, California,

US.A.
" E-mail : JC.Golinval @.ulg.ac.be ' LTAS - Vibrations et Identification des Structures
@ E-mail : R. Pascual@.ulg.ac.be Rue E. Solvay, 21 - 4000 Liége

® E-mail : Mrazeto@.ulg.galileo.dim.udec.cl té : 32(0)4 3669177 - fax 32(0)4 2521049




MODEL UPDATING USING
OPERATING DEFLECTION SHAPES

R. Pascual™® J. C. Golinval® M. Razeto®

“Wniversité de Liege
21, rue E. Solvay, C3
4000 Lieége, Belgium

ABSTRACT

Model updating using a structural model is based on the
analysis of the discrepancies between analytical and
experimental results. In order to compare these quantities, a
matching process is necessary.

The updating procedure can be based on mode shapes or on
operating deflection shapes. The operating deflection shapes
correspond to the deformations that the structure suffers
when it is excited with an harmonic force. The direct use of
operating deflection shapes for model updating is
interesting since they contain information on all the excited
mode shapes. Moreover, their reliability can be evaluated
by the coherence function. Thus the errors associated to
modal identification are avoided.

The local error indicator considered in this paper is an
extension of a technique already used with expanded mode
shapes. Physical insight is straightforward since the error
measure corresponds to a local strain energy. Then, model
correction can be performed by minimizing energ
residuals. '

o

1. INTRODUCTION

A finite element model (FEM) updating procedure goes
through several logical steps. The first step consists in
expanding the size of the measured response vectors or in
reducing the size of the analytical model in order to match
the results of both models. The second step is to apply
correlation techniques to measure the quality of the
simulation. In the third step, an error localization method
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allows to locate errors on the structure and to select the
design variables that should be corrected. In the last step, the
correction is performed in order to generate a new model.
Then the updating procedure can be initiated again in an
iterative way.

Basically, there are two kinds of dynamic responses in a
structure : mode shapes (with their associated resonance
frequencies) and the operating deflection shapes (or
Frequency Response Function vectors). In a conservative

system, modal parameters (a)v,{gb}) are solutions of the

homogeneous equation :
[K1{¢}= o, [M]{s} o)

where [M ] and [K ] are respectively the generalized mass

and stiffness matrices. These matrices are explicit functions
of the structural parameters like density, elasticity modulus,
plate thickness, moment of inertia, etc.

The operating deflection shapes (ODS) correspond to the
stationary dynamic responses {V }that the structure suffers

when it is excited by an harmonic force {F}of unitary
magnitude :

(- @ [M1+[K]){v}={F} )



The operating deflection shapes can be directly measured on
the actual structure.

This paper presents an ODS based model updating method
by considering three steps : expansion, error localization and
model correction. This method is in fact an extension of a
technique that was already applied successfully to mode
shapes in [1].

2. EXPANSION METHOD
2.1. Theoretical background
Hamilton’s principle applied to a continuous system (using

the harmonic movement assumption) can be expressed as a
variational problem in the spatial variables :

(T = Vi )= 0 ®)

. where

Ta=3]p WY (}av @
v

is the kinetic energy, obtained by using the displacement
field {v} associated to the cartesian coordinates {x,y,z}.

V.. =U+P ©)

is the total potential energy; in equation (5), U represents
the strain energy of the structure and P is the potential

energy of the prescribed external loads (body forces {Y }

and surface tractions {f } ).

The strain energy

U =[w({e)av ©6)
can be expressed in termsvof the strain field
{et= {51 782’83’7;21723’731}T
with  y, =y, =g, +g, o
which verifies the compatibility condition

{e} =[DI{v} (8)

where the spatial differentiation operator [D] is defined by
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and “the displacement field {v} verifies the prescribed
boundary conditions

{v}={v} on Sv' (10)

The potential energy P of the prescribed external loads is
obtained from the displacement field {v} :

P=-[{X} frav- [V tas A

where S represents the part of the surface where traction

forces are prescribed.

A less restrictive variational principle may be written in the
form

(T e = Vinax + D) (12)

where
D= [{aY (e}-[DKvDav + [{u} (-} ds,
(13)

D is a dislocation potential in which the Lagrange
multipliers {1} and {y} are used to relax the compatibility

equation (8) and the prescribed displacement condition
(10). In the general principle (12), the three fields

({v}, {e}, {/1}) are subject to independent variations. A two-

field principle was introduced by Fraeijs de Veubeke [2]
assuming that the Lagrange multipliers {1} verify a priori
the equilibrium conditions :

[T {A}+p 0*{}+{X}={0} inV

(14)

=0T =1 ons,

where




n, 0 0 n 0 n
[ = 0 n, 0 n n, O (15)
0 0 ng 0 n, n

is the matrix of direction cosines of the outward normal to
the boundary.

Then, integrating by parts, the general principle (12) can be
reduced to

S PR Ae)=o{ [ (Y 0} Wl av |+
5[“‘“ % [({x}+[DT{43) Y av - [{aY Tnli5} as, ](16)

In this principle, only fields {A} and {8} are subject to
variations. The displacement field {v} is no more

independent since it is associated to the stress field {ﬂ.}

through equation (14). The application of principle (12)
results in

min [[{o}-{2}] av (17)

where

{c}=[H]{e}, {e}=[D]{v} (18)

and [H] is the Hooke’s matrix.
If the prescribed displacement field {V} is set to the

measured displacement field, the field {v} can be

interpreted as the expanded experimental field, on which
compatibility and structural equilibrium equations of
the analytical model are imposed.

For convenience, a fictive displacement field {u}may be

. associated to field {ﬂ,}, which complies the relations :

{a}=[H){e'}.{e'}=[D] {u} (19)

The fields {ﬂ,} and {v} verify a priori the equilibrium
conditions (14), but field {u} is different from {v} since
the constitutive equations are not verified a priori

({2} ={a}).

Written in terms of displacements, the problem defined by
equation (17) takes the form

min [|| [H1[D] ({u} - {v})| av (20)

The true expanded experimental vector will be found using
problem (20) as long as the model equilibrium equations
coincide with those of the actual structure, which is not the
case in general. As long as the model represents acceptably
the actual behavior, the expanded vectors found using (20)
will be close to the true vectors.

2.2. Application to a discretized system

The discretization of the displacement fields gives

{u@=D} =[N D] v} @1)
DD} = [NV

where [N ({x})] is the shape function matrix; {V}and

{U} are the vectors of generalized coordinates resulting
from the finite element model of the structure.

If metric [H ]'l is used, problem (17) is equivalent to search
for the minimum of the residual energy

min ({U}-{v})" [K1{U}-{v}) 22)

with the following constraints

[K]{U}=0? [M]{V}+{F} (23)

-7 (v}-{h=o (24)

where {Vl} is the partition of {V} corresponding to the

measured degrees of freedom and {‘7} is the vector of
measured coordinates.

The residue vector {U}—{V} can also be interpreted as the
result of «filtering» the experimental vector by the
equilibrium equation of the model.

If noise is considered, condition (24) may be relaxed by
adding a second term to (22), i.e. :

min ({U}-{v}) [K1({U}-{v})+
e ([} [k J@)-77) o9

where ¢ is a weighting coefficient that indicates confidence

in the medsurements and [Km,] is the model stiffness

matrix reduced to the measured set of degrees of freedom.
This matrix is used as a weight to obtain a well scaled
objective.




In order to reduce computational costs, equation (27) can
be transformed by expressing the expanded vector as a
linear combination of vectors from the truncated FE modal
basis. This approximation reduces considerately the number
of unknowns.

An important remark is that the preceding development was
done with the assumption of a conservative system. In
practice, energy dissipation is always present, but its effects
are notorious close to resonances. Criteria are needed to
choose the frequency(es) at which (25) is evaluated.

3. ERROR LOCALIZATION

Error localization methods seek for the locations on the
structural model where discrepancies between experimental
and analytical results may be present. The convenient
introduction of the instrument vector {U} in equation (23)
allows the definition of an error indicator that quantifies a
residual strain  energy density (element-by-element,
substructure-by-substructure). The residual energy density
for a given substructure s is defined by :

e, = ({U}_ {V})T [Kv] ({U}— {V})/ (26)

Vol,

[Ks]is the stiffness matrix of the substructure, and Vol is

the associated volume. As can be seen, the error indicator is
closely related to the proposed expansion method.

The overall reliability of this indicator strongly depends on
the previous expansion technique and on the energy
distribution on the structure.

Remark

It can be noticed that the expansion method considered in
this paper differs from other methods proposed in the
literature by the metric used to quantify the residuals.

For instance, it is easy to show that the expansion method
proposed by Hemez [3] reduces to the solution of :

min ({U}-{v}) [k {U-{v}) @7

In a similar way, Alvin’s method [4] is based on

min ({U}-{v})" {U}-{v}) (28)

4. MODEL CORRECTION

Let us assume the existence of experimental mass and
stiffness matrices that satisfy equilibrium equation :

[k ]{v}=0 [M,]{V}+{F} (29)

Using equation (23), the following system can be found for
parameter corrections :

[kT"'[AZ(o, A9V} = {U}-{V} (30)
where
[AZ(w,Ap)]| = [AK(Ap) |- @*[AM (Ap)] s the correction
matrix for the dynamic stiffness.

Equation (30) is exact as long as {V1}is the true vector. In

practice, however, only an approximation of this vector is
available. This leads to an iterative correction procedure.

A good property of the method is that it does not need a
pairing of the ODS (See also [5]).

5. FREQUENCY SELECTION FOR ERROR
LOCALIZATION

The Frequency Domain Assurance Criterion (FDAC)
defined in [6] can be used to measure the correlation
between two ODS :

ACHIEIACHY;
@} |r @}

@31

where

@ corresponds to the "analytical" frequency at
which {vﬂ} is computed;

. corresponds to the "experimental" frequency
at which {/'} is measured.

The evaluation of equation (31) for a given set of analytical
and experimental frequencies results in the FDAC matrix.
From the definition, it follows that FDAC values are

‘bounded by the interval [— 1,1]. Values close to 1 indicate




that the compéred ODS correlate well not only in shape but
also in phase.

For this reason, frequency intervals showing good
agreement between analytical and experimental data may be
used for error localization and updating purposes.

6. EXPERIMENTAL VALIDATION

The objective of the test-case presented in this section is to
validate the failure detection method based on ODS and to
compare the results with the classical approach based on
mode shapes. For this purpose, the 3-D beam frame shown
in Fig. 1 is used. The main characteristics of the test-case
are listed in table I.

The initial FE model corresponds to the complete truss
structure without any damage. In order to test the error
localization method based on ODS, a damaged truss
structure was experimentally performed by removing a beam
(beam n° 18 was removed in this example). The correlation
(MAC) between the initial FE model and the damaged
structure is shown in Fig. 2 [7]. It can be seen that the first
experimental mode is not predicted by the initial FE model.
The corresponding FDAC matrix is shown in Fig. 4. From
this figure, it appears that the frequency range from O to 150
Hz is convenient for error localization. Over 150 Hgz, the
correlation levels decrease drastically due to the strong
influence of local mode shapes. The results of the error
localization procedure are illustrated in Figs. 6 and 7 where
the error levels are indicated for each beam and each
frequency in the range 10-150 Hz. For comparative
purposes, the residual global energy on the whole structure
at each frequency was normalized to 1. It can be seen from
Fig. 6 that the removed beam is detected in almost all the
frequency interval. However, the frequency range from 20
Hz to 45 Hz, in which resonance peaks are concentrated
show poor localization results. This can be explained by the
non negligible effects of damping. In this range, some
residual energy dispersion to surrounding beams is observed
(e.g. beams 7 and 29). This is caused by the smoothing of
the expanded vector according to criterion (22).

Regarding to the results obtained in the error localization
step, the flexural stiffness of the "missing" beam is chosen
as updating parameter. Using an iterative updating

Node 1

Fig. 1. Experimental structure

procedure based on equation (30), the "missing" beam is
completely "removed” from the initial model after two
iterations. As shown in Figs. 3 and 5 by the MAC and
FDAC matrices, the correlation of the updated model with
the experimental results has been improved.

7. CONCLUSION

A method for the expansion of operating deflection shapes
has been presented. It is based on the variational principles
used in structural dynamics.

The objective of this method is the detection and
localization of discrepancies (approximation, discretization
or parametric errors) between the FE model and the actual
structure.

The application of the proposed method to an experimental
test-case shows its ability to localize the dominant errors in
the model.

The model correction method associated to the expansion
technique also shows good convergence properties.
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