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Abstract

We generalize the T% spaces introduced by Calderén and Zygmund and show that most of
the results obtained in their study of the pointwise estimates for solutions of elliptic partial
differential equations and systems can be generalized in this framework with L”-conditions.
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1. Introduction

The TP spaces were introduced in essence by Calderéon and Zygmund [§]: for a point z
of the d-dimensional Euclidean space R?, p € [1,00] and a number u > —d/p, TP ()
denotes the class of function f € LP(R?) such that there exists a polynomial P of degree
strictly less than u with the property that

rde| f — Pl 1o (B(zo,r)) < CT" (1.1)

for a constant C' (which does not depend on r), where B(xg,r) denotes the open ball
centered at xo with radius 7 and || f|| » () stands for the usual norm of the space LP(E) of
the measurable functions on E for which the pth power of the absolute value is (Lebesgue)
integrable. If f € TP(xz() also satisfies

Tﬁd/pr — P||Lp(13(x0,7-)) = O(Tu) as r — O+,

where P is a polynomial of degree less than or equal to u (where we have used the usual
Bachmann—Landau notations), then f is said to belong to ¢£(z). To emphasize the fact
that the integral mean value is involved in the definition of these spaces, let us point out
that f € TP(xo) with p < co means that we have (fB(aco,r) |f — P|P)Y/P < Cr®. In their
seminal paper [§], the authors use these spaces to obtain pointwise estimates for solutions
of elliptic partial differential equations £ f = g. More precisely, the functions f € T?(x)
form a linear space with norm || - |lzp(,,) defined by the sum of || - [|r», the absolute
values of the coefficients of P and the infimum of the constants C' in . The main
theorem can be stated as follows: if all the coefficients of the differential operator £ are
of class T)2°(xo), if all components f; and gj, are of class L and g, € T? with p € (1, 00),
—d/p < v < wu, v & Z, then there exists a constant C for which, using Euler’s notation
for the derivatives (i.e. D, f designates the derivative of f following the jth component)

1D Sl oy < C (D Nawllazo) + D 165wz, ) (12)
k J

for all j, |a| < m, where ¢ is a number satisfying

e p<g<ooifl/p<(m—laf)/d,
e p<g<ooifl/p=(m-—|a|)/d,
e 1/p<1/q<1/p— (m—|a|)/d otherwise.

Moreover, if g belongs to t2(x), then D*f belongs to t3+m7‘a|(x0). Another theorem
states that if £ is elliptic almost everywhere on a set of positive measure whose points g
satisfy p(xo) > ¢ for some constant ¢ > 0, if the coeflicients of £ are in T)2°(zp) and
g € T¥(xo) for almost every xq and if f € L, then D[ belongs to ¢}, (xg) for

m—|a

(5]
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almost every zg. Let us remark that there is a common misunderstanding when stating
the hypothesis of this main theorem: the coefficients of £ have to belong to T°(x¢) (see
[8, p. 72], where T, is defined as T:.°); the case where these coefficients belong to TP ()
with p < co is not considered in [§].

This seminal paper illustrates the fact that classical regularity spaces have played
a significant role in numerous parts of mathematics over the years. Still, it has become
clear that there are appreciable advantages to be gained by adding to such spaces features
that allow to more finely tune their regularity properties. Roughly speaking, the general
idea consists in adding spaces in-between existing spaces; such generalizations have been
investigated in connection with applications in embeddings, entropy numbers, probability
theory, signal analysis, spectral theory and theory of stochastic processes for instance (see
e.g. [17, 2] 10, Bl 1T, 22 30, 28] and references therein). Let us mention that there are
other ways to obtain more general spaces (one can for example use weighted spaces [2]).

As a notable case, the versatility of the generalized Besov spaces (see e.g. [25, [9])
is particularly clear. They can be obtained from the usual Sobolev spaces using some
kind of real interpolation and most of the properties of the usual spaces are preserved in
the generalized version (see e.g. [24]). Lately, such a generalization has been used for the
detection of the law of the iterated logarithm in signals using multifractal formalisms (see
[28], 18] 21]). However, none of these approaches fully takes advantage of the versatility
of the generalized Besov spaces: a pointwise counterpart of such spaces is missing.

The idea is to generalize the pointwise Holder spaces in order to be able to consider
non-locally-bounded functions (as in [31) [16]) and deal with logarithmic corrections (as
in [28] 21]). In this work, we introduce such spaces, following Calderon and Zygmund in
their study of local behaviors of solutions of elliptic PDE’s [8]. The general idea consists
in replacing the power function r — r* appearing in with 7 — ¢(r) (r > 0), where
¢ is a function satisfying some basic properties, to obtain the generalized spaces Tg and ti
respectively; typically, such a function ¢ could be r — r*|Inr| for the detection of the
logarithmic corrections (such an idea is exploited in [I0, B0] in the case of the Bessel
potential spaces) or more generally r — 7% (r), where v is any weakly varying function,
i.e. a strictly positive function satisfying

lim v(rt)

t—0 1(t)

for any r > 0 (see [19] for example). Such a choice is natural and observed in many

financial models that are derived from the Brownian motion (e.g. the geometric Brownian

motion used in the Black and Scholes model [I5], the Hull and White one-factor model [4],
etc.).

Before investigating these spaces from a fractal point of view [23], we must first

=1

explore their properties as regularity spaces and show that they are still related to some
notion of smoothness. To do so, we follow the ideas of Calderén and Zygmund and show
that most of the properties established in [§] still hold for the generalized versions 77
and ti; we thus introduce here some generalizations of the results obtained in [§]. In
particular, we obtain the main theorem of [8] (see inequality and Theorem
to the case where the coefficients of £ are of class T} (x0) (and even T} (p)). As already
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mentioned, one of the most remarkable aspects of the spaces of generalized smoothness
is that most of the properties of the usual spaces are preserved in the generalized version
(see e.g. [19] 20] I8, 2T], 24], where it is shown that the usual characterizations still hold
in the general settings); this crucial feature of such generalizations is also observed here.
The spaces defined here are thus a natural extension of the usual spaces; moreover they
enlighten the role of the power function in the classical theory.

Although the machinery applied is standard, some subtle arguments must be occa-
sionally introduced to obtain the natural results presented here, since the convergence of
an expression depending on ¢(r) is often less obvious than the same statement involving
a power function. Let us also remark that we use here conditions based on LP-norms
instead of L*-norms (as already stated for the main theorem of [8]); this is indeed the
main source of difficulty, the use of the generalized space being quite natural.

This paper is organized as follows. First we introduce the generalized spaces Tg and t’;,
using Boyd functions and, in the subsequent sections, give some basic properties of such
spaces (completeness, density, embeddings, etc.). Next, we give a generalization of Whit-
ney’s extension theorem, before studying the Bessel operator. We also investigate the
estimations that can be made if the derivatives belong to the spaces Tg or tg. We end
this work by studying the action of the convolution integral operator on T£ and show
how these spaces can be utilized to examine the regularity of the solutions of an elliptic
partial differential equation.

The notations used here are rather standard; D(R?) will stand for the class of infinitely
differentiable functions with compact support on RZ.

2. Spaces of generalized smoothness

2.1. The spaces Tg and t;. The generalization of T} spaces that we shall introduce
relies on the notion of Boyd function.

DEFINITION 2.1.1. A function ¢ : (0, +00) — (0, +00) is a Boyd function if ¢(1) =1, ¢ is
continuous and, for all x € (0, 400),

- o(xy)

¢(x) :=sup ——= < o0. 2.1
(@) y>0 (Y) 21)
We denote by B the set of Boyd functions.

If ¢ € B, then

e ¢ is submultiplicative; this follows from the fact that
bleyz) _ olaz) (azy)

¢(z) P(z) ¢(x2)

e ¢ is Lebesgue-measurable, since ¢ is continuous,
o ¢(x) > ¢(x) and ¢(1/z) > 1/¢(x) for any = > 0.

< ¢(x)d(y) for any z,y,2 >0,

The fact that ¢ is submultiplicative allows us to introduce the following notion (see
e.g. [Q):
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DEFINITION 2.1.2. The lower and upper Boyd indices of the function ¢ € B are respec-
tively defined by

logp(z) . logo(z)

b = = 1

b(e) x:%}i)l) log 250 logz ’

- log ¢ log ¢

Bo)i= imt 80@ _ o, losd@)
ze(l,400) logax z—+oo logx

The change of supremum and infimum into limits in the previous equalities comes
from a classical result (see e.g. [I4, Theorem 7.6.2]). Let us point out that we have
—00 < b(¢h) < b(¢) < 400, since if b is defined as

e = 50

then b(z) > b(1/x) for x > 1.

PROPOSITION 2.1.3. Let ¢ € B, € > 0 and R > 0; there exist C1,C5,C5,Cy > 0 such that

Crrb@te < P(r) < Cor®@=¢ for all r € (0, R], (2.2)
C3r29) =2 < ¢(r) < Cyr? e forallr € [R, +00). (2.3)
Proof. Let us prove (2.2). There exists Ry € (0, 1) such that, for all » € (0, Ry),
e 3
b(¢) - M S g,
logr
which implies that, for such r,
B(r) < rb@=e, (2.4)
Similarly, there exists Ry > 1 such that, for all r € (Ry, c0),
B(r) < rb@)te, (2.5)
Now, using (2.1]), we have
S(1/r)~" < o(r) < B(r) (2.6)

for all » > 0 and from (2.4)—(2.6]), we get
Po(@)+e < o(r) < rbl@)—¢

for 0 < r <min{Rp,1/R1}. If R < min{Ry,1/R;1}, one can take Cy = Cy = 1; otherwise
we can use the continuity of the functions
(1) o(r)
7S e

on the compact set [min{ Ry, 1/R1}, R] to find two constants Cy,Cy > 0 such that (2.2)
holds. Inequality (2.3) can be obtained by an analogous reasoning. m

REMARK 2.1.4. Inequality (2.4)) can be extended in the following way: for all £ > 0 and
R > 0, there exists C' > 0 such that, for all r € (0, R],

o(r) < Cri@)—¢
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If R > Ry, we can use the submultiplicativity of ¢ to see that, for all r € (0, R],

_ _ _ _ b(¢)—e
o)) (2 ()" ne

Similarly, we can extend inequality (2.5) using the same approach: for all € > 0 and
R > 0, there exists C' > 0 such that, for all € [R, c0),

o(r) < Crb(@)+e,

As a corollary to this remark, we have the following result (see e.g. [9], [25]), showing
that the Boyd indices give an integrability criterion for Boyd functions.

PROPOSITION 2.1.5. Let ¢ € B. If b(¢) < 0, then f1+oo ¢(z)/rdx < oo, and if b(¢) > 0,
then fol o(z)/rdz < 00.

We can now introduce the spaces T and tﬁ.

DEFINITION 2.1.6. Let 29 € R% p € [l,00] and ¢ € B be such that b(¢) > —d/p.
A function f € LP(R?) belongs to the space T} (o) if there exists a polynomial P of
degree strictly less than b(¢) and a constant C' > 0 such that

PPN f = Plliasaen) < Co(r)  ¥r> 0. (27)
Moreover, if we also have
r= P f = PllioBaory € 0(d(r)) asr— 0%, (2.8)
we say that f belongs to t}(zo).

REMARK 2.1.7. In the previous definition, the condition b(¢) > —d/p is there to ensure
that the spaces Tg are not degenerate: if r—%? < C¢(r) is satisfied in a neighborhood
of the origin, then any function belongs to T g (z0); this inequality is never satisfied if
—d/p < b(¢). This condition could be relaxed in Definition but the interest of such
an extended definition is not obvious.

REMARK 2.1.8. Let us highlight the fact that ¢! (zo) is a “true subspace” of T7 (zo);
indeed, under the assumptions of the previous definition, if f € LP(R?) is such that there
exists a polynomial P of degree strictly less than b(¢) for which

o(r) IR f — Pllro(B(zo,r)) — 0 asT— 07,
then there exists R > 0 such that
PPN f = PllioBaery < ¢(r)
for all » < R. Moreover, for r > R, we have
r= P\ f = Plloe@on) < v Y7l oy + Cr(L+17)

and an application of Proposition 2.1.3] shows that the right-hand side can be bounded
from above by ¢(r), which means that f € T} (x).

Let us study the basic properties of the spaces qu .
PROPOSITION 2.1.9. If f € T} (x0), then the polynomial P in (2.7)) is unique.
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Proof. Of course, if b(¢) < 0, the polynomial appearing in (2.7) must be 0. Now, if
b(#) > 0, let us suppose that there exist two polynomials P and P’ of degree strictly less
than b(¢) and C,C’ > 0 such that, for all r > 0,

PP f = Pllio(Bag.r)) < Colr),
PP f = P\l o Bao.ry) < C'o(r).
Now, if we define @ := P — P’, then @ is a polynomial of degree n < b(¢). So, if e > 0
is such that n < b(¢) — &, then by Proposition there exists C” > 0 such that
T_d/pHQHLP(B(zo,r)) < C'pb(d)—e,
But, if @) is a non-zero polynomial, then the left-hand side must decrease at most like r",
which contradicts this last inequality. m
REMARK 2.1.10. If ¢ € B and if f € T} (zo) for some p € [1,00], then, in particular,
f € LL.(R%). Suppose that b(¢) > 0 (otherwise, the polynomial P in (2.7) is identically

loc

zero) and recall (see [3]) that almost every z € R? is then a Lebesgue point of f, which
means that

. —d . o
Jlim, If = f@)l(B@r) =0.
If z¢ is a Lebesgue point of f and if P is of degree strictly less than b(¢) such that
PPN f = Pl (ory) < Co(r)  Vr>0,
then we also have
=N = Pllpa oy < Car™P||f = Pllio(s@or) < C'(r)
for all » > 0. From the previous relations, we have
|f(w0) — P(x0)| < Car™ | f(w0) — P(0)ll 11 (B(zo.r)
<r | f(wo) = fllzr oy + 7N = Pl (Brory
+ 77 P = P(20) |l L1 (B0,
<r | f(@o) = florB@ory +C'S(r) +Ca Y
1<|e|<b(9)

But, as b(¢) > 0, Proposition implies that ¢(r) converges to 0 as r tends to 07. As
a consequence, since xg is supposed to be a Lebesgue point of f, the last upper bound in
the previous inequality tends to 0 as r tends to 0T, which implies f(zo) = P(zo).

Let f € T} (x0) and let

al

’ D(XP(‘TO) 7“

DaP(IL'(]) -
p= Y P0G o)
o] <b(¢)
be the polynomial which appears in (2.7)). Let us set

|f|Tg(zo) = Sl;lg $(r) ") f — Pl zr(B(zo,r))

nd D P(a)]
“P(xg
Hf”T;;(mo) = || fllLr@ey + Z Tl + |f\T§;(wo)-

|| <b(9)
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PROPOSITION 2.1.11. Let zg € RY, p € [1,00] and ¢ € B be such that b(¢) > —d/p. Then
(T3 (x0), |l - 77 (o)) s a Banach space.

Proof. Tt is straightforward to show that || - ||T£(m0) is a norm on T} (vo).

Let us now consider a Cauchy sequence (f;);en, in (7} (o), | - ||T£(IO)). For j € Ny, let
us denote by P; the polynomial of degree strictly less than b(¢) such that, for all » > 0,

r PN £ = Pyl oo < filrr o).
Let f € LP(RY) and ¢, € C (Ja| < b(¢)) satisfy f; — f in LP(R?) and D*Pj(z¢)/al = c,
in C for all |a] < b(¢). Let us then define

P .= Z calx — 20)“.
lee| <b(¢)
For all ¢ € Ny, we have
S(r) "'V = fo) = (P = Pl o(Bro.m)
= ¢(T)_1T_d/p Slgrolo [(fs = fo) = (Ps = Po)llzo(B(xo.r))
<limsup||f, — fs||T;j(zo) < 0.
§— 00
Taking the supremum over r > 0 gives us
|f = fal72 (2g) < Tmsup || fg = fsll7r(wo) < 00
S§— 00
and passing to the limit for ¢ — +o00 allows us to get

lim |f - fq‘Td’;(wo) = Oa

q—+oo
which is enough to conclude the proof, as the finiteness of |f |T£(w0) follows from the
triangle inequality. m
PROPOSITION 2.1.12. Let x9 € R%, p € [1,00] and ¢ € B be such that b(¢) > —d/p. Then
tiy(z0) is a closed subspace of T} (x0).

Proof. Let (f;);en, be a sequence of functions in tz (x0) for which there exists f € qu (x0)
such that f; — f in T} (zo) and let us show that f € tf(z¢). Let P and P; (j € No) be
polynomials of degree strictly less than b(¢) such that

Y| £ = Pyl Lo (Bag.ry) < [ filt(we)@(r) Vi € No
and
PPN f = Pllis(Baory) < flze(ag)@(r)-
If we set R:= f — P and R; := f; — P;, we know that

sup ¢(r) " VPR = Rllpo(Bwory < I = fllzze =0 asj— o0

and
o(r) ™ YP| Ryl 1o (Baory — 0 asr— 0.
Given € > 0, let J € Ny be such that 7 > J implies

sup §(r) "Ry = Rllpo (paa.r) < /2
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There also exists p; such that, for all r € (0, py],
O(r) PR | Lo (Bwgry) < €/2-
As a consequence, for such r,
¢(r) PR o (B(ao.ry) < &
which proves that f € ¢} (zo). =

There is an obvious link between the classical spaces C* of the k-times continuously
differentiable functions and the spaces t(x), given by the following remark.

REMARK 2.1.13. Let 79 € R p € [1,00] and ¢ € B be such that b(¢) > —d/p. First,
if b(¢) < 0 and f € C°(V), where V is an open neighborhood of x¢, then f € tg(wo).
Indeed, if R > 0 is such that B(z, R) C V then there exists C' > 0 such that |f| < C on
B(zo, R) and, for r € (0, R], we have

Tﬁd/prHLl’(B(wO,T)) <C
It follows from Proposition that

=P fllLe(Blxory) € 0(4(r)) asT — 0T,

Also, if there exists n € Ny such that n < b(¢) < b(¢) < n+ 1 and f € C"TH(V), then
again f € tg(xo). Let P be the Taylor expansion of order n of f at xg. There exists C' > 0
such that |f — P| < C(- — z)"*! on B(xg, R). Therefore

Tﬁd/pr - P”LP(B(Q:O,T)) < CTn+1 for r € (O,R],
and the conclusion follows again from Proposition [2.1.3

2.2. A density result. Let ¢ be a non-negative, real-valued function in D(R?) such
that

/Rd o(x)der =1 and supp(p) C B(0,1).

Let f be a function which belongs to LP(R?) for some p € [1,00) and, for A > 0,
define fy by

b= o) f. (2.9)
It is well-known that fx € LP(R?) N C*°(R?) and ||fx — f||r(ra) — 0 as A — oc. Let us

show that if f € tg(xo), then under some basic assumptions on ¢, the convergence also
holds in T7 (o).
PROPOSITION 2.2.1. Let 29 € R?, p € [1,00) and ¢ € B be such that b(¢) > —d/p and

either b(¢) < 0 or there exists n € Ny such that n < b(¢) < b(¢) < n+ 1. If a function f
belongs to t}(xo), then || fr — f||qu;(mO) — 0 as A — o0.

Proof. Without loss of generality, we can suppose that xqg = 0. Let us first consider the
case where there exists n € Ny such that n < b(¢) < b(¢) < n + 1. Given A > 0, define
Ry := fy — P\ where P, is the Taylor expansion of order n of f\ at 0. Let R := f — P,
where P is a polynomial of degree n, be such that

¢(7’)71r7d/p||R||Lp(3(07r)) -0 asr—0T.
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For r > 0, we have

Rl 1By < Car™ VPRl o0y < £(r)o(r),

where e(r) — 0 as 7 — 07. We can make the assumption that (r) is decreasing to 0
asr — 0.
Let us remark that, for |a| < n, D*Py(0) — D*P(0) as A — co. Indeed, for A > 0,

D“Py(0) = D*fx(0)
= [ Xe-rDP@)dy+ [ (1N Do) R(y) d
R4 R4
The first term of the right-hand side tends to D*P(0) as A tends to infinity and for the
second term, we have

[0 Do i) dy] < O At / Ry)|dy < s(l)w¢(1>,
Rd B(0,1/) A A

which proves, since || <b(¢), that [, (—1)I*A4FleIDp(—Ay) R(y) dy tends to 0 as A — cc.
Given 7 > 0 and A > 0, let us now estimate the quantity || Rx||ze(B(z0,r)- For all
x € R?, we have

Ri(z) = fa(z) — Pr(x)
= [ (¥etra = 3 et 2N ) o) 1 Ry
R4

|a|<n

and since

(%

[ (et = et - 32wt A p ) ay

lee|<n.

is equal to A%p(\-) * P (which is a polynomial of degree n) minus its Taylor expansion of
order n at 0, this last integral is equal to 0. Therefore,

RA(x)z/Rd (/\d l;ﬂdelD —\y) O‘)R(y)dy.

It follows, by Young’s inequality, that
IRl ze (B(0.1)) < CollRllLr(B(0,2)) + Z A RD o (= M) L 0.1/ |- e (B0.r)

a<n

<C@< Pe(2r) ¢ +Z < >A|a¢( )rd/P-Ha)

a<n

for all v > 1/X. But, as ¢(1/X) < ¢(r)¢ (%) and - < 1, we have, thanks to Remark

¢<rlA)(TA)al < Cy(rA)-E@-5-la) < ¢y

where & > 0 has been chosen such that b(¢) — 6 — n > 0. Consequently, given r, A > 0
such that r > 1/X, we have

IRl o B0y < Cr/Pe(2r)(r). (2.10)
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On the other hand, if » < 1/\, Taylor’s formula provides

a Dp(—A a
No(\w —y) — 3 airol 2PN,

la|<n

< Cp(Alz])" 1A,

which implies

[Ra(e)] < CoMalHx?
B(0,2/))

|R(y)|dy < C%d(,\|x|)n+1€(i)¢(i)

for all € B(0,r). Therefore,

2\ (1
IRAll Lo (B0, < Cré/P(Ar)" e (A) ¢(A) .

Now, using the second part of Remark [2.1.4] we can write
1 —(1 CTh) g
016 ( 5 ) < oIO35 ) < Cardlr) oA < Cua),

where ¢’ > 0 has been chosen such that n + 1 — b(¢) — ¢’ > 0. As a consequence, given
R, X > 0 such that r < 1/\, we have

2
| RxllLe(B(0,r)) < CTd/pE(A)¢(7”)~ (2.11)
From (2.10) and (2.11)), we have
2
d)(T‘)_l’l“_d/pHRAHLP(B(O’T)) < 0(5(27‘) + E<>\))

for all 7, A > 0, which naturally implies

1 2
¢(T) 1T d/pHR — R)\”LT’(B(O,T)) S 0(5(27') + 5()\) ) . (212)
Let us now remark that if we fix p > 0 and choose 1 > 0 such that

then, from Proposition 2.1.3] we have
¢(r) "'~ P||R = Rall Lo ((0.0)

1 D*P(zg) — D*Py(z
< o(r) ) f — fAllLe By + Ca Z | (o) A (o))

al

¢(r)~ ol

la|<n
_ _ D*P(xg) — D*Py(x _
< C,r b(¢)+n d/pr_f)\HLP(]R{d) +Ca,p Z | (o) o A 0)|7° b(@)+n+lel
lal<n '
B B D°P(z9) — D*Py(z0)| _ .
< Cpp M| f — fill oy + Cap Y | ( )a, ( )|P boYbntled
la|<n '

for all r > p. As we know that ||f — fil[Lr(re) — 0 and D*P(0) — D*P(0) as A — o0
for all |a| < n, we get

sgp qb(r)*lr*d/pHR — Rallzr(Boory) =0 as A — oc. (2.13)
r>p



Generalized T spaces 15

Combining (2.12)) and (2.13]) leads to
sup (r) ' YP|R = Rallzo(posy) — 0 as A — oo, (2.14)
r>0

since otherwise there exists £ > 0 such that for all A > 0 there exists A > A for which
sup () YP| R — Ryl o0y > €
which makes us able to build a sequence (\;);en, that converges to oo and satisfies
Eg% (r)"Lr~ PR - Ry, \lr(Bory) =& for all j.
In particular, given j € Ny, there exists r; > 0 such that

¢(Tj)_lrj'_d/pHR = Ry, llLe(B0,r))) = €/2- (2.15)

As \; — oo, there exists J; € Ny such that for all j > Jy, (2/);) < £/(4C), where C > 0
is the constant appearing in (2.12)). Moreover, there also exists p > 0 such that, for any
r € (0,p], e(2r) < £/(4C). From (2.13)), we know that there exists J, € Ny such that, for
al]._] > J2a

sup ¢(r) "' YP||R = Ry, || ooy < §/2- (2.16)

r>p

Therefore, if j > max{Jy, J2}, implies 7; < p and, by and (2.15)), we finally
get a contradiction.

If we now assume that b(¢) < 0, then R = f and Ry = fy. Therefore, by Young’s
inequality, we have

[BAllr(B0.r) < CollRllLr(B0,2r)) < Ce(2r)9(r).

If r < 1/), let us recall that £(2r) < £(2/)). As a consequence, (2.10)—(2.12)) still hold
and we can conclude the proof in the same way, using the fact that

o) PR — Ryl ooy = () Y| f — Fallie (o)
and b(¢) > —d/p. m
The last proposition has the following useful corollary.

COROLLARY 2.2.2. Under the assumptions of Proposition 2.2.1, the space D(R?) is a
dense subspace of ti(mo).

Proof. Let us consider f € ti(ﬂfo) and the sequence (f;);en, of functions defined by
fi=Ixgezy (U €No).

By Lebesgue’s theorem, it is clear that f; — f in LP(RY); we will show that fi € tg(xo)
(J € No) and that the convergence also holds in 77} (zo).
Let P be the polynomial of degree strictly less than b(¢) such that

()P f = PlioBaery — 0 asr— 0%
First, as f; = f on B(zg,1), we have

Qb(r)ilrid/prj — Pllzr(B(zo,r)) — 0 asr— ot
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for any j € No. Therefore, given j € No, f; € ¢ (o) and
If— fj||T5;(x0) =|f = fillrray + Sglg ¢(7‘)717'7d/p||fj — fllze(B(zo,r))-

On the one hand, if r € (0,27] then

S(r) " P f; = fllzr(Baer) =0
and, on the other hand, if » > 27, by Proposition

o(r) || £ — fllor(B(zo,r)) < O~ b@)=etd/p)) £ Fllor @
< Cz—j(b(¢)—s+d/p)|‘fj _ fHLP(]Rd)v
where £ > 0 satisfies b(¢) — & + d/p > 0 and C > 0 satisfies 7&(#)=2) < Ce(r) for all
r > 1. Therefore,
1f = fillzz oy < IF = Filloqay + C27EOFI £ — £l ppgay =0 as j — oo,

which provides the convergence in T} (x).
The conclusion then follows from Proposition [2.2.1] =

2.3. Some embeddings

NoTATION 2.3.1. Given ¢, € B, we will write ¢ < 1 to mean that there exists R,C > 0
such that, for all r € (0, R), we have ¢(r) < Cy(r).

Of course, by continuity, one has ¢ < ¢ if and only if, for all R > 0, there exists C' > 0
such that ¢(r) < Cy(r) for all r € (0, R).

PROPOSITION 2.3.2. Let ¢, € B. If b(z)) < b(¢) then ¢ < 1. Conversely, if ¢ < 1, then
b(y) < b(¢).
Proof. Let us first assume that b(¢)) < b(¢) and let € > 0 be such that

b(¥) +e <b(¢) —e.
By Proposition [2.1.3] given R > 0, there exists C' > 0 such that, for all r € (0, R),

d(r) < Cri@)—e < C/pbIre < CMy(r),

which means ¢ < 1.
If we now assume ¢ < 9 then, in particular, there exists C > 0 such that, for all
r e (0,1),
B(1/r)t < CB).

Therefore, for such r, we have

log(¢(1/7)) _ log(C) , Jog(¥(r)
log(1/r) — log(r) log(r)
and letting r — 0% gives b(¢) > b(¢)). m
PROPOSITION 2.3.3. Let g € RY, p € [1,00] and ¢, € B be such that either b()) < 0 or

there exists n € Ny for which n < b(y)) < b(y)) <n+1. If ¢ <, then T} (o) < Ty (w0).
Moreover, if ¢(r) € o(i(r)) as r— 0%, then T} (x) < ¢}, (o).
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Proof. Let f € Tg (x0); there exists a polynomial P of degree strictly less than b(¢) such
that

T—d/PHf - P”LP(B(mo,r)) < |f|T£(x0)¢(r) Vr > 0.
Let Q=0,k=1=0if b(3)) <0 and
D*P(xg) o
Q= Z TO(' — 9)",
la|<n '

kE=n+1,1=nif n € Ny satisfies n < b(¢)) < b(¢)) < n+ 1. For any r < 1, we obviously
have, by Proposition
Tﬁd/p”f - Q”LP(B(Q:O,T)) < Tﬁd/p”f - P”L"(B(a:o,r)) + Tﬁd/p”P - QHLT’(B(JCO,T))
<172 (@) (1) + Call fllzz (o)™ < Coll fllz oy (1),
while for r > 1,
r P f = Qe oy < TP LeB@or) T YPIRQN e (B o)
<12 f )l o gay + Capl fllrer' < Coll fllze ey 9(r),

which leads to the first part of the proposition.
The second part comes from the inequality

=P f — Qll o (Baosr)) < 1172 (@)@ (r) + Cd||fHT£(zo)Tka
valid for all 0 < r < 1 and the relations ¢(r) € o(¥(r)) and r* € o(¢(r)). =

PROPOSITION 2.3.4. Let 29 € R?, py,ps € [1,00] and p3 be such that

1 1 1

0<—=—+—<1

b3 P11 P2
and let ¢ € B be such that there exists n € Ng for which n < b(¢) < b(¢) < n + 1. Given
f1 e Tgl (z0) and fy € Tq’;? (x0), we have f1fs € quS (o) with

||f1f2||Tp3(x0) < Cd,p1,p2,¢||f1||Tpl(x0)||f2||T"2(x0)-

Moreover, if fi € t! (x9) and fo € t5*(x0), then fifa € 15 (x0).
Proof. We know that, given k € {1, 2}, there exists a polynomial P, of degree less than
or equal to n such that Ry := fr — Py satisfies

r= Y| Ryl o (B a0,y < | Filzze () O(7)- (2.17)

Therefore, if we denote by P the sum of the terms of degree less than or equal to n
in P, Py, we have
fifoe=PP+RPo+Rofi=P+PP,— P+ R P+ Rsyf.
Let R := P1P2 - P + R1P2 + Rgfl; clearly7
|DYP(z)|
Z o < ||f1||T£1(a:g)Hf2||T£2(a:0)'
le|<n

Let us first consider r < 1; by Proposition [2.1.3] since
|PLPa(2) = P(x)] < (2 = 20)" [ fillzrs (ag) | foll 722 (2
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for x € B(xg,r), we have
T_d/pSHPlP? = Plles (B(ao,r) < Cd,ps||f1\|T§1 (zo)||f2||T£2(aco)Tn+l
< Cd,pl,p2,¢||f1”T§1 (z0)||f2||T£2(;1;0)¢(7”)-
Also, for all xz € B(zg, ), since |Py(z)| < ||kaT£k (o) (K €{1,2}),

=Y Ry Pal| 1o (B(ao,m) < 7Y Pall 1oz (Bwo,r VP IR Lo (a0
< Cd7P2||f2||T£2(xo)‘f1|T£1 (zo)(b(r)'
Using again Proposition 2.1.3] we get
r= P fi | e (Bowy) < 7Y = Pille (Beosry) + 7 VPP o1 (B0,
< filrpr @) 8(r) + Capy 1 fill 72 (20)™™ < Caprpll fill o (g
and thus
r= P3| £y Rl Los (Blaosry) < 7Y f1ll Lo (Bwory T VP2 Rell Lo (B (o))
< Capr ol fillrer wo)l folz2 (2) H(7)-

As a consequence, we can write, for r < 1,
T—d/P?’“RHLPS(B(xo,r)) < Cd,pl,pwb”leT;’l (x0)||f2||T;’2(z0)¢(T)~ (2.18)
If now we consider r > 1, as |R| < |fi||f2] + | P|, we get
=P R Lo (w0, < 7PN fill e oy foll Loz ey + Capr™ 1 fillzes (oo | Follzee (2)-
so that still holds in this case, by Proposition m
Finally, if fi € ] (z0) and f2 € t57(20), we can write
PP Ry || Lok (B (o)) < Er(r)@(r),

with eg(r) > 0 for » > 0 and ex(r) — 0 as » — 07 (k € {1,2}). Replacing |fk|T£k(w0)

with e (r) in the preceding relations, one gets
¢(r) " P R Lo (B(agry) = 0T asr— 0,
which is sufficient to conclude the proof. m

COROLLARY 2.3.5. Let 29 € R?, py,po € [1,00] and p3 be such that
1 1 1
0<—i=—+—<1,
b3 P P2

and let ¢, be functions in B such that b(¢) > 0, b(v)) > —d/p2, ¢ < ¥ and either
b(p) <0 orn < b)) < b)) <n+1 for somen € Ny. If f1 € Tgl (x0) and fo € T£2(a:o),
then fifs € Tff (z0), with

| f1f2 HT53(xO) < Cp,pa,swllfi ||T;§1 (z0) ||f2||T£2 (z0)"

Moreover, if fi € t! (x0) and fa € £} (o), then fifa € £} (x0).
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Proof. 1f b(1)) < 0, the embedding is obvious since T} (o) — t(x0) and so, for 7 > 0,

P3| £y foll Los (Bzory) < TP 1l or (B o) VP2 foll Loz (B(zour)
< Cpy g0l frll 21 (o) | 2l 72 20) (7)-

Otherwise b(1)) > 0 and f € T* (x) with
||f1||T51 (z0) < C¢,¢||leT§1 (20)"
Using the previous proposition, we get fifs € T£3 (o) and

11 f2ll725 29y < Cap,

which allows us to conclude the proof. The second part can be obtained using the usual
arguments. m

721 (o) 1 2ll722 (20) < Cap.gwll firllzzr ooy | F2llTr2 (1)

PROPOSITION 2.3.6. Let p1,ps € [1,00] and p3 be such that 0 < 1/p3:=1/p; +1/p2 <1
and let , ¢ € B be such that —d/p2 < b(p), 0 < b(¢). Let also f1 € T} (x0), f2 € TE*(w0),
where xq is a Lebesgue point of fi. Finally let b € B be such that b(v) > —d/p2, ¢ K ¢
and

o () —blp) < b(e) if b(¢) < _
o b(1)) — b(y) < 1 if b(e) > 1 and either b(y) < 1 or there exists n € N for which
n < b() <b(y) <n+ 1.

There exists a polynomial P of degree strictly less than b(y) such that, for all v > 0,
PP (fr = fi(@0) f2 = Pllues oy < C

Consequently, if fo € LP*(R?), then (f1 — fi(z0))fa belongs to T* (x0), with
1(f1r = fr(@o)) falles gy < Cprp.6.0.0 | Fill21 () (121722 () + I f2ll s () -

Proof. We use here the same notations as in the proof of Proposition and set
g1 := f1 — f1(zo). Let us first consider the case b(¢) < 1; P, must be a constant and, by
Remark [2.1.10} we have P; = f1(x), which allows us to write

TP g1 || Lor (B(wor)) < [f1lz21 20y O(7)- (2.19)
Let us consider each case separately. If b(y) < 0, then
rYP2| fo| o2 (Bwowy) < |f2lme (meyp(r)-

Therefore, if ¢ € B is such that b(y)) < b(¢) + b(p), then, by choosing € > 0 such that
b(1) + & < b(¢) + b(p) — 2¢, we get, by Proposition [2.1.3]

||T£1 (z0) [l f2 HT;”“(xO)l/J(T)

Y73 gy fall Los (B(wo)
<P\ g1 Lor (Blaor) T VP2 f2ll r2 (B ooy < |f1|T£1(w0)|f2|T£2(xo)¢(7")80(7“)
< Clfrlgn (agy felzz2 (woy PO O 72 < | frll g (o) I fellz () (1)
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for 0 < r <1, where C,C" > 0 only depend on ¢, ¢ and . If r > 1, as —d/p2 < b(v),
we can use Proposition to get

r=P g1 foll Lo (B oo,y < T VPR fLf2ll es (Blaosry) + TP F1(@0)] | 2l Lrs (B w0

<P fu| s ey | foll oz gty + Co o™ VP21 fillzos ooy 1 f2ll o2 (B0,
< Cpr ol 1llr2r ) 1 f2ll 722 (0) 0 ()

If b(p) > 0, let us consider ¢ € B such that b(v)) > —d/pa, b(1)) < b(¢) +b(¢) and ¢ < 1.
For 0 < r < 1, Proposition 2.1.3] allows us to write

r= P3| gy fa| Los (B(zo,r))
<= YP3 gy Pl Lo (Bag.ry) + 7 VP2 91 R o5 (B (o))
| D Py(20)|
< Cd7P2|f1|T£1(zo)¢(r)( Z ol + |f1\T;;l(m0)|f2|T52(r0)¢(7")80(7“)
lal<b(p) '
< Cs g0l f1ll 21 (20 [ foll 72 (20) (7).

Again, the previous inequality holds for r > 1 as well.
Let us now investigate the case b(¢) > 1. For 0 < r < 1 we have, as we know that

Pi(z0) = fi(wo),

- |DaP1(:L'0)|
r o/ ||ngLP1 (B(=o,r)) < |f1‘T£1 (w0)¢(r) + Cd,p1 ( Z 7' T

1<]a|<b(¢)

S Cp17¢

[Fillzer ag)
Obviously, this inequality still holds for r > 1. If b() < 0, then for all ¢ € B such that
b(v)) > —d/ps and b(vp) < b(y) + 1, we have, by Proposition
=Yg foll Lo (Baor)) < Corsllfillzes ag) falmes gy o (r)r
< Cpr ol fillre (wo) [ F2ll 722 gy ¥(7)

for 0<r<1. As b(¢)) > —d/ps, this inequality is also satisfied for r > 1. If b(¢) > 0, let us
consider ¢ € B with b(y) >—d/p2, b(¢) <b(¢)+1 and ¢ <. On the one hand, if b(¢)) <1,
Proposition 2.1.3] implies
=Ygy ol Los (B0 < 7Yl 91 Pallos (Blzowy) + P2 91 Rall Los (B (o)
< Cpr ol fillrrr o) | follzz2 )
+ Oplﬂb

[Fillzes oy | F2l22 2y ()7
< Copllfy ||T;;1 (wo) Hf2||T3;2 (xo)iﬁ(r)

for 0 < r < 1; again one can easily check that this inequality also holds for » > 1. On the
other hand, if n € N is such that n < b(¥)) < b(¢)) < n+ 1, let us define P as the sum of
terms of degree less than or equal to n in (P; — f1(z0))P2; we have

glfg = (P1 — fl(l‘o))PQ + R1P2 + Rggl =P + (P1 — fl(l‘o))PQ - P + Rlpg + Rggl.
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By setting R := (P — fi(z0))P> — P + R1 P2 + Rag1, Proposition 2.1.3] gives

=P Rl| o (Bao,ry) < 7P Ng1 ol Lrs (B0 + 7TV N P Lo (B0
< Cps wll f1lles ray |l f2ll Loz (ray (1)
+ Cps,pz,w||f1||T§1(m0)Hf2||Lpz(Rd)1/J(7")

+ Caps | Fillrzr oy 1 F2ll 22 ()™
< Cyprpall 1ll721 () 1 f2ll 722 () 0 (1)
for r > 1, while for 0 < r < 1 we have
=P || Ry Pa| 13 (B, < Capal [1lr21 (2o [ F2ll 722 (26) 0 (1)

< Cps ol filrrs o) 1 foll 722 (2) Y (1),

=P | Ragi || Lo (Bao,r) < Conallfillzes wg) | folzes (a0 (r)r
= CPlQWW”fl”Tgl (zo)\f2|T£2(wo)?/’(7")
and
r= P ||(Py = f1(20))Pa = PllLos (B(so,r)) < Caps | f1llzes (ag) 1 f2llzz2 20y
< Cpr ol 1ll721 (o) 1 f2ll 222 (0) 0 (7)-
This proves that there exists a constant Cy, p,4,,4 > 0 such that, for all » > 0,
T_d/p3||91f2 - P||LP3(B(zo,r)) < Cpl,pz,¢,so,w||f1||T£1(gg0)||f2||T52(z0)¢(7’)~
If fo € LP3(RY), then
91 f2ll Lrs ey < |1 f1llzer eyl f2ll o2 ey + [f1(@0)] [ f2ll s (ra),
which gives the conclusion. =

PROPOSITION 2.3.7. Let 29 € RY, py,pa € [1,00] be such that p; < py and let ¢ € B be
such that —d/ps < b(¢). If f € T} (zo) N LP (RY), then f € e (RY), with

[ fllzer ay < N Fllzz2 o) + 11l or ety
Moreover, in this case, f € 5} (xo) implies f € ' ().
Proof. Let P be the polynomial of degree strictly less than b(¢) such that, for r > 0,
=P f = Pllne (o) < 1flr22 (2g)$(r)-
For such r, we have
pd/p1 = P”LPl(B(xg,r)) < r—d/p1 Cd’pl’mrd/pl—d/pz If — P”LPQ(B(xO,r))
< Od,p1,p2|f|T£2 (z0)¢(r)7

which is sufficient to conclude the proof, as f € LP1(R?).
The second part can be obtained using the same arguments as usual. m
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2.4. Generalization of Whitney’s extension theorem. In this section, we show
that some uniform conditions on a closed set E involving the spaces T £ and tg imply the
belonging to the spaces By(E) and by (E) respectively, which we define below. Then, we
show that a function which has such properties can be extended in an open neighborhood
of E into a function which satisfies generalized Holderian condition type (see [19]).

In what follows we will heavily need the following lemma. Its proof can be found in
[35] for example.

LEMMA 2.4.1. Given n € Ny, there exists a function ¢ € D(R?) with support in B(0,1)
such that, for any polynomial P of degree less than or equal to n and any € > 0,

pex P=P.

We now introduce the spaces By (E) and by(E) of functions which admit a formal
Taylor expansion on a set £ C R? for which the behavior can be characterized by a
Lipschitz-type condition given by a function ¢ € B.

DEFINITION 2.4.2. Let E be a subset of R? and ¢ € B be such that b(¢) > 0. A bounded
function f on E belongs to the space By(E) if there exist C, M > 0 such that, for all
xo € E, there exist a polynomial P,, of degree strictly less than b(¢),

Poyi= ) faSO) (- =),
|a|<b(e)
such that fo(zo) = f(20), |fa(zo)] < M for all |a| < b(¢) and
|DPy(x) — D Py, (x)| < Co(|z — o) |2 — 20| 1!

for all x € E satisfying « # ¢ and all |a] < b(¢).

DEFINITION 2.4.3. Let F be a subset of R? and ¢ € B be such that b(¢) > 0. A function f
defined on E belongs to the space by (E) if, for any x¢ € E, there exists a polynomial P,
of degree strictly less than b(¢),

Pm — Z foz(xO) ( _ Io)a’

al
|| <b(6)

for which fo(xg) = f(xo) and
lim ¢(|z — 20|) " |z — z0/|DYPy(z) — D*Py,(z)] =0  uniformly in z, € E.

r—rxo
reE

PROPOSITION 2.4.4. Let E be a closed subset of R? and let ¢ € B satisfy b(¢) > 0.

1) If there exists M > 0 such that f € TE(xq) with 7?2y < M for all xg € E, then
¢ ¢,( 0)
€ By(F) (in the sense that f is equal almost everywhere to a function in By(FE)).
¢ ¢
2) If f € t8(zq) for all zg € E, with (2.8)) holding uniformly in xo € E, then f € by(E).
[ ¢

Proof. Let us prove (1). We know that for any xg € F, there exists a polynomial P, of
degree strictly less than b(¢) such that R,, := f — P,, satisfies

VP Ry | 1o (B o ry) < MO(T), (2.20)
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for r > 0, with |D*P,,(z¢)|/a! < M for all || < b(¢). Moreover, in the light of Re-
mark one can modify f on a negligible set in order to have f(zg) = Py, (xo) for
all g € E. In particular |f(zo)| < M for all 2o € E and f is bounded on E.

Let us take a function ¢ € D(R?) as in Lemma let =,z be distinct points of E
and set € := |z — xo|. Let us define, for |a| < b(¢),

Io := D%(pe * f)(x).
On the one hand, we have
Io = D(pe * (Pyy + Ray)) (@) = (pe % D" Py ) () + (D%pe * Ry, ) (2)
= DP, (z) + (D¢ * Ry,) (),
and, on the other hand,

So we get, for |a| < b(¢),
D*Py(x) = D Py (x) + (D%pe * (Ray — Re)(2)

—D*p )+ [ ( )sdﬂa'Dw(x;y) (Rey () — Raly)) dy-

Setting Cyp 1= SUp| o <p(g) [[1D¢lloc, we finally get, for |a| < b(e),
D% Py() = D*Pry (2)| < Cpe™ N (e ™| Rug | L3 By + € IR L3 (Ba,ey))
< CypCae™ ((26)™P|| Ruy || Lo (B (2o .20)) + VP || Rall Lo (B(x.c)) )
< Op(|z — wol)|w — o ™%,

where the constant C' > 0 only depends on C,, M, d and ¢.
For (2), let us consider

T_d/pHRonL?’(B(acg,r)) co(p(r)) asr—07"
uniformly in z¢ € E, instead of (2.20]). Since
| D Py () = D* Py (2)] < CpCas ™! ((26) P (| Ry | o (B0 200) + €~ Pl Rallo(Bo.e))

for all z,zp € F with 0 < € = |z — x|, we conclude that, given C' > 0, there exists n > 0
such that if 0 < |z — z¢| <7 (z,z0 € E) then

|D® Py () — D Py, (2)] < Co(|x — o) |z — ol ™%,
which means that f € b,(E). =

The theorem concluding this section relies on the following lemma, which establishes
the existence of a smooth function on a neighborhood of a closed subset E which is
comparable to the distance from E (see e.g. [35, [§]).

LEMMA 2.4.5. Let E C R? be a closed set and U = {x € R% : d(z, E) < 1}. There exist
6 € C®(U\FE) and C > 0 such that

CYd(z,FE) < 6(z) < Cd(z,E) VxcU\E

and
|D*6(z)| < C(a)d(z, E)' 1?1 vz e U\ E, |a| >0.
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We will also need the following combinatorial lemma, which can easily be proved by
induction on [ € Nj.

LEMMA 2.4.6. Letl € Ny.

e [fl=0 mod 4, then
1/2—1 l
1/ 1 e /1
“3l) - 2,V ()= > ()
e Ifl=1 mod 4, then

(-2 ) £ ()

e Ifl=2 mod 4, then
1/2—1 1
171 A vl
2(12) = 2 (D ()= 3 ()
e [fl =3 mod 4, then

()-S5 ()

j=>-1)/2+1
For the following result, we need the notion of finite (forward) difference for a func-
tion f (see e.g. [29]): set A} f(2) = f(z+h)—f(x) and, given n €N, A7 f(2) = AL AR f(z).

THEOREM 2.4.7. Let E C R? be a closed set, U = {x € R% : d(z,E) < 1}, n € Ny and
¢ € B be such that n < b(¢). If f € T} (x0) satisfies Hf||T£($O) < M for some M >0 and
all xg € E, then there exists FF € C™(U) such that F = f almost everywhere on E.
Moreover, if m € Ny is such that n < b(¢) < b(¢p) < m, then there exists C > 0 such
that for any x € U and any h € R4\ {0} for which [z, + (m —n)h] C U, we have
[ARTDYE(z)| < Co([h)|A™"  for any |af = n.

Proof. Let us consider the functions ¢ and § from Lemmata and respectively.
We know that we can modify f on a set of measure zero so that f € By (E). Let us define
the function F' on U by

Flz) = {f(x) ifxeFE,
5(2)~ fow (& — 1)3(x) ) f(5) dy  otherwise.

Obviously F € C*(U \ E). Let T € U \ E and zy € E be such that |T — zo| = d(T, E).
As zp € E, there exists a polynomial P,, of degree less than or equal to n such that
Ry, = f — Py, satisfies

T_d/pHRonLP(B(zD,r)) < M¢(T) for all » > 0.
For any = € U \ E, by setting
Qa(x,7) = Dg (6(z) " Y ((z — )a(x) 1),
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we have, by Lemma [2.4.1]

D“F(x) = D*P,,(z) + /Rd O, (z,y)Rs, (y) dy.

One can easily check (by induction) that ®,(z,-) is of the form
8(2)~ED%((z — )8~ (2))(z — )T P(x),

where P(x) is a product of derivatives of the function ¢ evaluated at x with ¢ factors and
whose sum of orders is equal to w and where k4w —t— || = |a|. Thanks to the property
of the function &, we have |P(x)| < Cd(x, E)*=%, 6(z)~9% < C*d(z, E)~ %% and

ID%p((@ =)0~ (@)@ = )| < Cyad(z, E)1,

as D%((z — )67 (z))(x — -)” does not vanish if |z — -| < §(x). We thus have

[ B )R dy] < Cule ) [ Rl
R4 B(z,8(x))

for all @ € N and x € U \ E. As there exists C’ > 0 such that §(z) < C’d(x, E) for all
x € U\ E, we can write

ID*F(z) — D*P,, (7)) < Crd(x, E)~-1e] / Ruy ()] dy
B(z,C'd(z,E))
< Cyd(z, B)ld(z, B) / |Ruo ()] dy
B(zo,(C'+1)d(z,E))

< CoM¢(d(z, E))d(z, E) !
= CoM([7 — o) (7 — wol) 1,

where Co > 0 is a constant which only depends on ¢, ¢, Cy, C' and d. Moreover, since
f € Bg(E), we know that P, (x9) = f(xo) and for all z; € E such that x; # o,
D*Py (x0) = D*Py, (x0) + Ra(x0, 1), where R, satisfies

|Ro(z0,21)] < Co|zo — 1)) (Jxo — 1)) 1% for all o] < n. (2.21)

Therefore, thanks to Taylor’s formula, we have, for |a| < n and z € R?,

DB ()= Y DR (o) @ — w0)’

18l<n—la]
1 a+pf3 d
= Z E(D Pﬂm(xO) +R0¢+B('ro’xl))(x_x0)
18]1<n—la| 7

- Z j ( Z l|Da+ﬁﬂpﬂfl(5'31)(530 —x1)" + Rayp(wo, 1‘1)> (x — xo)ﬂ

A
B1Enetal B NenZ(adisn Y
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and

> l. ) = DHIHIP, (21) (w0 — 1) (& — 20)”

IBl<n—lal " [v|<n—(lal+]8])

1
>

- ¥ % ) %D“”*”Pm(xl)(x—xo)ﬂ(xo—xm
1

[vI<n—lal * |Bl<n—(lal+]7])

= ) D"‘”le (x — z0 4 21)(xg — 21)Y = D*P,, ().
[v]<n— Ia\
Finally, we have
1
DaPZO(x) = Dapml (l’) + Z ERQJrﬁ(xo,.’El)(l' — .’Eo)ﬁ
Bl<n—lal "
for all g, z; € E and = € RY. In particular, for |a| < n,
|DP,,(®) = D*P,, ()| < C Y $l|lwo — a1 |)|wo — wa |11l jm — o[ 17
[Bl<n—|al

and as |T — zo| < |T — 21|, we have |zg — z1| < 2|T — z1|. Therefore,

¢(|lzo — m1)|wo — 21|71 1P

< ST — 21 |)[T — 21|71~ 6¢<$0_$1)>(|$0—x1|)>a||ﬁ|’

[T — 1] [T — 1]

and as |a| + 5] < n < b(¢), Remark implies that
—(Nzo —z1|) [ |0 — 1) —lal=|8]
o\ = -
[T — a4 [T — 1]
is bounded (by a constant which only depends on ¢). We thus have
|D¥ Py (T) = DYP,, (7)] < CH(|T — z1|)[F — 2| 1% for [a] <n.

This inequality and the upper bound obtained for D*F(Z) — D*P,,(T) give
|DYF (Z)—D®P,, (T)| < C(¢(|T—zo|)|Z—20| 1 +o(|T—21 ) [T—0| 1)) for all 2, € E,

and as |T — xg| < |T — 21|, we get, as before,
|DYF(Z) = D* Py, ()] < CH(|T — a1 |) |7 — 1|71, (2.22)
Let F,, be the function defined on U by
D*P, ifrxeFE,
Fo(z) = (x) ifzx
D*F(x) otherwise.

We have proved that, for |a| < n, F, € C®°(U \ E) and for z € E and h # 0 such that
x + h € U, we have

Folw+h)= Y D*PP.(2)hf + Ro(x, 2+ h), (2.23)
|Bl<n—]al
where
|Ro(z, @ + h)| < Co(|h])|n| 71,
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with a uniform constant. More precisely, if h is such that z + h € E, the previous
inequality is satisfied because f belongs to By(E); otherwise x + h € U \ E and the
inequality follows from (2.22). This is sufficient to show that F' € C"(U) and D*F = F,
on U for all || < n. Indeed, implies that F,, is continuous on F, and so on U.
Given n > 1, let us fix x € E; if h € R\ {0} is sufficiently small, for j € {1,...,d}, we
have

F(z + hej) — Z DPP,(z)(he;)? + Ro(z,x + h),
[8]=1
which allows us to write
F(z +hej) — F(z)

R, h
< 3 DRy (a)| -1 ol )

h |h]
181=2

< Z |DPPy()| |n]P171 + C (||11’T|)
151=2

and, as the right-hand side tends to 0 as & tends to 0, we conclude, since 1 < n < b(¢),
that F" is differentiable at = and D;F(x) = F,(z). If we now assume that F is (n —1)-
times continuously differentiable at z, with D*F(z) = F,(x) for every |a| < n —1, we
have, for o] =n — 1, h € R\ {0} sufficiently small and j € {1,...,d},

Fa(:v+he]1-)fFa(ac) CFo ()] < 3 DB (@) 1+ |Ro(z, x + h)|
|B8]=1 7]
< N (DO (w)]n]1F1 +0w
181=1

and we conclude, in the same way, that Fy, is differentiable at = with D; Fi, () = Faqe, ().
Let us now prove that if n < b(¢) < b(¢) < m, then there exists C' > 0 such that, for
all z € U and h € R? such that [z, 2 + mh] C U, we have

|AZz—nDO‘F(x)| < Co(|n|)|n,

for all |a| = n. So far, we know from (2.21)) and (2.22) that the following inequality holds
for all || =n, z € U and y in E satisfying x # y:

|Fo(z) = Fo(y)] < Oo(|z — yl)|z —y|™".
If z € U and h € R%\ {0} are such that there exists k € {0,...,m — n} for which
z + kh € E, we can use Lemma [2.4.0] to obtain, setting [ =m —n,

(oo

Z () “F(x+ jh) — D*F(z + kh))

l

|AL D F

Q

IN

(j)om C BN |G — )R < CloIAl) R

J=0
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Let us now consider the case where © + kh € U \ E for all k € {0,...,1}; let us first
suppose that d(z, F) < (14 1)|h| and take xy € E such that |zo — x| = d(x E). Of course
|zg — 2| < (I + 1)|h| and, for all j € {0,...,1}, we have |zg — (x + jh)| < (21 + 1)|h|. As
before,

!

|ALD*F(x)| <> ( ) |DYF(x + jh) — D*F(x))|

7=0

IN

l
02() (j + b — 20)]) [z + 3 — ) |~

j=
and, for all j € {0,...,1},

. ) n o=l +jh—2 x+ jh —xzol\ "
o+ it = o)l + jh — 2ol < o(al) (=20 ) (e tan =l
That being said, we have |z + jh — xo|/h < 21 4+ 1 and so, by Remark
—( |z + jh — x| |z + jh — 2o\ "
¢( <C,
I ||
where the constant C' only depends on ¢ and [. Therefore, we can write

|ALD*F(x)| < C"¢(|h])|h| ™.

It remains to consider the case where x + kh € U \ E for all k € {0,...,1} and
(I+1)|h| < d(z, E). As before, let xq stand for a point in E such that |zg — z| = d(z, E).
We already know that, for any y € U \ E,

DF(5) = D"Pay(u) + | @l Ry (€)
R
The function y — [pu Pa(y, &) Ry, (€) d€ belongs to C>°(U \ E) and, for all 8 € Ng,

D? /R D1, 6) R () dE = /R B, )R, 6)

As the segment [z, x + [h] is included in U \ E, we know, by Taylor’s formula, that there
exist points xg with |3] = on the segment [z, + lh] such that

ALDF(z) = Al [ ®q(z, §dé=> 1’ a+8(Tg, &) Ry (€) dE
/Rd 18]=t /
= hﬂ (I)a 7§ Rzo § d£7
> /B ey P O

where C is a constant such that §(y) < Cd(y, E) for all y € U \ E. Moreover, for such y,
we have already obtained

|ars(y)| < C'd(y, B)~ 1) = Cla(y, B)=a—
If |B| =1, since zg € [z, z + [h], we have
d(zg, E) 2 d(2, E) — |z — xp] = (1 + 1)|h| = l|h] = |h|
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and so, if £ € B(xg,Cd(zg, E)),

€ — wo| < [§ —ap| + |z — 2| + |z — m0| < Cd(zp, E) +U|h| + d(z, E)
< C’d(xB,E) + ld(mﬂ,E) + d(a)‘g,E) + l|h| < C”d(asﬁ,E).

Therefore,

Ba 9, R (€) dE| < C'(ap, B4 [ Ry ()]
B(xo,C"d(xp,E))

< C'Md(xp, E)""¢(d(zg, F))

< et 3(“E) ()

/B(xﬁycd(ﬂfﬂ,E))

Now, as d(zg, E)/|h| > 1 and b(¢) < m, we know that

|h A
is bounded by a constant which only depends on ¢ and m. We can thus write

|ALDYF(2)] < C'(|nl)|A| ",

which is what we needed to conclude the proof. =

THEOREM 2.4.8. Let E C R? be a closed set, U = {x € R% : d(z,E) < 1}, n € Ny and
¢ € B be such that n < b(¢). If f € t:;(xo) for all xy € E, with holding uniformly
in xg € E, then there exists F € C™(U) such that F = f almost everywhere on E.
Moreover, if m € Ny is such that n < b(¢) < b(¢) < m, then, for all |a| =n, v € E,
and e > 0, there exists n > 0 such that, for all 0 < |h| < n for which [x,z+(m—n)h] C E,

[ART DY ()| < eg([h])[A[7"

Proof. The proof is essentially the same as the previous one, using this time the fact that
f €by(E) and
1Y\ Ryl 1o (B(ao,ry) € 0(0(T))  as T — 0T,

uniformly in g € E. =

3. Applications to operators

3.1. The Bessel operator. In this section we look at the action of the Bessel operator
of order s,

T f=F A+ )TPFf) (s€R [es),
on the spaces T} (zo) and t}(xo). If ¢ € B and s € R, then ¢4 will denote the function
¢s : (0,400) = (0,+00), x> ¢(x)z".
It is obvious that ¢, is again in B and b(¢s) = b(¢) + s and b(d,) = b(¢) + s.
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Let us recall that if 0 < s < d+ 1 then we have J°f = ug * f, where u; is the function
defined for x # 0 by

1

d— 1

—+o0
e 17t + 2 /2)

- o / =t
us(x — e .
() (2m) 7 2/2D(s/2)T(&31) o
The following inequality holds for all 0 < s < d and « € N¢:
D% (z) < Oy qe™ 11 (1 4 ||~ dF~laly, (3.1)

For simplicity, let us introduce the notion of admissible value for a real number.

DEFINITION 3.1.1. Given ¢ € B, a value s > 0 is said to be admissible (for ¢) if one of
the following two conditions is satisfied:

e b(¢)+s <0,
e there exists n € Ny such that n < b(¢) +s < b(¢) +s <n+ 1.

THEOREM 3.1.2. Let 79 € R, p € (1,00, ¢ € B be such that b(¢) > —d/p and s > 0
be an admissible value for ¢. The operator J° maps continuously Tg(xo) into Tgs (z0),
where

e I/p>1/g>1/p—s/difp<dfs,
e p<g<ooifd/s<p< oo,
e p<g<ooifd/s=p.

Proof. Let f € qu (z0); we know that there exists a polynomial P of degree strictly less
than b(¢) such that R := f — P satisfies

PRl 1o (Bwo,r)) < |10 (@e)$(r)  for all 7 > 0. (3.2)

Without loss of generality, we can assume that zp = 0. We first want to estimate the
following two quantities, for all » > 0 and u € R:

/ |R(z)| |x|"*dx and / |R(z)| || ™" d.
B(0,r) RIN\B(0,r)

For this purpose, let us set

o= [ RG] d
B(0,7)
from (3.2), we have

o(r) < Calflgz0yr(r): (3.3)
Moreover, using the spherical coordinates in R%, we can write
o) = [ i) dp (3.4)
0

where

27 T T
v = [ [ RG] a0,
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and dQ, stands for sin? “2(0y) - --sin(fg_2)d0; - - - df4_1. Therefore, for £ > 0 we have

o(r)r " —p(e)e™ = /T p~"“p(p)dp — /T up~ " (p) dp

-/ R@I el do — [ up (o) dp.
B(0,r)\B(0,¢) €

Consequently,

/ IR(@)| o]~ dz < o(r)r™ +u / = o) dp.
B(0,7)\B(0,¢) 0

If b(¢) + d —u > 0, then

/ =" Ve(p) dp < Culflry o) / P11 6(p) dp < Cal Iz (o) $(7) /O pd“as(”) dp

0
d—u
= Cul flaz 0y / o€ f d€ < Culflre oy (r)r ™,

thanks to Proposition Hence, for all » > 0 and u € R such that b(¢) +d —u > 0,
/B o @Il o < g™ (3.5)
0,r

If we now assume that b(¢) +d — u < 0, then, for all N > 0,

N
/ IR(@)| 2]~ dz = o(N)N~" — p(r)r™ +u / P~ o(p) dp
(0,N)\B(0,r) r

and, since o(N)N~* tends to 0 as N — oo, we get, thanks to (3.3)) and Proposition

Lo PRI < Cul gty (36)

using the same technique as before.
Let us assume first that 0 < s < d; we have

T°f =us* P+ us* R,

where us * P is a polynomial of degree strictly less than b(¢) whose sum of coefficients
is bounded by the sum of the coeflicients of P. We thus need to estimate us * R. Let us
fix r > 0 and = € R? such that 2|z| < r; if there exists n € Ny for which n < b(¢) + s <
b(¢) 4+ s < n+ 1, by Taylor’s formula, we find that

(o)) = [ e nR@ s S [ D oRG)dy

la|<n

s / D u,(6(z)x — y)R(y) dy,
la|=n-+1 R\ B(0,r)
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for some O(z) € (0,1). Using (3.1)) and then (3.5), we get, for all |a] < n,

Duy(~y)R(y) dy‘

Rd

< c( / [y =51l R(y) | dy + / ) £y dy + / | P(y)| dy>
B(0,1) R4\ B(0,1) R4\ B(0,1)
|D°P(O)]

< Caslflzr) + Coll fllLo@ay +C Z & e Wly|? dy
181<b(6) T JRABOD
< CospdllfllTz0)
so that N
> = [ Doul-y)R@)dy

d
la|<n R

is a polynomial of degree n whose coefficients are bounded by || f HT;’(O)- For all |a] < n,
we also have, thanks to (3.5),

D%us(—y)R(y) dy‘ < C/B< )Iy\—d+s—\a||R(y)|dy < Calflp (o d(r)r® 1o,
0,r

B(0,r)
Now, if o] =n + 1 and if |y| > r, then |O(z)x — y| > |y|/2 and, assuming that s < d,

| D% (O(2)x — )| < C|O(x)x — y| "1l < ¢/ |y|~d+slel,
From (3.6, we get

L DOl = )R] < Colflagiay o)
R4\ B(0,r)

If we also assume that 1/p — s/d < 0 and if p’ is the conjugate exponent of p, then, from
—(d — s)p’ < d, since
lus| < O -[74*2,

we infer that us € LP’ (R9) and
||u5||LP/(B(O727«)) < Cror=4?  for all v > 0.

Therefore, by Holder’s inequality,

/ =) dy\ < Nusll o (0,300 | Bll 30

< CTST_d/pHR”LP(B(O,T)) = C‘f|T£(O)rS¢(T)-
This shows that
—uxP- Y L ol fo, D us(—nR@) dy

|la|<n
is a polynomial of degree n such that
1T7°f = Pll=(B0.2) < Cs.pp.alflrr)s(2r), (3.7)
which means that J°f € 75°(0). Moreover, by Young’s inequality,

1T Fllzoe ey < sl Lo gy [ 1] Lo ety - (3.8)
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From this relation, (3.7) and the fact that the sum of the coefficients of P’ is bounded
by [[fll72 o), we get
1T° fllzse o) < Cllfllrz0)-

If we now assume that 1/p — s/d > 0, then

/ us(z — y)R(y) dy
B(0,r)
where I is the Riesz potential of order s. As a consequence, if ¢ satisfies 1/¢ = 1/p—s/d,
we have, by the Hardy—Littlewood—Sobolev lemma (see e.g. [32]),

12 (Rx (0.0l o) < ClIRIlLos(0.09) < Clflre0yr®Pé(r) = C|f|zp0r® r* o (r).
This implies
r=UNT®f = P'llLa(so2r) < Coppalflrzods(2r)  forr >0,

which means that J°f € Tgs (0). One more use of the Hardy—Littlewood—Sobolev lemma
gives

R r
SC/ %@J:CL(\RXB(OJ)D fOI"I">O’
R4 |I—y‘ s

1T7° fllpaay < CIlfll e (ray

and we obtain, using the same arguments as before,

||«7$f||TgS 0 < CHf”Tg(oy (3.9)
If b(¢) + s < 0, let us decompose (u, * R)(x) as follows:
s R@ = [ wl-pR@d [ e pR@)d
B(0,r) RIN\B(0,r)

We can use ([3.6) again to estimate the second term in this equality; more precisely, we
have

Lo e = ) R) | < Culflrgan 900"
R4\ B(0,r)

We can now use the same reasoning to show that and still hold in this case.
Let us extend inequalities and to all the admissible values of s > 0. If s = d,
let 0 < € < d be such that v := s—e satisfies 0 < v < dand n < b(¢)+v < b(d)+v < n+1.
Suppose first that 1/p — s/d > 0; we have 1/p —v/d > 0, which implies 7" f € T} (0),
with 1/r =1/p —v/d and [|T" fllz; (0) < Cllfll7z(0)- From J*f = J°J"f and
1 e 1 s
rTdp d Y

we know that J°f € T} (0) with 1/q:=1/r —e/d=1/p —s/d and
||~73f||Tgs(o) < C||«7'Uf||T;;v(0) < CHfHT;’(O)-

Now, let us suppose that 1/p — s/d < 0; choosing e such that 1/p —v/d < 0, we get
Jf € Tge(0), with Hj”fHng(O) < C||fHT4{'(o) and we obtain J°f € T7°(0), with
1T fllzze ) < Clf Tz 0)-

Let us consider the case s = kd + v with k£ € Ng and 0 < v < d; let us first remark
that if n € Ny satisfies

n<b(g)+s<b@)+s<n+l,
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then d < n implies
0<n—d<b@)+s—d<b¢)+s—d<n—d+1

and s — d is still an admissible value. Otherwise, n < d and so n 4+ 1 < d, which means
that we have b(¢)+s—d < 0 and therefore s —d is also an admissible value. Suppose first
that 1/p — s/d > 0; let us prove by induction that J°f € T (0) with 1/¢ :=1/p —s/d
and Hjsf”ngs 0 < C||fHT£(0). The case k = 0 being already known, let us show that if

the assertion is true for £ —1, then it is also true for k& (k > 1). Since s —d is an admissible
value, J*~f € 17 ,(0) with 1/r =1/p — (s — d)/d and

Hjs_deT;S_d(o) < C||fHT;;(o)-

d 1 s
_Z_Z_239
i p da "

we have J°f € TgS(O) with 1/¢:=1/p — s/d and ||jsf||Tgs(o) < C||fHT£(0). Now, let us
suppose that 1/p — s/d < 0; let us prove by induction that J*f € ng(O) and
||s78f||Tg:(o) < OHf||T£(O)-
It remains to show that if the assertion is true for k — 1, then it is also true for k (k > 1).
If1/p—(s—d)/d <0, then T € ngﬁd(O) and Hj#df”T;i:fd(O) < C||f||T£(0). From
what we have obtained before for the case s = d, J°f € Tg°(0) and
1T Fllzze o) < CllF Tz 0)-

Otherwise, if 1/p — (s —d)/d > 0, from the previous point, J*~¢f € 17, ,(0) with
1r=1/p— (s = d)/d, |7 Flz; 0 < Cllflrs(o) and

S|

1,@—1,f<0
r d p d '

The case s = d yields J°f € Tg2(0) and [[T°fllrs0) < C’||f||T£(0). Finally, if

1/p—(s—d)/d=0,let 0 < e < d be such that s —d+e¢ is still an admissible value. Since
1/p = (s —d+¢)/d < 0, we have J*~***f € Tge . (0) and ||js_d+5f||Tgc
Cllfll7z(0)- We can thus write [T fllzz= ) < Cllfllz20)-

Let us now remark that if f € T} (zo) and J°f € T} () with ¢ > p, then we can
define R, := J°f — Ps where Py is a polynomial of degree strictly less than b(¢) + s such

that

RO <

Tﬁd/q”Rs”LQ(B(xg,r) < ‘j8f|T£8(wg)¢s(r)'
If p<p <qgand ¢ >1issuchthat 1/¢+1/¢ = 1/p/, for r > 0 we have

=YY Ry o (o)) < Car™ P rY V|| Ry La(B (a0, < CalT* flra (20)®s(r),

which means that J°f € Tg; (zo) (using the estimation made by the same polynomial
as the one that gives the belonging to T (x0)). Moreover, if 0 < ¢ < 1 is such that
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1/p"=60/q+ (1 — 0)/p, we know that
1T° Fll o ey S NT° F G aay | T° £l o (ray < CUT* %oy 11 o ()
<NT?fllpaay + 1 f |l e ey

We are finally able to prove the three points of the theorem. If p < d/s, let us set
1/p* :=1/p — s/d; then p* > 1 and from the first part of the proof, 7°f € Tgs (0) and
1T £l 7o © < C’||f||T£(O). Now, from the second part, for ¢ satisfying 1/p > 1/q > 1/p*,

d)S
Jf e qus (0) and
17 £z, @ < CUT* Flgae o) + Wl o) < el flzzcor

Let us consider the case p > d/s. The first part of the proof implies that J°f € ng(())

and ||._73f|\Tge(0) < C||f||T£(0). Using the second part of the proof, for p < g < oo, we

deduce that J°f € T (0) and
||x7$f||Tgs(o) < CHf”Tg(o)-
For the case p = d/s, let 0 < £ < s such that
1 e 1 s
I _Zs-_Z—-0
p d p d
¢ being chosen sufficiently close to s so that it is an admissible value; the first part
of the proof gives that J°f € T/ (0) and HJEfHT; 0 < C||f||T£(0) for ¢ such that
1/p>1/¢>1/p—¢/d. Now,
1_s-e 1 ¢ _s-¢_,
q d p d d

and, from the first part of the proof, 7°f € T;j (0) and
1T°flirs ) < ClF T2 0)-
We can conclude the proof by letting e — s~. =
This theorem admits the following corollary, regarding the spaces tg(xo).

COROLLARY 3.1.3. Let zg € R%, p € (1,00), ¢ € B be such that either b(¢) > —d/p
and b(¢) < 0 or there exists n € Ny such that n < b(¢) < b(¢) < n + 1. Consider an
admissible value s > 0 for ¢. If [ € t] (o), then J°f € t§ (x0), where
o I/p=1/g=1/p—s/dif p<d/s,
e p<g<ooifd/s<p< oo,
e p<g<ooifd/s=p.
Proof. By Corollary , there exists a sequence of functions (f;);en, in D(RY) NtE (x)
such that f; — f in Tj(zo). For such a function, J°f; € C>(R%) and Remark [2.1.13
implies that J°f; € t;, (zo) for all € [1, 00]. But, for all the values of ¢ that we consider,
the preceding theorem implies

1T°(f5 = Plirs @oy < CIE5 = FllT2 wo)-

Therefore, J°f; converges to J°f in T(ZS (z9). From Proposition [2.1.12) we know that
tg, (o) is a closed subspace of T (x¢), which gives us the conclusion. m
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3.2. Derivatives. In this section, we investigate the estimates that can be made for a
function whose derivatives are known to belong to T7%(xg) (or (xo)). For such a task,
we will need the following classical lemma of Sobolev spaces theory (see e.g. [35]).

LEMMA 3.2.1. Let 1 <p < d and q be defined by 1/q :=1/p—1/d. There exists Cp 4 >0
such that, for all f € D(R?),

d
11l Laqa) < Cpaa D ID; fll o geay.

j=1
Let us recall that, if ¢ € B, then ¢; is the Boyd function defined by
d1(z) =xp(x) Va>0.

THEOREM 3.2.2. Let 29 € R, p € [1,00), ¢ € B be such that b(¢) > —d/p and either
b(¢) < —1 or there exists n € NgU {—1} for which n < b(¢) < b(¢) <n+ 1. If f is such
that D;f € T} (xo) for all j € {1,...,d} then

1) if 1 <p<dand f € LYRY) with 1/q:=1/p —1/d, then f € T (z0) and
1

d
1172 a0y < Crao 3 U0 Fllrp (3.10)
j=1

(2) if f € LY(R?) where q € [1,00) is such that 1/p > 1/q > 1/p—1/d, then f € 7§ (x0)
and
d
||f||:rg1 (z0) < Cp,qsz 1D; fll72 (o) + [ f]] Larey- (3.11)
j=1
Moreover, if D; f € ti(xo) for all j € {1,...,d}, then also f € t{ (x0), with q satisfy-
ing (1) or (2).
Proof. Let us first suppose that f belongs to D(R9); for j € {1,...,d}, let us set
ki :RI\{0} = R, x> — —L
wq

where wy is the area of the hyper-sphere in R?. It is easy to check that for z # 0, we have
o1 Dikj(a) = 0.

Let us fix # € R?, given r > 0, set Q, := {y € R? : [z — y| > r} and denote by
00, :={y € R?: |z — y| = r} the boundary of this set. Using Green’s first identity (see
e.g. [33]), we get

d 1 fly)
> [, st ndr= g [ e

where do is the surface area on 0f,.. Lebesgue’s theorem implies that the right-hand side
tends to f(z) as r tends to 0T, while the left-hand side tends to

d
> | Difki(z—y)dy.
j=17R!
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Therefore, we have the following representation for f:

d
=3 [ Dirwist—v)dy (3.12)

Let us prove (2) in the case ¢ = p. Let us first deal with the case b(¢) < —1; for r > 0
and x € R? such that |z — z¢| < 7, we can write

d
= 3 (@) + foi (@),

Jj=1

where we have set

f1( / Y)k;(xr —y) dy,
a:o,2r)

foi(e / () (@ — ) dy.
R\ B(zg ,2r

By Young’s inequality, we have

PP il e (Baoy) < T YPND; Fllir (3.2 Kl 21 (5050
< COQ2)D; flrs () o(r)r- (3.13)

To estimate T*d/p||f2,j||LP(B($O7T)), let us define the function Fj for r > 0 by

Fy(r) = /B( )|Djf<y>|dy/0 5(p) dp,

where we have set, using spherical coordinates in R? centered at x,

27 T T
o= [ [ [ D00 a0

We know that, for r > 0,

r=UFj(r) < CalDif |12 2y 6(r) (3.14)
and, for all R > 0, we have
R R
BRR = Fene) ™ = [ w0 tdps [ B0 -dpdp (315)
2r 2r

Thanks to (3.14) and Proposition since b(¢) < —1, Fj(R)R'~? tends to 0 as R tends
to 4+o00. Therefore,

—+oo —+o0

+oo
bi(p)p' = dp < (d - 1)/2 Fi(p)p~tdp < Ca(d — 1)\Djf|:rg<x0>/2 ¢(p) dp

2r s

< Ca(d = 1) D flrp (20) 9(2)$(r) /2+°°¢<p> o

" 2r

Foo
— Cald = DID; flrs o) 3(2)26(r)r / B(t) dt.

By Proposition the last integral is bounded and thus
+oo

, Yi(p)p'~tdp < CaCoy1|D;j 72 (o) P1(r),
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where

+oo
Cot = 3(2) /1 3(0) dt. (3.16)

_ \D; f(y)l 1Di f ()l
|fj72(m)| : /]R ‘d_l W= /Rd\B(wo,2r) ( )d_l "

W\ B(zo,2r) [T — Y %|x0 —

Since

+oo
= Cy /2 Pt N;(p) dp,
we finally obtain

=P £ 2| Lo (B o)) < CaCo1|D; fl1 (5g) P1(7)-
Inequality (3.11)) follows from this estimate and ([3.13]). Now, let us suppose that we have
—1 < b(¢) < b(¢) <0 and fix r > 0. For any = € B(zo,r), we have
d

f(@) = f(zo) = Z(fj,l + fi2 — fi3)(®),

j=1

where we have set

fia(z) = /B( , )Djf(y)kj(x —y) dy,
fale) = [ Dy £ () (k& — ) — K (0 — ) dy
R4\ B(z0,27)

fale)= [ Difwkslan - v) du
B(zo,2r)
Once again, we have

PPN frillLe(Baery) < CH2)D; flrs (o) $1(7)-
Moreover, if € B(zg,r) and |zg — y| > 2r, then, for all |h| < |z — zo|, |0 —y + h| >
|zo — y|/2 and so, by the mean value theorem and the fact that |[D%k;(z)| < C/|z|¢ for
all z # 0 and || =1,

kj(z —y) — kj(zo — y)| < Crlzo —y| ™%

Therefore,
+oo

|[fj2(@)] < Cr b (p)p~dp

2r

and reasoning as before, using this time b(¢) < 0, we get

=P fialle(Baory < CaCo|Djflrswyd1(r),

where

+oo
Coz = 9(2) / @dt. (3.17)

1

For the last term, we have
2r

[fis(@)] < ; ¥i(p)p*~ dp



Generalized T spaces 39

and using an equality similar to (3.15]), we obtain

2r

2r
[ wo o < BN+ d [ B

As —1 < b(¢), we have
=P fislle(Baory < CaCos|Djflrnwed1(r),
where

Cy3:=0(2) (1 + /01 (1) dt). (3.18)

Again, follows from the estimate made of r’d/p||fj,k||Lp(B($O,T)), for all » > 0 and
k € {1,2,3}. Finally, if there exists n € Ny such that n < b(¢) < b(¢) < n+ 1, let P be
the Taylor expansion of f at xg of order n + 1, set f .= f—Pand, for j € {1,...,d},
fj = Djf. For r > 0, we have

r 27 T T
Lo afwpdr= [ [ [ [ R0t )P 0 d,
B(zo,7) 0o Jo 0 0

where y,.0,,....0,_,) is the point defined by

[Y(p.01,.00-1))j =P H sin(fx) cos(6;) Vje{0,...,d—1}

k<j
and
[y(p,el,...,ed,l)}d =p H sin(fy).
k<d
Let us set
9501, 6a-1) == [ [ sin(6) cos(6;) and  ga(61,...,0a-1) := [ ] sin(6s).
k<j k<d

Using Taylor’s formula, we have, as f(zg) =0,

d p
F(@o +Yp.01,...00-1)) = E / fi(@o +Y.01,00-1))95 (01, ., 04-1) dt.
j=1"0

Therefore, as |g;| < 1, Holder’s inequality leads to

[, 1w
Zo,T
r 2 ™ T p d _
= Cd,p/ / / / pd_l / Z|fj($0 +y(t791,~~~79d71)|p dtpp_l dfq dp
o Jo 0 0 0 j=1

d 2m T ™ T T
< C’d,prd+p—22/ / / / / \f5 (20 + Yo 000 [P dpdt dQy
=1 0 0 0 0 t
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d 27 T T r
< Cd,prd+pflz/ / / / f5 (20 + Yeuor.. 00y [P dt dQy
=’ Jo o Jo

d

_ Fiw)lP
= Cgprttr? / L dy.
P s T a0
Moreover, using a similar technique as before, we have, for j € {1,...,d},

/B(Iw) |y_x0‘d 1d <\D f|Tp( o(r)Pr 1—|—/0 o(H)P dt |,

which allows us to conclude, as b(¢) > 0, that

d
PP\ fll Lo (Baowr)) < CapCoa Y 1D; 172 () P1(r), (3.19)
j=1
where
1 1/p
Cpa:= <1+/ (t)P dt> : (3.20)
0
To estimate Hf||T£1 (0)> We need information about 37, <, [D*P(zo)|/al. We have
d
| D*P(z0)| DP P;(x0)
y Pl oy v D) 1)
0<|a|<n+1 Jj=10<|B|<n

where, given j € {1,...,d}, P; is the Taylor expansion of D, f at o of order n. It remains

to work on P(z¢) = f(x¢). For this purpose, let us choose ¢ € D(R?) such that ¢ = 1 on
B(0,1) and supp() € B(0,2). Using (3.12), we obtain
d

fan) = lavyotan =) = S [ stan = D110t~y

+ [l = )£ Dyl — an) )

For the first term of the right-hand side, we have

’/ D;f(y)e(y — z0) dy SCW/B Mdy-

(%0,2) |zg — y|d—t
For r > 0, we have

r= P\ Ds f = Pyl e (B(aery) < 1D fl7 (20)0(7),
and so
|DﬂPj($0)\T|5\.

Tﬁd/p”DijLp(B(xo,T‘)) S |DJf|T£(10)¢(T) + Cd Z B'

[B]<n
Since

| DP P ()|
Z #0 < ID; fll7 (o)
1Bl<n '



Generalized T spaces 41

we can write, using the same technique as before,

—— 2 dy < CyC D; PlroYs
/B(a:o,Q) ‘-770 Z}|d_1 Y=t ¢75|| jf||Td>(g’0)

where )
Cop5:=0(2)+2" + 2¢(2)/0 (t) dt. (3.22)
For the second term, we have
[ st = nsnse—som| < [ =l )1t —anld
<Gy [fW)ldy < Cp all fll Lr ey,

B($0,2)\B(ZE071)

which gives

d
|f(zo)] < Cpa (C¢,5 D IDsflze (o) + ||f||LP(]Rd)>~
j=1

This relation, and lead to . We have thus obtained (2) in the case
pP=4q.

Let us now prove (1), still considering a function f from D(R?). As previously, let
us denote by ¢ a function in D(R?) such that ¢ = 1 on B(0, 1) and supp(¢) C B(0,2).
If there exists n € No U {—1} such that n < b(¢) < b(¢p) < n + 1, let P be the Taylor
expansion of f at zy of order n 4 1; otherwise we set P = 0. Finally, define fi= f—P
and, for j € {1,...,d}, f; = Dj:fv. If 1/q :==1/p —1/d, thanks to Lemma we have,

for all r > 0,
~ .—:L‘
fw<0>
,
d

<G

Jj=1

T_d/qu”Lq(B(xo,r)) < rd/a

Lr(R4)
re() o)

d
= CoCha D (™ P||fillLo(Bwo 2 + 7~ PN Fll Lo (B(ao,2r)))-
=1

+ 1
Lr(R4)

Lr(Rd)>

Moreover, by hypothesis,
PP Fill o (a0 2m) < 2P B(2)|D; flirs (a0 $1.(r) (3.23)

and, using what we have proved so far,

d
T*d/PHfHLP(B(onr)) < Od,p0¢ Z |Djf|T£(IU)¢1 (’I“) (3.24)
j=1
As before,
d
D*P(x
Z % = C¢7d<0¢75 Z ”DJ'fHT;’(oso) + Hf||Lq(Rd))~ (3.25)

|a|<n+1 j=1
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Another use of Lemma then gives
d

£l Laray < Cp.a Z 1D fll o me (3.26)
=1

and (3.10) is proved, thanks to relations (3.23[)—(3.26).

Now, let us come back to (2) and investigate the case where ¢ > 1 is such that
1/p > 1/q > 1/p — 1/d; we still consider a function f € D(R?). Again, we use ; as
1/p > 1/q > 1/p — 1/d, there exists p’ € [1,00) such that 1/¢ =1/p+ 1/p’ — 1 and, by
Young’s inequality,

/Rd k(- — y)fj(y)w(y _7"%) dy

and

< C<p||kj||Lp’(B(xo,3r))Hfj(y)HLP(B(mo,Zr))
La(B(zo,r))

||kj||Lp/(B(Ig,3'r)) < Od7p((37.)(d—l)(l—p’)-‘rl)l/p/ _ Od,p(37“)d/q_d/p+1,
which gives us

/Rd ki(- — y)fj(y)w(y_xo) dy

Similarly, using the first part of the proof, we obtain

R R C

r—d/a

< Cpapd(2) 1D; |72 () P1(r)-
La(B(zo,r))

S C(p,d,pr_d/prd/q Hf(y) ||LP(B(10,27'))
L4(B(wo,r))

< Coy OB S 1Dy 13 0y 1(r)
Jj=1
This upper bound and lead to .

Now that the theorem has been proved for functions belonging to D(R?), let us con-
sider a compactly supported function f such that D;f € tg(:co), for all j € {1,...,d}.
Given A > 0, let f\ be the function defined by and, for j € {1,...,d}, define
fr; = Djfr. By Propositio we know that fy; converges to D;f in Tg(xo)
(j €{1,...,d}). Inequalities (3.10) and imply that (fA)A>0 is a Cauchy sequence
in Tgl (zo) (with appropriate ¢) and thus, by Proposition 1 (fa)aso converges in
ngl (wg). As f converges to f in LI(R), we conclude that f>\ converges to f in Tq (20).
Moreover, by passing to the limit, we find that inequalities (3.10) and (3.11)) stlll hold
for f. Now, as fy belongs to D(RY) and til (z9) for all A > 0, by Proposmon 2.1.12 f also
belongs to t (zo).

Let us now consider a general function f such that, for all j € {1,...,d}, D, f belongs
to ¢ (z0) and let us again take ¢ € D(R?) with ¢ = 1 on B(0, 1) and supp(p) C B(zo, 2).
Given ¢ > 0, we define

fe = fSO(E(' - xO))

By assumption, we know that, for all j € {1,...,d}, there exists a polynomial P; of
degree strictly less than b(¢) such that

o) = YPDs f — Pjllpo(Bxosy) — 0 asr — 0T,
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Moreover, since we assume that f € L(R?) for some g > p, it follows that f € L (R9)

loc
and

Djfe = Djfol(e(- — o)) +efDjp(e(- — x0))
belongs to LP(R?) for all £ > 0. Of course,
$(r) "= YPD; fo = Pyl Lo (Bao,ry) < ¢(r) T VP D fo(e(- = 20)) = Pyl Lo (Baor)
+o(r) P ||le fDjp(e(- = 20)) | Lo (B0 -

Now, for r sufficiently small, we have ¢(e(- —x¢)) = 1 and D;p(e(- —x0)) = 0 on B(zg,T)
and, for such r,

o(r) Y| Dj fe = Pill ooy < ()T TP D; f = Pill Lo (B(zo.r))s

which shows that D; f, € tg(zo). As f. is compactly supported, the previous case shows
that f. € t (20) (for appropriate q). Let us prove that D; f. tends to D;f in T} (zo) as
¢ tends to 0. We have

1Djfe = Difllrp(ao) = Slilgd)(?“)_l?“_d/pHDjfs = DjfllLe(B(wo,r) + 1Djfe = Dif |l o (ra)
and
Djf- = Djf = Djf(p(e(- —x0)) — 1) +ef Djp(e(- — x0)).- (3.27)
A simple application of Lebesgue’s theorem shows that the LP-norm of the first term of
the right-hand side of (3.27)) tends to 0 as € tends to 0T, while
||5ij‘P(5(' - xO))HLP(}Rd) < CSOEHfHLP(W\B(IO’I/g))
< C¢,p,q,d51_d/p+d/q||f||Lq(Rd\B(z0,1/s))~

Since 1—d/p+d/q > 0 by hypothesis and || f|| La(re\ B(z0,1/¢)) tends to 0 as e tends to 0,
so does || Dj fo — Dj f|l prwe). Moreover, for 0 < e < 1,if 0 <r < 1/e, then D;f. — D; f
vanishes on B(zg,r). If r > 1/e, then r > 1 and if 6 > 0 satisfies b(¢) —d +d/p > 0, then

by Proposition [2:1.3]
(b(r)_lr_d/p < Cé’¢r—(é(¢)—6+d/p) < C(;,¢€Q(¢)_5+d/p,

which finally leads to
sup $(r) '™ VPD; fe = D; flloo(Baory) < Co08 P TP\ D fo = Dif | o),

so that D;fe tends to D;f in T} (xo) as ¢ — 0. Using again the completeness of the
space T} (x9) and the closedness of ¢} (o), we conclude, by (3.10) and (3.11)), that f.
tends to f in T (z0) and f € t§ (o). By passing to the limit in (3.10) and (3.11)), we
conclude that those inequalities still hold for f.

It remains to consider the case of a function f such that, for j € {1,...,d}, D;f
belongs to T (z¢). Let £ > 0 be such that

if b(¢) < —1, and
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if n € Ng U {1} satisfies n < b(¢) < b(¢) < n + 1. For such ¢, D;f € ti, (xo) for
j €{1,...,d} and it follows from the previous case that D;f € tilii(xo). Moreover, if
1<p<dand f € LYRY) with 1/q:=1/p—1/d, then f € 77, _(x0) and

d
1£lzs oy < oo 31Dz oy (3.28)

j=1
Otherwise, if f € L(R?%) with ¢ € [1, 00) satisfying 1/p > 1/q > 1/p — 1/d, then we have
feTy _(x0)and
d
£, a0y < Coome D IDsFllzs._ oy + 1 Fll o (3.29)

j=1
Let us analyse the constants defined in (3.16)—(3.18), (3.20) and (3.22). For a chosen
e > 0, we have for example

+o0o +o00
Coa =02 [ oyt =a2 [ G ca<c,

and a similar reasoning applied to (3.17)), (3.18]), (3.20]) and (3.22]) shows that we can find
a constant C' > 0 such that, for ¢ small enough, the constant C), 4__ appearing in (3.28])
and (3.29) is bounded by CC, 4. Moreover, since

H‘Djf||T£75(w0) < HDjf”Tdf(zo)a

we can conclude the proof by letting e — 07. =

3.3. Singular integral operators. Let us now study the action of the convolution
singular integral operators on the space Tg (x0). This class of operators was particularly
studied by Calderén and Zygmund in [0 [7], where the authors proved the following crucial
theorem.

THEOREM 3.3.1. Set, fore > 0,

Kef = k(=) f(y) dy,

RA\B(-e)

where
k is homogeneous @ of degree —d,
k has mean value zero on the sphere ¥ = {x € R% : |z| = 1},
ke LYX) for 1 < q < oo,
f e LP(RY) with 1 < p < oo.
Then there exists Kf € LP(R?) such that K.f tends to Kf in LP(RY), and pointwise
almost everywhere as € — 0. Moreover, if we set

K*f = sup [K. f],
e>0

then K* f € LP(R?) and

IK* fll e ey < CpgllkllLacs) I f || e - (3.30)
(*) Tt means that k(\z) = A\™%(z) for all A > 0 and = € R*\ {0}.
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REMARK 3.3.2. In the theorem originally stated by Calderéon and Zygmund, the inte-
grability assumption made on k is the following: k + k(—-) € Llog L(X). This condition
is a little less restrictive, since for a finite measure space (X, o7, 1), we have (see [I] for
example)

LYX, o, p) — Llog L(X, o, ),

for all 1 < ¢ < co. But in what follows, we will only need to consider k € L4(X), with
1 < g < 00, in order to take advantage of inequality (3.30)).

We will use the following notation:
NoTAaTION 3.3.3. Given ¢ € B, we set
[b(¢)]n, = inf{k € Ny : b(¢) < k}.
PROPOSITION 3.3.4. Let K be the convolution singular integral operator defined by

Kf =p. / k(- — )/ (y) dy,

where the kernel k € C*°(R%\ {0}) is homogeneous of degree —d. Assume also that k has
mean value zero on the sphere .

Let p € (1,00), 29 € R and ¢ € B be such that —d/p < b(¢) and either b(¢) < 0 or
there exists n € Ny for which

n<b(g) <b(p) <n+l. (3.31)
If f € T} (o), then Kf € T} (x0) and
where
M = sup | DYk (z)].
|z|=1

0< ]l <Tb(¢) g
Moreover, if f € tg(xo), then also Kf € tZ(xo).

Proof. We can assume, without loss of generality, that g = 0. If f € Tg (0) then there
exists a polynomial P of degree strictly less than b(¢) such that

r*d/PHf — Pllzr(B(zo,r)) < |f|T£(0)¢(r) for all » > 0,

Let ¢ € D(RY) be such that ¢ = 1 on B(0, 1) and supp(p) C B(0,2); we set
1:=¢P and fy:=f—fi.
If b(¢) < 0, then f; = 0 and obviously f; € T5(0) with HleTg(o) < Hf”qu(o)- Otherwise,
QD holds and if r < 1, r‘d/p||f1—P||Lp(B(IO’T)) =0.Ifr > 1, then, by Proposition
PP 1 = PllLoBeor) < 7Y Co | PllLr (o)
[DPO)] o
<Coup D, o1 < CoapColl flrp0y(r);

la|<n

which means that f1 € 7)) (0), with

||f1||T§(0) < Osa,d,pcaﬁ”f”qu(o)-
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As a consequence,

1f2llz0) < (14 Co.apCo)ll fll72 0)-

Let us now consider 1 € D(R?) such that supp(y) C B(0,2) and set, for ¢ > 0 and
xr € R?,

I(z) = / k(y)b(a — y) dy = / k() — ) dy.
R4\ B(0,¢) B(0,2+|z|)\B(0,¢)

Using the notation introduced in the proof of Theorem [3.2.2] as k is homogeneous of
degree —d, we have

/ k(y)i(x)d
B(0,2+|z|)\B(0,e)

Y
2+|x| p2m pw ™
=¢(f€)/ / / / k(01,00 1))p" ' dQadp
€ 0 0 0
2+|x| p2m pw ™
= 1/)(1‘)/ /O /0 o /0 k(y(laglynwgdfl))p_l dfdg dp

27 T T
— ()2 + |z]) - In(e)) / / / Wt 00 1) 2% = O,

as k has mean value zero on %. Therefore, for € > 0 and = € R?,
L@ = [ K(W) ((z — y) — () dy.
B(0,2+|z)\B(0,¢)

We will use this equality to show that the sequence (I..).o converges uniformly as e — 0F.
Indeed, for all x € R, if 0 < ¢ < &', since for all y # 0, |k(y)| < Mly|~? by the
homogeneity of k, we have

e (2) — Ic(2)] < M/ Yl ~ly| sup [[D*¢||oc dy = CypaM (e’ - ¢),
B(0,e")\B(0,¢) |

al=1

which shows that (I)c>o is uniformly Cauchy. It follows that ICi) is well-defined and I,
uniformly converges to K (1)) as € — 0. Moreover, for 0 < & < 1, we have

[I=(2)] < [ (2) = Le(2)] + [ (2))]

< CyaM(l—c)+ M |~ (z —y)| dy
R4\ B(0,1)

< CpaM(l—)+ M / ()] dy < C'y oM,
]Rd

so that [[K(¢)||ga < Cj, ;M. Using the same reasoning, we can show that, for ¢ > 0 and
aeNg,

D*I, = / k(y)D*Y(- —y) dy,
R4\ B(0,¢)

DI, uniformly converges to DK () and ||IC(DY)||ga < Cy,a,oM. As a consequence,
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K(y) € C=®(R?) with D*K(p) = K(D“)). Moreover, if || > 3, then, for ¢ > 0,

[I=(z)] < M & =y~ (y)| dy
{(ew):la—yl>< Iyl <2)

< M3lel [ o)l dy = CM3 el

and so, by Lebesgue’s theorem, K (1)) € LP(R?) with || K(¢) | 1o ga) < Cyp,a,pM. Combining
all these relations, we can claim, using Remark that (1) € T;(0) and there exists
Cw,d.,p > 0 such that HIC('IZ))||T£(3:0) < Cw,d,pM

Now, let us apply this result to the function z — x*¢(x) in order to obtain a constant
Cy,a,d,p such that HIC(-acp)HTp(O < Cy a,d,pM, which gives

D P T
Kl < 3 22w

|| <n

KGO rz0) < Coap M Fllzp(0)- (3.33)
For ||IC(f2)||T£(O), we use Holder’s inequality to get, for r > 0,
Ry < Cly oot
B(0,r)
and, as in (3.5)) and (3.6), we can write
/B( : |2l y17° dy < Coaps flrpo@(r)r?™ if b(¢) +d—s >0 (3.34)
0,r
and
[ B0 dy < Connelf o™ £5(6) +d—s <0, (33)
R4\ B(0,r)

Let us now consider the case where condition (3.31)) holds and fix » > 0; for x in
B(0,r/2), we have, using Taylor’s formula,

Kf2(z) = lim k(x —y)fa(y) dy
e=0% J{(2,y): |[a—y|>e, |y|<r}
+ lim k(z —y)fay) dy
20" J{ (@) le—yl>e, |y|>r}
= lim Mo~ )fa)dy+ [ ko= ) falo)dy
e=0% (@) lo—yl>e, lyl<r} RI\B(0,r)
= lim k(x —y)f2(y) dy

+
=0T (@y): la—yl>e, lyl<r}

( / DO k(=g faly) dy — /B RS dy)
/ DeK(O()z — y) foy) dy
|a|<n+1 RI\B(0,r)
for some O(z) € (0,1).

Thanks to the homogeneity of k, we have |Dk(—y)| < M|y|=%~lol for |a| < n +1
and y # 0. Using (3.34) and Holder’s inequality, we get, if ¢ € (1,00) is the conjugate

|a|<n
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exponent of p,

Dk < [ @l [ )l

Rd (0,1) R4\ B(0,1)
< Clfllrr@$(1) + I fell Loyl |- 174" | LoqavB0.1))
< C/”f”T;j(o) + CHHf”Tg(o)

for |a] < n. As a consequence,

-y —9)faly) dy

la|<n

is a polynomial whose sum of coefficients is bounded by . Similarly, for

|a] < n we have

/ Dk(~y) f2(y) dy‘ < Ca,a@(r)r~
B(0,r)

Given x € B(0,7/2) and |y| > r, we have |©(z)z — y| > |y|/2 and so, by (3.35),

[ ke — i) dy] <vztl [ )y
R4\ B(0,r) RI\B(0,r)

< MCy qo(r)r—¢
for |a| = n + 1. Finally, using Theorem we obtain

lim / k(-=y)f2(y) dy
=0T S | —yl>e, Jyl<r} Lr(R4)
< CoM| foll Lo (Baor) < (14 CpapCo) M| fllze o) (r)r®/?
and we can conclude that there exists a constant Cy , 4 > 0 such that
r=YP|K fo — P! 1o B0y < CopaMe(r) forr> 0.
If we now assume b(¢) < 0, then, for 7 > 0 and x € B(0,r/2), we have

Kfa(z) = lim k(e — y)faly) dy + / Kz — ) foly) dy

20T (@) le—yl>e, lyl<r} RI\B(0,r)
We can deal with the first term of the right-hand side just as we did before, while for the
second we use the estimate

[ Ha-wn dy\ <M / =] faly)| dy < Caldo(r),
R4\ B(0,r) \B(0,r)

which follows from . This leads to
T_d/plle2||LP(B(O,r)) < CypaMo(r) forr>0.

One more use of Theorem [3.3.1] ensures

1K f2ll Lo ray < CoM|| f2llLrray,

which allows us to conclude, with (3.33)), that the desired inequality (3.32) holds.
If we moreover assume that f belongs to ¢7(0), then we know that there exists a
sequence (f;)jen, of functions in D(R?) such that f; converges to f in T5(0) as j — oo.
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By a reasoning similar to the one we made for the function 1 at the beginning of the
proof, we can conclude that, for all j € Ny, Kf; belongs to C°>°(R?) and so to tZ(O) as
well, by Remark In addition, it follows from that KCf; converges to Kf in
T;(0) as j tends to infinity and, as ¢](0) is a closed subspace, we get Kf € (0).

COROLLARY 3.3.5. Denote by Y, ., the convolution singular integral operator defined by

yl,mf = p.Vv. / kl,m(' - y)f(y> dya

kl,m = le,m <||> : |_d7

where (Y,m)1.m forms a complete system of orthogonal spherical harmonics (for the def-
inition of spherical harmonics, see e.g. [26, 27]), m being the degree of the harmonic.
Under the assumption of Proposition [3.3.4} there exist constants Cyp, Cy,, > 0 such that

IVim e @y < Cpllflleemay, |1V flleemay < Cpllfllor @) (3.36)

whose kernel is

and

Vm F s ) < Copm ™= PO | g ). (3.37)
Proof. Inequalities (3.36) come from (3.30) and the fact that ||k | z2(s) = 1. Inequal-
ity (3.37) is obtained from @D, using the fact that, for « € N4, we have |DY],,| <
Com = Hol on 3 (see [7]).

A fundamental example of a convolution singular integral operators is given by the
Riesz transform (R;)1<;j<q, defined for j € {1,...,d} by

—i0(5) [ x—y
R;f(x) :=p.v. g PR f(y) dy.

Let us fix 1 < p < oo and k > 1; it is known that the following facts hold (see e.g. |7, 8]):
o if f € WP(RY), then R, f € WF(R?) and R, is a continuous operator on W} (R%),
o for I € {1,...,d} and f € WP(R?), we have D;(R;f) = R;(Dif) and R;(D,f) =

Rl(Djf)7
o if f € LP(R?), then 0 R2f = f.

The operator .,
A:=i) R;D;
j=1

continuously maps W7 (R?) into W} _, (R?) and, if k > 2,
A*f=—Af forall feWP(R?).
We also have the identity D;f = —iR;Af for all f € W} (R%). It can also be shown that

for all m € N such that 2m + 1 > d, there exist a1,...,a,, < 0 and a positive integrable
function h,,, with derivatives up to order 2m + 1 — d continuous and bounded such that

ATf =+ ;T —hu* f
j=1

for all f € LP(RY) (see [§]).
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PROPOSITION 3.3.6. Let p € (1,00), 29 € R? and ¢ € B be such that either b(¢) < —1
or there exists n € No U {—1} for which n < b(¢) < b(¢) < n+ 1. The operator D;J
continuously maps Tf;(xo) into itself.

Proof. Let f € T} (xo); from what precedes, we have
DiJf = ~iRAT | = =R (f + 3 a3 7% f = hun * ),
j=1

where m has been chosen sufficiently large so that h, € CP(®1%(R9). Using Re-
mark [2.1.13] we thus have h,, x f € tZ(xo). Moreover, by Theorem and Propo-
sition we know that J continuously maps T (z¢) into itself. The conclusion is
obtained by applying Proposition 3.3.4to R;. m

The decomposition of functions into spherical harmonics will lead us to singular inte-
gral operators whose kernel depends on several variables.

DEFINITION 3.3.7. Let ¢ € [1,00], ¢ € B be such that b(¢) > 0 and ¢ € R Let K be
the singular integral operator of the form

f s a()f() +pov. / k(- — o) () dy,
where

e @ is a bounded measurable function,
o for all z € R?, k(z,-) is homogeneous of degree —d, has mean value zero on ¥ and
belongs to C> (R4 \ {0}).

The symbol of K is the function
o(K) : (x,2) = ale) + k(z, 2),

where, given z € R?, k(z,-) is the Fourier transform of k(z,-) (understood in the dis-
tribution sense). We know that for all z € R?, k(x,-) belongs to C>°(R?\ {0}) and is
homogeneous of degree 0 (see e.g. [13]). We say that K is in the class Tg(mo) if, for all

la| < 2d + [b(¢)]n, and z # 0, the function
x— DYo(K)(z, 2)
is in 7] (x9) N L>(R?), uniformly on ¥. We then define

K50 = mae] N e IO
0< ]| <2d+[b(¢) Ny
s ||D30</C><-,z>||mm)}.

0< |er|<2d+Tb(¢) 1,

If moreover, for all |a] < 2d + [b(¢)]n, and z # 0, the function = — DZk(z, z) belongs
to ¢} (o) uniformly on ¥, then we say that K is in the class ¢} (zo).



Generalized T spaces 51

REMARK 3.3.8. Given z € R%, ¢(K)(z,-) is a homogeneous function of degree zero; it is
proved in [26] [7] that for (z,z) € R? x R\ {0}, we have

= Soun Wi ()1l o(/cxx,z)=a<x>+l§n;az,m<x>vmnm(;),

4mﬂ,d/2
where 7, := ﬁ and
2

apm(z) = (=1)"(m(m +d — 2))_”/ Y m Lk(x,-) do

=(=1)"(m(m+d—2))"" —1/y;mL o(K)(x,-)do,
with LF(z) = |z|?AF(z) and v € Ny.

THEOREM 3.3.9. Let q € [1,00], 79 € R? and ¢ € B be such that b(¢) > 0. Let K be a
singular integral operator of class Tg(:vo).

(1) arm € Ti(xo) N L>(R?) and
maX{”al,m”Ti(zo)a ”al,mHLoo(]Rd)} < O¢md/272v”’C”Ti(wo)'
(2) If p € (1,00) is such that 0 < 1/p* := 1/q+1/p < 1 and if f € LP(R?), then, for
almost every x € R?, le(x) and Yy m f(z) exist and the series

+Za1m YVim f ()

converges absolutely to Kf(x).

(3) K is a bounded operator from LP(RY) to LP" (R%) N LP(R®): there exists a constant

Cp.q > 0 such that, for all f € LP(RY),
max{|[Cf]|L»* (R%)) ”’CfHLP(Rd)} < Cp,q”’C”Tg(zo)Hf”Lr(Rd)-

(4) Let ¢ € B be such that b(vp) > —d/p, ¢ < ¢ and either b(¢) < 0 orn < b(yh) <
b(¢) < n+1 for somen € Ny. Then K is a bounded operator from T} (wo) to T, (wo):
there exists a constant Cyp,q 4. > 0 such that, for all f € Ty (w0),

| ) < OP7Q7¢7¢||IC||T(§(IQ)Hf||T£(Zg)'

(5) If moreover K is of class t§(wo), then ary, belongs to t§(xo) and, for all f €t} (x),
Kf belongs to tfb* (o).

Proof. We keep the same notations as in Remark [3.3.8| with v := d + [E((@*l
(1) For all z € R? and z € %, let us write

oK) (@,2) = 3 ga(2)D20(K)(w, 2),

lal<2v

T

where g, is a product of powers of z; (j € {1,...,d}). From the definition of the class of
operators in Tq‘f(ajo), for z € X, we have

1L 0 (K) (s 2)l paray < CollKli7a (ao)-
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Let us also recall that ||} m,||z2(s)y = 1. If ¢ > 2, then, if we denote by ¢’ the conjugate
exponent of ¢, then ¢’ < 2, and by Hoélder’s inequality (with the usual modification

if ¢ = 00),
/q
dx)

Jatmlaagesy = mm + = 2) 2 ([ | [ ¥ k) 0,20 o2
. 1/q
< Cdm /2—2v (/Rd ||Y'l1m||%q/(2)||ng(]C)(£C,~)‘|qu(2) dl’)
-z 22\ VIV e
< v Yiml L2 Lc(K s Tdx d
<m0 (SN Winliacs ([ [ 120000210 e o)
(27‘_)11/2

I(d/2)

From this, we get [|aym | poray < Cm®/2- 2”||IC||T; (zo) and a similar argument can be

Iermllzeque) = (mim & = 27 1</R /21’17m(z)L”a(iC)(x,z) do(2) qu)l/q

< oamte- (7 )/d;) )/ ([, [1im@rizouoe. s dw)l/q
o

1-1
<C d/2—2v )d/2 /a K Y,
= d,vm (d/2) || ||T$(3¢0)H l’mHLq(E)

/2
B (zﬂ)d/z 1
< a2 () WKl Vi 2

— Cd vmd/2 2v ||IC||T‘7

/2
< Cd,vmd/2_2v||K||Tg(xo)( ) = Cd,vmd/2_2v||K||Tg(xo)-

applied to obtain the same inequality for |[a;m | e (r4)-
Now, if ¢ < 2, we have

(wo)-

Moreover, for |a| < 2d + b(¢) + 1 and z € ¥, there exists a polynomial
Z C(B)

18l1<n

of degree n such that
Z |C) < 1N 72 (20)

[Bl<n

and, for r > 0,

Tﬁd/qHD?U(Kl)(WZ) - P, (B(zo,r) HICHTq (zo) ( )

Thus,
P= 3 () mm+d=2) 75! [ Vi) (D 0a(2)CL2) dot- = a0)?

|Bl<n || <20
is a polynomial of degree n for which

S | mim + d - 20 / Yim(2) (X 00()C12) do

1Bl<n || <20

< Com™?7?|| K|z, a0)
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and, for 7 > 0, we can show, in the same way as before, that
r= Y ar = Pllras@er) < Cagm™? 2 1K1 (2g) #(r)-

(2) It is well-known that there exists a constant Cy > 0 such that, for m € Ny, the num-
ber of spherical harmonics of degree m is bounded by Cym?=2 (see e.g. [27]). Moreover,
if f e LP(RY), from Corollary we also know that ||V}, fllzee)y < Cpllfllor(wa)-
From this, using (1), we can claim that if p* > 1 is such that 1/p* := 1/p + 1/q,
then Zlm armdf,, [ converges in LP"(R?). As a consequence, for almost every z € R,

> tom Wm () V], f(2) is finite.
Let us fix £ > 0 and z € R? such that |a; ,,,(2)] < Cym?272Y; we have

Tr—y —d
k — dy = (@)Y, . d
/Rd\m,e) (e =) dy /Rd\B(mZau (@)Y, ( )|x yl = f(y) dy

o~ |z -yl

xXr — y _
=Y aun(o) | Yz,m(| - |)|x—y| "F(y) dy.
Lm R4\ B(z,g) r—=y

because y — |z — y| =% f(y) is integrable (using Hélder’s inequality) on R¢ \ B(z,¢e) and

T — v
Zam ifzm(,x_.|)\ < Cuq 3 m 2 m 2 D2 K ) < CaglIK 23 o).

m&ENy

Now, if z is a point for which 3, aim (@)Y}, f(z) is finite and Y, f(2) exists for
all [, m, then, for € > 0,

[ v (x)m—y ~41(y) dy < Vi (@)
R4\ B(x,¢) |z |

which allows us to let € — 07 to obtain

Kf(z) = +Zalm Vi f ().

The conclusion follows from the fact that almost every € R? is such that the quantity
> tm @ (2) V], f(2) is finite, [ay,m (2)] < Cym2=2v and Vi f(z) exists for all [, m, by
countable intersection.

(3) For f € LP(RY), we have, from (2) and Corollary

||K:fHLP* (Rd) = Haf + Zal,myl,meLp* (R4)

L,m

< Ha”Lq(Rd)HfHLP(]Rd) + Z ||al,7R||L<I(Rd)Hyl,mf”LP(Rd)

l,m

/C“Tg(zo)llfl‘LP(Rd) Z ,,nd/Q_ernd_2

meENy

< lallzo@n 1 fllzr@ay + Cp.g,a

< Cp gl Kz o) | Fll o )

The upper bound for || f||.»ga) can be obtained in the same way.
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(4) Again, (2), Proposition [2.3.2} Corollaries and for f € T£ (xo), we have

1K S g oy < Craatns (lallzs oyl F 7z e + > latm 3oy Vi )

_ _9op  4=2. 7}
< Cpagwlallz o 1 lzz ooy + 1 rp o) IKCllzaagy 32 me=2m/2-20m 2 #1001 )
m&ENy

_ oy d=2.7p
< Cp,q,as,w(||a||T;(xo)||f||T5(zo) 72 @o) 1K 722 (o) > mPmdPm S ”b(‘i’ﬂ%>

m&ENy

< Cp,q@,wHKHTg(xo)”ﬂ
(5) We keep the notations from (1). By definition of the class ¢} (z¢), there exist ¢ > 0
and £(r) converging to 0 as » — 07 such that, for |o| < 2d +b(¢) +1,z€ X and r > 0
sufficiently small, we have
r= DY (K) (-, 2) = Paella(Beo,r) < e(r)e(r).
As a consequence, for such r,
= ary = Plla(saer < Ce(r)m®? 26(r)
and a; , € t;(a:o). The conclusion comes from the second part of Corollary and the
fact that ¢}, (o) is closed. =

T)(zo0)*

REMARK 3.3.10. Let us come back to the convolution singular integral operators we
considered in Theorem [3.3.4] For such an operator, the kernel & is independent of the
variable z and [|K ||;£ (o) 18 bounded by the derivatives of k on X. Following the path
taken in the last theorem, we can also bound this norm using now the derivatives of o(K).
Indeed, as k does not depend on z, neither do o(K) and a; ,. Let p € (1,00) and ¢ € B,
be as in Theorem [3:3.4] and define

d if b(¢) <0, a
v(9) = ()1 ) N := sup  |D%(K)(2)].
d+ [*%—],, otherwise, |2|=1
0 0<|a|<v(¢)

Using an argument similar to the one used in Theorem [3.3.9] we have
|ag,m| < CMmY*~2* N for all I,m.
For all f € LP(RY),
Kf= Z a;mYi,mf almost everywhere,

l,m

Kf e LP(Rd) and, if f € T£($0)7 then Cf € Tg(.ﬁo) with ||’Cf||T£(m0) <C 7¢]\f||']c”qu;(mo).

3.4. Elliptic partial differential equations

DEFINITION 3.4.1. An elliptic partial differential equation at xo € R? of order m € N is
a partial differential equation of the form

Ef= ) aaDf =g,

la|<m
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where, for all |a] < m, a, is an s x r matrix of functions and
h 9
=141 9=
fr 9s
are vector-valued functions with f; € WP (R?) for all j € {1,...,r}; D stands for the
weak derivative and

w(xg) == Iéiln—fl det{( Z a’;(xo)fa)< Z aa(xo)fa)] >0
N la|=m la]=m
is the ellipticity constant of £ at xg.
In [7], Calder6n and Zygmund proved that if £ is elliptic with constant coefficients

(@a)jaj=m all of the same order, then we can write

E=KA™,
where K is an s X r matrix of convolution singular operators, whose matrix of symbols is

o(K)(z) = (=)™ Z agz|z|”™  for z £ 0.

la]=m
They also showed in [8] that, in this case, there exists an r x s matrix of convolution
singular operators whose matrix of symbols is @

a(H) = [o(K) (K)o (K)"

and for which HK is the identity operator. From Remark [3.:3:10] we can estimate the
dual norm of # on the spaces T}, (x), using the ellipticity constant of & and (|aa|)|a|=m-
Now, if
Ef = Z anDf =g

|| <m
is a general elliptic partial differential equation at zq € R? of order m € N, we set
Epp 1= Z aa (o).
|a]=m

By what precedes, we have &,, = KA™, where K is a matrix of convolution singular
operators for which H/C is the identity operator. Then, let us define

(1—A)y™/2f if m is even,

(i+A)(1—A)"2 f if mis odd.

Applying H on &, f + (€ — €z, ) f = g gives
A" f=Hg+H(Es —E)f
and, as A2 = —A, we obtain, if m is even,

h=Hg+H(Ew, —E)VF+ (1= A)™2 = (=A)™?|f = Hg +H(Exy — E)f + L1(D),

(?) The ellipticity of the equation allows us to take the inverse matrix of o (KC)*a(K).
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where L (D) is a differential operator of order m —2 with constant coefficients. Assuming
that m is odd, we get

h=Hg+H(E —EVf + [(i+A)(1—A)* T — A(=A)"T
=Hg+H(Exy —E)f + Lao(D) f + AL3(D)f,

where Lo(D) (resp. L3(D)) is a differential operator of order m — 1 (resp. m — 3) with

I/

constant coeflicients.
In what follows, we choose as the norm of a vector-valued functions the sum of the

norms of its components.
PROPOSITION 3.4.2. Let p; € (1,00) and pe € [1,00] be such that

1 1 1

0< —=—+— <1,

b3 p1 P2

zo € R? and ¢, ¢, € B be such that

e 0 < b(¢) and the coefficients of £ are functions in Tgl (zo) for which g is a Lebesgue
point,

e 91,

o —d/py < b(¥) and there exists n € Z such that n < b(¥)) < b(¥)) < n+ 1 and
g9 € T (x0),

o —d/py < blp) and there exists | € Z such that | < b(p) < b(p) < I+1 and h € T2 (o),

* b(1)) — b(yp) < min{b(¢), 1}.

Assume also that there exists p* € [1,p3] such that f € WP (R?). Then h € T)? (o) with
1Pl 725 o) < NHGlT25 (20) + Cpr oo s (L MN)|Allz22 (0g) + [ Fllwzs rey)s
where M is the least upper bound of the norm of the coefficients of € in ng (zo) and
N= sup |[D%(K)(2)],
0<lal<o()
where v(1) is defined as in Remark[3.3.10]
Proof. Let us first consider the case of m even; we have f = J"h and therefore @
Df = (DJ)*T™n  for |a| < m.

As a consequence, for |a| < m, we have b(¢)) < b(¢) + 1, @m—|a| < ¥ and, by Proposi-
tion and Theorem |3.1.2

1D Fllzs2 (ag) < CopsllT™ ™ iz agy < Conp |l T™ 1 Mhllgze (g

< CP27<F>¢||h||T£2(m0)'
If || = m, Proposition m gives

D fllz2 (mg) = (DT )Rl g2 (40) < CpaiollAllrzz 2)-

(®) (DJ)® stands for (D17)* ... (DaJ)".
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Let us consider the operators

&= Z ao D and & = Z (aa(z0) — aq)D®;

|a|<m |a]=m

by Corollary we have
IHES 723 (20) < Cos o NIELF 723 (2g) < Cpap,s,e VM > 1D fllzr2 (20

|al<m

S Cpl,pz,@%wNMHhHTjZ? (zo)"

Let us remark that the assumption b(¢)) — b() < min{b(¢), 1} allows us to use Proposi-
tion [2.3.6] to get
1HE2 s (o) < N1 llrss

< Cprpos s NM Y (1D fllzz2 (2g) + 1D fll Los ()

loe|=m

< Cprpotip e NM (|| 72 () + 1 f lwzs may)-
Finally, by Proposition [2:3.7] we have

1L (D) f g2y < C D 1D Fllz2s a

laf<m—2

<Cpapa Y IDFlizr2(ag) + 1D fllos gray

la|<m—2
< Cp2,p3,¢,¢(||h|‘T£2(xo) + Hf”W,’fF(]Rd))’

which leads to the conclusion.
Let us now assume that m is odd; in this case, we have

T h=(+MNTf = (—i+MNIT" 1 h=(01-A)T%f
— (—i+ NI h=f

and therefore,
d
pof = (i Y Ry(D;7) i ) (D) Tl for Ja| < m.
j=1

Given |a|] < m and j € {1,...,d}, we have, by Propositions |3.3.4] and Theo-
rem .13

IR (D T)DI)* T 1kl 722 (2 < Cpasps Il 722 (ay)

From Theorem and Proposition we know that J maps T£2 (29) continuously
into itself and so we also have

1T (D; )T ™Rl 722 (4) < o

As a consequence, the inequality

ll 722 ()

||DafHT£2(z0) < sz,%w”h”T@?(m(,)
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still holds for all || < m. By a similar reasoning,
HDaf||T£2(zg) < Cp2,tp||hHT£2(zo) for |a] = m.

Therefore, the upper bounds for HHglfHTjS (wg) and ||H52f\|T£3(w0) are still satisfied.
Finally, we also have

1L2(D) f 223 (2g) < Cpaps,o(Ihllzz2 (2g) + 1 lwzz (ma))
. —d " S
and, as A = ¢ Zj:l ‘R;D;, Proposition implies
IALS D) Tl o) < Crons 3 1D Fllzs (o) < CopmmorpIhlrze gy + 1 s )
|a|<m—2
which gives the conclusion in this case. m

REMARK 3.4.3. It is still possible to obtain an inequality of some kind if we consider the
case p(r) = r—4/p2,

If d/p2 ¢ Ny, then Theorem still holds for ¢, since the assumption b(¢) > —d/p
is just made to guarantee r~%? < C'¢(r) for r sufficiently large; it can thus be relaxed in
this case. Therefore, Proposition [3.3.6] can also be applied with ¢, and the inequalities

D% fllz22 (o) < Cpaspiwllhllrz2 zgy - VIl <m,
||Daf||T£2(a:0) < Chapp

are still valid in this case. Let us also remark that

\hHng (x0) Vjaf =m

17722 2y < 201l Lr2 ey < Crpo | f w2 ray-
If d/ps € Ny with py < d, let us consider |a| < m; we have
Do f € Wi (RY) o [P (RY),
with 1/p* := 1/py — 1/d, by Sobolev’s embedding. Therefore, for r» > 0,
=YD f| o2 (B(g,r)) < Catpoprr” VPP VPI DO f| v (g 1)
< Gt 1Dl gy

and D*f € T??

Z4/p (To) with

||DafHTP2 (z0) < Capo,pr

—d/p*

Moreover, as b(y) < —d/ps + 1 = —d/p*, we get

Fllwez may-

||Daf||T£2(m0) < C,ps 9| fllwez (may-
Of course, for |a| = m, we have
1D fllzz2 (a0) < 201D fll 2 vy < 20 fllwez (me

and we now conclude that

1Pll723 () < I1HGllT25 (29) + Cprpapps (L + MN)[ fllwez may + [1fllwzs rey)-

m

If d/p2 € Ny, let us first prove the following lemma.

LEMMA 3.4.4. Ifd > 1, for d < q < 00, we have the continuous embedding W{(R?) —
L9(R%).
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Proof Let g be a function in W{(R%); first let us remark that g € Ld T (R%). Indeed,
g? € L'(R?), with

lg®l 21 ray = 190 Laqay < 1915 gray
and, for |a| = 1, by Hélder’s inequality,
|D%g ||L1 (Rd) = |dg*™ 1D0‘g\|L1 Ry < d”g”Ld RY) | D%gl| La(ray < d||g||€V{1(Rd)-
Therefore, g¢ € Wi (R?) with ||gd||W11 (Rd) < CHgHWld(]Rd) and, as d > 1, Sobolev’s embed-
2
ding gives Wi (RY) < L7°7(R%) and finally g € L7 (R%) with

||9|| (Rd) < CHQHWd(Rd

Let us prove by induction that any g € W{(R%) belongs to L (]Rd) with

||g||Ld(dd:r1k) < k;”g”Wld(]Rd) for all £ € Ng.

(RY)
Let us suppose that this property holds for some k € Ny and let (¢;) en, be a sequence
of functions in D(R?) such that ¢; converges to g in W(R?). In particular, by induction,

@; converges to g in L(d+k)%(Rd). Let us recall that for ¢ € D(R?), we have (see e.g.
[34, Lemma 8.7])

d—1

d—
(/ |80(x)‘(d+k+1)ﬁil dl’) ¢
Rd

d—l—k—l—l 1/d e d
cdrhtl (HnDlwnLde)) ([ Jtaneosras) ©

which holds if and only if

d+k+1 1/d
d+k d+
oIt s oy S — 5 (H 1Dl ) el ay

RY) ()

This proves that (¢;);en, is a Cauchy sequence in L(‘Hk“)ﬁ(Rd). As a consequence,
g € LIHF+D 75 (RY) with

1
d+ k4 1) Tk
o gt gy < O ()T el

Let us come back to the above remark. If |a| < m, then D*f € W(R?), so since
—1 < b(x)) < 0, we can choose d < g < oo such that b(¢)) < —d/q. By the above lemma,
Def € LI(R%) and

D% fll Laray < Cqll D fllwa(may-
It follows that, for r > 0,
r D fllLa(Broy) < Cagr™ T YD fl La(B( )
< Caqr™ D fllwp ray-
Hence, D feTpd/ (x0) with
1D fllre, ooy < Caall D Fllaws ey



60 L. Loosveldt and S. Nicolay

Since b(¢)) < —d/q, we can write
1D Flizg (@) < CoallD*fllze,, (29) < CaawlID fllwg@e)-
The previous reasoning for the case |a| = m is still valid and we get again
1Pl 725 o) < NHGl 725 (20) + Cpr oo (L + MN)| Fllwre may + [ Fllwzs gay)-

DEFINITION 3.4.5. Let, p € (1,00), ¢, € B be such that 0 < b(¢), —d/p < b(p) and
there exists n € Z such that n < b(¢) < b(p) < n+ 1. Let us define k, as follows:

o if b(p) = b(yp),

kp(9, @) = min{k €Np:

> =

d .
(b(@ n p) < mln{l,bw)}},
e if n <b(p) <blp)<n+1,

kp(o, ) = kp(ep, 29)) + min{k €Ny : WTQ(*") < min{1,b(¢>)}}.

THEOREM 3.4.6. Let p € (1,00), q € (1,00, o € RY and ¢, € B be such that —d/p <
b(p), 0 < b(¢) and there exists n € Z such that n < b(¢) < b(¢) <n+1. Let Ef = g
be an elliptic differential equation of order m at xog such that the coefficients of £ are
functions in T(Z(.To) for which xy is a Lebesgue point. Suppose that

e g € Th (20) with 1/py = 11p—|— 1/q,

o 6= and B(g) < b(6) or b(g) — b(e) < min{L, b(H)},
* 0<1/p :=kplo,p)/qa+1/p <1,

o f€WE(RY) and p* :=inf{s >1:fc W (R} <yp'.

Then there exists a constant Cpr 4 o m such that, for all |of < m, D*f € Tg:n (x0) and

—lal

ID%fllyy (o S Corio (N (14 MN)S OO gl

Fm—|al
+ k(@) (L + MNYCO (|| Flywr, ey + 1/ lyy! gy
for all ¢ > 1 such that
o 1/p'21/¢ 21/p' = (m—al)/d if 1/p" > (m — |a])/d,
o p/<q <ooifl/p <(m—la|)/d,
o p'<q <ooif1/p' = (m—lal)/d,
where M is the least upper bound of the norm of the coefficients of € in T;(xo) and
N = sup |DYa(K)(2)].

|2|=10<a|<v(p)

Proof. Let us first suppose that b(p) = b() and set k = k,(¢, ). Let us choose 0 < ¢ < 1
such that

< L= () + £) < min{1,b(¢)},
)¢ Zforall je{l,....k—1}.
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We can then define, for j € {0,...,k}, the function ¢; by

P pd/p if j =0,
(1) = r= P (p(r)rd/P) 5 i 1< 5 <k,
%) if j =k.

For 0 < j < k, we have b(1;) < b(¢) and so ¢ < ;. Moreover, for 1 < j <k,

) =) = =5 + 5 (s 5) £ 2

We also have

Bn) — ) = = (40 + 5 ) < min{1.160))

and, for 1 <j <k,

s  CORE B (OB

- ;(b(go) + Z) < min{1,b(¢)},

as well as
1—¢

B) ~ bos) = - (o) + 5 ) < min{1L ).

Given j € {0,...,k}, let us also define p; € (1,00) by
1 ) 1
1_i
Py q P
Since h € LP(RY), h € Tig (z0) and ¢ < 11, we can write, using Remark 3.4.3,
1Allz2t o) < 1Hll7r1 (2g) + CL(L+ MN) (| fllwg, ey + | Fllwzz ra)-

Now, since f belongs to WP and the coefficients of £ are in L(R?), g belongs to L2 (R%)
and, from Proposition m also to ng; (z0). Furthermore, by Proposition we have

hllzs2 ey < [Hgllz22any + Co(1+ MNYUAl oy + 17 iz ).
By iterating, we find, for 1 < j < k,
1525 oy < 121y + o1+ MNY[Blgass gy + 1z )

Now, for 1 < 57 < k, we have
19811724 20y < o N8l < Con oty Nl oy + Vgl e
< Cpl,p’,¢>N||g||T£1 (z0)
and
1l ety < 1l oy + Il

which implies the existence of a constant Cp v ., > 0 such that

1l g gy < Cor e (NA+MN) gl ag) +EA+HMNYE N F |y oy + 1wz, )
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Let us now establish the same inequality under the assumption n < b(p) < b(p) <
n+ 1. I b(p) < b(¢), then we set ki := k,(¢, - 2#)) and

ko = min{k eNp: M < min{l,b(¢)}}.
We also define
Pi(r) = P2+ L (b(¢)—b(¥)) for 0<j <ky and b, :=¢

For 0 < j < k, we have

Bpy) = () + - (b(2) — b)) < Blp) < b(6),

and so ¢ < ;. Also,
1 .
b(hj1) = b(v;) = 2( (¢) = b(p)) < min{1,b(¢)}.
From the first part of the proof, we can write, if py is defined by 1/pg := k1/q+ 1/p,

||h||Tf;8(m0) < va?(}@#’ (N(l + MN)kﬁngHTg(mo)

+ k(L + MNP (1 flly ot gy + 1 lwza))-
We can proceed as in the first part to get the desired inequality.
Now let us consider the case where b(p) > b(¢) and b(p) — b(¢) < min{1,b(¢)}. Let
us choose a such that max{—d/p,n} < a < b(p) and b(p) — a < b(¢); in particular, a
is not an integer. From the first part of the proof, we know that there exists a constant
Cpp4,0 > 0 such that

12l 727 () < Coipt o (N (L + MN)Y 2 gl (1)
+ (k= DA+ MN) U F e oy + 1 lwz)
with 1/p” := (k- 1)/q+ 1/p. Now, Proposition implies
Bl oy < Contp (Vgllzsany + (4 NNl gy + 1 )
< Coprapap (N (L + MNYgllgz ey + KL+ MYy s + 12)):

which gives the desired inequality.
Let us now consider |a] < m and ¢’ > 1 as in the assumption. If m is even then

1Dl (w0)=||JW'a‘<DJ>°‘hHTq/ o SO DI Bl ) < Coll,

by Theorem 2] and Proposition [3:3.6] If m is odd, we get

’
Tg,, o (®0)

1D° £l

o @0 [t (iZRﬂDﬂ) =i )(DI)*h
j=1

< Cul|h]] e
\Tg,(m A1l (-

< C@H (@ inj(pjj) - ij) (DJ)*h
j=1

by Theorem and Propositions [3.3:4] [3:3.6] From this, the inequality obtained in the
first part of the proof allows us to conclude the proof. m
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