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Abstract 
 
This paper presents a comparative study 
on several approaches of structural dam-
age diagnosis based on vibration meas-
urements. Stochastic subspace identifica-
tion method is used to identify modal pa-
rameters and to generate a Kalman predic-
tion model, which are taken as damage-
sensitive features for structural damage 
detection. A statistical process control 
technique based on principal component 
analysis (PCA) is also presented. An im-
provement and enhancement of PCA is 
proposed. It is assumed that without dam-
ages, structural responses should remain 
approximately in a hyperplane defined by 
the principal directions of data. Damage 
localization is explored with these meth-
ods. As only the measured output signals 
are needed, the methods are convenient for 
on-line monitoring. The efficiency and 
limitation of the proposed methods are 
illustrated by numerical and practical ap-
plications.  
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1. Introduction 
 
Structural damage detection via vibration 
measurements involves the extraction of 
features from periodically spaced meas-
urements, and the analysis of these fea-

tures to determine the current state of in-
tegrity of the system. In this process, the 
extraction of damage-sensitive features is 
of primary importance. As structural con-
stitutive matrices change with damages, 
model updating of finite elements (FE) 
may be applied [1]. On the other hand, it is 
well known that damage may be character-
ized by changes in the modal parameters, 
i.e., natural frequencies, mode shapes and 
modal damping values [2]. Therefore an 
effective identification of modal parame-
ters is significant. For this sake, a stochas-
tic subspace identification (SSI) technique 
[3] is adopted in this work. 
Damage diagnosis may be realized with-
out need of identification of modal pa-
rameters and/or construction of a FE 
model, see [4-5] for example. In this work, 
two stochastic process techniques are pro-
posed, which tackle the damage detection 
problems by use of a statistical analysis. 
The first approach [6] is linked to SSI, 
with which a so-called Kalman model is 
extracted from the time responses of the 
structure in normal conditions. Subsequent 
data are then examined to detect if the 
features deviate significantly from the 
norm. Similar idea is adopted in the pre-
sented second approach based on principal 
component analysis (PCA) [7-8]. An im-
provement and enhancement of PCA is 
proposed to increase its application effi-
ciency. The aim of this paper is to provide 
an introduction of these methods with ap-
plication examples. More details are re-
ferred to the related literature.  



2. Modal identification and damage di-
agnosis by SSI 
 
The dynamic behaviour of an ambient 
excited multi-variate linear system is de-
scribed by the dynamic equilibrium equa-
tion: 
 
  ( )  ( )  ( ) ( )t t t t+ + =M z D z K z f  (1) 
 
where M, D and K are the mass, damping 
and stiffness matrices respectively; f(t) 
represents the ambient excitation vector 
and z(t) the displacement vector. Eq. (1) 
may be transformed into the state equation 
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As measurements are available at discrete 
time instants kΔt, with Δt the sample pe-
riod, the state-space model looks like [3]: 
 
 1  + k k k+ =x A x w   (3)                                                         
  + k k k=y C x v  (4)                                                              
  
where A∈ℜn×n and C∈ℜl×n are, respec-
tively, the state space matrix and the out-
put matrix; xk is the state vector of dimen-
sion n (the system order to be determined) 
and yk is the output vector of dimension l 
(the number of output sensors). wk and vk 
denote the process and the measurement 
noises respectively. Note that the unknown 
excitation is implicitly taken into account 
through the noise terms, which are as-
sumed to be zero-mean Gaussian white 
noise processes: 
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where E is the expectation operator and 
δ( )t  is the Kronecker delta. The i-step 

output covariance matrices Λi are defined:  
 
 T[ ]i k i k+= E y yΛ  ,  T

0  [ ]k k= E y yΛ  (6)                            
 
As wk and vk are independent of the actual 
state xk which is assumed to be a station-
ary stochastic process with zero-mean, the 
following properties can be established 
from Eqs. (4-6): 
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where Σ0 is called the state covariance 
matrix; G the next state-output covariance 
matrix. The above equations provides the 
starting point of SSI method. 
SSI is applied to identify the defined ma-
trices (A, C, Λ0, G etc.), starting from only 
the output of time history yk measured at l 
sensors. The output may be displacement, 
velocity or acceleration. The details of SSI 
are referred to [3]. Here, we give only a 
simple illustration, concerning two kinds 
of SSI algorithms: 
 
Covariance-driven SSI. Let Hp,q be the 
Hankel matrix filled up with p block rows 
and q block columns of the output covari-
ance matrix iΛ  ( p≤ q): 
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The Hankel matrix may be factorised into 
the p-order observability matrix Op and q-
order controllability matrix Cq of rank n:  
 
  qpqp CO   , =H  (12) 
with 
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Factorisation may also be performed by a 
very popular mathematical tool called sin-
gular value decomposition (SVD) on the 
Hankel matrix, which leads to: 
 

[ ] [ ] T1 T
, 1 2 1 2 1 1 1

2

   
   

    p q
⎡ ⎤

= ≈⎢ ⎥
⎣ ⎦

S 0
H U U V V US V

0 S
(13) 

 
where it is assumed that the second part of 
singular value S2 (containing the system 
noises, etc.) are small enough to be ne-
glected, so that the order of system (rank) 
n is determined by the dimension of S1. By 
a comparison between (12) and (13), ma-
trices A,C, G etc. may be found.   
 
Data-driven SSI. By this method, the 
Hankle matrix is formed directly by the 
measured responses: 
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It is split into a “past” and a “future” part 
of i block rows. The identification process 
is, in certain extent, similar as the first 
one. The details are refereed to [3]. Spe-
cially, the method may identify a so-called 
Kalman model for damage detection [6]. 
 
Modal parameters. Once the system state 
matrices (A, C, Λ0, G etc) have been 
found by either of two methods above, the 
modal parameters may be determined. The 
eigenvalue decomposition of A leads to: 
  
 1−= ΨΛΨA  (15) 

Diagonal matrix Λ contains the discrete 

eigenvalues τr, from which the natural 
frequencies if  and damping ratios iζ  of 
the system can be extracted:  
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where =1,2,..., /2; =1,3...,(2 -1)i n r i ; iω  is i-
th angle frequency. From the eigenvector 
matrix ψ,  the mode-shapes Φ may be ob-
tained in dimension of the measured de-
grees of freedom (DOF): 
 
 = CΦ Ψ  (17) 
 
Damage detection and localisation. If the 
identification procedure is performed on 
the system, respectively, in reference and 
actual states, damage detection may be 
realised by comparing the corresponding 
modal parameters (e.g. natural frequen-
cies). The uncertainties of the identified 
modal parameters may be estimated so 
that the probabilistic confidence on the 
existence of damages may be estimated. 
Damage localisation may be based on a 
combined analysis on change of the meas-
ured stiffness and flexibility of the struc-
ture, which is estimated by the identified 
modal parameters. This subject is dis-
cussed in details in [9]. 
 
 3. Damage diagnosis by Kalman model  

 
Note that the Kalman model is a concept 
of the control theory. By constructing the 
associated Kalman filter, it is possible to 
predict, in one-step-ahead way, the re-
sponses of a noise-contaminated system. 
Let define 1ˆ  k+x  the optimal prediction 
for the state vector xk+1 based on the sys-
tem matrices of the stochastic state space 
model (3-4) and on available outputs up to 
time tk. Then the response prediction is 
 
 ˆ ˆ k k=y C x  (18) 



The two predictors are related through the 
so-called Kalman filter [3,6] for linear-
invariant systems: 
 
 1ˆ ˆ + k k k k+ =x A x K e  (19) 
 ˆ  + k k k=y C x e  (20) 
 
Kk∈ℜn×m is called the non-steady state 
Kalman gain matrix and ek the innovation 
or predicting errors (a zero-mean Gaussian 
white noise process). At the beginning 
stage, the Kalman filter (19-20) will ex-
perience a transient phase where the pre-
dictor of the state is non-steady. However, 
if the state matrix A is stable, the filter will 
quickly enter a steady state. When this 
steady state is reached, the covariance ma-
trix of the predicted state vector ˆ  kx be-
comes constant, which implies that the 
Kalman gain becomes constant as well, 
i.e. Kk = K so that the Kalman filter is 
operating in a steady state. By minimizing 
the variance of the state prediction error, 
the Kalman gain in the steady state may be 
calculated from the so-called Ricatti equa-
tion, provide that system matrices (A, C, 
Λ0, G etc.) have been identified by the 
data-driven SSI [3]. 
Application of the Kalman model in struc-
tural damage diagnosis has been originally 
proposed in [6]. Starting from an “initial” 
state x0=0 and e0=0, the k-step state vector 
and the corresponding prediction error are 
calculated as:  
 
  1 1ˆ ˆ  k k k− −= +x A x K e  (21) 
 ˆ ˆ    k k k k k= − = −e y y y C x  (22)   
 
A sequence of prediction errors may be 
obtained by an iterative process. This error 
sequence may be taken as damage-
sensitive features of the structure. It is 
assumed that the Kalman prediction model 
of the undamaged structure would not be 
able to reproduce the newly measured re-
sponses when damage occurs. Therefore 
structural damages are indicated by an 
increase in error level of prediction with 
respect to the reference state. From the 

error vector ek at any k-th sampling point, 
the Novelty Index (NI) may be defined as 
the Euclidean norm [4]: 
 
 E

k kNI = e   (23)                            
 
or as the Mahalanobis norm  
  
 M 1 T

k k kNI −= Σe e  (24)                            

where T1
N

Σ = Y Y  is the response covari-

ance matrix, N the number of sampling 
points, Y the assembly matrix of yk, 
k=1…N. The prediction procedure is per-
formed using data of the structure in, re-
spectively, reference and actual states. 
Without structural damage, the level of 
prediction errors should remain unchanged. 
Otherwise, an alarm of structural damage 
will be issued. According to the subspace 
identification theory, the prediction errors 
of responses by the Kalman model corre-
spond to a normal Gaussian distribution, 
so does the Mahalanobis or Euclidean in-
dices. Therefore, it is appropriate to per-
form a statistical analysis to give a quanti-
tative assessment of damage level. The 
detailed discussion is referred to [6]. 
 
4. Damage diagnosis by enhanced PCA  

 
Principal component analysis (PCA) is an 
efficient multi-variate statistical method 
for data analysis. In the field of structural 
dynamics, it has been applied for dimen-
sionality studies, modal analysis, reduced-
order modelling, etc. When a large number 
of sensors are distributed on a system for 
controlling and monitoring (for example in 
chemical engineering community), PCA 
may be used for sensor validation [5]. This 
method has been extended for structural 
health monitoring (SHM) [7-8]. In this 
section, an improvement and enhancement 
on classical PCA in SHM is proposed. 
Starting from the standard motion equa-
tion (1), dynamic responses of a structure 
may be described by applying the modal 
transformation: 
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where the complete response z in Eq. (1) 
is replaced by the measured response y of 
sensors; iΦ  is the i-th mode-shape vector, 
with m first modes adopted; R  is the 
global residue of the higher frequency 
modes and ( )i tα  and ( )r tα  are the mo-
dal coordinates. This expression suggests 
that the responses are approximately lo-
cated in a  geometrical subspace (called 
hyperplane) covered by some main struc-
tural modes iΦ (usually with lower fre-
quencies). The hyperplane is independent 
of the excitation history if the structure is 
linear. It changes only when damage oc-
curs. Therefore, damage detection may be 
realized by monitoring this hyperplane, 
which, of course, may be captured by us-
ing SSI presented in §2.  
Instead of performing an exact modal 
identification to compute the trajectories 
covered by the measurements, it appears 
more efficient to identify directly the prin-
cipal components of responses. Let Y de-
note a matrix of discrete block time-
history yk with l sensors and N sampling 
points ( N l>> ): 
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Performing SVD of  Y, see (13), gives: 
 
 1 1 1

T≈Y U S V  (27) 
 
where U1∈ℜm×l, is a part of an orthonor-
mal matrix, with chosen m (<l) columns, 
which covers the geometrical subspace 
generated by the responses. Each column 
of U is associated with N time coefficient 
containing in matrix V. The active singu-
lar values, given by diagonal matrix S1 of 
(l×m) and sorted in descending order, can 
be related to the energy associated with 
the corresponding principal components in 
U1. This means that the structure reacts 
mainly along the directions of the princi-

pal components associated with the high-
est energies. Writing 1 1

TS V  into a time 
series β, (27) may be expressed in the fol-
lowing form completely similar as (25): 
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So we have shown that the hyperplane of 
responses may be constructed by the prin-
cipal components instead of the mode 
shapes. This provides an efficient numeri-
cal method.   
Damage detection is carried out on basis 
of the fact that the hyperplane of responses 
changes due to damages. The first way of 
assessing the change of  the hyperplane is 
to calculate the angle between the hyper-
planes of reference and current states. See 
Fig. 1. for a geometrical explanation. The 
calculation of the angle is a simple 
mathematical and geometrical problem, 
see [7-8] for the details.  
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Fig.1. 3-D interpretation of the angle be-
tween hyperplanes of data in two states. 

 
The second way takes a similar idea as the 
previous method with the Kalman model: 
the obtained principal components are 
taken to construct a prediction model. The 
prediction error may be estimated as: 
 
 1 1

ˆ   T= − = −E Y Y Y U U Y  (29) 
 
Similarly, the Euclidean or Mahalanobis 
norm is calculated as the novelty index 
(NI), respectively for reference and current 
states. The increase of  NI level indicates 
structural damages (see §3 as reference). 
Damage localization with this method has 

hyperplane in 
reference state 

 damaged 
state 

angle 



been proposed in [7-8] which are referred 
to for the details. The basic idea is to iden-
tify the sensors with maximum prediction 
error or largest effect on calculating the 
angle between the hyperplanes.  
It was noticed in our calculating practices 
that damage diagnosis by PCA poses some 
limitations mainly in two aspects: a) the 
number of installed sensors must be 
enough larger than the number of modes 
contained in the measured responses; b) 
sometimes, the calculated NI or angle of 
hyperplanes are not very sensitive to the 
existence of damages. In order to over-
come these difficulties, an improvement of 
PCA is proposed in this paper leading to 
an enhanced PCA as follows. The idea is 
inspired by the SSI method: as complete 
dynamic information are contained in the 
Hankle matrix consisting of either output 
covariance by Eq.(11) or directly by out-
put data by Eq.(14), we propose to use the 
Hankle matrix, instead of output matrix 
(26), in PCA-based damage diagnosis. 
With a close observation, it may be shown 
that the above two limitations are over-
come or reduced. 
 
5. Damage diagnosis with varying envi-
ronmental conditions 
 
In the above analysis, it is implicitly as-
sumed that environmental conditions (e.g. 
temperature) do not change during the 
monitoring, or their effects are small. If it 
is not the case, the effects due to environ-
mental conditions should be included in 
SHM process. In general, this issue may 
be addressed along two directions. The 
first one is to establish a correlation be-
tween measured features and correspond-
ing environmental conditions. By conse-
quence, the normal condition may be pa-
rameterised to reflect the environmental 
and operational variation, and structural 
damages are responsible for additional 
changes in features. The second approach 
does not require measuring environmental 
parameters which are formulated as em-
bedded variables. The subject is addressed 
in [10] and it is not reported in this paper. 

6. Application examples 
 
The presented methods are illustrated by a 
laboratory test on an aircraft model made 
of steel and suspended by means of three 
springs. The fuselage consists of a straight 
beam of rectangular section with a length 
of 1.2m. Plate-type beams connected to 
the fuselage form the wings (1.5m) and 
tail (0.5×0.275m). The structure is ran-
domly excited on the top left wing by 
means of an electro-dynamic shaker in the 
frequency band of 0-130Hz and the dy-
namic responses are captured by 11 accel-
erometers distributed on the wing and tail. 
Three levels of damages are created by 
removing, respectively, one, two or three 
connecting bolts on the right side of wing 
as shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An experimental aircraft model  
 

 
 
 
 
 
 
 
 

Fig. 3. Distribution of 11 sensors 
 
The data-driven SSI was used to identify 
modal parameters of the structure with 
different levels (0~3) of  damages, which 
are well indicated by comparing the natu-
ral frequencies of the damaged  model 
with reference. Fig. 4 gives an example of 
detection with the frequencies of mode 1. 

Removing 1, 2 or 
3 connecting bolts  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Damage detection by identified 
natural frequency of the first mode 

 

 

 

 

 

 

 

 

 

 

 
Fig.5  Damage detection by a statistic 

analysis based on Kalman model (level 2)
 

Table 1. Damage detection of experimental aircraft model by the Kalman model 
Damage scenario Ref. state Level  0 Level  1 Level  2 Level  3 
Outlier statistics 1.0875% 2.6625% 14.9125% 94.2875% 97.925% 

/d rNI NI  1 1.1396 1.6796 6.1546 6.6704 
Num. of removed 

bolts (note) 
0 (reference 

state) 
0 (exciting 

force +50%)
1 (slight 
damage) 

2 (damage 
detected) 

3 (damage 
detected) 

 
While level-1 damage, as a slight damage 
case, is not definitively detected, levels 2-
3 of damages are clearly indicated (Fig 4).   
By the method with the Kalman prediction 
model, the results are very similar. The 
statistical monitoring diagram is presented 
in Fig. 5 for level-2 damage as an exam-
ple.  The diagram is split into two parts. 
The left part (8000 sampling points) trains 
the reference data and the right part exam-
ines the new data. Difference in outlier 
statistics (in %), and ratio of the mean NI 
values indicate the existence of damages. 
Complete results are summarized in Table 
1. While a slight damage (Level-1 sce-
nario) is already noticed, damage levels 2-
3 are detected with clear damage indica-
tors. The column 3 of Table 1 concerns a 
false-positive testing: two tests without 
damage (level 0) but with different excita-
tion levels (1:1.5). It is shown that the 
damage indicators are small despite a large 
difference in excitation levels.  
Novelty analysis with PCA prediction 

model is also applied. However, calculat-
ing results showed that with classical 
PCA, the NI values are not enough sensi-
tive to damages for this problem. There-
fore, the enhanced PCA proposed in §4 
was applied. The number of Hankle matrix 
blocks in (14) is chosen as 3 as an opti-
mum in the sense that the PCA model is 
sensitive to damages but not to the excita-
tion and noise levels. The results are 
summarized in Table 2, which are in good 
agreement with previous analyses with 
modal parameters or the Kalman model.    
Damage detection and localization with 
enhanced PCA may also be performed by 
calculating the angle between the hyper-
planes as described in §4. The results are 
presented in Fig. 6 as an example. Damage 
is indicated by a large angle between the 
hyperplanes of reference and current 
states. When removing sensors 6-8 in-
stalled in the right wing, the angle reduces 
most. This indicates that damages occur in 
the right wing of the aircraft model.  

Damage probability calculation

Level 1 Level 2 Level 3

Level 0 (reference) 

* 

* *



Table 2. Damage detection of experimental aircraft model by enhanced PCA 
Damage scenario Ref. state Level  0 Level  1 Level  2 Level  3 
Outlier statistics 0.1221% 1.1355% 11.624% 73.309% 60.232% 

/d rNI NI  1 1.047 1.188 1.6925 1.6126 
Num. of removing 

bolts (Note) 
0 (reference 

state) 
0 (force ratio 

is 0.5:1.5) 
1 (slight 
damage) 

2 (damage 
detected) 

3 (damage 
detected) 

 
Fig. 6. Damage location by enhanced PCA 
  
6. Conclusions 
 
This paper summarised several techniques 
of structural health monitoring (SHM), 
which were applied and developed re-
cently in our laboratory. The SSI tech-
nique was used to provide a precise identi-
fication of modal parameters and also the 
Kalman model, from the output-only 
measurements. SHM with this last model 
requires a model identification only on 
reference data. An improvement and en-
hancement on PCA for SHM were pro-
posed in this paper. A significant advan-
tage of the methods (particularly PCA) lies 
in their simplicity and efficiency in calcu-
lation, allowing an on-line implementa-
tion. An experimental aircraft model was 
presented to illustrate and compare the 
application of the presented  methods.     
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	Factorisation may also be performed by a very popular mathematical tool called singular value decomposition (SVD) on the Hankel matrix, which leads to: 

