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The finite element formulation for fluid-structure problems

1.1

1. THE FINITE ELEMENT FORMULATION
FOR FLUID-STRUCTURE PROBLEMS
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1.1 INTRODUCTION

To the best of our knowledge, the first purely lagrangian consistent formulation was proposed by
Debongnie in [7]. At this time, even though natural, this idea as well as the notion of displacement
potential coming out of this formulation led to some surprises. These rationalisation efforts led
to the final formulation of the corrected Tong’s formulation in 1978 [8] and to the corresponding
formulation for the compressible case in 1984. Similar results were obtained by Morand in 1987
[10].

1.2 FLUID DESCRIPTION

1.2.1 Introduction

The motions of interest are vibrations around an equilibrium position. The mass conservation
of the fluid suggests a Lagrangian description. As the motions considered are small, the equations
can be linearized. This can be easily done using an appropriate parametrisation. Let a; be the
initial coordinates of a fluid particle. At time ¢, this particle position is :

a:;(t) = a; + )\(t) ui(a)

This description is particularly adapted for a modal analysis where A can always be taken to a
small value compared to unity and must satisfy the equation

AE) +w? ) =0

where w is the frequency.

In the following, the derivation by a; is noted D; and §; represents a derivation by z;. J represents
the Jacobian dz/0a. In the reference position corresponding to static equilibrium, the fluid takes
a volume V, the wet surface and the free surface are noted Sy and I' respectively. The out of
equilibrium variables are noted V*, S;* and I'*.

- 1.2.2 Linearisation of some auxiliary values

It is useful to make some linearisation once for all. First, the jacobian J is the determinant
of the matrix defined by :
Dj:z:,- = Dj(a,- -+ /\u;) = 5,']- -+ /\Dju,-

The exact value of the Jacobian is

2
J=14 /\D,‘U; -+ —);—(Diu;Djuj —_ Dju,-D,-uj) 4 Aadtm(Dju,-)
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If this expression is limited to the first order term, it becomes
J 2 14 AD;u; 21)

The linearized ejcpression of the inverse matrix (9;a;) is also useful. At the equilibrium, ;a; = §;;.
Thus its expression must look like :

Oja; = b6j; + dayj; + 0()?)
The «;; are obtained by solving the following equation :

8ki = Dyx;0jai = (65 + ADiuy)[8ji + Aaji + O(A?)]
= 5ki 4 ADpu; + Aagi + 0(’\2)

This gives
5]“- = -—Dku;
and
Bja,- o~ 5]',' — /\Dju,- (2.2)
1.2.3 Motion equations
The motions equations are . .
prdui = prgi + Djtji (2.3)

where p; is the reference density, g; the gravity acceleration vector and ¢;; the Piola stresses of the
fluid. For a non-viscous fluid, these stresses are the expression of the normal pressure which only

works for a volume increase. Thus the virtual work corresponding to an elementary initial volume
dV is :
tj; Djbu;dV = —p 6(dV*) = —p 6JdV

If M;; represents the cofactor of the D;z; term of the jacobian matrix, the variation of the jacobian
is written .
§J = Mj,’Dj 6u,' = JB,-aijéu;

in accordance with Cramer inversion formula
1
B;a,- = "iji
and the expression of the virtual work equilibrium can be written :
tj;D;6uidV = —pJ;a; D;0u;dV

S0
tj; = —pJdia;

This last expression can be linearized if the pressure is expressed as function of the pressure at the
equilibrium py
P=po+Aq

Using expressions (2.1) and (2.2), the following expression for the Piola stresses is obtained :
tij = —(po + AQ)(1 + ADyug)(6;; — ADju;)
= —pobi; — A[(q + poDrur)dij — poDiu;]

The motion equation (2.3) becomes

—pyw?du; = prgi — Dipo — ALD;(q + poDrur) — Dj(poDiu;)]

0
- for the zero order : Dipo = pygi (2.4)

- for the first order : pyw?y; = D;(q + poDrur) — Dj(poDiu;) (2.5)
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1.2.4 The incompressibility condition

The incompressibility condition is expressed by

J=1
The first order expression is
14 ADju; =~ 1
this leads to
Diu; =0 (2:6)

1.2.5 The displacement potential
Expanding equation (2.5) leads to
prwu; = Diq + Dipo Dy + poDiguy, — DjpoDiuj — poDiju;
Including the results of equation (2.4), this gives
prwui = Dig — psgiDyur — prg; Div;
This expression can be further simplified using the incompressibility condition (2.6) :
| pswui = Di(q ~ prgiu;)
A displacement potential ¢ can thus be defined
ui = Dip (2.7)
This potential is related to the pressure g by the following expression

g = ps(gju; +w?p) = pr(9: Dsp + wp) (2.8)

Moreover it must satisfy the incompressibility condition

Diu; = Vip =0 (2.9)

1.2.6 The free surface condition

. On the free surface, the pressure must be equal to zero. Thus

- for the zero order : pg]pr = 0 ' (2.10)
- for the first order : g;D;p + w?p = 0 (2.11)

As the free surface remains horizontal, the gravity always acts perpendicularly to it and therefore

' o]
giDip = —9'3%

Taking into account the above remark, the condition can be expressed as

2 _
{gn Zurp=10 . (2.12)
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1.2.7 Conditions on the wet surface of the shell

The connexion condition between the fluid and the structure being very delicate, a separate
section has been devoted to it. It can already be mentioned that concerning the potential, the
normal displacement must be connected. The mathematical form of this condition is

s = win;

on

on the shell. This condition even though intuitive is not obvious and further explanations are given
below in section 1.4.

1.3 STRUCTURE DESCRIPTION

1.3.1 Introduction

It is clear that the structure analysis will be done as usual in a Lagrangian formalism.
But it is essential to note that at the fluid-structure interface, the spatial coordinates z; are the
only continuous ones. The material coordinates are not continuous. Indeed, a particular point
of the shell sees during the motion a certain number of fluid particles. The material coordinates
related to the structure must be distinguished from the ones related to the fluid. b; represents the
coordinates of a point related to the shell at equilibrium. During the motion, the point undergoes
a displacement Aw; and thus the instantaneous coordinates are

zi = b + Aw;
A derivative by b; is noted V;, §; represents a derivative by #; and J is the jacobian 3#/61}.
1.3.2 Motion equations
The motion equations are similar to the equations used for the fluid :
psdw; = pygi + Vitji

Here, however, the Kirchhoff-Trefftz stresses are preferred to the Piola ones. These stresses are
related to each other by the following relation

L ADj6w; = ;67 = Sj1(§1§ + AV;w;)AVjéw;

or
t;i = sj(0 + AViw;)

The stresses are linearized as follows :
s = 8i;° + Aoij
The relation between the stresses is thus
tji ~ 50 + Aloji + 5i1°Viw;) (3.1)
or |

- for the zero order : V;s5;;% + psgi =0 (3.2)
- for the first order : —p,w?w; = V;(oj;i + 55" Viw;) (3.3)
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1.3.3 Constitutive equations

A linear relation between the Kirchhoff-Trefftz stresses oy; and the Green tensor is adopted :
Aoi; = Cijrl Yri

where

A A2
et = 5 (Vewr + Viwg) + 5 ViewiViw;
Keeping the terms up to the first order, one obtains
oij = Cijri €n1 (3.4)

where
1
Exl = §(ka' + Viwg) (3.5)
1.3.4 Variational principle for the structure
Multiplying equation (3.3) by $w; and integrating it on the structure gives :
../ p‘,wzw,‘éw;dV, —-/ Vj((f,'j +s,~,°V,w06w,-dV, =0
V. \&

Integrating by parts this equation gives

--/ p,w2w,~6w,-dV, — /(a’,-j +sj1°\7,w,-)nj6w,-d5
» )
+/ (O'ij(SE,-j -+ sjlovzw,'vj(Sw,')dV, =0
V.

The second term represents the virtual work on the surface. On the fixed part of the surface S,
this term cancels; on S1 where the dead load f; are imposed, the virtual work has no first order
term. Finally, the variational principle can be written

1
5{-2— /V (C;jkz EijERI + s,-,-“V;ka,-wk -— p,wzw;wg)dV,} - 5Tf =0 (3.6)

where §7; represents the virtual work on the wet surface.

1.4 THE FLUID-STRUCTURE CONNEXION

1.4.1 Introduction

It is now time to examine more precisely the connexion between the shell and the structure.
Two things must be determined : the kinematic conditions and the equilibrium conditions.
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1.4.2 Kinematic conditions

The exact condition is that during the motion, the fluid particle which stands in z; on the shell
must have a normal speed equal to the normal speed of the shell at this point. But as mentioned
earlier, distinction between the material coordinates of the fluid and of the structure must be made.
The fluid particle which is at coordinates z; at time t was at the reference state at point a. The
structure particle which is in contact with the fluid particle at time t was not necessarily in contact
at the reference state. b represents the initial position of the structure particle. The kinematic
condition is thus : ) _

Safa(x)|n} (z) = Sulb(x)]n (x)

could the displacements of the shell w; and the fluid u; be both expressed in term of b and thus
transform the kinematic expression into [u;(b) — w;(b)n} =07
As at time t, the two particles are in contact,

z; = a; + Au;(a)
= b; + /\w,-(b)

and thus
a; ~ b; = Mwi(b) — ui(a)) (4.1)

Developing u;(a) in Taylor series around point b and limiting the series to the first order term

ui(a) = ui(b) + (Djui)s(a; — b;)
= ui(b) + (Dju:)sA(w;(b) — u;(a))

Using this development, the kinematic condition becomes :
Alui(b) + M(Djus)s (w;(b) — u;(a)) — wi(b)ln} =0
The second term of this expression is of second order. The linearized expression is thus :
fui(b) — wi(b)ln} = 0
As the correction of the normal is of the second order too, the kinematic condition finally becomes :

fus(b) — wi(b)ln; = 0

1.4.3 Work done by the pressure on the interface

The expression of the virtual work 677 done by the fluid pressure on the shell must be
determined. Let b be a point of the shell of coordinates z; at time ¢. The infinitesimal surface dS™ -
around this point undergoes a force equal to

pla(x)]n;*dS*

where n;* is the moved normal pointing to the exterior of the fluid domain. The notation p[a(x)]
reminds that the pressure at point b is due to the fluid particle initially located at point a(x) and
not at point b. The pressure at point a is

p(a) = po(a) + Ag(a)

po(a)= hydrostatic pressure at the equilibrium
g(a) = pressure coming from the perturbation

Combining expression (4.1) with the Taylor development of u;(a), the a; coordinates can be
expressed as

a; = b; + Aw;(b) — Aui(b) + (Dju;)s A(w;(b) — uj(a))]
= b; + Afwi(b) — ui(b)] + O(A2)
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Developing po(a) and g(a) in Taylor series gives

po(a) = po(b) + (Dipo)s(a; — b;)
= po(b) + A(Dipo)s(wi(b) — ui(b)) + O(A?)

a(a) = q(b) + M(Diq)s(wi(b) — ui(b)) + O(A?)
The combination of both expressions gives the expression of the pressure p(a)
p(a) = po(b) + MDipo)s[wi(b) — ui(b)] + Ag(b) + O(N?)

Introducing the motion equation D;po = pyg; and the relation between dynamic pressure ¢ and
potential ¢ : ¢ = ps(giu; + w?p) in the above equation gives :

p(a) = po(b) + Apsgiwi(b) + Apswe (42)

The validity of this assertion is demonstrated considering for instance the rigid body rotation of the
shell around a point such that the free surface remains still. In this case, when a point goes down,
the pressure it undergoes increases in proportion to its vertical displacement, the fluid remaining
still. .
In order to evaluate n;*dS*, let ¥ be an arbritary function defined in the structure and on its
surface. Green’s integration gives

- / Yn;*dS* = / dpdV* = / TO:b;V;dV
S* ve v
Making use of the classical Jacobi identity [9]
V;(T8:b;) = 0

the integral on V becomes

/ Vi(J0:b;9)dV = —/ n; J 0;b;1dS
v 5
As 1) was chosen arbitrary, the following expression stands :
ng*dS* = Jaibj'njds
As
T = 1+ AViwi + 0(A?)
6,-6,- = 5ij - /\V,‘U)j + O(/\Z)

this last expression becomes :
ni*dS* = [n; + M(Viewgn; — Viw;n;)]dS (4.3)
The coefficient multiplying A in this expression can be transformed into
Vpwene(8pgbri — &pifir) = ejprejqins Vpwg (44)

This term involves only tangential derivatives, which is in agreement with common sense.
Gathering the results from equations (4.2),(4.3) and (4.4) gives

A= p(a)n;*bw;dS*
Sp*

= /S [po + Appgrwr + Apsw?e][n; + Aejprejqiny Vpwg|dw;dS
]

= L pon;bw;dS + /\/ [pfwchn,-tSw,- + prgrwrbwin; + poejpre;jeiny Vpw,bw;ldS (4.5)
1 Sy
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The last term of this expression can be integrated by parts according to Stokes-Ampere’s theorem.
As po is null on Sy NT, the integral over this part of the boundary vanishes.

A

1 1
3 / Poejprejqifir VpwebwidS = —5 [ - ejprejqinty VppowydwidS
1
-3 P0Ejprej ity Wq VpbwidS (4.6)

Sy

> The first integral of the right-hand side can be transformed into

1
= _'2'/9 (6pq6ri - 6pi6rq)pfgpn"w‘16wids
k4

1 1
=—= [ prgpwpnidw;dS — —/ ps9pdwpnewrdS 4.7
2 Js, 2 Js,

& The second integral is equivalent to

1
= “"5/ p0(6pq6ri - 6pi579)nquvp6wid5
Sy

= —-;—/ po(niw, Vpbw; — new, Vidw;)dS (4.8)
Sy

> Finally, the second half of the last term of the right-hand side of (4.5) is explicitly

1 .
= ——2'/ P0(5pq6ri - 6pi6qf)nrvaq§w‘ds
Sy

—--;-/ po(n 6w, Vyw, — ngbw;Viwg)dS (4.9)
Sy

Gathering the results from (4.5) to (4.9), A takes the form
. 9 1 1
A= pon;w;dS + A [pfw gon,-&w,- + §pfgkwk5w,-n,- + é-pfgkéwkwgn,-

1 1
- §po(niijj5w; + ngéwjvjw;) -+ Epo(n;w;VjéwJ' 4 n,-&w,-ijj)] ds

:/ poniéw;dS + A pfwzganiﬁwids
Sy Sy
A
-+ —2- 5/5 [pfgk’wkn;w,- +po(niw,'v]"wj -— n,-wj\'?jw;)] ds
I

The first term is of order zero and thus of no interest in this linearized study. The second term is
the expression of the virtual work §77 =

5Tf = —6Uf +/ pfwzgon;rSw,-dS
S

E)

where Uy is the energy introduced by the fluid pressure

Us = [pfgkwkn,-w; + pq(n;w;ijj - n,"wjv_,‘w,-)] ds (4.10)

-3 S,

The structure accepts thus the variational equation

6U (w) — w26T(w) — 6Py (w) — wZ/ prenidw;dS =0 (4.11)
Sy
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with
where 1
Ue = '2'/‘/ Cijri €ij(w)er(w)dV,

Ug = }-/ s,-,-"V,-kajwde,
2 Jy,
Uy = (4.10)

So on the wet surface of the structure Sy, the influence of the fluid is a coupling between ¢ and
n;w; and a supplementary potential energy involving only the structural displacements.

Three facts argue for an expression including only the structural displacements.
(a) Similar terms have been obtained in 1978 using a direct energy approach [8] when the
fluid-structure interaction module of SAMCEF was developed.
(b) Morand [10] arrives at the same terms. His integral including the pg term is

l / p0n1(W)WdS
2 Js,
where nj is defined by
n*dS* = [n + ni(w) + O(w?)}dS
This implies, using (4.3) that '

(n1)i = Vewgni — Viwjn;

So the present formulation, the SAMCEF formulation, as well as the one found by Morand
are identical and will be called the modified Tong’s formulation.

(¢) A detailed study of the behaviour of rigid body modes of fluid-structure systems shows that
the modified Tong’s formulation leads to results in perfect agreement with the physics of
the problem.

1.4.4 Variational principle for the fluid-structure system

Integrating the free surface equation on its domain and taking its variation gives

6/%pfgn2d5—w2/pf<p6nd5=0 (4.12)
r r

Inside the fluid, the variational principle is

6/ -l—pr,-<pD,-<pdV--/ pfn,-w,-&pdS—-/pfn&godS:O (4.13)
v, 2 : ER r

Adding together equations (4.11),(4.12) and substracting from this sum equation (4.13) multiplied
by w? gives :

1 1
6(U+—2-/I:pfgn2d5) —w26(T-—§/V prich,'tpdV-%-/ prniwipdS
!

Sy
+ / prnpdS) =0 (4.14)
T

This is the modified Tong’s principle [6,8,10]. Can ¢ be eliminated from the principle ? A priori
not because the Neumann problem for the potential does not admit a unique solution. Thus a
certain linear form of ¢ must be set to zero (in the discretized form of the principle, the potential
is set to zero at one point). But doing this, the results from the variation §¢ = C**® is lost. This
variation is

c’“{/ pfn,'w,'dS—i-/pfndS} =0 (4.15)
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which is precisely the existence condition of the Neumann problem. In compensation of this
fixation, it is necessary to insure the global incompressibility with a Lagrangian multiplier A. The
principle becomes

1 1
5{(U+3 [ promds) ~HT =5 [ orDigpDigdV + [ pymiwipds
2Jr 2 Jy, sy
+/Pf"$0d5)+’\(/ aniwids'*‘/,ﬂmds)} =0 (4.16)
T Sy r

The elimination of ¢ gives a relation
p = ®(njwi,n) (4.17)

This particular potential can also be chosen as §¢ in (4.13). This gives

/ psDipDipdV = / pspniw;dS + / prendsS
7] Sy r

and finally, the principle takes the form :

1 : 1 1
§((U+5 [ promas)=w*T+3 [ promwnds+3 [ prnpds)
+)‘(/ pyniwidS + /Pﬂ?ds)} =0

if condition (4.17) is fulfilled. This condition must only be known on Sy and T as the principle
above indicates. One way to get this condition is with an integral method.

1.4.5 Discretized form of the variational principle

The shell displacement w, the potential ¢ and the free surface normal displacement 7 can be
respectively discretized by '

w = W(z)g p=ad"(z)f n=b"(2)y (4.18)

The different terms of the principle take the discretized forms :

U=1¢"K,q where K, = 2U(W)

L Jopsgn?dS = LyT Ky where K; = JrprgbbTds
T = 3¢7 M,yq where M, = 2T(W)

’lz‘fs, prpniwidS = LfT Aq -where A = [; praniW;dS
3 JopsnedS) = 1 fTBy where B = [ p;abTdS

If f represents the particular e vector where all the elements are equal to 1
/ prniwidS = eTAq
Sy
/ psndS = eT By
T
The discretized principle takes the form :

1 w?
5{§(qTK,q +yTKy) - —;(qTM,q +fTAg+ fTBy) + AT Ag + eTBy)} = 0
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The relation (4.17) which gives the potential as a function of the normal displacements on the
boundary takes the following discretized form :

f=Qq+Yy (4.19)
This can be introduced in the above principle :
fhg= QT A+ YT g = (@ A+ ATQg + /YT Ag
F7Bq = *Q" By +y"Y" By = ¢*QTBy + 4" (¥ B + BTY)y
and it becomes

1 w?
6{§(qTqu + yTKfy) - _i'(qTquq + 2yTMyqq + yTMyyy) + ’\(eTAq + eTBy)} =0

where 1
My, = M, + E(QTA + ATQ)
1 1
My, = -2-YTA+ -2-BTQ

My, = %(YTB + BTY)

In matrix form, this can be written

K, 0 Ae q My My 0| | g
0 Kj Bel||y|—-w?|My, My, 0||y|=0
eTA eTB 0 A 0 0 0f |A
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2.1 INTRODUCTION

The question to see wether the SAMCETF formulation of hydroelastic problems respects the
rigid body modes is often raised. It appears very often that some of the rigid rotation modes
are lost for the free-free problem. The present report tries to give better understanding of this
problem.

2.2 POSITION OF THE FREE-FREE PROBLEM

The hydroelastic problems differ from the conventional elastic problem in the unavoidable role the
gravity acceleration takes. Consequently, a relaxed state does not exist. At equilibrium, reactions
materialized in practice by the engine thrust inevitably appear. ‘

At equilibrium, the structure is submitted to the stresses sJ; and the fluid is submitted to the
hydrostatic pressure py. These efforts comes from the gravity and must be balanced by forces #;
on a portion of its surface Sy. If V} represents the fluid volume, V; the structure domain and Sy
the interface between them, the equilibrium conditions can be written under the variational form
as follows :

e for the structure

/ s?ijéuidV-/ p,g;&u,-dV-}-/ pon}du;dS ~ [ &i6u;dS =0
V. Vv, 5, _

Sa
where n} is the normal to the wet surface and pointing towards the exterior of the shell.
e for the fluid
/ poDibu;dV ——/ pfg,'(Su,'dV -+ ponidu;dS = 0
Vy Vi Sy
where n; is the normal to the wet surface, but pointing towards the exterior of the fluid.

Of course a direct relation exists between the normals : n} = —n; and both conditions can

advantageously be added together in order to cancel the term involving the pressure on surface
Sp: ‘

/ s?ijM;dV + / poD;du;dV — / Pagibu;dV — / prgibuidV — / t;6u;dS =0
v, v, v, v, - Js,
For a rigid virtual displacement of the general form :

du; = da; + dw;jz; bwi; = —bwj; (21
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the equilibrium condition becomes :
‘/V s?jﬁw;jdv + '/‘; podw;;dV — L p,gg(ﬁa; + 5w,'j:t:j)dV
s z s
-—-/ p;g,-(&a,- -+ 6w,-j:z:j)dV -—/ f,-(&a,- -+ 6w,-j:cj)d5 =0
7 Sa

The first two integrals are strictly null because on one hand sf; is symmetric and §w;; anti-
symmetric, and on the other hand dw;y; = 0.
Separating the terms in éa; and in dw;; gives

/ p,g,-dV+/ pfgng+/ t;dS =0 (2.2)
s Vf SQ
(translation equilibrium)
/ p,g,'a:jdv-}-/ pfg,-mjdV +/ t_,-a:de =0 i# j (23)
Ve v, Sa

(rotation equilibrium)

2.3 BEHAVIOUR OF THE ELASTIC ENERGY TERM

The linear elastic energy L
U = / 5 Cijm eijendV
V.

is automatically equal to zero for a rigid body mode.

2.4 BEHAVIOUR OF THE GEOMETRIC STIFFNESS ENERGY TERM

The term

1
Ug = 5/;/ s?jD;uijude

is equivalent to

1 N 1 1
U, = 5/ n} 53 tm DjumdS + 5/ 1 53 U Dj um dS — 3 D;sfitm DjumdV
Sy Sz Ve
1
- /V 50 DijtimdV

For a rigid displacement, D;jup, = 0
Taking into account the following conditions :

nisy = —pon} on Sy

nis?j =1 on Sy

Dis; = —p,g; in V,
the geometric stiffness term becomes

1 . 1 - 1
Uy = ~3 /s pon;umDjumdS + 3 ) tjum DjumdS + 2/, Psgitm DjumdV
k4 2 s

If the rigid displacement is of the general form
U; = a; + Wi T; Wi = —Wj¢

It can also be written as follows :

1 . 1 - 1
U, = —-—/ PN} UmWy; dS + = iUy Wiy dS + —/ P39 U Wi dV
2 Js, 2 Js, 2 Jy,
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2.5 BEHAVIOUR OF THE HYDROSTATIC PRESSURE TERM

The general form of this term

1
Up = -—5 pg(n,-u,-Djuj - n;Uiju;)dS
Sy

simpliflies into

1 1 1

b pgn;uiju,-dS == pon,-ujw.-de = e pon;Ujo;dS

2 Sy 2 Sy 2 Sy
in the rigid motion case.
It balances exactly the first term of Uy.

2.6 BEHAVIOUR OF TONG’S TERM

Tong’s term has for expression :

1
Ur = *5/ PsgkurniuidS
Sy

Extending the shell displacement inside the fluid domain which is obviously possible for a rigid
body mode, this term becomes

1 1 1
Ur = ¢ | prgrurniuidS — '-/ psrurDiuidV — -/ psgrui DiugdV
2Jr’ 2Jy, 2 Jv,

So for a rigid body mode, if the orientation of the gravity acceleration g and the following relation
on I, n;u; = ug are taken into account, the Uy term transforms as follows :

1 1
Up = ~§/pfgu§ds+ -2-/ prgijuiwi;dV
r v,

2.7 BEHAVIOUR OF THE FREE SURFACE TERM

Its expression is
1
Ur = §/Pf9772d5
T

Regarding the term of the stiffness including the normal displacement of the free surface 7, the
constraint necessary to insure the incompressibility of the fluid must be added with the associated
Lagrangian multiplier :

1
§/Pfyﬂzd5+/\ (/ aniuz'dS-l-/PfﬂdS)
r sy r

The variation of 7 gives
psgn+ Apg =0

. . . . A .
This expression leads to a uniform value of 7 on the free surface given by 9 = —=. To determine
g

this constant value of 7, one can transform the linear constraint into :

gl = —/ nju;dS
Sy

where I' is here the area of T,
As arigid body mode is always incompressible, the volume conservation can also be expressed by :

—-—/ nju;dS = /ust
5, r

1
n--f/PugclS

which means that 7 is the mean displacement uz on the free surface.

Thus
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2.8 BEHAVIOUR OF THE TOTAL POTENTIAL ENERGY

The total potential energy is :

1 - 1
U=U1+Uy+Up+Ur+Ur = -2-/ tjujwi;dS + 3 psgjuiwi;dV
Sa V,

1 1
+3 / psgiviwiidV + 5 / prg(n® — u3)dS
Vi r

Let us consider first the terms which do not involve the free surface. If U} represents the last term
of the equation above, the equation can be written as :

U - Ult‘ = %fsg t}(a,- + w,-k:ck)w,-de + ‘;' fv. Ps9j (a:’ + wikmk)w:’jdv
+3 Jy, prgi(ai + wipzi)wi; dV
= jaiwi[f5, GdS + [, psgidV + [y, prg;dV]
+%w;kw,-j [fs2 t}mde -+ fV, psgj:cde -+ fVl pfgj:cde]

According to the equilibrium conditions (2.2) and (2.3), the a;w;; coefficients are.equal to zero.
The w;pw;i terms however are only null when j # k. In order to examine the j = k terms, the
classical notation here below is used

wy =Wz , W2 =wz; , W= W

Moreover, as g = —ges the following expression is true

/ psgazadV + _/ prg3z3dV = ~Mgza
v, vy

where M is the overall mass of the system and Z, the height of the center of mass. The expression

_can thus be transformed into :

_ 1 _
U~ Ul‘:‘ = l(w% + wg)/ t1z1dS + —-(w% -+ w%) tazodS
2 Sa 2 52
+%(w% + w2)| / f323dS — Mgzg)
S2

A simple explanation of the different terms of this expression can be found if a distinction is made
between the ¢; which act in the direction of the e; axis noted &} in the remainder and the ones
which act in the opposite direction noted ;. The resulting forces are distinguished too

F =/ trds ) F7 = It |dS
' S2 , 52

and are applied to the coordinates :

1 - 1 -
X*:——/tt ;dS X-“:—-/ i |z:dS
i Fi+ S, i %i i Fi— S, | 3 |$i

The expression thus becomes
. 1 ——— 1 ey
U - U = (w3 + wd)(FFXF — Py X7) + 3wt + ud) (5 XF - P X7)

1 -
(] + ) (B X - Fy X5 — Mozo)
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Consider the first term of this equation. For a
rotation wsy, the load Fjt moves to

w2
Xt coswy = X (1 - -—52-)
while the load F;” moves to
w2
X[ coswp =~ X7 (1-— -52)
The resulting variation of energy is given by
Wik ot -y -
_2‘(F1 X - Fr X7)

which is positive for the case represented in the above figure and becomes negative if X < X i'
This comes from the fact that the load position is stable in the case represented and unstable in
the other one. The term including (w? + w2) is of similar type.

In particular, for a filled tank held by a pivot at height X3 to be in a stable position, the center of
mass must be located below the pivot axis. These conclusions are natural.

1 S e e S e e ot B e |

Let us examine the free surface term. If the fluid is frozen, the displacements would be equal to
ug. In practice, the free surface settles down to an horizontal position at the mean value of ug.
If h represents the free surface height at the equilibrium point, an added potential energy equal to
the weight of the fluid above the height h multiplied by the mean height can be associated to an
elementary surface dS : pguadS(h + %)
Integrating this elementary potential energy on
the free surface gives the total energy

U, E ug
P = h d
equilibrium (ua) /P pgus(h + —7)dS

In the 5 position, the potential energy takes the
h similar form

A\
\

EP(y) = /r pon(h + J)ds

The difference between these two is
1 *
EP(n) — EP(us) = /F pgh(n — u3)dS + 5 /S pg(n* — u3)dS = Uy

because the first term is null as 7 is the mean value of u3 on the free surface. This supplementary
term of the potential energy has a destabilizing effect because the horizontal position of the free
surface always corresponds to a minimum of the potential energy.
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2.9 CONCLUSION

In most current problems, Fit = FJ” = Fif = Fy = 0 and the rigid mode of rotation around
the vertical axis is usually conserved. For the other two rotation modes, the potential energy is
usually not equal to zero. The contribution of the free surface is negative, and the one from the
interior of the fluid depends upon the center of rotation, quite difficult to determine a priori.

2.10 REMARKS ON THE PRACTICAL APPLICATION

The above conclusions assumes naturally that the geometric stiffness Uy and the pressure term
U, are both correctly calculated. That is not necessarily the case. The conclusions are still valid if
Up and Uy are ezact for a rigid mode. In particular, for the Uy, evaluation, the introduction of an
average pressure on the element is not sufficient. The case of U, is more complex. Let us examine
the simple case of the plate. For a rigid mode

1 1
AD = 5[(D1u)’ + (Druz)” + (Drus)’] = 5(whs + wiy)

12 = (D) + (Do) + (Daus)’] = 3wy + uko)

2
12 = (D) + (Do)’ + (Dous)’] = 3wl +uld)
7%) = %[DlulDaw + DiusDgug + DyugDaug] = % Wa1 Wo3
7:(;.?3) = ‘%[DzulDaul + DougD3ug + DyuzDaug] = %wuwm
’)g) = %[D1U1D2u1 + DiuaDauz + DyuzDaug] = “;'wmwaz

As the equilibrium is obtained assuming 03; = 0, the geometric stiffness takes the form

1 ‘
3 /5 [N (w3 + wdi) + Nap(wi + wis) + 2N1pws1was + 2Qwa1was + 2Q3wizwis]dS
with
1 1 1
Wy = '2'(171“2 —-Douwi) , wz = -2-(D1u3 —Dawy) , wa= -2-(D2u3 — Djuy)
or any other equivalent expression as for a rigid mode, the following relations apply
Dius + Dyuy =0 , Diuzg+Dau; =0 , Dyug+ Daug =0
In particular, using wz; = Dyus, way = Djus, the expression of U, becomes
1 1
Uy =3 /S{Nfl[(Dlus)z + 7(Druz = Dyuy)’]
1
+N32[(02U3)2 -+ Z(Dl’uZ had Dzul)z] -4 2N{)2D1U3D2'U3
—-Q?(Dluz - Dgul)Dzus - Qg(Dz‘ul — D1u2)D1U3}dS
Thus the classical Bryan’s terms ' ‘

1
Uy,(Bryan) = = [ [N?(D1us)® + N&,(Dyus)® + 2N%, Dyug DaugldS
2Js

are not sufficient. On the other hand, the stresses can be approximated by the mean stresses over
the volume as the rotations are constant for a rigid mode.
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2.11 CASE WHERE Up AND Ug ARE NEGLECTED

Up and U, are often neglected. In this case, the energy expression simplifies into

1 1
U=Ur+Ur=-= / psgitiwi;dV + = / prg(n® — u3)dS
2 Jy, 2Jr

For a rigid translation mode where w;; = 0 and 7 = ug, the energy is equal to zero. For a rotation
wyg around. the vertical axis, 7 = uz = 0, g2 = 0 and consequently the energy is also null. However,
for a rotation around the axis e; or eg,

1
U~ Ut = —5(w} + wj)M;g26;
where M; is the fluid mass and Zg; its center of mass. This term cancels if the rotation is
made around the fluid center of mass. Furthermore, on I', ug = —w 25 + wez; and consequently

n = —unZy + wedy, if 1 and £, represent respectively the mean values of z; and z» on the free
surface. Up* takes the form :

. 1 _ 1 _
Up = —awf/pfg(a:g - m22)d.5' - -é-w%/pfg(:cf - :L'Iz)dS
r r .
+w1w2/pfg(:c1x2 - flfz)ds
r
which can be written
N 1 - 1 _
Uf = —zwj / prg(za — 23)%dS — Zw / prg(z — 41)%dS
2 " Jr 2 % Jr
+w1w2Apfg(m1 — a:‘l)(:cg — fg)dS

This expression is negative definite and values of zg such that certain rotations do not have any
energy exist

IL+zg —hz |_ 0
~Lias L +zg
with the following notation
I ! ( 73)%dS
[ Loy v
2 M;g 1j’fg 2 2
1
I = — — 7)2dS
Sl pry(ivl 1)
1
Iio = —— — —-)d
12 Mg _/I‘Pfg(‘“l £1)(z3 — 23)dS

Explicitly, this determinant is

Ztzeg(li+ L)+ LL—-135=0

the roots are given by

(L4 D)/ + L) — 4L, + 417,

z@ 5
(L4 B) /(5 - L) + 413,
- 2
For circular or square tanks where I; = I3 = I and I;5 = 0 the center of mass height is z¢g = ——-é-.

If the tanks are hung such that this value is obtained, the energy of rotation will be null. This
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hanging point is located above the center of mass of the fluid. As this point does not coincide with
the center of rotation of the rigid modes orthogonalised to the four preceeding ones, the energy
can either be positive or negative. A good idea of the behaviour of the system can be made for the
simple case of a spherical tank (modern water tower). The fluid always tends to align its center of
mass below the center of the sphere. This system is similar to a pendulum hung at point O where
the destabilizing effect is clearly seen.
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3.1 INTRODUCTION

The validation of the RAYON code for fluid-structure interactions calculations will be made
through two different sets of tests.

The first one includes the study of the sloshing modes for a set of tanks. For some of them i.e.
cylindrical and cubic tanks, an analytical solution to the equations governing the sloshing modes
can easily be found due to the simple formulation of the boundary conditions. The mathematical
developments which lead to these particular solutions are included in section 3.3.1 and a comparison
between these and the computation is made in order to evaluate the accuracy achievable with the
finite element calculation.

The second set of tests investigates the frequency domain of hydroelastic modes for the tanks used
in the first part of the study.

The problems selected for these tests are coming from the intermediate report referenced
ESA/90/04 provided by STRACO. -

3.2 MODELISATION OF COUPLED FLUID-STRUCTURE PROBLEMS
USING THE FINITE ELEMENT APPROACH

3.2.1 Introduction

The complexity of the modelisation of fluid-structure problems comes from the modelisation of
the interfaces i.e. interface between the fluid and the shell on one hand and the fluid and the
free surface on the other hand. Indeed an interface element is necessary to insure the relationship
between the displacement potential inside the fluid domain and the field of displacement in the
structure domain. Similarly, the interface element between the free surface and the fluid insures
the coupling between the potential inside the fluid and the displacement on its free boundary.
As the degree of discretisation for the fluid potential needs to be higher than the degree of the
displacement field, the creation of these interface elements is a tedious task for the user. The
pre-processor of the dynamic analysis module (DYNAM) takes care of this work.

The introduction in the data file including the modelisation parameters of the ”.FLU” command
mentions to the program that the model includes both structure and fluid elements. The pre-
processor then creates from a simplified modelisation of the fluid and the modelisation of the
structure the cornplete model necessary to run its analysis. This task includes the creation of
additional interface nodes on the fluid side, the creation of the interface elements as well as the
creation of the "tanks nodes” (nodes to which the Lagrange multipliers which take into account
the incompressibility constraints are associated). A node renumbering is then performed to keep
the frontwidth to an acceptable size. This procedure is detailed in the fourth user’s manual of
SAMCEF.

Different types of elements are available in the SAMCEF library to model the fluid and the
structure. A brief description of the elements adopted for the models is made in the following
sections.
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3.2.2 Fluid elements

> Isoparametric volume (referenced in SAMCEF as elements 61, 93 and 94).

The fluid element is an isoparametric ”brick” element entirely defined by its eight corner nodes.
The displacement potential ¢ field is approximated in the element by means of a polynomial of
degree ”1” ranging from 2 to 4. The field parameters are expressed as functions of the local values of
potential on the corner nodes and on | — 1 equidistant nodes on each edge. Therefore the potential
can be expressed by

n
$=) Ni ¢
i=1
where ‘
N; are the interpolation functions corresponding to the n corner or interface
nodes of the element.
¢; are the components of the potential at corner or interface nodes .

The degree of the fluid is the degree desired for the potential. If not specified by the user, it is
one degree higher than the overall degree of the problem. A representation of the three types of
elements is given below for fluid elements of degree 3.

25

®
L
3ASS 7
1% 6

: 2
22
2 3

0
2 9

figure 3.2.1
fluid type elements of degree 3 (types 61, 94, 93)

> Toroid with triangular section (referenced in SAMCEF as element 41)

This element is designed for the study of systems with geometry of revolution. The Fourier
expansion offers an efficient way to solve such problems.
A double discretisation of the structure is done :

- Circonferentially, the field is expanded in a Fourier series.
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- In the meridian plane, each coeflicient is discretized in finite elements in the classical way.

In the Fourier expansion, the components of the displacements and rotations are expressed in
cylindrical coordinates. Two types of developments are used for the displacements u and the
rotations ¢ : a cosine development for u,, u; and ¢4 and a sine development for ug, ¢, and ¢, :

oo 1

a(r,z,6) = Z Z a"™(r,z) cos(nf + m%)

n=0 m=0

oo 1

b(r,z,8) = Z Z b*™(r,z) sin(nd + m-;i)

n=0 m=0

For each term [n,m] of the development, the amplitudes ul™, ul™ ug™ ,¢7™, ¢7™ et $3™ are
discretized in finite elements.
It might be useful to remind the physical meaning of the different [n,m] analyses t :

Analysis [0,0] purely axisymmetric breathing and elongation aloung oz
Analysis [0,1] torsion

Analysis [1,0] bending about oy

Analysis [1,1] bending about ox

Analyses n > 1 different breathing modes

In the particular case of element 41, the displacement potential is decomposed as a Fourier series :

00 1
é(r, z,0) = ,;0 Z ¢"™(r,z) cos(nf + m—g-)

ma=0

For each harmonics, a separate study is performed where ¢™™ is given for an element of degree
k(k=1,2,3,4) by:
k 1

¢"ﬁ(r,z)=§: Z aj 7‘7 Zluj
1=0

j=0

3.2.3 Structure elements

> Hybrid triangle and quadrangle from Marguerre (referenced in SAMCEF as elements 56 and 55)

These are non-conforming elements which superpose a Marguerre membrane with an hybrid plate :
e The plate is a hybrid element obtained from Kirchhoff’s theory and defined by the reference
quadrilateral. The reference plane includes the first node of the element and has for normal the
cross product of the vectors joigning the mid-points of opposite sides.
s The membrane is a kinematic hypo-parametric element from the Marguerre theory of ”serendipity”
type.
The elements of degree two have three d.o.f. for each corner node and five d.o.f. for the interface
nodes. These interface degrees of freedom are the mean displacements and the mean symmetric

and antisymmetric normal rotations. The two elements are represented below with their d.of. for
degree 2 elements. '

t These couples [n,m] are presented in the frequencies tables which appear in the following sections
with the modes they are associated to
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figure 3.2.2
Structure type elements of degree 2 (types 56, 55)
> conical axisymmetric shell (referenced in SAMCEF as element 18)

It is a two-node element where the displacement are calculated as a function of the displacement of

_the middle line. In the local axis defined in the figure below, these displacements can be expressed

as:

ult™ (', 2') u"™(z') +2' a"™(z')
u?m(m/,zl) ,vnm(x/) +ZI ‘Bﬂ.m(ml)
utm (', 2') wh™ (')

where u"™ v"*™ and w™™ are the displacement fields and a™™, "™ are the rotation fields. A third
rotation is added to insure the connexion between elements.

figure 3.2.3
Local azes and d.o.f. of Fourier structure type element (type 18)
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3.3 RESULTS

3.3.1 Analytical results for two simple sloshing problems

> Parallelepipedic tank

a. Motion equations

Ap=10

b. Boundary conditions

null displacement along the rigid walls :
9¢

Oz

' o _
'Lb 0y ly=+b -

vy 2a 2(2

X ' 0z

free surface equation :

¢ %9

952 T B2

=0

z=ta -

=0

z2=0

=0
z=h
¢. Solution
The potential takes the form :

cosh[K™"(z + h)]
cosh[K™"h]

" (2,9, 2) = cos[ (@ + a)] cos[ - (y + b)]

and the pulsation :
W™= K™ g tanh(K™"h)

g™ =[G + (G

where

for m,n=0,1,2,3,...
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& Cylindrical tank

a. Motion equations

ig Adp =10

b. Boundary conditions

null displacement along the rigid walls :

9
h 0z
9¢

A ' or

........

- 9 free surface equation :

9¢

Bz 8t2 I,

z=0

=0

r=rg

3. Solution

o If the initial perturbation is such that the revolution symmetry is kept during the motion :
The potential takes the form :

y+h

é(r, z,t) = Z O Sin(wmt) cosh(

mz=0

/\mr)

Am) Jo ( To

where the A,, are given by
Ji(Am) =0

and the pulsation :

A

o If the initial perturbation is such that the revolution symmetry is suppressed during the motion :
The potential takes the form :

y+h

AmT
, 2,t) = mt) cosh Am) Jil— 9
é(r,z,t) = rg—:oamsm(w ) cosh( m) 1( o ) cos
where the A,, are given by
Jo(Am) = =J1(Am) =0

and the pulsation :
m
2

A Amh
Wm = g tanh( -
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3.3.2 Sloshing modes

Problem 1 : Sloshing modes of a cubic tank

|

4 / VAR A4 d
L L.l L7 VA4
YA A A A 4 Z A
Ak ik s LA
777 7 vdr
a 777 7 vdr
9%
Y
T
" ! Pd
///////
1 A ///
//////
11
Iz
Vv
o Geometry. e Boundary counditions.
tank side : 0.2 m rigid walls
» Physical properties. o Model characteristics.
fluid density : 1000 kg/m3 fluid elements of degree 3
gravity acceleration : 10 m/s? free surface elements of degree 2
number of d.o.f. : 4842
e Results.
Frequencies (Hz) Frequencies (Hz)
Modes | FE model | Analytical Modes | FE model | Analyticab
1 1.9909 1.9909 6 2.9828 2.9828
2 1.9909 1.9909 7 2.9828 2.9828
3 2.3718 2.3718 8 3.3549 3.3547
4 2.8209 2.8209 9 3.4556 3.4549
5 2.8209 2.8209 10 parasitic 3.4549
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e Mode shapes visualisation.

Mode 1 Mode 3

Mode 4 Mode 6

figure 3.3.5 figure 3.9.6
Mode 8 Mode 9
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3.10

Problem 2 :

Sloshing modes of a cubic tank with horizontal baffle

[

Z_ baffle

e Geometry.

tank side : 0.2 m
baffle fixed at 3/4 of the height
baffle width : 0.025 and 0.05 m

o Physical properties.

fluid density : 1000 kg/m3
gravity acceleration : 10 m/s?

e Boundary counditions.

rigid walls
rigid bafHe

o Model properties.

S SN
S S SN N

AR W W WL W W

fluid elements of degree 3
free surface elements of degree 2

number of d.of. : 5309

® Results.
Frequencies (Hz) Frequencies (Hz)
Baffle (0.025m) | Baffle (0.05m) Baffle (0.025m) | Baffle (0.05m)
Modes FE model FE model Modes FE model FE model
1 1.9029 1.7319 6 2.9409 2.9069
2 1.9029 1.7319 7 2.9413 2.9071
3 2.2773 2.1564 8 3.3351 3.3209
4 2.7745 2.7158 9 3.4425 3.4348
5 2.7770 271171 10 parasitic 3.4348
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e Mode shapes visualisation (baffle width equal to 0.05m).

figure 3.3.7 figure 3.3.8
Modes 1 and 2 Mode 3

figure 3.3.9 . figure 3.3.10
Modes 4 and § Modes 6 and 7

figure 3.8.11 figure 3.5.12
Mode 8 Modes 9 and 10
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3.12

Problem 3 : Sloshing modes of a partitioned tank
|
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o Geometry. ¢ Boundary counditions.

tank length : 0.4 m

tank width : 0.2 m

fluid height in the left part : 0.2 m
fluid height in the right part : 0.1 m

o Physical properties.

fluid density : 1000 kg/m3
gravity acceleration : 10 m/s?

rigid walls

o Model characteristics.

fluid elements of degree 3
free surface elements of degree 2
number of d.of. : 1270

» Results.
Frequencies (Hz) Frequencies (Hz)
Modes | FE model | Analytical Modes | FE model | Analytical
1 1.9103 1.9103 6 2.3734 2.3718
2 1.9134 1.9103 7 2.8187 2.8157
3 1.9910 1.9909 8 2.8223 2.8157
4 1.9936 1.9909 9 2.8239 2.8209
| 5 2.3462 2.3444 10 2.8274 2.8209
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Problem 4 :

Sloshing modes of a parallelepipedic tank with a vertical bafile

o Geometry.

t— plate

tank length : 0.4 m
tank width : 0.2 m
fluid height : 0.2 m
baffle height : 0.15 m

» Physical properties.

. fluid density : 1000 kg/m?
gravity acceleration : 10 m/s?

[l L L L S L L L

¢ Results.
Frequencies (Hz)
Modes FE model
1 1.1162
2 1.9905
3 1.9910
4 1.9936
5 2.3462

e Boundary counditions.
rigid walls
rigid baffle

e Model characteristics.

fluid elements of degree 3
free surface elements of degree 2
number of d.of. : 2855

Frequencies (Hz)
Modes FE model
6 2.3734
7 2.8187
8 - 2.8223
9 2.8239
10 2.8274
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Problem 5 :

Sloshing modes of a cylindrical tank

le

—

o Geometry.

tank radius : 0.1 m
tank height : 0.2 m

® Physical properties.

fluid density : 1000 kg/m?
gravity acceleration : 10 m/s?

o Results.

(S S S

o Boundary counditions.
rigid walls

e Model characteristics.

fluid elements of degree 3
free surface elements of degree 2
number of d.o.f. : 3098

Frequencies (Hz)
Modes 3-D model Fourier Analytical
1,2 [1,0],[1,1] 2.1830 2.1582 2.1582
3,4 [2,0],[2,1] 2.8126 2.7814 2.7814
5 [0,0] 3.1’%04 3.1155 3.1154
6,7 [3,0],[3,1] 3.2992 3.2622 3.2622
8,9 [4,0],[4,1] 3.7111 3.6701 3.6701
10,11 [1,0],[L,1] 3.7360 3.6753 3.6749
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Problem 6 :

Sloshing modes of an horizontal cylindrical tank

o Geometry.

tank length : 0.6 m
tank radius : 0.1 m

o Physical properties.
fluid density : 1000 kg/m?®

gravity acceleration : 10 m/s?

e Results.
Frequencies (Hz)
Modes FE model
1 0.7011
2 1.3025
3 1.7798
4 1.8280
5 1.8800

[T

\%// o000

e Boundary counditions.
rigid walls

e Model characteristics.

fluid elements of degree 3
free surface elements of degree 2
number of d.of. : 2320

Frequencies (Hz)
Modes FE médel
6 2.0184
7 2.1599
8 2.2091
9 2.4220
10 2.4759
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results

Dynamic analysis of fluid-structure problems :

e Mode shapes visualisation.

figure 3.3.18

Mode 1

figure 3.3.15

figure 3.3.14

Mode 3

Mode 2

figure 3.8.17

figure 3.8.16

Mode 5

Mode 4
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results

Dynamic analysis of fluid-structure problems :

» Mode shapes visualisation.

figure 3.3.18

Mode 6

figure 3.3.20

figure 3.8.19

Mode 8

Mode 7

figure 3.8.22

figure 3.8.21

Mode 10

Mode 9
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Problem 7 :

Sloshing modes of a partially filled spherical tank

¢ Geometry.

tank radius : 0.1 m
fluid height : 0.15 m

e Physical properties.

fluid density : 1000 kg/m3
gravity acceleration : 10 m/s?

e Results.

e Boundary counditions.

rigid walls

e Model characteristics.

fluid elements of degree 3
free surface elements of degree 2
number of d.of. : 2468

Frequencies (Hz)

Modes 3-D model Fourier

L,2 [1,0],[1,1] 2.4639 2.4364
3,4 [2,0],[2,1] 3.1937 3.1597
5 [0,0] 3.4811 3.4051
6,7 [3,0],[3,1] 3.7381 3.6965
8,9 [1,0],[1,1] 4.0852 4.0115
10,11 | [4,0], [4,1] 4.2028 4.1454
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Problem 8 :

Sloshing modes of a cubic tank with a vertical baffle

|

o Geometry.
tank side : 0.2 m

baffle height : 0.1 m
bafHle thickness : 1 mm

e Physical properties.

fluid density : 1000 kg/m?
gravity acceleration : 10 m/s?
shell density : 7800 kg/m3
Young modulus : 2.1ell N/m?
Poisson coefficient : 0.3

e Results.
Frequencies (Hz)
Modes FE model
1 1.3054
2 1.9909
3 2.0107
4 2.8000
5 2.8209
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e Boundary counditions.

rigid walls

e Model characteristics.

fluid elements of degree 3

free surface elements of degree 2

number of d.of. : 5546

Frequencies (Hz)
Modes FE model
6 2.8209
7 2.8216
8 2.9717
9 2.9828
10 3.3543
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o Mode shapes visualisation.

figure 3.3.23
Mode 1

figure 3.8.24 figure 3.3.25
Mode 2 Mode 38

figure 3.3.26 figure 3.8.27
Mode 4 Mode &
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Mode 6

Mode 7 Mode 8

figure 3.3.81 figure 3.3.32
Mode 9 Mode 10
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3.3.3 Hydroelastic modes

Problem 1 : Hydroelastic modes of a cubic tank

.
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o Geometry. e Boundary counditions.
tank side : 0.2 m base perimeter clamped
shell thickness : 1 mm only 1 overall d.o.f. for the free
surface
o Physical properties.
fluid density : 1000 kg/m3 e Model characteristics.
gravity acceleration : 10 m/s? fluid elements of degree 3
shell density : 2800 kg/m3 free surface elements of degree 1
Young modulus : 7e10 N/m? shell elements of degree 2
Poisson coefficient : 0.3 number of d.o.f. : 4355
o Results.
Frequencies (Hz) Frequencies (Hz)
Modes FE model Modes FE model
1 19.4905 6 55.4632
2 20.0760 7 55.4632
3 21.8258 8 57.3482
4 21.8258 9 66.7854
5 43.6180 10 80.7046
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Problem 2 :

|

Hydroelastic modes of a cubic tank with horizontal baffle

L L L. 7L VAR A
Ll £ 4
L L 7L L L L. L L
AR A A pd

N

N
\

N SN N NN

AN

L baffle

N N N N NI N

AN NN

e Geometry. e Boundary counditions.
tank side : 0.2 m rigid walls
shell thickness : 1 mm baffle clamped to the wall
baffle width : 0.025 m only 1 overall d.of. for the free
surface
e Physical properties.
fluid density : 1000 kg/m3 e Model characteristics.
gravity acceleration : 10 m/s? fluid elements of degree 3
shell density : 2800 kg/m3 free surface elements of degree 1
Young modulus : 7e10 N/m? shell elements of degree 2
Poisson coefficient : 0.3 number of d.o.f. : 5108
¢ Results.
Frequencies (Hz) Frequencies (Hz)
Modes FE model Modes FE model
1 606.39 6 - 771.82
2 633.02 7 771.82
3 633.02 8 869.64
4 678.05 -9 885.54
5 702.01 10 - 1009.64
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e Mode shapes visualisation.

e N
figure 3.3.33
Mode 1
figure 3.3.34
Mode 2
figure 3.3.35
Mode 3
e G .
figure 3.8.36

Mode 4
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Problem 3 : Hydroelastic modes of a parallelepipedic tank with vertical baffle
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o Geometry. e Boundary counditions.
tank width : 0.2 m rigid walls
tank length : 0.4 m baffle clamped to the bottom
tank height : 0.2 m only 1 overall d.o.f. for the free
baffle height : 0.15 m surface

shell thickness : 1 mm '
e Model characteristics.

e Physical properties. ' fluid elements of degree 3
fluid density : 1000 kg/m> free surface elements of degree 1
gravity acceleration : 10 m/s? shell elements of degree 2
shell density : 2800 kg/m? number of d.of. : 2992

Young modulus : 7e10 N/m?
Poisson coefficient : 0.3

e Results.
Frequencies (Hz) Frequencies (Hz)
Modes FE model | Modes FE model
1 5.349 6 117.758
2 15.274 7 124.816
3 43.937 8 176.766
4 49.780 9 204.669
5 71.837 10 218.104
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Problem 4 : Hydroelastic modes of a rigid tanks with an elastic top
|
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o Geometry.

tank width : 0.5 m

tank length : 1 m

tank height : 0.5 m
shell thickness : 5 mm

e Physical properties.

fluid density : 1225 kg/m®
gravity acceleration : 10 m/s?
shell density : 7800 kg/m?
Young modulus : 2.65e10 N/m?
Poisson coefficient : 0.3

e Results.

Frequencies (Hz)

Modes FE model
1 12.005
2 24.608
3 33.994
4 42.498
5 44.121

o Boundary counditions.

rigid walls

elastic top simply supported

e Model characteristics.

fluid elements of degree 3
shell elements of degree 2
pumber of d.o.f. : 1716

Frequencies (Hz)
Modes FE model |
6 57.429
7 70.563
8 79.461
9 90.508
10 101.419
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. i\/[ode shapes visualisation.
figure 3.3.37
Mode 1

figure 3.3.38 figure 3.3.39

Mode 2 Mode 8
figure 3.3.40 figure 3.8.41

Mode 4 Mode §
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; Problem 5 :

Hydroelastic modes of a cylindrical tank

be

~

o Geometry.

tank radius : 0.1 m
tank height : 0.2 m
shell thickness : 1 mm

e Physical properties.
fluid density : 1000 kg/m?®

gravity acceleration : 10 m/s?

shell density : 7800 kg/m3

Young modulus : 21e10 N/m?

Poisson coefficient : 0.3

e Boundary counditions.

base perimeter clamped
only 1 overall d.o.f. for the free

surface

o Model characteristics.

fluid elements of degree 3

free surface elements of degree 1
shell elements of degree 2
number of d.of. : 4030

e Results.
Frequencies (Hz)

Modes 3-D model Fourier

1 [0, 0] 64.638 64.267

2,3 (1,0],1,1] 229.805 256.909

4,5 [4,0],[4,1] 278.108 306.057

6,7 [3,0],[3,1] 315.804 358.202

8,9 [5,0],[5,1] 357.525 382.806

10 [0,0] 444.802 - 510.354
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e Mode shapes visualisation.
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figure 3.3.42 figure 3.3.43
Mode 1 Modes 2 and 8
- «—-/i
figure 3.8.44 figure 3.3.45
Modes 4 and § Modes 6 and 7
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e 1 1q
Lt L] %
A N
T T L] 8%
L/
figure 3.3.46 figure 3.3.47

Modes 8 and 9 Mode 10
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Problem 6 :

Hydroelastic modes of a spherical tank

o Geometry.

tank radius : 0.1 m
shell thickness : 1 mm

e Physical properties.

fluid density : 1000 kg/m?
gravity acceleration : 10 m/s?
shell density : 7800 kg/m?
Young modulus : 21e10 N/m?
Poisson coeflicient : 0.3

o Results.

¢ Boundary counditions.

clamped on the circle located at 0.5 m

from the bottom

e Model characteristics.

fluid elements of degree 3
shell elements of degree 2
number of d.o.f. : 3011

Frequencies (Hz)

Modes 3-D model Fourier

1,2 [1,0],[0,1] 1207.02 1310.08
3 [0,0] 1868.48 2067.33
4,5 [2,0],[2,1] 2930.75 2980.93
6,7 [1,0],[1,1] 3269.05 3061.53
8 [0,0] 3376.12 3432.45
9,10 [1,0],[1,1] 3491.71 3471.66
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Problem 7 :

Hydroelastic modes of a cubic tank

.

e Geometry.

tank side : 0.2 m

shell thickness : 0.1 mm

e Physical properties.

fluid density : 1000 kg/m®
gravity acceleration : 10 m/s?
shell density : 2800 kg/m3
Young modulus : 7e10 N/m?
Poisson coefficient : 0.3

¢ Results.
Frequencies (Hz)
Modes FE model
1 0.6306
2 0.6861
3 0.6861
4 1.56563
5 1.7063
6 1.7053
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» Boundary counditions.

base perimeter clamped
only 1 overall d.o.f. for the free

surface

o Model characteristics.

fluid elements of degree 3
free surface elements of degree 1
shell elements of degree 2
number of d.of. : 4355

Frequencies (Hz)
Modes FE model
7 1.8177
8 1.9903
9 2.1063
10 . 2.1063
11 2.4794
12 2.5067
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o Mode shapes visualisation.

figure 3.8.48
Mode 1 : structure and free surface

figure 8.8.49
Modes 2 and 3 : structure and free surface

figure 3.8.50
Mode J : structure and free surface
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figure 3.8.51
Modes § and 6 : structure and free surface

figure 3.8.52
Mode 7 : structure and free surface

[\

figure 3.3.53
Mode 8 : structure and free surface
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3.3.4 Comments about the results.

(a)

(b)

()

The Lanczos method used for the solution of the eigenvalue problem computes the
eigenfrequencies in increasing order. The sloshing frequencies which generally appear first
in the spectrum are numerous. A mean to get directly to the hydroelastic frequencies is to
reduce the number of free surface degrees of freedom. In the problems treated above, the
d.o.f. of the free surface are linked together and only one overall vertical displacement is
kept in order to get the hydroelastic frequencies.

The parasitic frequencies appearing in some cases come from a well known problem inherent

to the Lanczos method. The inaccuracy appearing during re-orthogonalisation can lead to
the appearance of a linear combination of solutions already computed. The threshold of the
error coefficient is put to 10~2.
The difference between the results obtained with the 3-D analysis and those obtained with
the Fourier analysis mainly comes from the circonferential discretisation of the shell. In
most axisymmetric problems, the angles of the shell element were limited to an opening of
18 degrees with an interface node on the arc. In order to be convinced of this fact, tests
were made on the empty axisymmetric tanks. The order of magnitude of the difference was
found to be the same.

3.3.5 Evaluation of the potential energy for the rigid body modes of a partially
filled spherical tank

J

notations

Oijk cartesian system of coordinates

Ty, Z9,r3 cartesian coordinates of a point M of
the sphere

Sy is the wet surface of the tank

T is the free surface of the tank

wj; are the components of the displacements of the
shell

As mentionned page 1.10, the potential energy has four contributions :

U=Ue+Ug+Uf‘+Ul"

> The elastic energy term :

1 .
U, = ‘2‘/ Cijri €5 edV,
\Z

> The geometric stiffness term :

Uy, = %/ s?j Viwg ViwpdV,

> The Tong’s term and the hydrostatic pressure term :

1
Uf = -2-./.; [pfgkwkn;w,- +po(n,-w,'ijj — ngijjwi)]de
i

> The free surface term :

1
Ur = E/Pfgnzds
T
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The evaluation of the different terms can be done using the considerations of section 2 of this
report.
A rigid displacement u can be expressed as the combination of a translation and a rotation :

u; = a; + Tjwij
and the different contributions of the potential energy transform into :
> Ue = 0 by definition of the rigid body mode
> Ur = 0 In this particular case, the free surface remains in its initial position

> The geometric stiffness term takes the following expression if use of the equilibrium equations
is made (see section 2.4) :

1 1 ~ 1
Ug = ——/ Pon; Umwm;dS + —/ titmwm;dS + —/ Ps9ium ViumdV
2Js, 2 Js, 2 Jy,

> The term of potential energy coming from the fluid can also be expressed as a function of
the rigid displacements u; :

1
Uf = -2-/ [pfgkukn,-u,- +po(n,~u;Vjuj - ninVju;)]dS
Sy

which, according to sections 2.5 and 2.6, simplifies into

1 . 1 1

Up = —= [ prgu3dS — = Py gkt ViugdV — = Poniujw;jidS

2 Jr 2 Jy, 2 Js,

The first term of this expression vanishes as the free surface remains still. The last term of

this expression cancels exactly the first term of the geometric stiffness.

Finally, the expression of the total potential energy becomes :

.1 1
U= —/ p,gjumvjude—- —/ p;gkuiviude
2 Jy, 2 Jy,

+ For a translation mode, u; = a; and the total potential energy is equal to zero.

* For a rotation around the vertical axis k, the displacement takes the form :

u = Qk x (211 + 29§ + z3k)
= —Q((L‘zi - :Elj)

This also leads to a null overall potential energy because on one hand, the displacement does
not depend upon the z3 coordinate and on the other hand the displacement does not have a
vertical component.

3.3.6 Detection of rigid body modes for fluid-structure problems using SAM-
CEF.

The rigid body modes detection for fluid-structure systems is possible with SAMCEF but at the
price of certain calculation artifices. The difficulty comes from the term in py and the geometric
stiffness term. In the SAMCEF code, it appears finally that the term including the hydrostatic
pressure is not introduced in any version. It was thought up to now that it was not worth
introducing this term considering its order of magnitude. The importance of this term grows
with a decreasing Young’s modulus of the structure but, in this case, it is partly compensated by
the geometric stiffness term. The other difficulty comes from the combination of the geometric
stiffness matrix and the stiffness matrix. Indeed, two different models are necessary. The first



Dynamic analysis of fluid-structure problems : results 3.36

one gives the geometric stiffness and only involves the shell on which the hydrostatic pressure is
introduced, the fluid being not modelled. The second model involves both the shell and the fluid
and therefore the d.o.f. numbers appearing in the two models do not coincide. There is thus no
automatic procedure to sum the linear and geometric stiffness matrices while keeping the good
ordering of the d.o.f.
How is it still possible to get the rigid body modes then ? An artifice must be used. In order to
get the rigid modes, the gravity acceleration must be taken to a very low value (order of 10~7).
In this case, the Tong’s term and the free surface term are nearly equal to zero. The geometric
stiffness term can be separated in different contributions : one contribution compensates the term
of hydrostatic pressure and the other one is a function of gravity and thus can also be neglected.
So the only remaining contribution is the elastic part of the potential energy which is identically
null and the rigid modes can be extracted. Unfortunately, this does not proof the correctness of
the formulation eventhough the rigid modes may be detected.
To summarize, in order to detect the rigid modes with SAMCEF, the following data must be
modified in the input file :
* the gravity acceleration must be small enough in order to cancel all the terms mentioned
above
* a sufficient number of d.o.f. must be kept (command .RET) in order to be able to represent
the rigid modes. '
* if the rotations around the axis perpendicular to the gravity acceleration are of interest, the
center of gravity of the filled tank must be fixed in translation.



