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GLOSSARY 

Allen’s Interval logic: It is a calculus for temporal reasoning that defines possible relations 
between time intervals (e.g. “X starts with Y” or “X takes place before Y”) and provides a 
composition table that can be used as a basis for reasoning about temporal descriptions of 
events. 

Artificial Intelligence: It is the study and design of intelligent agents where an intelligent 
agent is a system that perceives its environment and takes actions which maximizes its 
chances of success. 

Convex hull: In mathematics, the convex hull or convex envelope for a set of points X in a 
real vector space V is the minimal convex set containing X.  

Homeomorphism: In the mathematical field of topology, a homeomorphism is a special 
isomorphism between topological spaces which respects topological properties. Roughly 
speaking, a homeomorphism is a continuous stretching and bending of an object into a new 
shape which respects topological properties (e.g. a cube may be stretched into a ball, but can 
not be stretched into a donut). 

Map Algebra: It is a set based algebra (primitive operators) to manipulate geographic data. 
Depending on the spatial neighborhood, operators are categorized into four groups: local, 
focal, zonal, and incremental. The input and output for each operator being map, the operators 
can be combined into a procedure to perform complex tasks. 

Mereotopology:  It combines mereology and topology. It is a first order theory of the 
topological relationships among wholes, parts, parts of parts, and the boundaries between 
parts. 



SYNOPSIS 

Spatial reasoning can be seen as any deduction of knowledge from a situation having spatial 
properties. In our every day interaction with the physical world, spatial reasoning is mostly 
driven by qualitative information rather than quantitative information. Inferring new 
knowledge from this qualitative spatial information is called Qualitative Spatial Reasoning 
(QSR). In this document, fundamentals of QSR are presented. If an important part of the 
research has been dedicated to qualitative spatial representation (basic spatial entities, 
relationships between entities, etc.), the biggest challenge remains the development of calculi, 
allowing reasoning about objects in multidimensional space. The two main prevalent forms of 
qualitative reasoning are Composition Table (based on transitivity between relationships) and 
Conceptual Neighbourhood diagram (based on a continuity concept between relationships). 
Some of the most achieved models are presented, especially models dealing with topological 
information and orientation information. Promising current researches are also sketched 
giving a wide view on this new research domain.  

1 INTRODUCTION 

"Saying that Alaska is 1 518 800 km² is sufficiently exact quantitative information about size 
and distances in Alaska but very likely it is not meaningful in relation to the spatial 
knowledge of the average listener. On the other hand saying that Alaska alone is bigger than 
all the states of the East coast from Maine to Florida is cognitively more immediate". 
 
Spatial reasoning can be seen as any deduction of knowledge from a situation having spatial 
properties. It goes from simple calculation of spatial attributes (e.g. the area of a region) and 
the description of spatial relations (e.g. two polygons are disjoint) to all operations of map 
algebra. More complex tasks, such as planning of routes, answering to shortest path problems, 
and allocation of resources, can be categorised in the broad area of spatial reasoning as well. 
Reasoning can be performed on quantitative as well as on qualitative information. Typically 
when working with quantitative information, a predefined unit of a quantity is used. For 
example, one could say that the distance between Ghent and Liège is 150 kilometres. In the 
qualitative approach, continuous information is being quantised or qualitatively discretised by 
landmarks, depending on their relevance to the current research context. In this respect and in 
Belgian context, Liege is far from Gent (as opposed to “close to”), Brussels is closer from 
Ghent than Liege, Brussels is between Gent and Liege, Liege is east of Gent, etc. 

Spatial reasoning in our every day interaction with the physical world is mostly driven by 
qualitative abstractions of the quantitative space. Of course, numerical representations may be 
well suited, in particular, where precise spatial information of a definite situation is available, 
and if the output required from the system is itself primarily numerical. However, such 
quantitative information is often too precise for the given spatial context. For example, if we 
show a person the way to get to the post office, we do not need to be more precise than the 
streets he has to follow. Inferring new knowledge from this qualitative spatial information is 
called Qualitative Spatial Reasoning – QSR.  

QSR is a branch of Artificial Intelligence (AI), linked to Spatial Cognition, highly related to 
Geographical Information Science (GISc) and by extension to most aspects of geography. It is 
a particular (through its spatial component) sub-field of Qualitative Reasoning (QR) and is 
often associated with Spatio-Temporal (Qualitative) Reasoning when time is considered. In 



short, Qualitative Reasoning is an approach for dealing with commonsense knowledge of the 
physical world without numerical computation. Its main goal is to make this knowledge 
explicit, so that given appropriate reasoning techniques, a computer could make predictions, 
diagnose and explain the behaviour of physical systems in a qualitative manner. QSR is the 
part of QR dealing with spatial concepts. Due to space complexity, most work in qualitative 
spatial reasoning has focused on single aspects of space. The most important aspects of space 
are topology, orientation, and distance. As shown in psychological studies, this is also the 
order in which children acquire spatial notions. Other aspects of space include size, shape, 
morphology, and spatial change (motion). Beside geography, other domains interested in 
qualitative spatial reasoning are, for example, robotics, linguistics, experimental psychology 
and qualitative physics. 
 
In this chapter, we present fundamentals of QSR, and some of the major current approaches 
and models in the domain. Afterwards, we point out some of the most promising research 
directions.  

2 FUNDAMENTALS 

First, it is necessary to choose the basic entities on which qualitative representation and 
reasoning will be based. This ontological choice in the QSR research community is often 
reduced to two possibilities: points or regions (being extended spatial entities). While it is 
easier to deal with points rather than with regions in a computational framework, taking 
regions as the basic entities is certainly more adequate for commonsense reasoning. 
Furthermore, if points are required, they can be generated from regions. Another ontological 
distinction is the nature of the embedding space. The most common notion of space is n-
dimensional continuous space (Rn). But, there are also approaches which consider discrete or 
finite space. 
 
Much of the work on QSR has concentrated on representational aspects, e.g. how to handle or 
characterize region’s topological properties and relationships, how to characterize region’s 
shape, etc. Talking about relationships, they could refer to two regions (binary relationships), 
three regions or two regions together with an external frame of reference (ternary 
relationships), etc. Examples of qualitative spatial representations are presented in next 
section. 
 
However, the biggest challenge is to provide calculi, allowing reasoning about objects in 
multidimensional space without the use of traditional quantitative knowledge and techniques. 
The most popular reasoning methods used in qualitative spatial reasoning are constraint-based 
methods. Shortly, they are based on constraint satisfaction which is the process of finding a 
solution to a set of constraints, known as the constraint satisfaction problem (CSP). To be 
applied to spatial qualitative relationships based on particular aspects of space such as 
topology, direction, and distance such relationships must have the characteristic to be jointly 
exhaustive and pairwise disjoint (JEPD). Qualitative binary relations are jointly exhaustive 
and pairwise disjoint if between any two spatial entities exactly one of the basic relations 
holds. The same goes for n-ary relations, but between n spatial entities. Being JEPD, the set of 
all possible relations is then the set of all possible unions of the basic relations. 
 
The most prevalent form of qualitative reasoning is based on the Composition Table (CT). 
The underlying idea of a CT (also known as inference table, formerly known as transitivity 



table) is to compose a finite set of new facts and rules from existing ones, i.e. if two existing 
relations (R1(a,b) and R2(b,c)) share a common object (b) they can be composed into a new 
relation set R3(a,c). Such a composition is also called an inference (here symbolised by ⊗). 
Thus: 

R1(a,b) ⊗ R2(b,c) = R3(a,c) 
 

Compositions of relations are usually pre-computed and stored in the CT. CTs originate from 
the domain of temporal reasoning. An example of a temporal composition is: 
 

(interval1 before interval2) ⊗ (interval2 meets interval3) = (interval1 before interval3) 
 
Going beyond the domain of purely static spatial calculi, it is possible to reason about spatial 
changes. Spatial changes may occur on a specific entity (change of shape, position, etc.) and 
may have some impacts on its relationships with the environment. Assuming that changes are 
continuous, another major qualitative reasoning technique is the Conceptual Neighbourhood 
Diagram (CND). Continuous means that things change smoothly. A simple consequence of 
continuity, respected by all systems of qualitative physics, is that, in changing, a quantity 
must pass through all intermediate values. That is, if A < B at time t1, then it cannot be the 
case that at some later time t2 A > B holds, unless there was some time t3 between t1 and t2 
such that A = B. Following this continuity assumption, we could say that two relations 
between pairs of events are conceptual neighbours, if they can be directly transformed into 
one another by continuously deforming (i.e. shortening, lengthening, moving) the events (in a 
topological sense) and that a set of relations between pairs of events forms a conceptual 
neighbourhood if its elements are path-connected through conceptual neighbour relations. 
CNDs describe all the physical possible transitions between relations for a given model. Such 
diagrams allow inferring information; for example, if relation R2 is conceptual neighbour of 
relation R1 and R3 and if R1 and R3 are not conceptual neighbours, then evolving from 
relation R1 between entities A and B to relation R3 is only possible through an intermediate 
stage R2 between entities A and B. 
 
Keeping this framework, from representation to reasoning methods, in mind, we may move 
on to major approaches and models in QSR. 

3 MAJOR APPROACHES AND MODELS 

3.1 Topology 

The properties of geometric shapes and geometric relations between spatial objects that are 
invariant under homeomorphisms such as translation, rotation and scaling are respectively 
topological properties and topological relations. Thus, a first group of stretching, bending, 
twisting, or compressing a figure, are transformations which do not affect topological 
properties and relations. However, a second group of tearing, puncturing, or inducing 
self-intersection do affect topological properties and relations. In other words, topological 
properties of a drawing on a rubber sheet are preserved when the rubber sheet is deformed 
according to the above-mentioned first group of transformations. For this reason, topology has 
also been called the geometry of the rubber sheet. 
Generally, topology can be seen as the most developed area of qualitative spatial 
representation and reasoning, resulting in a variety of topological approaches that can be 



found in literature. We describe two standard works: the Region Connection Calculus (RCC) 
and the 9-Intersection Model. Both theories were developed independently from each other at 
the beginning of the 90s. Although the 9-Intersection Model originates from the domain of 
database theory and RCC is from the field of qualitative reasoning related to artificial 
intelligence, both have as a major conclusion that there are eight topological relations between 
two regions in 2D space. 

3.1.1 The Region Connection Calculus (RCC) 

At the end of the 80s and the beginning of the 90s, Randell, Cui and Cohn transformed 
Clarke's Interval Logic for reasoning about space and space-time, which is the spatial 
counterpart of the Interval Calculus, into RCC (Region Connection Calculus).  

The basic idea is a primitive binary relation C(x,y) read as x connects with y, which is defined 
on non-null regions, being the space that physical entities occupy at any given time. Using the 
relation C(x,y), a set of eight JEPD relations has been worked out, resulting in RCC-8. These 
relations describe differing degrees of connection between regions: is disconnected from 
(DC), is externally connected to (EC), partially overlaps (PO), is identical with (EQ), is a 
tangential proper part of (TPP), and is a nontangential proper part of (NTPP). All except the 
last two are self-inverse. Taking the inverse of the last two results in the inverse of a 
tangential proper part of (TPPI) and the inverse of a nontangential proper part of (NTPPI). 

The set of eight RCC-8 relations can be reduced to five by taking the disjunction of DC and 
EC (resulting in DR, meaning x is discrete from y), the disjunction of TPP and NTPP 
(resulting in PP), and the disjunction of TPPI and NTPPI (resulting in PPI). This set of five 
relations is known as RCC-5. RCC-23 is a result of the introduction of an additional primitive 
function conv(r1): the convex hull of r1. By determining whether a region r1 is inside (I), 
partially overlaps with (P), or is outside (O) the convex hull of another region r2, EC and DC 
are replaced by more specialised relations, resulting in a set of twenty-three base relations: 
RCC-23. Ignoring the difference between DC and EC results in a set of fifteen base relations: 
RCC-15. 
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3.1.2 The 9-Intersection Model 

Egenhofer and Franzosa present the same set of relations as those presented in RCC, but these 
were generated in a different manner. Originally, the 4-Intersection Model was developed. 
Here, two sets of points are associated with every region in R², its interior and its boundary. 
Only regions without holes, meaning 2D connected objects with connected boundaries, are 
considered. 

 The interior of A, is defined to be the union of all open sets that are contained in A, i.e. 
the interior of A is the largest open set contained in A. 

 The closure of A  is defined to be the intersection of all closed sets that contain A, i.e. 
the closure of A is the smallest closed set containing A. 

 The boundary of A, is the intersection of the closure of Y and the closure of the 
complement of Y. The boundary is a closed set. 

Considering empty and non-empty as the values of the intersections between the boundaries 
and interiors of two sets, a total of sixteen topological relations can be characterised, each 
relation represented by a 2×2 matrix. If the sets are restricted to spatial regions in R², then the 
number of relations is reduced to eight: disjoint, overlaps, meets, equals, inside, contains, 
covers, and covered-by.  
The 4-Intersection Model was extended to the 9-Intersection Model, in which a third set of 
points is associated with every region, being the region's complement. This approach resulted 
in 512 (29) matrices having three columns and three rows. However, after taking into account 
all assumptions about the nature of regions in 2D space, only eight matrices remain. These 
correspond once more to the RCC relations, with: disjoint = is disconnected from (DC), 
overlaps = partially overlap (PO), meets = is externally connected to (EC), equals = is 
identical with (EQ), inside = is a nontangential proper part of (NTPP), contains = is the 
inverse of a nontangential proper part of (NTPPI), covers = is a tangential proper part of 
(TPP), and covered-by = is the inverse of a tangential proper part of (TPPI). 
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The 9-Intersection model and also the Calculus based method (CBM) of Clementini, which is 
not presented here, are both Open GIS consortium (OGC) standards models for topological 
relationships. Such models have been widely extended to other geographical primitives; 
points, lines and bodies (object with a 3D extension) in R² and in R³. Extensions have been 
made based on the dimension of objects intersections, number of intersections, etc. Other 
interesting work is the comparison of topological relations in a continuous (vector) space of 
R² and a discrete (raster) space of Z², applying the 9-Intersection Model in a raster model. 

3.2 Orientation 

Topology may be regarded as the most abstract spatial structure or the weakest geometry, 
which makes clear that there are many situations where topological information alone is 
insufficient. This section explores an important complementary qualitative relationship, 
namely orientation: orientation relations describe where the objects are placed relative to one 
another and can be defined in terms of three basic concepts: the primary object, the reference 
object and the frame of reference. The orientation of the primary object is then expressed with 
respect to the reference object as it is determined by the frame of reference. Thus, unlike the 
formerly presented topological relations, orientation is not a binary relation, i.e. if we want to 
specify the orientation of a primary object with respect to a reference object, a frame of 
reference is necessary. The choice of reference system depends on the calculus one works in. 
Also due to the context of the spatial situation, one reference system can be more appropriate 
than another. When there is a sudden change in context, it appears to be preferable to use 
multiple frames of reference. An example situation occurs when a driver gets off a highway to 
enter a local street network. This is reflected in the use of maps having a different scale. 
There are two main groups of qualitative orientation calculi: the first one having an extrinsic 
frame of reference and the second one having an explicit triadic relation. In the first approach, 



the orientation of objects is obtained by using orthogonal or non-orthogonal projections of 
objects onto external axes, and by subsequent 1D reasoning mostly using Allen's temporal 
logic. An example of this is Guesgen's approach. The major theories of the second group are 
Frank's approach (cardinal direction calculus), Hernandez' approach, and the Freska’s 
Double-Cross Calculus. Frank discusses the use of cardinal directions for spatial 
representation and reasoning. In order to determine each orientation relation, 2D space is 
segmented around the reference object, by the use of the eight well-known standard 
directional symbols (north, northeast, east, southeast, south, southwest, west, and northwest) 
resulting in the cone-shaped and the projection-based models. The eight cardinal directions of 
the cone-shaped approach are extended with the qualitative value 0, representing an 
undetermined direction between points that are too close to each other to be able to give a 
cardinal direction. The eight cardinal directions of the projection-based model are also 
extended with the qualitative value 0, standing for the so-called neutral zone. These 
extensions greatly increase the power of the calculus, which is exemplified by typical 
qualitative reasoning methods such as the creation of composition tables (CTs). This approach 
could be combined with qualitative distances, such as far and farthest. 
 

 
Figure 6 

3.3 Other developments 

Although topology and orientation are the most covered domains, there are other models and 
approaches in QSR. Without being exhaustive, we wish to show some of them to demonstrate 
the wide range of the field and its florishing research activities. 
 
First of all, regions have been so far considered as having crisp boundaries. Introducing some 
vagueness in object’s boundary definition, some of the previously mentioned models have 
been extended to explicitly represent and reason about uncertain information. For instance, 
RCC postulates the existence of non crisp regions in addition to crisp regions and then adds 
another binary relation meaning that “x is crisper than region y”. This extension is known as 
the “egg-yolk” calculus, which essentially models regions with intermediate boundaries as a 
pair of regions. A rather similar extension of the 9-intersection model has been also 
developed, and refers to regions with broad boundaries. This calculus can also be specialized 
to cover other kinds of regions including convex hulls, minimum bounding rectangles, buffer 
zones and rasters.  



 
Distance is one of the most important aspects of space. When communicating about distances, 
people usually use qualitative categories like “A is close to B” or qualitative distance 
comparatives like “A is closer to B than to C”. If quantitative information can also be used 
when considering distance between two entities (absolute distance) like “A is about one meter 
away from B”, comparative distances are purely qualitative. Most approaches to qualitative 
distance consider points as the basic entities. Absolute distance relations are obtained, e.g., by 
dividing the real line into several sectors such as “very close”, “close”, “far”, etc. depending 
on the chosen level of granularity. Relative distance can be obtained by comparing the 
distance to a given reference distance. However, such concepts lead to several reasoning 
difficulties, e.g., transitivity of relationships may depend on the orientation, position of the 
points. This is why distance is often combined with orientation to get positional information. 
Several models have been developed, for example one combining a cone-based orientation 
approach with absolute distance relations (Clementini)   
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As it has been said when introducing orientation calculus, topological information is not 
always sufficient to deal with all the qualitative spatial situations. Between topological space 
and metric space, there are other mathematical spaces which can be used in QSR. One of 



them is the projective space, whose main invariant is collinearity (three collinear points 
remain collinear under projective transformation). Such property is the base of another type of 
relationships; ternary projective relationships (Billen and Clementini). Contrary ternary 
relationships mentioned in the orientation calculus section, these ternary relationships do not 
need an external frame of reference, but only a primary object and two reference objects. The 
space is partitioned into five zones based on the two references objects shapes. The relative 
position of the primary object against the two reference objects is determined by the primary 
object’s intersections with the zones. Such approach is another way to model concept such as 
being on the left, on the right, between, e.g. an object A is left of objects B and C if A 
intersect the zone left(B,C).   
 
Finally, we wish to mention time as a complementary concept of space. QSR is strongly link 
with temporal reasoning, resulting on the development spatio-temporal reasoning. Recently, 
spatio-temporal calculi have been designed. For example, the Spatio-temporal Constraint 
Calculus (STCC) by Gerevini and Nebel combines Allen's interval algebra with RCC-8. 
Moreover, the Qualitative Trajectory Calculus (QTC) allows for reasoning about moving 
objects (Van de Weghe). 

4 CONCLUSIONS 

Qualitative spatial representation and reasoning is so close to human spatial cognition 
processes that it should take a bigger place in geography in the future. It is (should be) of 
prime importance in naïve geography, mental mapping, landscape analysis, and also in 
analysing human behaviour (with time, allowing analysis of spatio-temporal history), etc. 
However, it is a new domain, and there are still a lot of things to be developed; some of space 
aspects still have to be identified, formalised and if possible associated to reasoning processes. 
Furthermore, such models, even if they are based on strong mathematical concepts, can be 
meaningless if not related to some human cognitive perceptions; Cognitive validity of QSR 
models are one of the biggest challenge of this promising scientific domain. 
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