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Abstract

An artificial Neural Network (NNW) is designed to serve as a surrogate
model of micro-scale simulations in the context of multi-scale analyzes in solid
mechanics.

The design and training methodologies of the NNW are developed in order to
allow accounting for history-dependent material behaviors. On the one hand,
a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is
constructed, which allows mimicking the internal variables required to account
for history-dependent behaviors since the RNN is self-equipped with hidden
variables that have the ability of tracking loading history. On the other hand,
in order to achieve accuracy under multi-dimensional non-proportional loading
conditions, training of the RNN is achieved using sequential data. In particular
the sequential training data are collected from finite element simulations on an
elasto-plastic composite RVE subjected to random loading paths. The random
loading paths are generated in a way similar to a random walking in stochastic
process and allows generating data for a wide range of strain-stress states and
state evolution.

The accuracy and efficiency of the RNN-based surrogate model is tested
on the structural analysis of an open-hole sample subjected to several load-
ing/unloading cycles. It is shown that a similar accuracy as with a FE2 multi-
scale simulation can be reached with the RNN-based surrogate model as long
as the local strain state remains in the training range, while the computational
time is reduced by four orders of magnitude.
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1. Introduction

The application of heterogeneous materials increases rapidly in a large va-
riety of engineering and industrial fields. For the purpose of reliable structural
analyzes, accurate modeling of the mechanical response of heterogeneous materi-
als is demanded. Although the ability of computers is developing at high speed,
the coexistence of different phases and their complex geometrical arrangements
make their detailed analyzes using a massive finite element discretization un-
reachable. Therefore, multi-scale methods were extensively developed in order
to carry out a structural analysis at an affordable computational cost.

Homogenization-based multi-scale analyzes have been extensively developed,
see the reviews [1–3]. In these methods, the effect of material heterogeneity is
resolved at a structural material point through an homogenization process.

Among the existing different homogenization methods, computational ho-
mogenization is a purely numerical process, which solves the Boundary Value
Problem (BVP) defined on a Representative Volume Element (RVE) of hetero-
geneous materials using a full field finite element discretization of the micro-
structure. This makes computational homogenization the most versatile ho-
mogenization method since it can be applied on a large variety of heteroge-
neous material systems including for coupled multi-physics problems [4–6]. The
multi-scale analysis based on computational homogenization is usually called
FE2 analysis [7–10]. In such an approach, the macro-scale structure defines a
Boundary Value Problem (BVP) which is solved by considering homogenized
material properties extracted, at each (macro) material point of interest, from
the coupled resolution of meso-scale BVPs, see Fig. 1(a). Although, as a multi-
scale approach, FE2 is theoretically more efficient than a direct full field finite
element model, the requirement of solving the meso-scale RVE BVP in a coupled
way at all the macro-scale material points involves high numerical resources in
terms of time and memory, which limits the applicability of the FE2 multi-scale
simulations to reduced size problems.

Reduce Order Model (ROM) aims at providing an efficient resolution pro-
cess by considering a reduced version of the full-field analyzes. This can be
applied on the meso-scale BVPs involved in the multi-scale analyzes, with the
general idea of trading space for time. Reduced versions of the meso-scale mod-
els are created by projection of the governing equations into suitably selected
sub-spaces based on pre-off-line finite element simulations on the RVE: the num-
ber of displacement degrees of freedom is reduced by means of proper orthogonal
decomposition of the displacement field [11] and a so-called hyper-reduction is
further applied to reduce the computations on internal forces [12, 13]. When
using these ROMs during FE2 multi-scale simulations, the resolution of the
ROM equations is coupled to the macro-scale simulation. Alternatively, the
pre-off-line finite element simulations on the RVE can be used to build a surro-
gate model by means of constructing mapping functions, such as through kernel
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methods [14], artificial neural networks etc. We refer to the review [15]. After
this so-called training step, as illustrated in Fig. 1(b), the surrogate model can
be used as the constitutive law of a single-scale simulation, leading to highly ef-
ficient simulations while still accounting for the micro-structure of the material.
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Figure 1: Homogenization-based multi-scale models: (a) A FE2 multi-scale simulation implies
the coupled resolution of BVPs at the different scales; and (b) The meso-scale BVPs resolutions
during the multi-scale simulation are substituted by a surrogate model trained from pre-off-line
simulations of the meso-scale BVP.

Artificial neural networks (NNWs) have increasingly attracted attention in
the field of computational mechanics, especially in fields where material be-
havior is complex and/or intensive computation is required. A NNW, can be
viewed as a function F : u → v, in which u = [u1 u2 ... un0 ]T is the input and
v = [v1 v2 ... vnN

]T is the output, see Fig. 2. They were used to replace parts of
material constitutive laws, such as evolution laws in irreversible nonlinear ana-
lyzes for visco-plasticity [16], for cyclic plasticity [17] and in [18, 19] for constitu-
tive law of interface. In finite element simulations, NNWs were used as surrogate
for constitutive laws of non-linear materials in [20–22], and of rate-dependent
materials in [23]. NNWs served as a surrogate for an elasto-plastic material
model for parameters identification in [24] and for micro-mechanics model pa-
rameters identification in [25]. In this last reference, NNWs were adopted to
substitute complex material homogenization constitutive laws to accelerate the
massive computations involved in Bayesian inference. NNW was also adopted
as a surrogate of the damaged-elastic response of meso-scale volumes of bones
in [26].

When it comes to use NNWs as a surrogate model in FE2 analyzes, this
can be achieved either by approximating the strain energy density surface as
suggested by [27, 28], the stress-strain responses as achieved by [29–32], or a
function of both the current stress and the plastic dissipation density [22]. Al-
though NNWs have shown to be reliable surrogate models in elasticity and
in non-linear elasticity [27], when it comes to irreversible behaviors, the load-
ing history plays an important role in RVE response involving more difficul-
ties both in the NNW architecture definition and in its training. The NNW
is actually a network of artificial neurons, which perform a weighted sum op-
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Figure 2: Description of a feed-forward Neural Network: (a) An artificial neuron; (b) An
artificial Neural Network.

eration on input (w0 +
∑n0

k=1 wkxk) in order to produce output through an
activation function of the weighted sum f(

∑
), see Fig. 2(a). The most com-

monly used architecture is the feed-forward neural network in which the in-
formation moves only along the forward direction, from the input nodes and
to the output nodes via N − 1 hidden layers, see Fig. 2(b). The weights
wi

kj , with i = 1, ..., N ; k = 1, ..., ni−1 and j = 1, ..., ni, and bias wi
0j , with

i = 1, ..., N and j = 1, ..., ni, see the notations in Fig. 2(b), are obtained
through a so-called training of the NNW. However, since the information moves
only along one direction, in case or irreversible behaviors, a feed-forward neural
network can only be used as surrogate for the RVE resolution of heterogeneous
material under monotonic loading [29]. For general loading conditions, state
variables are needed to account for the loading history at the homogenized ma-
terial level. According to the physical problem under investigation, some state
variables can be defined at the meso-scale level, i.e. on the RVE, and serve as a
part of the input, beside the strain variables, of a feed-forward neural network.
In [30], using state variables with the support vector machine as a solution
strategy for the decision of loading/unloading, a feed-forward network was used
to extract meso-scale resolution for multi-scale failure analysis, but only 1D
loading conditions were considered at the macro-scale. In [31], meso-scale plas-
tic strains were used as state variables and were updated at each loading step
through an empirical model or in combination with another feed-forward neu-
ral network. However, when the RVE has a complex micro-structure, the state
variables are not always easy to be defined and their update is also troublesome
because of the anisotropy induced by the historical dependent behavior, e.g. as
in elasto-plasticity.

The difficulty inherent to the definition of history-dependent state variables
can be avoided by replacing the feed-forward network with a Recurrent Neural
Network (RNN). The idea behind RNNs is to make use of sequential informa-
tion: RNNs are called recurrent because they perform the same task on every
step input of a sequence, with the output being dependent on the previous eval-
uations. We can say that RNNs have a “memory”, which captures information
about what has been calculated so far. A typical illustration of RNNs is pre-
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Figure 3: Recurrent Neural Network, with a hidden state passing trough the input series;
U, V and W are the weights matrix related to the linear operations on the input vector u,
output vector v and internal variables h, respectively. In the recurrent neural network, the
operations at step t use the internal variables evaluated at step t− 1.

sented in Fig. 3, in which u and v are respectively input and output variables
and h are called hidden variables. The latter are used to track the input his-
tory: instead of defining state variables manually, those historical variables can
be extracted automatically during the RNNs training with sequential data. In
order to account for inelastic responses, recurrent neural networks, in particu-
lar Long Short Term Memory networks (LSTMs), were used in [32] to study
cyclic loading of elasto-visco-plastic materials; however only 1D loading condi-
tions were achieved. Nevertheless, theoretically speaking, NNWs should be able
to approximate any multi-dimensional non-linear function accurately under the
conditions that its structure is properly designed and it has been appropriately
trained. Recently, model order reduction with sub-structuring was enhanced
by so-called meta-elements [33], which predict the inside and boundary history
dependent responses of the sub-structures, or patches of elements, through a
neural network. The neural network architecture used was a combination of
convolution –to capture the spatial distribution– and recurrent –to capture the
time history– neural-networks. The training was achieved by random superpo-
sition of different uni-axial and bi-axial loading modes with a random noise.

With the aim of using RNN as a surrogate model of the meso-scale BVP
finite element resolution in the context of FE2 multi-scale simulations, this pa-
per designs a RNN with a Gated Recurrent Unit (GRU). We note that such a
GRU-based RNN has also been used recently in [34, 35] to represent the meso-
scale response of 2D RVEs subjected to non-proportional loading conditions.
In order to achieve accuracy under multi-dimensional non-proportional loading
conditions, the sequential training data are herein collected from finite element
simulations on an elasto-plastic composite RVE subjected to random loading
paths. In this paper, the random loading paths are generated in a way similar
to a random walking in stochastic process, in contrast to [34, 35] where respec-
tively Gaussian process regression and cubic-spline interpolations were used to
generate loading paths in the strain space, and are shown to be efficient for
the training of the RNNs since it encompasses multiple possible stress-strain
histories. Besides, since we formulate the problem in a finite strain setting, the
inputs and outputs are formulated in order to respect the frame indifference of
the meso-scale BVP. As a result, the obtained RNN can be used as an accurate
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surrogate of the meso-scale BVP during FE2 multi-scale simulations as shown
by studying an open hole sample subjected to multiple loading cycles. Although
in this paper only 2D problems are considered, we believe that the method can
be extended without other difficulty than obtaining the training data, to 3D
cases.

The paper is organized as follows. Section 2 summarizes the computational
homogenization framework. The design of the RNN with a Gated Recurrent
Unit (GRU), aiming at serving as surrogate model of the meso-scale BVP finite
element resolution, and the developed training strategy are presented in Section
3. This training strategy is then applied by considering an elasto-plastic com-
posite RVE in Section 4, where it is shown that the RNN can predict random,
cyclic and non-proportional loading in an accurate way. Finally, the method is
applied in the context of FE2 multi-scale simulation, in which several loading
cycles of an open holed sample are studied. The results predicted by the multi-
scale simulation solving the meso-scale BVP using the finite-element method
are compared in terms of cost and accuracy to the case in which the trained
RNN is used as a surrogate. It is shown that the resolution time is dramatically
decreased while accuracy is achieved as long as the loading conditions on the
meso-scale BVP remain in the training range.

2. Homogenization-based multi-scale simulation and computational
homogenization

In this section, we briefly summarize the theory of multi-scale simulations in
the context of finite-strain mechanics. Assuming the meso-scale BVP is solved
using the finite-element method, we then present the main lines of the compu-
tational homogenization framework.

2.1. Homogenization-based multi-scale simulation

The BVPs that have to be solved at the two scales are herein defined and
the scale transition theory is recalled.

2.1.1. Definition of the meso-scale BVP

The meso-scale BVP is usually defined on Representative Volume Elements
(RVEs) which are parallelepipedic (rectangular in 2D), with planar boundary
faces ∂ω, see Fig. 1. At the micro-scale, it is assumed that the classical contin-
uum mechanics equations hold and that the time for a stress wave to propagate
in the meso-scale volume element remains negligible. Considering the material
points x ∈ ω, in the absence of dynamical effects the equilibrium equations read

Pm ·∇0 = 0 ∀x ∈ ω , (1)

Pm ·Nm = Tm ∀x ∈ ∂ω , (2)

where the subscript “m” refers to the local value at the micro-scale, Pm is the
first Piola-Kirchhoff stress tensor, ∇0 is the gradient operator with respect to
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the micro-scale reference configuration, and Tm is the surface traction, per unit
reference surface, on the boundary ∂ω of outward unit normal Nm expressed in
the reference configuration.

The micro-scale problem is completed by the local constitutive laws of the
different materials at a given time t and material point x, which are written as

Pm (x, t) = Pm (Fm (x, t) ;Zm (x, τ) , τ ∈ [0, t]) , (3)

where Fm(x) = I + um ⊗ ∇0 is the micro-scale deformation gradient tensor
evaluated in terms of the micro-scale displacement um with I the second-order
identity tensor, and where Zm is a set of internal variables for history-dependent
processes.

2.1.2. The macro-scale BVP

Assuming no dynamical effects, the macro-scale linear momentum equation
reads

PM(X) ·∇0 + bM = 0 ∀X ∈ Ω , (4)

where the subscript “M” refers to the values at the macro-scale and bM is the
load per unit reference volume. The boundary conditions read

uM(X) = ūM ∀X ∈ ∂DΩ , and (5)

PM(X) ·NM = T̄M ∀X ∈ ∂NΩ , (6)

where T̄M is the surface traction, per unit reference surface, on the Neumann
boundary ∂NΩ of outward unit normal NM expressed in the reference configu-
ration, ūM is the constrained displacement on the Dirichlet boundary ∂DΩ.

The macro-scale BVP should be completed by a relation linking the macro-
scale deformation gradient FM = I + uM ⊗∇0 to the macro-scale stress tensor
PM under the form

PM (X, t) = PM (FM (X, t) ;ZM (X, τ) , τ ∈ [0, t]) , (7)

where, for history-dependent processes, the relation depends on internal vari-
ables ZM. In the context of homogenization-based multi-scale simulation, Eq.
(7) is the mathematical representation of the meso-scale BVP via the scale
transition.

2.1.3. The scale transition

In the context of homogenization theories, the scale transition (7) is rewritten
as a relation between the volume averaging processes of the respective micro-
scale deformation gradient tensor Fm(x) and stress tensor Pm(x) over the meso-
scale volume element ω, with

FM (X, t) =
1

V (ω)

∫
ω

Fm(x, t)dx , and (8)

PM (X, t) =
1

V (ω)

∫
ω

Pm(x, t)dx . (9)
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Under the definitions (8-9), the requirement of energy consistency between
the different scales, which corresponds to the Hill-Mandel condition, yields

PM : δFM =
1

V (ω)

∫
ω

Pm : δFmdx . (10)

A perturbation field u′(x) is introduced in the micro-scale displacement field
um(x), which is thus rewritten under the form

um(x) = (FM − I) · (x− x0) + u′(x) , (11)

where x0 is a reference point of ω. According to the definition (8), this pertur-
bation field should satisfy the condition

1

V (ω)

∫
ω

u′(x)⊗∇0dx =
1

V (ω)

∫
∂ω

u′ ⊗Nmdx = 0 , (12)

where Nm is the outward unit normal to ∂ω expressed in the reference con-
figuration. Using the micro-scale displacement field expressed in terms of the
perturbation field, Eq. (11), the Hill-Mandel condition (10) can be rewritten as

PM : δFM =
1

V (ω)

∫
ω

Pm : δFmdx = PM : δFM+
1

V (ω)

∫
ω

Pm : (δu′ ⊗∇0) dx ,

(13)
or again after integrating by parts and using the equilibrium Eqs. (1-2), as∫

∂ω

(Pm ·Nm) · δu′dx =

∫
∂ω

Tm · δu′dx = 0 . (14)

2.2. Computational homogenization

In the context of FE2 simulations, the virtual material law (7) is implicitly
defined through the concurrent finite-element resolution of the meso-scale BVP
through the scale transition formalism presented in Section 2.1.3. We here
give the main lines of this finite-element resolution, also called computational
homogenization. More details on the implementation can be found in [36].

2.2.1. Definition of the constrained micro-scale finite element problem

The resolution of the meso-scale BVP governed by the strong form (1-2)
needs to satisfy the scale transition Eqs. (12) and (14). Therefore, its weak
form is formulated using trial and test functions part of the minimum kinematic
vector field Umin(ω) defined from Eq. (12) as

Umin(ω) =

{
δu′ ∈ H(ω)|

∫
∂ω

δu′ ⊗ nmdx = 0

}
, (15)

where H(ω) is the Hilbert space.
The weak form of the meso-scale BVP is then stated as finding u′ ∈ U(ω) ⊂

Umin(ω) such that∫
ω

Pm(u′) : (δu′ ⊗∇0) dx = 0 , ∀δu′ ∈ U(ω) ⊂ Umin(ω) , (16)
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where δu′ ∈ U(ω) is a test function belonging to an admissible kinematic vector
field U(ω) subset of the minimum kinematic field Umin. The resolution of this
weak form (16) satisfies the Hill-Mandel condition (10) as it always makes the
second term of the right hand side of Eq. (13) vanish.

This variational statement (16) of the Hill-Mandel condition was introduced
in [37, 38], and is carried out by defining specific boundary conditions on the
meso-scale volume element, with the detailed implementation provided in [36].
There are several commonly applied boundary conditions on the meso-scale
volume elements ω, such as Kinematic Uniform Boundary Conditions (KUBCs),
Periodic Boundary Conditions (PBCs), Zero Average Fluctuation Boundary
Conditions (ZAFBCs), Static Uniform Boundary Conditions (SUBCs), etc.

In this work, the PBCs is adopted for which the admissible kinematic vector
field U is defined by

UPBC(ω) =
{
u′ ∈ H(ω)|u′(x+) = u′(x−) ,

∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω−
}
⊂ Umin(ω) ,(17)

where the parallelepiped faces have been separated in opposite surfaces ∂ω−

and ∂ω+.

2.2.2. Homogenization

The computational homogenization refers to the resolution of the constrained
micro-scale finite element problem (16). This process can be itemized as follows:

• A chosen RVE which represents the micro structure of the heterogeneous
material, is discretised using the finite element method;

• Using the deformation gradient tensor FM, the micro-scale finite element
problem is formulated by its weak form (16) and its boundary condition
(17);

• The application of periodic boundary conditions on non periodic micro-
structures follows the interpolation method [39];

• The constrained micro-scale finite element problem is iteratively solved
following the multiple-constraint projection method set up in [40] and
detailed in [36];

• The extraction of the meso-scale response includes

1. The extraction of the homogenized first Piola-Kirchhoff stress tensor
PM = 1

V (ω)

∑
e

∫
ωe Pmdx; and

2. The extraction of the fourth order macro-scale material tensor CM =
∂PM

∂FM
required at the macro-scale in order to perform the Newton-

Raphson iteration of the multi-scale analysis.

The computational homogenization method is thus seen as a finite element
analysis which computes the meso-scale responses PM and CM of a certain RVE
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under given FM. Since this iterative process needs to be carried out at each
Gauss point of the macro-scale finite element, and has to be repeated for each
macro-scale iteration, it is the most computationally expensive process of FE2

analysis. In order to speed up the multi-scale analysis, a surrogate model is
adopted to replace the costly homogenization computation.

3. Design and training of the Recurrent Neural Networks (RNNs) as
a surrogate model

In the previous section, the virtual material law (7) was obtained through the
computational homogenization of the meso-scale BVP as presented in Section
2.2. In this section we aim at substituting this finite-element resolution by a
surrogate model. In that case, the computational homogenization of the meso-
scale BVP is performed pre-off-line and the results are used to train the surrogate
model.

In this work, in order to account for history-dependent behaviors, we con-
sider as surrogate model a Recurrent Neural Networks (RNNs). RNNs have
a “memory” under the form of hidden variables h used to track the input u
history when predicting the output v, see Fig. 3. These hidden variables can
play a comparable role to the internal variables ZM in the analysis of an history-
dependent physical processes. During a nonlinear finite-element analysis, the
physical internal variables ZM defined in Eq. (7) are required to be stored at
each Gauss point in order to record the loading history of the material points. In
the context of a multi-scale simulation, the internal variables ZM at one Gauss
point of the macro-scale discretisation actually consist in all the sets of internal
variables Zm used at every Gauss points of the micro-structure associated to
this macro-scale Gauss point. For a complex RVE, this leads to thousands of
physical internal variables. However, the involved physical internal variables
on a RVE might not be totally independent, which can be evidenced by the
applications of order reduction methods when performing computational ho-
mogenization. In fact, NNWs are also used as a general algorithm for nonlinear
order reduction in some applications. The RNN hidden variables naturally arise
during the training and can be viewed as the nonlinear order reduction counter-
part of the real physical internal variables of the RVE. These hidden variables
thus play the role of the internal variables ZM in the analysis of an history-
dependent physical process, and have to be stored at each Gauss point of the
macro-scale finite element simulation. The set of internal variables ZM in Eq.
(7) thus coincides to the hidden variables vector h.

However, remembering information for long periods of time is not the default
behavior of all kinds of RNNs: only special kinds of RNN are capable of learning
long-term dependencies. Long Short Term Memory networks (LSTMs) are one
of those kinds of specially designed RNNs and are now widely used in a large
variety of problems. Another one is Gated Recurrent Unit (GRU), which is also
considered as a variation of the LSTM because of their similar design.

In this section, we first present the GRU architecture which is used in this
work before detailing the generation strategy of the data that will be used for
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the training and testing of the RNN. Finally the training and testing of the
RNN are particularized for batch training.

3.1. The structure of adopted recurrent neural network

 

Hidden State, 

ht 

Input,  ut 

Output,  vt 

Update 
Gate 

Reset 
Gate 

Hidden State, 

ht-1 

Feed forward NNWI

Feed forward NNWO

GRU unit 

Figure 4: Recurrent Neural Network with a Gated Recurrent Unit.

In this study, GRU is chosen as surrogate for the direct finite element resolu-
tion of the RVEs. The typical functional character of GRU is illustrated by the
block of a GRU unit in Fig. 4. In a model, previous hidden state information
ht−1 and current input ut need to pass through the reset and update gates,
which are respectively used to decide how much of the past information can be
forgotten and how much of the past information needs to be passed along to
the future. More details on the GRU operations can be found in Appendix A.
A basic GRU module (GRU unit) is already provided by the PyTorch library
[41]. In this work, instead of using a single GRU unit, two feed-forward NNWs,
see Fig. 2, are respectively added in the paths of input and output, denoted by
NNWI and NNWO in Fig. 4. This gives more flexibility to the model than a
single GRU unit, so that it can adapt to complex problems.

For the micro-structure adopted in this study, a 2D RVE under plane strain
condition as it will be detailed in Section 4, the structures of the two feed-forward
NNWs are respectively one hidden layer with “60” neurons for NNWI, and two
hidden layers with “100” neurons for NNWO. The “Leaky ReLU” is chosen as
the activation function in the feed-forward NNWs. The dimension of the hidden
state h is also “100”, meaning that the size of the internal variables ZM to be
stored at each Gauss point of the macro-scale finite element discretisation is
also 100.

The details of the input and output variables will be given in next section.
The basic training operations of NNWs, such as computation and optimization
of loss function and update of weights, follow the recommendations provided by
PyTorch library [41] and are thus omitted in this paper.
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3.2. Generation and preparation of data for the training and testing of the RNN

In Section 2.2, it appeared that the computational homogenization frame-
work provides both the homogenized stress tensor PM and its derivative CM

for a given homogenized deformation gradient FM. The surrogate model should
naturally thus use as input FM and provides as output PM and CM.

We here detail how to reduce the dimensions of the input and output of the
RNN, and how to generate the data required for its training and testing.

3.2.1. Input and output variables of the RNN

Since the resolution of the meso-scale BVP respects the frame indifference,
the rigid rotation mode can be eliminated by using the Green-Lagrange strain
tensor EM and the 2nd Piola-Kirchhoff stress tensor SM to describe the stress-
strain relationship, instead of using directly FM and PM. Particularly for a
2D RVE under plane strain condition, we have thus reduced the input to u =
{EMXX

, EMY Y
, EMXY

}, and the output to v = {SMXX
, SMY Y

, SMZZ
, SMXY

},
see Fig. 4 for the notations.

The required input of the RNN, i.e. EM, and of the macro-scale analysis, i.e.
PM, are then obtained from the output of respectively the macro-scale analysis,
i.e. FM, and of the RNN, i.e. SM, following

EM =
1

2

(
FM

T · FM − I
)
, and (18)

PM = FM · SM . (19)

The macro-scale material tensor CM required by the macro-scale simulation,
can be deduced from the derivative ∂SM

∂EM
, which is computed either by the “Au-

tomatic Differentiation function” of the RNNs or by a perturbation method.

3.2.2. Data collection of the meso-scale BVP simulations

The training and testing data are provided by performing several computa-
tional homogenizations on the same RVE. Because of the frame indifference of
the meso-scale BVP, EM is chosen to be the input of our RNN. However, EM

can not be used directly to define the boundary condition (17) on the RVE.
Therefore, the right stretch tensor UM is used as a connection between EM and
FM. Indeed FM has a unique decomposition RM ·UM, where RM is a rotation
tensor. For the purpose of training and testing, this rotation can be defined ar-
bitrarily because of the frame indifference of the meso-scale BVP and, therefore,
RM = I.

The preparation of data for training and testing of the RNN is thus as follows

• Generate UM histories as detailed in Section 3.2.3;

• For a given UM, the meso-scale BVP is defined according to FM computed
by

FM = RM ·UM , (20)
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and the RNN input according to

EM =
1

2

(
U2

M − I
)

; (21)

• The resolution of the meso-scale BVP provides PM, which to be used to
train and test the RNN is framed under SM using

SM = F−1M ·PM . (22)

3.2.3. Random loading path

Because the studied material system is loading history-dependent and be-
cause RNNs require sequential data for training, UM data need to be defined as
a sequence. Considering the involved dimensions of UM and the large variety
of possible loading/unloading paths that can locally arise during a multi-scale
simulation, using proportional loading paths as a sequence is not an optimal
choice.

In another context in which a feed-forward NNW was trained to predict
monotonic response for different material parameters, random combinations of
the input variables were used to create the training data in [25]; in this work,
500 random combinations of 6 material parameters were used for the NNW
training. Compared to using the input values defined from a regular grids of
high dimension data space, the random combination of input variables turned
out to be more efficient. In this work we adopt a similar approach to generate
sequential training data by considering series of random loading paths, which
are like a random walking in a stochastic process.

A random loading path {UMt
} is defined by a sequence of right stretch

tensor, such as UM0
, UM1

, ..., UMN
, where UM0

= I is the starting stage of the
loading path. The loading increment, ∆UMn

= UMn
− UMn−1

, is a random
vector which permits the loading path to change the loading direction at each
step, and thus to cover the maximum of non-proportional loading conditions
within a limited number of steps.

As a symmetric second-order tensor, the increment of the right stretch ten-
sor, ∆UMn

, admits a spectral decomposition form expressed as,

∆UM = ∆λ1n1 ⊗ n1 + ∆λ2n2 ⊗ n2 + ∆λ3n3 ⊗ n3 , (23)

where the eigenvectors n1, n2, and n3 control the direction of the loading path,
and the eigenvalues ∆λ1, ∆λ2, and ∆λ3 control the increment size. Therefore,
the generation of ∆UM requires the generation of a set of orthogonal vectors
n1, n2, and n3, and eigen-values ∆λ1, ∆λ2 and ∆λ3.

Considering the 2D case, n3 is fixed and the random orthogonal vectors
n1, n2 can be obtained by generating a uniformly distributed angular random
variable with realization α ∈ [0, π), with

n1 = [cosα sinα]T and n2 = [− sinα cosα]T . (24)
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The three eigenvalues are generated in order to satisfy
√

∆λ21 + ∆λ22 + ∆λ23 ≤
∆R, where ∆R is a defined upper bound of the step size. We note that sub-steps
may be needed in order to guarantee the numerical convergence of micro-scale
resolution in the case

√
∆λ21 + ∆λ22 + ∆λ23 is too large. Still considering the 2D

case, only ∆λ21 and ∆λ22 have to be generated, and it can easily be achieved
by a random split of a random variable with realization R ∈ (0,∆R2], or
∈ (∆R2

min, ∆R2] to avoid too small steps to bring new information. Practically
the random split is achieved by considering two independent random variables
uniformly distributed with realizations R ∈ (∆R2

min, ∆R2] and θ ∈ [0, 2π),
yielding

∆λ1 =
√
Rcos(θ), and ∆λ2 =

√
Rsin(θ) . (25)

Finally, the random walk or path is stopped when a criterion on the reached
strain is met; e.g. when the eigen-values of UMN are such that

√∑
i(λi − 1)2 >

Rmax, where Rmax is a given critical value.
In this work, ∆R = 5 × 10−3 and Rmax = 0.1 are used to generate random

loading paths. Besides thousands of random loading paths (each of them having
tens, hundreds or thousands of computation points depending on the path), tens
of proportional cyclic loading paths are also used to create training data. For
the latter the loading direction and reversal time are also randomized. Indeed,
some strain state histories might not be covered by random loading paths, and
proportional loading paths can help the training data to reach a better coverage
of the strain space.

3.3. Training with data in batches

Before training our NNW, all the input and output features must be stan-
dardized because the input/output features may not have the same scale, and
the input of the activation functions might be out of their active range. For
each feature, noted with χ, a simple linear operation is performed, which reads

χ =
(χ− χm)

χs
, (26)

with

χm =
(χmin + χmax)

2
and χs =

(χmax − χmin)

2
, (27)

where χmax and χmin are the maximum and minimum values of this feature
among all the available data used for training so that the features are mapped
to the range [−1, 1].

Since the training data sequences are obtained by a random walking process
and since the random walking process will be terminated when a critical strain
measure is reached, the length of the resulting data sequences are different for
each path. While RNNs are typically able to take as inputs sequences of variable
size, training data will usually be fed in batches to speed up the training process.
In order to use batches to train from the data, it is needed to ensure that each
sequence within the training data is of equal size. In most cases, padding is done
by filling up sequences that are too short with 0 values and trimming sequences
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that are too long. In our case, long sequences are trimmed from their end and
for short sequences, both zero padding at their beginning and repeatedly adding
the last element at their end are applied. Among the more than 9000 generated
sequential data, 30% of them are used for training. The length of these data
varies from 70 to 2000, with around half of the data having a length lower than
200 and more than 96% of them having a length lower than 1000. Therefore
they were first all set to have a length of 200 for fast training, and then set to
the length of 1000 for further training.

The developed RNN is characterized by hidden state variables that should
be initialized for the first input of a sequence. Usually, hidden state variables
are initialized to 0 for a wide variety of applications. However, after a few trial
and errors of training, the value ”− 1” is adopted to initialize the hidden state
variables in our application.

4. Trained surrogate model of an elasto-plastic composite RVE

In this section, we apply the training strategy developed in Section 3 on an
elasto-plastic composite micro-structure. The composite RVE is first described
and then the accuracy of the trained RNN is assessed by comparing the results
of the finite element simulations performed on the RVE with the RNN prediction
for new loading paths, i.e. for loading conditions that were not used during the
training process.

4.1. Description of the meso-scale BVP

X

Y

Z

Figure 5: Finite element mesh of the microstructure volume element of dimension
0.02mm×0.02mm used to generate the data-base.

The micro-scale simulations are performed on a 2D RVE of a 39.9% con-
tinuous fiber reinforced elasto-plastic matrix material whose micro-structure is
depicted in Fig. 5.
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4.1.1. Fiber material model

The fibers obey a hyperelastic law based on an elastic potential

ψf(C) =
Kf

2
ln2 J +

µf

4
(lnC)

dev
: (lnC)

dev
, (28)

where J = detF is the Jacobian, C = FT · F is the right Cauchy strain tensor,
(•)dev denotes the deviatoric part of an arbitrary second-order tensor •, Kf and
µf correspond to respectively the bulk and shear modulii of the material. Then,
the stress on the fiber phase is computed by

P =
∂ψf (F)

∂F
= KfF

-TlnJ + F-T ·
[
µf lnCdev

]
. (29)

4.1.2. Matrix material model

The matrix obeys a finite strain J2 elasto-plastic constitutive model [42].
The deformation gradient F is decomposed into the reversible elastic part Fe

and the irreversible plastic part Fp such that F = Fe ·Fp. The elastic potential
energy is defined as

ψm(Ce) =
Km

2
ln2 J +

µm

4
(lnCe)

dev
: (lnCe)

dev
, (30)

where Ce = FeT ·Fe, and Km, and µm correspond to the bulk and shear modulii
of the matrix material. The first Piola-Kirchhoff stress tensor P derives from
the elastic potential (30) following

P =
∂ψm (F;Fp)

∂F
= KmF

-T ln J + µmF
e ·
[
Ce−1 · (lnCe)dev

]
· Fp -T . (31)

The elastic part Fe and the plastic part Fp of the deformation gradient are
obtained through a J2 plastic flow expressed in terms of the Kirchhoff stress.
The Kirchhoff stress κ = P · FT is first computed by Eq. (31) as

κ = Km ln JI + µmF
e ·
[
Ce−1 · (lnCe)dev

]
· FeT . (32)

The equivalent von Mises stress is then calculated through the deviatoric part

of κ, i.e. τeq =
√

3
2κ

dev : κdev. According to the J2-plasticity theory, the von

Mises stress criterion reads

f = τeq − τ0y −R(γ) ≤ 0 , (33)

where f is the yield surface, τ0y is the initial yield stress, γ is the equivalent
plastic strain and where the isotropic hardening stress R(γ) takes the form

R(γ) = Y [1− exp(−kγ)] , (34)

with Y and k material constants. The evolution of Fp is determined by the
normal plastic flow theory following

Ḟp = γ̇N · Fp , (35)

where N is the normal to the yield surface, see [42] for more details.
Finally, the material properties used in this work are reported in Tab. 1.
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Table 1: Material properties for fibers and matrix.

Fiber Matrix
Kf [GPa] µf [GPa] Km [GPa] µm [GPa] τ0y [MPa] Y [MPa] k [-]

16.67 12.50 2.50 1.15 100 20 30

4.2. Comparisons of RNN predictions to the direct finite element simulations

As previously said, around 9000 loading paths were used to generate the
micro-scale finite simulations data-base, from which 30% were used to train the
RNN. The accuracy of the trained RNN is first evaluated by the Mean Squared
Error (MSE), which reads

LMSE =
1

n

n∑
i=1

(vi − v̂i)2 , (36)

where vi and v̂i are respectively the actual and the predicted normalized out-
puts. The number of loading paths used for the training is controlled by the
decrease of the MSE. However, because of the limitation of the computer mem-
ory, and in order to remain efficient, we proceed by adding successive batches of
limited number of training load paths and by performing warm-start training,
i.e. performing a training using the previously trained parameter values and
the training state variables of the optimization process, until the MSE reaches
a value below the targeted threshold. A final value of MSE ≈ 4.3 × 10−6 was
obtained for the RNN with the testing data, i.e. the data that were not used
for training, having a length of 200. The accuracy is about MSE ≈ 1.5 × 10−5

for the testing data having a length of 1000.
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]
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(a) Random walking paths
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]
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0.00
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(b) Cyclic loading paths

Figure 6: Illustration of the loading paths considered to test the accuracy of the RNN: (a)
Four loading paths obtained using a random walking process; and (b) Four cyclic loading
conditions of random orientation and reversal times.

The accuracy of the trained RNN is also assessed intuitively by comparing
the RNN predictions to the direct finite element simulations, still for loading
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cases which were not part of the training data. We successively consider as test-
ing data, four random loading paths and four cyclic loading paths as illustrated
in Fig. 6 in terms of the {EMXX

, EMY Y
, EMXY

}-trajectories.

4.2.1. Testing on random loading paths
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Figure 7: Comparison between the stress history predicted by the RNN and computed by the
direct finite element analysis on the RVE for the random walking paths reported in Fig. 6(a).

The four random loading paths used for the testing are illustrated in Fig.
6(a). The corresponding stresses, {SMXX

, SMY Y
, SMZZ

, SMXY
} obtained with

both the finite element resolution of the meso-scale BVP and with the trained
RNN are presented in Fig. 7 with the same color as their respective loading
paths. A good agreement between the RNN predictions and the finite element
results can be seen despite the complexity of the loading conditions.

4.2.2. Testing on cyclic loading paths

Cyclic random loading paths are also used to evaluate the accuracy of the
trained RNN, by considering the four proportional loading cycles defined by
{EMXX

, EMY Y
, EMXY

} illustrated in Fig. 6(b). The comparison between the
RNN predictions with the results obtained by direct finite element analyzes of
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Figure 8: Comparison between the stress history predicted by the RNN and computed by the
direct finite element analysis on the RVE for the random cyclic loading paths reported in Fig.
6(b).

the cyclically loaded is reported in Fig. 8 in terms of the {SMXX
, SMY Y

, SMZZ
, SMXY

}
evolution, and with the same color as their respective loading path description.
These figures show that the trained RNN can predict the different cyclic re-
sponses with accuracy.

4.2.3. Discussion

Although good predictions are observed in Figs. 7 and 8, a few less accurate
results are also presented in Fig. 9. For two selected loading paths, we can see
that the stresses SMXX

, SMY Y
and SMZZ

are well predicted by RNN, see Figs
9(a)-9(c). However only the general trend of the shear stress SMXY

is captured
and the relative error of the RNN prediction is high, see Fig. 9(d).

This poor prediction only happens at low shear stress state, see the stress
scale in Fig. 9(d) and is due to the loss function adopted during the training
of our RNN. Indeed, the training is a process that identifies the parameters of
the NNWs through a minimization of the defined loss function. The MSE, Eq.
(36), is used as a loss function in this work. Since it is measured as the average
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Figure 9: Comparison between the stress history predicted by the RNN and computed by
the direct finite element analysis on the RVE for loading paths resulting in lower shear stress
SMXY

.

of the squared difference between the normalized predictions v̂i and the actual
normalized values vi, only the absolute error is minimized during the training.
So when a batch of data is used in NNW training, the data with high stress
state dominate the optimization process. This issue can be improved by adding
weight in loss function, with a higher weight considered for low stress states or
by using relative error when defining the loss function. However, because the
inaccuracy only appears for stress component more than one order of magnitude
lower than the governing response, we keep this trained RNN for the multi-scale
simulation.

5. Multi-scale analysis comparison on open hole sample

In this section we introduce the RNN as a surrogate of the material law (7)
so that macro-scale analyzes can be conducted. We then study an open hole
sample subjected to several loading/unloading cycles and compare the response
obtained with a fully coupled FE2 analysis with the one obtained using the

20



surrogate model. In order to discuss on the accuracy of the surrogate model
and to show its limitations, we consider cycles within the range of the training
data, but also out of this range. Finally, the computational cost breakdown is
analyzed for both approaches.

5.1. Implementation of RNN surrogate model in multi-scale analyzes

The implementation of the RNN as a surrogate model of the material law (7)
follows the traditional implementation of material laws in a finite element code.
The hidden variables h of the RNN are saved as internal variables at each Gauss
point, while the trained RNN is saved at the material law level. In particular,
since our RNN is coded and trained in Python with the library PyTorch [41],
it is stored as a script module which can be loaded either from Python or
from a compiled C++ code. In this work this last option is selected in order to
ensure the computational efficiency. The macro-scale material tensor CM, which
is defined by ∂PM

∂FM
, can be computed either from “Automatic Differentiation

function” of NNWs –in which case it is actually ∂SM

∂EM
which is evaluated and

which is transformed to get CM– or by a perturbation method. In our case,
the two methods yield the same simulation results, however, it turns out that
using perturbation is more efficient than using the “Automatic Differentiation
function”.

5.2. Numerical application on an open hole sample
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Figure 10: Multi-scale simulation: (a) Definition of the macro-scale and meso-scale BVP; and
(b) Displacement vs. reaction force curves obtained by the FE2 and the FE-RNN analyzes.

In this section we consider, at the macro-scale, the open hole sample illus-
trated in Fig. 10(a), while the meso-scale BVP is defined by the RVE described
in Section 4.1. The open hole sample is subjected to the boundary condition
illustrated in Fig. 10(a): the sample is loaded on its top edge under controlled
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displacement, which increases from 0 to 0.05 mm with two partial unloading-
reloading cycles in the middle and a final decrease to 0. Because of the ge-
ometrical and loading symmetry, only one quarter of an open hole sample is
considered for the simulations.

As a reference, a concurrent multi-scale analysis, denoted by FE2, is con-
ducted in which the meso-scale BVP is solved using the finite element method
in a concurrent way with the macro-scale BVP. The resulting reaction force
to displacement curve is presented in Fig. 10(b). The response predicted by
the RNN as surrogate model is also reported in Fig. 10(b). The overlap of
two displacement-reaction force curves shows that a good accuracy is obtained
with the RNN surrogate model including up to point “B” after the second
unloading-reloading cycle. We will show later that point “B” corresponds to
the range limit of the RNN training. However, although the range limit of the
training is reached and a slight divergence of the two curves can be seen after the
loading point “B” in Fig. 10(b), the elastic unloading and reverse compression
responses are still well reproduced with the RNN surrogate model.

Figure 11 compares the strain and stress distributions obtained using the
RNN surrogate model and the FE2 simulations. The Green-Lagrange strain
component EMY Y

and the Cauchy stress component σMY Y
deduced from the

second Piola Kirchhoff stress tensor following

σM = J−1M FM · SM · FT
M , (37)

where JM = det(FM), are used for visualization, on the one hand because the
Green-Lagrange strain directly gives an indication on the the strain state with
respect to the training range, and on the other hand because the Cauchy stress
tensor is easier to interpret than the second Piola Kirchhoff stress tensor. Fig-
ures 11(a) and 11(b) illustrate the strain and stress distributions in the sample
at loading point “A” referenced in Fig. 10(b) just before the second unload-
ing. In these figures, it can be seen that the RNN surrogate model predicts
strain and stress distributions in good agreement with the ones of the FE2

simulation. At loading point “B”, as denoted in Fig. 10(b) after the second
loading/unloading cycle, although the two displacement-reaction force curves
overlap and although the stress distributions obtained by the two methods are
similar, see Fig. 11(c), the maximum strain, EMY Y

, obtained by RNN surro-
gate model is slightly underestimated compared to the FE2 simulation, see Fig.
11(c). Finally, at loading point “C” referred on Fig. 10(b) at maximum loading,
the reaction force is over-predicted and the maximum strain EMY Y predicted
by the RNN surrogate model is much lower than the one computed by the FE2

simulation. The location where the stress σMY Y
reaches its maximum value is

not really accurate either, see Figs. 11(e) and 11(f).
The observed inaccuracy of the RNN surrogate model at point “C” is ex-

plained by investigating the range of data used during training. As a reminder
Rmax = 0.1 was used as the termination criterion for generating the random
loading paths in Section 3.2.3, and we here below extract the maximum and
minimum values of input features from all the obtained loading paths used for
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training the RNN, yielding

EMXX
∈ [−0.0984, 0.1088] ,

EMY Y
∈ [−0.0985, 0.1091] , and

EMXY
∈ [−0.0743, 0.0734]. (38)

When considering the strain distribution at point “A”, Fig. 11(a), it appears
that we remain in this range, while the strain at point “B” is close to its bound-
ary, see the maximum strain, EMY Y

, in Fig. 11(c) emphasized by green circle.
This explains why the predictions are slightly less accurate at point “B”. Fur-
thermore, at loading point “C”, the maximum value of the strain EMY Y

reached
with FE2 simulation is out of the range of the training data, see the strain dis-
tributions in Fig. 11(e) emphasized respectively by green and red circles. This
explains the poor prediction observed in Fig. 10(b) at this loading point “C”,
which results from an inaccurate stress prediction by RNN, as illustrated in
Fig. 11(f) and emphasized by the green and red circles. It is known that NNWs
have a weak capability of extrapolation, so it is not surprising that the NNWs
prediction is inaccurate when the inputs are out of the range of their training
data. We note that a strategy could be developed to shift to another (Reduced
Order) model when the strain state get out of the training range as in [29].

At the end, we can state that RNNs can be used as an efficient and accurate
surrogate for meso-scale BVP in computational multi-scale analyzes, if they are
trained with adequate data whose range is wide enough to make sure that all
the possible input will fall in it.

5.3. Cost comparison

Table 2: Computational cost breakdown.

Pre-off-line FE2 FE-RNN
Data generation - 9000 × 2 hour-cpu
Training - 3 day-cpu

On-line FE2 FE-RNN
Multi-scale simulation 18000 hour-cpu 0.5 hour-cpu

The computational cost breakdown of the two simulation methodologies is
reported in Table 2.

The computation time of the coupled FE2 multi-scale simulation took around
30 hours using 600 processors on a cluster. In comparison the analysis with the
RNN surrogate model required around one half hour on a single Core i5-Intel
processor, yielding a tremendous computational resource decrease.

Of course the RNN-FEM model required some time to be set up. Generating
the data for the 9000 loading paths required around 2 hour per path generation.
Since this step is fully scalable, this was achieved in around 2 days using 350 pro-
cessors. The training of the RNN using 30% of the data was a time-consuming
step of about 3 days on a single Core i5-Intel processor. Nevertheless, once the
RNN is trained it can be used to conduct other simulation at no extra-cost.
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Figure 11: Comparisons of the Green-Lagrange strain and Cauchy stress distributions of an
open-hole sample obtained by the finite element simulation using the RNN surrogate model
and by the FE2 method; The loading points “A” to “C” refer to the markers on Fig. 10(b).

6. Conclusions

In this work, we designed Recurrent Neural Network (RNN) based on a
Gated Recurrent Unit, to serve as a surrogate of the meso-scale BVP in the
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context of computational multi-scale analyzes. With this architecture, inter-
nal variables required to account for history-dependent behaviors are implicitly
represented since the RNN is self-equipped with hidden variables that have the
ability of tracing loading history once the RNN is trained using sequential data.
This feature of RNNs makes it very attractive in mechanical applications, in
which historical dependence is commonly met for irreversible material behav-
iors.

In order to achieve accuracy under multi-dimensional non-proportional load-
ing conditions, we have generated training data from a meso-scale composite
RVE subjected to random loading paths. The random loading paths were gen-
erated in a way similar to a random walking in stochastic process so that a max-
imum of stress-strain state evolutions are used for the training of the RNNs. We
have shown on the testing data that the trained RNN can predict both random
non-proportional stress-strain evolutions and random cyclic loading paths.

When it comes to structural analyzes, a similar accuracy as with a FE2 multi-
scale simulation can be reached with the RNN-based surrogate model as long
as the loading case remains in the training range. This has been exemplified by
considering an open hole sample subjected to several loading/unloading steps,
in which it was shown that the two approaches predict similar results as long as
the local strain state remains in the training range, while a discrepancy in the
global response is observed when the local strain get out of this range. We note
that because of the training strategy, the range of training data is expressed
as bounds on the different strain components. When applied on structural
analyzes, the RNN-based surrogate model allows reducing the computational
time by four order of magnitude as compared to FE2 multi-scale simulations.
Although the generation of data and the training stage also require important
computational resources, once trained the RNN-surrogate model can be used
for several simulation cases.

Although the presented methodology is exemplified with a 2D micro-structure,
the 3D case is not expected to involve more difficulties other than generating
larger data and requiring more training time. In this work, only stress-strain
responses are considered. However, any desired physical variables, internal vari-
ables, such as plasticity, energy, and or damage etc. can also be extracted from
the resolution of meso-scale BVP and included in the output of the RNN so
that this micro-scale information remains accessible for interpretation purpose.
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Appendix A. Details on inner-working of the GRU
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Figure A.12: Detailed GRU architectur; the trainable model parameters are the weights
matrices Wm×n

u’U , Wm×n
u’R , Wm×n

u’ , Wn×n
hU , Wn×n

hR , Wn×n
h and bias vectors bnU , bnR,1 and

bnR,2, where the superscripts m and n refer respectively to the dimensions of the input vector

u′ and of the hidden variables vector h, the output vector v′ having also the dimension n,
and the subscripts u’, h, R, U refer respectively to the input variables, hidden variables, and
constructed Reset vector and Update vector.

The structure of the GRU presented in Fig. 4 is detailed in Fig. A.12. The
different operation symbols used in Fig. A.12 are

• + : the element-wise sum operator on two vectors of same dimension,
which can be expressed as r = x+ y;

• 1− : The element-wise operator on vector x, which reads r = 1− x;

• × : The element-wise multiplication, or Hadamard product, on two vec-
tors, x and y, of same dimension, which reads ri = xiyi.

• σ : The non-linear activation sigmoid function, which reads,

σ(x) =
1

1 + exp(−x)
, (A.1)

and returns values in the range 0 to 1;
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• tanh : The non-linear activation hyperbolic tangent function.

The structure of the GRU presented in Fig. A.12 can be broken down into
three main parts: the reset gate (Blue path), the update gate (Green path)
and the combination of the outputs (Orange path). The three paths are now
summarized:

• Reset gate (Blue path): uses the previous hidden state ht−1 and current
input data u′t, which in our case is the output of the input feed forward
NNWI , see Fig. 4. The weighted sum vector passes through a sigmoid
function, which transforms the values to make them fall between 0 and 1
in order to obtain a Reset vector whose aim is to filter the less-important
and more-important information for the subsequent steps. The previous
hidden state is first multiplied by a trainable weight and then undergoes an
element-wise multiplication with the Reset vector. This operation decides
which information is to be kept from the previous configuration together

with the new inputs. Then a non-linear activation tanh function is ap-
plied on the weighted sum of the current input and the product of the
Reset vector and previous hidden state.

• Update gate (Green path): also uses the previous hidden state ht−1
and the current input data u′t and performs similar operations as in the
reset gate, but with different weight matrices. The Update vector then
undergoes an element-wise multiplication with the previous hidden state
(unweighted ht−1). The update gate helps the model to determine how
much of the past information stored in the previous hidden state needs to
be retained for the future.

• Outputs combination (Orange path): consists in an element-wise 1− -
operation applied on the Update vector followed by an element-wise mul-
tiplication with the output from the reset gate (unweighted). The purpose
of this operation is for the update gate to determine what portion of the
new information should be stored in the hidden state. Lastly, the result
from the above operations is summed (unweighted) with the output from
the update gate element-wise multiplied with the previous hidden state
(unweighted) in order to provide the updated hidden state vector, the
output vector being the same as the latter.

All the weight matrices W and bias vectors b used in Fig. A.12 are updated
when the entire network is trained through back-propagation.
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