The complete genome sequence of the Gram-positive bacterium Bacillus subtilis ``` F. Kunst¹, N. Ogasawara², I. Moszer³, A. M. Albertini⁴, G. Alloni⁴, V. Azevedo⁵, M. G. Bertero^{3,4}, P. Bessières⁵, A. Bolotin⁵, S. Borchert⁶, R. Borriss⁷, L. Boursier³, A. Brans⁸, M. Braun⁹, S. C. Brignell¹⁰, S. Bron¹¹, S. Brouillet^{3,12}, C. V. Bruschi¹³, B. Caldwell¹⁴, V. Capuano⁵ R. Borriss', L. Boursier³, A. Brans⁸, M. Braun⁹, S. C. Brignell¹⁰, S. Bron¹¹, S. Brouillet^{3,12}, C. V. Bruschi¹³, B. Caldwell¹⁴, V. Capuano⁵, N. M. Carter¹⁰, S.-K. Choi¹⁵, J.-J. Codani¹⁶, I. F. Connerton¹⁷, N. J. Cummings¹⁷, R. A. Daniel¹⁸, F. Denizot¹⁹, K. M. Devine²⁰, A. Düsterhöft⁹, S. D. Ehrlich⁵, P. T. Emmerson²¹, K. D. Entian⁶, J. Errington¹⁸, C. Fabret¹⁹, E. Ferrari¹⁴, D. Foulger¹⁸, C. Fritz⁹, M. Fujita²², Y. Fujita²³, S. Fuma²⁴, A. Galizzi⁴, N. Galleron⁵, S.-Y. Ghim¹⁵, P. Glaser³, A. Goffeau²⁵, E. J. Golightly²⁶, G. Grandi²⁷, G. Guiseppi¹⁹, B. J. Guy¹⁰, K. Haga²⁸, J. Haiech¹⁹, C. R. Harwood¹⁰, A. Hénaut²⁹, H. Hilbert⁹, S. Holsappel¹¹, S. Hosono³⁰, M.-F. Hullo³, M. Itaya³¹, L. Jones³², B. Joris³, D. Karamata³³, Y. Kasahara², M. Klaerr-Blanchard³, C. Klein⁶, Y. Kobayashi³⁰, P. Koetter⁶, G. Koningstein³⁴, S. Krogh²⁰, M. Kumano²⁴, K. Kurita²⁴, A. Lapidus⁵, S. Lardinois⁸, J. Lauber⁹, V. Lazarevic³³, S.-M. Lee³⁵, A. Levine³⁶, H. Liu²⁸, S. Masuda³⁰, C. Mauël³³, C. Médigue^{3,12}, N. Medina³⁶, R. P. Mellado³⁷, M. Mizuno³⁰, D. Moestl⁹, S. Nakai², M. Noback¹¹, D. Noone²⁰, M. O'Reilly²⁰, K. Ogawa²⁴, A. Ogiwara³⁸, B. Oudega³⁴, S.-H. Park¹⁵, V. Parro³⁷, T. M. Pohl³⁹, D. Portetelle⁴⁰, S. Porwollili⁷, A. M. Prescotti⁸, E. Prescan³, P. Pujic⁵, B. Purnelle²⁵, G. Rapoport¹, M. Rey²⁶, S. Reynolds³³, M. Rieger⁴¹, C. Rivolta³³, E. Rocha^{3,12}, B. Roche³⁶, M. Rose⁶, Y. Sadaie²², T. Sato³⁰, E. Scanlan²⁰, S. Schleich³, R. Schroeter⁷, E. Scoffone⁴, L. Sekiguschi⁴², A. Sekowska³, S. L. Seror³⁶, P. Serror⁵, R.-S. Shin¹⁵, B. Soldo³³, A. Sorokin⁵, E. Tacconi⁴. R. Schroeter⁷, F. Scoffone⁴, J. Sekiguchi⁴², A. Sekowska³, S. J. Seror³⁶, P. Serror⁵, B.-S. Shin¹⁵, B. Soldo³³, A. Sorokin⁵, E. Tacconi⁴, T. Takagi⁴³, H. Takahashi²⁸, K. Takemaru³⁰, M. Takeuchi³⁰, A. Tamakoshi²⁴, T. Tanaka⁴⁴, P. Terpstra¹¹, A. Tognoni²⁷, V. Tosato¹³, S. Uchiyama⁴², M. Vandenbol⁴⁰, F. Vannier³⁶, A. Vassarotti⁴⁵, A. Viari¹², R. Wambutt⁴⁶, E. Wedler⁴⁶, H. Wedler⁴⁶, T. Weitzenegger³⁹, P. Winters¹⁴, A. Wipat¹⁰, H. Yamamoto⁴², K. Yamane²⁴, K. Yasumoto²⁸, K. Yata²², K. Yoshida²³, H.-F. Yoshikawa²⁸, E. Zumstein⁵, H. Yoshikawa² & A. Danchin³ ¹ Institut Pasteur, Unité de Biochimie Microbienne, 25 rue du Docteur Roux, 75724 Paris Cedex 15. France Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara 630-01, Japan ³ Institut Pasteur, Unité de Régulation de l'Expression Génétique, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France Dipartimento di Genetica e Microbiologia, Universita di Pavia, Via Abbiategrasso 207, 27100 Pavia, Italy INRA, Génétique Microbienne, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France ⁶ Institut für Mikrobiologie, J. W. Goethe-Universität, Marie Curie Strasse 9, 60439 Frankfurt/Maine, Germany ⁷ Institut für Genetik und Mikrobiologie, Humboldt Universität, Chausseestrasse 17, D-10115 Berlin, Germany ⁸ Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, Sart Tilman, B-4000 Liège, Belgiun ⁹ QIAGEN GmbH, Max-Volmer-Strasse 4, D-40724 Hilden, Germany ¹⁰ Department of Microbiological, Immunological and Virological Sciences, The Medical School, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4HH, UK ``` - Department of Genetics, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherland ¹² Atelier de BioInformatique, Université Paris VI, 12 rue Cuvier, 75005 Paris, France ¹³ ICGEB, AREA Science Park, Padriciano 99, I-34012 Trieste, Italy - ¹⁴ Genencor International, 925 Page Mill Road, Palo Alto, California 94304-1013, USA - ¹⁵ Bacterial Molecular Genetics Research Unit, Applied Microbiology Research Division, KRIBB, PO Box 115, Yusong, Taejon 305-600, Korea ¹⁶ INRIA, Domaine de Voluceau, PB 105, 78153 Le Chesnay Cedex, France - ¹⁷ Institute of Food Research, Department of Food Macromolecular Science, Reading Laboratory, Earley Gate, Whiteknights Road, Reading RG6 6BZ, UK - Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX 3RE, UK Laboratoire de Chimie Bactérienne, CNRS BP 71, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France - ²⁰ Department of Genetics, Trinity College, Lincoln Place Gate, Dublin 2, Republic of Ireland - ²¹ Department of Biochemistry and Genetics, The Medical School, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK ²² Radioisotope Center, National Insitute of Genetics, Mishima, Shizuoka-ken 411, Japan - ²³ Department of Biotechnology, Faculty of Engineering, Fukuyama University, Higashimura-cho, Fukuyama-shi, Hiroshima 729-02, Japan ²⁴ Institute of Biological Sciences, Tsukuba University, Tsuiuba-shi, Ibaraki 305, Japan - 25 Faculté des Sciences Agronomiques, Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud, 2-20 B-1348 Louvain-la-Neuve, Belgium - ²⁶ Novo Nordisk Biotech, 1445 Drew Avenue, Davis, California 95616-4880, USA ²⁷ Eniricerche, Via Maritano 26, San Donato Milanese, 20097 Milan, Italy - Institute of Molecular and Cellular Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan Laboratoire Génome et Informatique, Université de Versailles, Bâtiment Buffon, 45 Avenue des États-Unis, 78035 Versailles Cedex, France - ³⁰ Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183, Japan - ³¹ Mitsubishi Kasei Institute of Life Sciences, 11 Minamyiooa, Machida-shi, Tokyo 194, Japan ³² Institut Pasteur, Service d'Informatique Scientifique, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France - ³³ Institut de Génétique et Biologie Microbiennes, Université de Lausanne, 19 rue César Roux, 1005 Lausanne, Switzerland - ³⁴ Department of Molecular Microbiology, MBW/BCA, Faculty of Biology, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands ³⁵ Chongju University College of Science and Engineering, Chongju City, Korea - ⁶ Institut de Génétique et Microbiologie, Université Paris Sud, ÜRA CNRS 2225, Université Paris XI–Bâtiment 409, 91405 Orsay Cedex, France - ³⁷ Centro Nacional de Biotecnologia ⁽CSIC), Campus Universidad Autonoma, Cantoblanco, 28049 Madrid, Spain ³⁸ National Institute of Basic Biology, 38 Nishigounaka, Myoudaiji-chou, Okazaki 444, Japan - ³⁹ Gesellschaft für Analyse-Technik und Consulting mbH, Fritz-Arnold Straße 23, D-78467 Konstanz, Germany - Department of Microbiology, Faculty of Agronomy, 6 Avenue du Maréchal Juin, B-5030 Gembloux, Belgium Biotech Research, BMF, Wilhelmsfeld, Klingelstrasse 35, D-69434 Hirschhorn, Germany - ¹² Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida, Ueda-shi, Nagano 386, Japan - ⁴³ Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan - 44 Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido Shimizu, Shizuoka 424, Japan - ¹⁵ European Commission, DG XII-E-1, SDME 8/78, Rue de la Loi 200, B-1049 Brussels, Belgium ⁴⁶ AGOWA GmbH, Glienicker Weg 185, 12489 Berlin, Germany Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis. Techniques for large-scale DNA sequencing have brought about a revolution in our perception of genomes. Together with our understanding of intermediary metabolism, it is now realistic to envisage a time when it should be possible to provide an extensive chemical definition of many living organisms. During the past couple of years, the genome sequences of *Haemophilus influenzae*, *Mycoplasma genitalium*, *Synechocystis* PCC6803, *Methanococcus jannaschii*, *M. pneumoniae*, *Escherichia coli*, *Helicobacter pylori*, *Archaeoglobus fulgidus* and the yeast *Saccharomyces cerevisiae* have been published in their entirety^{1–8}, and at least 40 prokaryotic genomes are currently being sequenced. Regularly updated lists of genome sequencing projects are available at http://www.mcs.anl.gov/home/gaasterl/genomes.html (Argonne National Laboratory, Illinois, USA) and http://www.tigr.org (TIGR, Rockville, Maryland, USA). The list of sequenced microorganisms does not currently include a paradigm for Gram-positive bacteria, which are known to be important for the environment, medicine and industry. Bacillus subtilis has been chosen to fill this gap^{9,10} as its biochemistry, physiology and genetics have been studied intensely for more than 40 years. B. subtilis is an aerobic, endospore-forming, rodshaped bacterium commonly found in soil, water sources and
in association with plants. B. subtilis and its close relatives are an important source of industrial enzymes (such as amylases and proteases), and much of the commercial interest in these bacteria arises from their capacity to secrete these enzymes at gram per litre concentrations. It has therefore been used for the study of protein secretion and for development as a host for the production of heterologous proteins¹¹. B. subtilis (natto) is also used in the production of Natto, a traditional Japanese dish of fermented soya beans. Under conditions of nutritional starvation, *B. subtilis* stops growing and initiates responses to restore growth by increasing metabolic diversity. These responses include the induction of motility and chemotaxis, and the production of macromolecular hydrolases (proteases and carbohydrases) and antibiotics. If these responses fail to re-establish growth, the cells are induced to form chemically, irradiation- and desiccation-resistant endospores. Sporulation involves a perturbation of the normal cell cycle and the differentiation of a binucleate cell into two cell types. The division of the cell into a smaller forespore and a larger mother cell, each with an entire copy of the chromosome, is the first morphological indication of sporulation. The former is engulfed by the latter and differential expression of their respective genomes, coupled to a complex network of interconnected regulatory path- ways and developmental checkpoints, culminates in the programmed death and lysis of the mother cell and release of the mature spore¹². In an alternative developmental process, *B. subtilis* is also able to differentiate into a physiological state, the competent state, that allows it to undergo genetic transformation¹³. ### General features of the DNA sequence Analysis at the replicon level. The *B. subtilis* chromosome has 4,214,810 base pairs (bp), with the origin of replication coinciding with the base numbering start point¹⁴, and the terminus at about 2,017 kilobases (kb)¹⁵. The average G + C ratio is 43.5%, but it varies considerably throughout the chromosome. This average is also different if one considers the nucleotide content of coding sequences, for which G and G (24% and 30%) are relatively more abundant than their counterparts G and G (20% and 26%). A significant inversion of the relative G - C/G + C ratio is visible at the origin of replication, indicating asymmetry of the nucleotide composition between the replication leading strand and the lagging strand¹⁶. Several G + G - G ratio is visible at the origin of replication, indicating asymmetry of the nucleotide composition between the replication leading strand and the lagging strand¹⁶. Several G + G - G ratio is visible at the origin of replication, indicating asymmetry of the nucleotide composition between the replication leading strand and the lagging strand¹⁶. Several G + G - G ratio is visible at the origin of replication, indicating asymmetry of the nucleotide composition between the replication leading strand and the lagging strand¹⁶. Several G + G - We have analysed the abundance of oligonucleotides ('words') in the genome in various ways: absolute number of words in the genomic text, or comparison with the expected count derived from several models of the chromosome (for example, Markov models, or simulated sequences in which previously known features of the genome were conserved¹⁷). Comparing the experimental data with various models allowed us to define under- and overrepresentation of words in the experimental data set by reference to the model chosen. In general, the dinucleotide bias follows closely what has been described for other prokaryotes^{18,19}, in that the dinucleotides most overrepresented are AA, TT and GC, whereas those less represented are TA, AC and GT. Plots of the frequencies of AG, GA, CT and TC in sliding windows along the chromosome show dramatic decreases or increases around the origin and terminus of replication (data not shown). Trinucleotide frequency, directly related to the coding frame, will be discussed below. The distribution of words of four, five and six nucleotides shows significant correlations between the usage of some words and replication (several such oligonucleotides are very significantly overrepresented in one of the strands and underrepresented in the other one). Setting a statistical cut-off for the significance of duplications at 10^{-3} , we expected duplication by chance of words longer than 24 nucleotides to be rare²⁰. In fact, the genome of *B. subtilis* contains a plethora of such duplications, some of them appearing more than **Figure 1** Distribution of A + T-rich islands along the chromosome of *B. subtilis*, in sliding windows of 10,000 nucleotides, with a step of 5,000 nucleotides. Location of genes from class 3 according to codon usage analysis (see Fig. 4) is indicated by dots at the bottom of the graph. Known prophages (PBSX, SP β and skin) are indicated by their names, and prophage-like elements are numbered from 1 to 7. twice. Among the duplications, we identified, as expected, the ribosomal RNA genes and their flanking regions, but also regions known to correspond to genes comprising long sequence repeats (such as *pks* and *srf*). We also found several regions that were not expected: a 182-bp repetition within the *yyaL* and *yyaO* genes; a 410-bp repetition between the *yxaK* and *yxaL* genes; an internal duplication of 174 bp inside *ydcI*; and significant duplications in the regions involved in the transcriptional control of several genes (such as 118 bp repeated three times between *yxbB* and *yxbC*). Finally, we found several repetitions at the borders of regions that might be involved in bacteriophage integration. The most prominent duplication was a 190-bp element that was repeated 10 times in the chromosome. Multiple alignment of the ten repeats showed that they could be classified into two subfamilies with six and three copies each, plus a copy of what appears to be a chimaera. Similar sequences have also been described in the closely related species *Bacillus licheniformis*^{21,22}. A striking feature of these repeats is that they are only found in half of the chromosome, at either side of the origin of replication, with five repeats on each side. Furthermore, with the exception of the most distal repeat at position 737,062, they lie in the same orientation with respect to the movement of the replication fork (Figs 2 and 3). Putative secondary structures conserved by compensatory mutations, as well as an insert in three of the copies, suggest that this element could indicate a structural RNA molecule. Analysis at the transcription and translation level. Over 4,000 putative protein coding sequences (CDSs) have been identified, with an average size of 890 bp, covering 87% of the genome sequence (Fig. 2). We found that 78% of the genes started with ATG, 13% with TTG and 9% with GTG, which compares with 85%, 3% and 14%, respectively, in *E. coli*⁸. Fifteen genes (eight in the predicted CDSs in bacteriophage SP β) exhibiting unusual start codons (namely ATT and CTG) were also identified through their ## Table 1 Functional classification of the Bacillus subtilis protein-coding genes The genes of known function or encoding products similar to known proteins in B. subtilis or in other organisms have been classified into functional categories (2,379 genes). The total number of genes in each category is indicated after the category title. Genes are listed in alphabetical order within each category, and their positions (in kilobases) on the B. subtilis chromosome are indicated after the gene names. A brief description is given for each gene. In some cases, interacting proteins have been indicated between brackets (for example, histidine kinases and response regulator, phosphatases and their substrates). More detailed and constantly updated information is available in the SubtiList database (see Methods). A preliminary assessment of the significance of sequence similarities was obtained through an automated procedure involving a combination between the BLAST2P probability and the percentage of amino-acid identity. Matches considered significant were re-examined manually. It should be emphasized that functions assigned to 'y' genes are based only on sequence similarity information with the best counterparts in protein databanks. Genes whose products are only similar to other unknown proteins, or not significantly similar to any other proteins in databanks (categories V and VI), were omitted. Figure 2 General view of the *B. subtilis* chromosome. Arrows indicate the orientation of transcription. Genes are coloured according to their classification into six broad functional categories (blue, category I; green, category II; red, category III; orange, category IV; purple, category V; pink, category VI; see Table 1). Class 2 CDSs according to codon usage analysis are indicated by oblique hatches, and class 3 CDSs are indicated by vertical hatches. Ribosomal RNA genes are coloured in yellow. Transfer RNA genes are marked by triangles. Other RNA genes are represented as white arrows. Known genes (non-'y' genes) are printed in bold type. Putative transcription termination sites are represented as loops. Known prophages and prophage-like elements are indicated by brown hatches on the chromosome line. The 190-bp element repeated ten times is represented by hatched boxes. similarities to
known genes in other organisms or because they had a good GeneMark prediction (see Methods). This has not yet been substantiated experimentally. However, in the case of the gene coding for translation initiation factor 3, the similarity with its *E. coli* counterpart strongly suggests that the initiation codon is ATT, as is the case in *E. coli*. We have not annotated CDSs that largely or entirely overlap existing genes, although such genes (for example, *comS* inside *srfAA*) certainly exist. It is also likely that some of the short CDSs present in the *B. subtilis* genome have been overlooked. For these reasons and possible sequencing errors, the estimated number of *B. subtilis* CDSs will fluctuate around the present figure of 4,100. In several cases, in-frame termination codons or frameshifts were confirmed to be present on the chromosome (for example, an internal termination codon in *ywtF*, or the known programmed translational frameshift in *prfB*), indicating that the genes are either non-functional (pseudogenes) or subject to regulatory processes. It will therefore be of interest to determine whether these gene features are conserved in related *Bacillus* species, especially as strain 168 is derived from the Marburg strain that was subjected to X-ray irradiation²³. A few regions do not have any identifiable feature indicating that they are transcribed: they could be 'grey holes' of the type described in *E. coli*²⁴. Preliminary studies involving all regions of more than 400 bp without annotated CDSs indicated that, of \sim 300 such regions, only 15% were likely to be really devoid of protein-coding sequences. One of the longest such regions, located between *yfjO* and *yfjN*, is 1,628 bp long. Grey holes seem generally to be clustered near the terminus of replication. However, a grey-hole cluster located at \sim 600 kb might be related to the temporary chromosome partition observed during the first stages of sporulation, when a segment of about one-third of the chromosome enters the prespore, and remains the sole part of the chromosome in the prespore for a significant transition period²⁵. The codon usage of B. subtilis CDSs was analysed using factorial correspondence analysis¹⁷. We found that the CDSs of B. subtilis could be separated into three well-defined classes (Fig. 4). Class 1 comprises the majority of the B. subtilis genes (3,375 CDSs), including most of the genes involved in sporulation. Class 2 (188 CDSs) includes genes that are highly expressed under exponential growth conditions, such as genes encoding the transcription and translation machineries, core intermediary metabolism, stress proteins, and one-third of genes of unknown function. Class 3 (537 CDSs) contains a very high proportion of genes of unidentified function (84%), and the members of this class have codons enriched in A+T residues. These genes are usually clustered into groups between 15 and 160 genes (for example, bacteriophage SP β) and correspond to the A+T-rich islands described above (Fig. 1). When they are of known function, or when their products display similarity to proteins of known function, they usually correspond to functions found in, or associated with, bacteriophages or transposons, as well as functions related to the cell envelope. This includes the region ydc/ydd/yde (40 genes that are missing in some B. subtilis strains²⁶), where gene products showing similarities to bacteriophage and transposon proteins are intertwined. Many of these genes are associated with virulence genes identified in pathogenic Gram-positive bacteria, suggesting that such virulence factors are transmitted horizontally among bacteria at a much higher frequency than previously thought. If we include these A + T-rich regions as possible cryptic phages, together with known bacteriophages or bacteriophage-like elements (SPB, PBSX and the skin element), we find that the genome of B. subtilis 168 contains at least 10 such elements (Figs 2 and 3). Annotation of the corresponding regions often reveals the presence of genes that are similar to bacteriophage lytic enzymes, perhaps accounting for the observation that *B. subtilis* cultures are extremely prone to lysis. The ribosomal RNA genes have been previously identified and shown to be organized into ten rRNA operons, mainly clustered around the origin of replication of the chromosome (Figs 2 and 3). In addition to the 84 previously identified tRNA genes, by using the Palingol²⁷ and tRNAscan²⁸ programs, we propose four putative new tRNA loci (at 1,262 kb, 1,945 kb, 2,003 kb and 2,899 kb), specific for lysine, proline and arginine (UUU, GGG, CCU and UCU anticodons, respectively). The 10S RNA involved in degradation of proteins made from truncated mRNA has been identified (*ssrA*), as well as the RNA component of RNase P (*rnpB*) and the 4.5S RNA involved in the secretion apparatus (*scr*). There is a strong transcription orientation bias with respect to the movement of the replication fork: 75% of the predicted genes are transcribed in the direction of replication. Plotting the density of coding nucleotides in each strand along the chromosome readily identifies the replication origin and terminus (Fig. 3). To identify putative operons, we followed ref. 29 for describing Rhoindependent transcription termination sites. This yielded ~1,630 putative terminators (340 of which were bidirectional). We retained only those that were located less than 100 bp downstream of a gene, or that were considered by the program to be 'very strong' (in order to account for possible erroneous CDSs). This yielded a total of \sim 1,250 terminators, with a mean operon size of three genes. A similar approach to the identification of promoters is problematical, especially because at least 14 sigma factors, recognizing different promoter sequences, have been identified in B. subtilis. Nevertheless, the consensus of the main vegetative sigma factor (σ^{A}) appears to be identical to its counterpart in E. coli (σ^{70}) : 5' TTGACA- n_{17} -TATAAT-3'. Relaxing the constraints of the similarity to sigma-specific consensus sequences led to an extremely high number of false-positive results, suggesting that the consensusoriented approach to the identification of promoters should be replaced by another approach¹⁷. #### **Classification of gene products** Genes were classified according to ref. 14, based on the representation of cells as Turing machines in which one distinguishes between the machine and the program (Table 1). Using the BLAST2P software running against a composite protein databank compound of SWISS-PROT (release 34), TREMBL (release 3, update 1) and *B*. subtilis proteins, we assigned at least one significant counterpart with a known function to 58% of the *B. subtilis* proteins. Thus for up to 42% of the gene products, the function cannot be predicted by similarity to proteins of known function: 4% of the proteins are similar only to other unknown proteins of *B. subtilis*; 12% are similar to unknown proteins from some other organism; and 26% of the proteins are not significantly similar to any other proteins in databanks. This preliminary analysis should be interpreted with caution, because only ~1,200 gene functions (30%) have been experimentally identified in *B. subtilis*. We used the 'y' prefix in gene names to emphasize that the function has not been ascertained (2,853 'y' genes, representing 70%). Regulatory systems. Transcription regulatory proteins. Helixturn-helix proteins form a large family of regulatory proteins found in both prokaryotes and eukaryotes. There are several classes, including repressors, activators and sigma factors. Using BLAST searches, we constructed consensus matrices for helix-turn-helix proteins to analyse the B. subtilis protein library. We identified 18 sigma or sigma-like factors, of which nine (including a new one) are of the SigA type. We also putatively identified 20 regulators (among which 18 were products of 'y' genes) of the GntR family, 19 regulators (15 'y' genes) of the LysR family, and 12 regulators (5 'y' genes) of the LacI family. Other transcription regulatory proteins were of the AraC family (11 members, 10 'y'), the Lrp family (7 members, 3 'y'), the DeoR family (6 members, 3 'y'), or additional families (such as the MarR, ArsR or TetR families). A puzzling observation is that several regulatory proteins display significant similarity to aminotransferases (seven such enzymes have been identified as showing similarity to repressors). **Two-component signal-transduction pathways.** Two-component regulatory systems, consisting of a sensor protein kinase and a response regulator, are widespread among prokaryotes. We have identified 34 genes encoding response regulators in *B. subtilis*, most of which have adjacent genes encoding histidine kinases. Response regulators possess a well-conserved N-terminal phospho-acceptor domain³⁰, whereas their C-terminal DNA-binding domains share similarities with previously identified response regulators in *E. coli*, *Rhizobium meliloti*, *Klebsiella pneumoniae* or *Staphylococcus aureus*. Representatives of the four subfamilies recently identified in *E. coli*³¹ **Figure 3** Density of coding nucleotides along the *B. subtilis* chromosome. Yellow stands for the density of coding nucleotides in both strands of the sequence; red indicates the density of coding nucleotides in the clockwise strand (nucleotides involved in genes transcribed in the clockwise orientation). The movement of the replication forks is represented by arrows. Ribosomal RNA operons are indicated by brown boxes. Known prophages and prophage-like elements are represented as blue lines. The 190-bp element repeated ten times is represented by green lines. **Figure 4** Factorial correspondence analysis of codon usage in the *B. subtilis* CDSs. Red dots, genes from class 1; green triangles, genes from class 2; blue crosses, genes from
class 3. Class 2 contains genes coding for the translation and transcription machineries, and genes of the core intermediary metabolism. Class 3 genes correspond to codons strongly enriched in A or T in the wobble position; they generally belong to prophage-like inserts in the genome. (OmpR, FixJ, CitB and LytR) have been identified in *B. subtilis*. In a fifth subfamily, CheY, the DNA-binding domain is absent. The DNA-binding domain of a single *B. subtilis* response regulator, YesN, shares similarity with regulatory proteins of the AraC family. **Quorum sensing.** The *B. subtilis* genome contains 11 aspartate phosphatase genes, whose products are involved in dephosphorylation of response regulators, that do not seem to have counterparts in Gram-negative bacteria such as *E. coli*. Downstream from the corresponding genes are some small genes, called *phr*, encoding regulatory peptides that may serve as quorum sensors³². Seven *phr* genes have been identified so far, including three new genes (*phrG*, *phrI* and *phrK*). **Protein secretion.** It is known that *B. subtilis* and related *Bacillus* species, in particular *B. licheniformis* and *B. amyloliquefaciens*, have a high capacity to secrete proteins into the culture medium. Several genes encoding proteins of the major secretion pathway have been identified: *secA*, *secD*, *secE*, *secF*, *secY*, *ffh* and *ftsY*. Surprisingly, there is no gene for the SecB chaperone. It is thought that other chaperone(s) and targeting factor(s), such as Ffh and FtsY, may take over the SecB function. Further, although there is only one such gene in *E. coli*, five type I signal peptidase genes (*sipS*, *sipT*, *sipU*, *sipV* and *sipW*) have been found³³. The *lsp* gene, encoding a type II signal peptidase required for processing of lipo-modified precursors, was also identified. PrsA, located at the outer side of the membrane, is important for the refolding of several mature proteins after their translocation through the membrane. Other families of proteins. ABC transporters were the most frequent class of proteins found in *B. subtilis*. They must be extremely important in Gram-positive bacteria, because they have an envelope comprising a single membrane. ABC transporters will therefore allow such bacteria to escape the toxic action of many compounds. We propose that 77 such transporters are encoded in the genome. In general they involve the interaction of at least three gene products, specified by genes organized into an operon. Other families comprised 47 transport proteins similar to facilitators (and perhaps sometimes part of the ABC transport systems), 18 amino-acid permeases (probably antiporters), and at least 16 sugar transporters belonging to the PEP-dependent phosphotransferase system. General stress proteins are important for the survival of bacteria under a variety of environmental conditions. We identified 43 temperature-shock and general stress proteins displaying strong similarity to *E. coli* counterparts. Missing genes. Histone-like proteins such as HU and H-NS have been identified in *E. coli*. We found that *B. subtilis* encodes two putative histone-like proteins that show similarity to *E. coli* HU, namely HBsu and YonN, but found no homologue to H-NS. It is known that the *hbs* gene encoding HBsu is essential, but we do not expect the *yonN* gene to be essential because it is present in the SP β prophage. IHF is similar to HU, and it is not known whether HBsu plays a similar role to that of IHF in *E. coli*. Similarly, no protein similar to FIS could be found. Genes encoding products that interact with methylated DNA, such as *seqA* in *E. coli*, involved in the regulation of replication initiation timing, or *mutH*, the endonuclease recognizing the newly synthesized strand during mismatch repair at hemi-methylated **Figure 5** Gene paralogue distribution in the genome of *B. subtilis*. Each *B. subtilis* protein has been compared with all other proteins in the genome, using a Smith and Waterman algorithm. The baseline is established by making a similar comparison using 100 independent random shuffles of the protein sequence (Z-score > 13). GATC sites, are also missing. This is in line with the absence of known methylation in *B. subtilis*, equivalent to Dam methylation in *E. coli*. Similarly, *E. coli sfiA*, encoding an inhibitor of FtsZ action in the SOS response, has no counterpart in *B. subtilis*. In contrast, *B. subtilis* replication initiation-specific genes, such as *dnaB* and *dnaD*, are missing in *E. coli*. The exact counterpart of the *E. coli mukB* gene, involved in chromosome partitioning, does not exist in *B. subtilis*, but genes *spo0J* and *smc* (Smc is weakly similar to MukB), which are suggested to be involved in partitioning of the *B. subtilis* chromosome, are missing in *E. coli*. Turnover of mRNA is controlled in *E. coli* by a 'degradosome' comprising RNase E. It has a counterpart in *B. subtilis*, but we failed to find a clear homologue of RNase E in this organism. Whether this is related to the role of ribosomal protein S1 as an RNA helicase involved in mRNA turnover in *E. coli* requires further investigation. In particular, a homologue of *rpsA* (S1 structural gene), *ypfD*, might be involved in a structure homologous to the degradosome³⁴. Structurally unrelated genes of similar function. Several genes encode products that have similar functions in *E. coli* and *B. subtilis*, but have no evident common structure. This is the case for the helicase loader genes, *E. coli dnaC* and *B. subtilis dnaI*; the genes coding for the replication termination protein, *E. coli tus* and *B. subtilis rtp*; and the division topology specifier genes, *E. coli minE* and *B. subtilis divIVA*. The situation may even be more complex in multisubunit enzymes: *B. subtilis* synthesizes two DNA polymerase III α chains, one having 3'-5' proofreading exonuclease activity (PolC) and the other without the exonuclease activity (DnaE); in *E. coli*, only the latter exists. *E. coli* DNA polymerase II is structurally related to DNA polymerase α of eukaryotes, whereas *B. subtilis* YshC is related to DNA polymerase β . #### **Metabolism of small molecules** The type and range of metabolism used for the interconversion of low-molecular-weight compounds provide important clues to an organism's natural environment(s) and its biological activity. Here we briefly outline the main metabolic pathways of *B. subtilis* before the reconstruction of these pathways *in silico*, the correlation of genes with specific steps in the pathway, and ultimately the prediction of patterns of gene expression. **Intermediary metabolism.** It has long been known that *B. subtilis* can use a variety of carbohydrates. As expected, it encodes an Embden-Meyerhof-Parnas glycolytic pathway, coupled to a functional tricarboxylic acid cycle. Further, B. subtilis is also able to grow anaerobically in the presence of nitrate as an electron acceptor. This metabolism is, at least in part, regulated by the FNR protein, binding to sites upstream of at least eight genes (four sites experimentally confirmed and four putative sites). A noteworthy feature of B. subtilis metabolism is an apparent requirement of branched short-chain carboxylic acids for lipid biosynthesis³⁵. Branchedchain 2-keto acid decarboxylase activity exists and may be linked to a variety of genes, suggesting that B. subtilis can synthesize and utilize linear branched short-chain carboxylic acids and alcohols. Amino-acid and nucleotide metabolism. Pyrimidine metabolism of B. subtilis seems to be regulated in a way fundamentally different from that of E. coli, as it has two carbamylphosphate synthetases (one specific for arginine synthesis, the other for pyrimidine). Additionally, the aspartate transcarbamylase of B. subtilis does not act as an allosteric regulator as it does in E. coli. As in other microorganisms, pyrimidine deoxyribonucleotides are synthesized from ribonucleoside diphosphates, not triphosphates. The cytidine diphosphate required for DNA synthesis is derived from either the salvage pathway of mRNA turnover or from the synthesis of phospholipids and components of the cell wall. This means that polynucleotide phosphorylase is of fundamental importance in nucleic acid metabolism, and may account for its important role in competence³⁶. Two ribonucleoside reductases, both of class I, NrdEF type, are encoded by the *B. subtilis* chromosome, in one case from within the SP β genome. In this latter case, the gene corresponding to the large subunit both contains an intron and codes for an intein (V.L., unpublished data). The gene of the small subunit of this enzyme also contains an intron, encoding an endonuclease, as was found for the homologue in bacteriophage T4. By similarity with genes from other organisms, there appears to be, in addition to genes involved in amino-acid degradation (such as the *roc* operon, which degrades arginine and related amino acids), a large number of genes involved in the degradation of molecules such as opines and related molecules, derived from plants. This is also in line with the fact that *B. subtilis* degrades polygalacturonate, and suggests that, in its biotope, it forms specific relations with plants. **Secondary metabolism.** In addition to many genes coding for degradative enzymes, almost 4% of the *B. subtilis* genome codes for large multifunctional enzymes (for example, the *srf*, *pps* and *pks* loci), similar to those involved in the synthesis of antibiotics in other genera of Gram-positive bacteria such as *Streptomyces*. Natural isolates of *B. subtilis* produce compounds with antibiotic activity, such as surfactin, fengycin and difficidin, that can be related to the above-mentioned loci. This bacterium therefore provides a simple and genetically amenable model in which to study the synthesis of antibiotics and its regulation. These
pathways are often organized in very long operons (for example, the *pks* region spans 78.5 kb, about 2% of the genome). The corresponding sequences are mostly located near the terminus of replication, together with prophages and prophage-like sequences. ### Paralogues and orthologues It is important to relate intermediary metabolism to genome structure, function and evolution. We therefore compared the B. subtilis proteins with themselves, as well as with proteins from known complete genomes, using a consistent statistical method that allows the evaluation of unbiased probabilities of similarities between proteins 37,38 . For Z-scores higher than 13, the number of proteins similar to each given protein does not vary, indicating that this cut-off value identifies sets of proteins that are significantly similar. Families of paralogues. Many of the paralogues constitute large families of functionally related proteins, involved in the transport of compounds into and out of the cell, or involved in transcription regulation. Another part of the genome consists of gene doublets (568 genes), triplets (273 genes), quadruplets (168 genes) and quintuplets (100 genes). Finally, about half of the genome is made of genes coding for proteins with no apparent paralogues (Fig. 5). No large family comprises only proteins without any similarity to proteins of known function. The process by which paralogues are generated is not well understood, but we might find clues by studying some of the duplications in the genome. Several approximate DNA repetitions, associated with very high levels of protein identity, were found, mainly within regions putatively or previously identified as prophages. This is in line with previous observations about PBSX and the *skin* element^{39,40}, and suggests that these prophage-like elements share a common ancestor and have diverged relatively recently. In addition, several protein duplications are in genes that are located very close to each other, such as *yukL* and *dhbF* (the corresponding proteins are 65% identical in an overlap of 580 amino acids), *yugJ* and *yugK* (proteins 73% identical), *yxjG* and *yxjH* (proteins 70% identical), and the entire *opuB* operon, which is duplicated 3 kb away (*opuC* operon, yielding ~80% of amino-acid identity in the corresponding proteins). The study of paralogues showed that, as in other genomes, a few classes of genes have been highly expanded. This argues against the idea of the genome evolving through a series of duplications of ancestral genomes, but rather for the idea of genes as living organisms, subject to evolutionary constraints, some being sub- mitted to expansion and natural selection, and others to local duplications of DNA regions. Among paralogue doublets, some were unexpected, such as the three aminoacyl tRNA synthetases doublets (*hisS* (2,817 kb) and *hisZ* (3,588 kb); *thrS* (2,960 kb) and *thrZ* (3,855 kb); *tyrS* (3,036 kb) and *tyrZ* (3,945 kb)) or the two *mutS* paralogues (*mutS* and *yshD*). This latter situation is similar to that found in *Synechocystis*. In the case of *B. subtilis*, the presence of two MutS proteins could indicate that there are two different pathways for long-patch mismatch repair, possibly a consequence of the active genetic transformation mechanism of *B. subtilis*. Families of orthologues. Because *Mycoplasma* spp. are thought to be derived from Gram-positive bacteria similar to *B. subtilis*, we compared the *B. subtilis* genome with that of *M. genitalium*. Among the 450 genes encoded by *M. genitalium*, the products of 300 are similar to proteins of *B. subtilis*. Among the 146 remaining gene products, a further 3 are similar to proteins of other *Bacillus* species, and 9 to proteins of other Gram-positive bacteria; 25 are similar to proteins of Gram-negative bacteria; and 19 are similar to proteins of other *Mycoplasma* spp. This leaves only 90 genes that would be specific to *M. genitalium* and might be involved in the interaction of this organism with its host. The B. subtilis genome is similar in size to that of E. coli. Because these bacteria probably diverged more than one billion years ago, it is of evolutionary value to investigate their relative similarity. About 1,000 B. subtilis genes have clear orthologous counterparts in E. coli (one-quarter of the genome). These genes did not belong either to the prophage-like regions or to regions coding for secondary metabolism (~15% of the B. subtilis genome). This indicates that a large fraction of these genomes shared similar functions. At first sight, however, it seems that little of the operon structure has been conserved. We nevertheless found that ~100 putative operons or parts of operons were conserved between E. coli and B. subtilis. Among these, ~ 12 exhibited a reshuffled gene order (typically, the arabinose operon is araABD in B. subtilis and araBAD in E. coli). In addition to the core of the translation and transcription machinery, we identified other classes of operons that were well conserved between the two organisms, including major integrated functions such as ATP synthesis (atp operon) and electron transfer (cta and qox operons). As well as being well preserved, the murein biosynthetic region was partly duplicated, allowing creation of part of the genes required for the sporulation division machinery⁴¹. The amino-acid biosynthesis genes differ more in their organization: the E. coli genes for arginine biosynthesis are spread throughout the chromosome, whereas the arginine biosynthesis genes of B. subtilis form an operon. The same is true for purine biosynthetic genes. Genes responsible for the biosynthesis of coenzymes and prosthetic groups in B. subtilis are often clustered in operons that differ from those found in E. coli. Finally, several operons conserved in E. coli and B. subtilis correspond to unknown functions, and should therefore be priority targets for the functional analysis of these model genomes. Comparison with *Synechocystis* PCC6803 revealed about 800 orthologues. However, in this case the putative operon structure is extremely poorly conserved, apart from four of the ribosomal protein operons, the *groES*–*groEL* operon, *yfnHG* (respectively in *Synechocystis rfbFG*), *rpsB-tsf*, *ylxS-nusA-infB*, *asd-dapGA-ymfA*, *spmAB*, *efp-accB*, *grpE-dnaK*, *yurXW*. The nine-gene *atp* operon of *B. subtilis* is split into two parts in *Synechocystis: atpBE* and *atpIHGFDAC*. ### Conclusion The biochemistry, physiology and molecular biology of *B. subtilis* have been extensively studied over the past 40 years. In particular, *B. subtilis* has been used to study postexponential phase phenomena such as sporulation and competence for DNA uptake. The genome sequences of *E. coli* and *B. subtilis* provide a means of studying the evolutionary divergence, one billion years ago, of eubacteria into the Gram-positive and Gram-negative groups. The availability of powerful genetic tools will allow the *B. subtilis* genome sequence data to be exploited fully within the framework of a systematic functional analysis program, undertaken by a consortium of 19 European and 7 Japanese laboratories coordinated by S. D. Ehrlich (INRA, Jouy-en-Josas, France) and by N. Ogasawara and H. Yoshikawa (Nara Institute of Science and Technology, Nara, Japan). #### Methods **Genome cloning and sequencing.** An international consortium was established to sequence the genome of *B. subtilis* strain 168 (refs 9, 10, 42). At its peak, 25 European, seven Japanese and one Korean laboratory participated in the program, together with two biotechnology companies. Five contiguous DNA regions totalling 0.94 Mb, and two additional regions of 0.28 and 0.14 Mb, were sequenced by the Japanese partners, while the European partners sequenced a total of 2.68 Mb. A few sequences from strain 168 published previously were not resequenced when long overlaps did not indicate differences. A major technical difficulty was the inability to construct in *E. coli* gene banks representative of the entire *B. subtilis* chromosome using vectors that have proved efficient for other sources of bacterial DNA (such as bacteriophage or cosmid vectors). This was due to the generally very high level of expression of *B. subtilis* genes in *E. coli*, leading to toxic effects. This limitation was overcome by: cloning into a variety of vectors^{9,43,44}; using an *E. coli* strain maintaining low-copy number plasmids⁴⁴; using an integrative plasmid/marker rescue genomewalking strategy⁴⁴; and *in vitro* amplification using polymerase chain reaction (PCR) techniques^{45,46}. Although cloning vectors were used in the early stages as templates for sequencing reactions, they were largely superseded in the later stages by long-range and inverse PCR techniques. To reduce sequencing errors resulting from PCR amplification artefacts, at least eight amplification reactions were performed independently and subsequently pooled. The various sequencing groups were free to choose their own strategy, except that all DNA sequences had to be determined entirely on both strands. Sequence annotation and verification. The sequences were annotated by the groups, and sent to a central depository at the Institut Pasteur¹⁴. The Japanese sequences were also sent there through the Japanese depository at the Nara Institute of Science and Technology. The same procedures were used to identify CDSs and to detect frameshifts. They were embedded within a cooperative computer environment dedicated to automatic sequence annotation and analysis³⁹. In a first step, we identified in all six possible frames the open reading frames (ORFs) that were at least 100 codons in length. In a second step, three independent methods were used: the first method used the GeneMark coding-sequence prediction method⁴⁷ together with the search for CDSs preceded by typical translation initiation signals (5'-AAGGAGGTG-3'), located 4-13 bases
upstream of the putative start codons (ATG, TTG or GTG); the second method used the results of a BLAST2X analysis performed on the entire B. subtilis genome against the non-redundant protein databank at the NCBI; and the third method was based on the distribution of non-overlapping trinucleotides or hexanucleotides in the three frames of an ORF48. In general, frameshifts and missense mutations generating termination codons or eliminating start codons are relatively easy to detect. We shall devise a procedure for detecting another type of error, GC instead of CG or vice versa, which are much more difficult to identify. It should be noted that putative frameshift errors should not be corrected automatically. The sequences of the flanking regions of a 500-bp fragment centred around a putative error were sent to an independent verification group, which performed PCR amplifications using chromosomal DNA as template, and sequenced the corresponding DNA products. **Organization and accessibility of data.** The *B. subtilis* sequence data have been combined with data from other sources (biochemical, physiological and genetic) in a specialized database, SubtiList⁴⁹, available as a Macintosh or Windows stand-alone application (4th Dimension runtime) by anonymous FTP at ftp://ftp.pasteur.fr/pub/GenomeDB/SubtiList. SubtiList is also accessible through a World-Wide Web server at http://www.pasteur.fr/Bio/SubtiList.html, where it has been implemented on a UNIX system using the Sybase relational database management system. A completely rewritten version of SubtiList is in preparation to facilitate browsing of the information of the whole chromosome. Flat files of the whole DNA and protein sequences in EMBL and FASTA format will be made available at the above ftp address. Another *B. subtilis* genome database is also under development at the Human Genome Center of Tokyo University (http://www.genome.ad.jp), and SubtiList will also be available there. Received 16 July; 29 September 1997. - Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995). - Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995). - Kaneko, T. et al. Sequence analysis of the genome of the unicellular Cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136 (1996). - Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996). - Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996). - 6. Goffeau, A. et al. The yeast genome directory. Nature 387, 5-105 (1997). - Tomb, J.-F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997). - Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997). - Kunst, F., Vassarotti, A. & Danchin, A. Organization of the European Bacillus subtilis genome sequencing project. Microbiology 389, 84–87 (1995). - Ogasawara, N. & Yoshikawa, H. The systematic sequencing of the Bacillus subtilis genome in Japan. Microbiology 142, 2993–2994 (1996). - Harwood, C. R. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol. 10, 247–256 (1992). - Stragier, P. & Losick, R. Molecular genetics of sporulation in *Bacillus subtilis. Annu. Rev. Genet.* 30, 297–341 (1996). - Solomon, J. M. & Grossman, A. D. Who's competent and when: regulation of natural genetic competence in bacteria. *Trends Genet.* 12, 150–155 (1996). - Moszer, I., Kunst, F. & Danchin, A. The European Bacillus subtilis genome sequencing project: current status and accessibility of the data from a new World Wide Web site. Microbiology 142, 2987–2991 (1996). - Franks, A. H., Griffiths, A. A. & Wake, R. G. Identification and characterization of new DNA replication terminators in *Bacillus subtilis*. Mol. Microbiol. 17, 13–23 (1995). - Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996). - Hénaut, A. & Danchin, A. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. et al.) 2047–2066 (ASM, Washington DC, 1996). - Nussinov, R. The universal dinucleotide asymmetry rules in DNA and amino acid codon choice. Nucleic Acids Res. 17, 237–244 (1981). - Karlin, S., Burge, C. & Campbell, A. M. Statistical analyses of counts and distributions of restriction sites in DNA sequences. *Nucleic Acids Res.* 20, 1363–1370 (1992). - Burge, C., Campbell, A. M. & Karlin, S. Over- and under-representation of short oligonucleotides in DNA sequences. *Proc. Natl Acad. Sci. USA* 89, 1358–1362 (1992). - Kasahara, Y., Nakai, S. & Ogasawara, H. Sequence analysis of the 36-kb region between gntZ and trnY genes of Bacillus subtilis genome. DNA Res. 4, 155–159 (1997). - Presecan, E. et al. The Bacillus subtilis genome from gerBC (311°) to licR (334°). Microbiology 143, 3313–3328 (1997). - 23. Burkholder, P. R. & Giles, N. H. Induced biochemical mutations in Bacillus subtilis. Am. J. Bot. 33, $345-348 \ (1947)$. - Daniels, D. L., Plunkett, G. III, Burland, V. & Blattner, F. R. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 257, 771–778 (1992). Wu L. J. & Erripston, I. Racillus, subtilis. Soulling protein required for DNA segregation during - Wu, L. J. & Errington, J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994). - Itaya, M. Stability and asymmetric replication of the Bacillus subtilis 168 chromosome structure. J. Bacteriol. 175, 741–749 (1993). only it doesn't seem like theft. - Billoud, B., Kontic, M. & Viari, A. Palingol: a declarative programming language to describe nucleic acids' secondary structures and to scan sequence database. Nucleic Acids Res. 24, 1395 –1403 (1996). - Fichant, G. A. & Burks, C. Identifying potential tRNA genes in genomic DNA sequences. J. Mol. Biol. 220, 659–671 (1991). - d'Aubenton Carafa, Y., Brody, E. & Thermes, C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J. Mol. Biol. 216, 835–858 (1990). - Stock, J. B., Surette, M. G., Levitt, M. & Park, P. in Two-Component Signal Transduction (eds Hoch, J. A. & Silhavy, T. J.) 25–51 (ASM, Washington DC, 1995). - 31. Mizuno, T. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of *Escherichia coli. DNA Res.* **4**, 161–168 (1997). - Perego, M., Glaser, P. & Hoch, J. A. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in *Bacillus subtilis. Mol. Microbiol.* 19, 1151–1157 (1996). - Tjalsma, H. et al. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different sip genes. J. Biol. Chem. 272, 25983–25992 (1997). - Danchin, A. Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. DNA Res. 4, 9–18 (1997). - Suutari, M. & Laakso, S. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta 1126, 119–124 (1992). - Luttinger, A., Hahn, J. & Dubnau, D. Polynucleotide phosphorylase is necessary for competence development in *Bacillus subtilis. Mol. Microbiol.* 19, 343–356 (1996). - Landès, C., Hénaut, A. & Risler, J.-L. A comparison of several similarity indices used in the classification of protein sequences: a multivariate analysis. Nucleic Acids Res. 20, 3631–3637 (1992). - Glémet, E. & Codani, J.-J. LASSAP, a LArge Scale Sequence compArison Package. Comput. Appl. Biosci. 13, 137–143 (1997). - Médigue, C., Moszer, I., Viari, A. & Danchin, A. Analysis of a Bacillus subtilis genome fragment using a co-operative computer system prototype. Gene 165, GC37–GC51 (1995). - Krogh, S., O'Reilly, M., Nolan, N. & Devine, K. M. The phage-like element PBSX and part of the skin element, which are resident at different locations on the Bacillus subtilis chromosome, are highly homologous. Microbiology 142, 2031–2040 (1996). - Daniel, R. A., Drake, S., Buchanan, C. E., Scholle, R. & Errington, J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235, 209–220 (1994). - Anagnostopoulos, C. & Spizizen, J. Requirements for transformation in *Bacillus subtilis*. J. Bacteriol. 81, 741–746 (1961). - Azevedo, V. et al. An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes. Proc. Natl Acad. Sci. USA 90, 6047–6051 (1993). - Glaser, P. et al. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10, 371–384 (1993). - 45. Ogasawara, N., Nakai, S. & Yoshikawa, H. Systematic sequencing of the 180 kilobase region of the - Bacillus subtilis chromosome containing the replication origin. DNA Res. 1, 1–14 (1994). 46. Sorokin, A. et al. A new approach using multiplex long accurate PCR and yeast artificial chromosomes - for bacterial chromosome mapping and sequencing. *Genome Res.* **6**, 448–453 (1996). 47. Borodovsky, M. & McIninch, J. GENMARK: parallel gene recognition for both DNA strands. *Comput. Chem.* **17**, 123–133 (1993). - Fichant, G. A. & Quentin, Y. A frameshift error detection algorithm for DNA sequencing projects. Nucleic Acids Res. 23, 2900–2908 (1995). - Moszer, I., Glaser, P. & Danchin, A. SubtiList: a relational database for the
Bacillus subtilis genome. Microbiology 141, 261–268 (1995). Acknowledgements. We thank C. Anagnostopoulos, R. Dedonder and J. Hoch for their pioneering efforts, and A. Bairoch for advice in annotating B. subtilis protein data. The main funding of the European Commission under the Biotechnology program. The Japanese project was included in the Human Genome Program, and supported by a research grant from the Ministry of Education, Science and Culture, and the Proposal-Based Advanced Industrial Technology R&D Program from New Energy and Industrial Technology Development Organization. The Swiss and Korean projects were funded by the Swiss National Fund and the Korean government, respectively. An industrial platform was set up to facilitate contacts between participants of the European consortium and some European biotechnology companies: DuPont de Nemours (France, USA), Frimond (Belgium), Genencor (Finland, USA), Gist Brocades (The Netherlands), Glaxo-Wellcome (UK, Italy), Hoechst Marion Roussel (France, Germany), F. Hoffmann-La Roche AG (Switzerland), Novo Nordisk (Denmark), SmithKline Beecham (UK). Correspondence and requests for materials should be addressed to F.K. (e-mail: fkunst@pasteur.fr), N.O. (nogasawa@bs.aist-nara.ac.jp), H.Y. (hyoshika:bs.aist-nara.ac.jp) or A.D. (adanchin@pasteur.fr). The sequence has been deposited in EMBL/GenBank/DDBJ with accession numbers from Z99104 to Z99124. photocopying licence. Telephone: 0171 436 5931 Fax: 0171 436 3986 | Table 1 | Functional | classification | of the Racillus | euhtilienrotein | -codina aenes. | |---------|--------------|----------------|-------------------------|-------------------------|------------------| | iavit i | . Functional | ıcıassıncanon | ui uie <i>Dagiiiu</i> s | <i>Subtilis</i> brotein | -coullia aelies. | | | | ENVELOPE AND CELLULAR
CESSES 866 | xlyB | 1317 | prophage-mediated lysis) N-acetylmuramoyl-L-alanine amidase (PBSX | ImrB | 290 | specific enzyme IIC component
lincomycin-resistance protein | |---------------|--------------|--|--------------|--------------|---|---------------|--------------|--| | 1.1 | CELL | WALL93 | yfnG | 799 | prophage-mediated lysis)
CDP-glucose 4,6-dehydratase | lpIA
lpIB | 779
781 | lipoprotein
transmembrane lipoprotein | | cwlA | 2665 | N-acetylmuramoyl-L-alanine amidase (minor | yhdD | 1013 | cell wall-binding protein | ĺρΙC | 782 | transmembrane lipoprotein | | cwlC | 1873 | autolysin) N-acetylmuramoyl-L-alanine amidase (sporula- | ykuA
ylbl | 1467
1569 | penicillin-binding protein
lipopolysaccharide core biosynthesis | mdr | 334 | multidrug-efflux transporter (puromycin, ner-
floxacin, tosufloxacin) | | | | tion mother cell wall) | ymaG | 1865 | cell wall protein | msmE | 3097 | multiple sugar-binding protein | | cwlD | 157 | N-acetylmuramoyl-L-alanine amidase (germination) | yngB
yocH | 1946
2093 | UTP-glucose-1-phosphate uridylyltransferase cell wall-binding protein | msmX | 3984 | multiple sugar-binding transport ATP-binding
protein | | cwlJ | 282 | cell wall hydrolase (sporulation) | yodJ | 2135 | D-alanyl-D-alanine carboxypeptidase | mtlA | 449 | phosphotransferase system (PTS) mannitol- | | dacA | 18 | penicillin-binding protein 5 (D-alanyl-D-alanine carboxypeptidase) (peptidoglycan biosynthe- | yojL
yomC | 2116
2263 | cell wall-binding protein N-acetylmuramoyl-L-alanine amidase | narK | 3833 | specific enzyme IIABC component
nitrite extrusion protein | | | | sis) | vpdQ | 2310 | cell wall enzyme | nasA | 363 | nitrate transporter | | dacB | 2424 | penicillin-binding protein 5* (D-alanyl-D-alanine | ypfP
ypjH | 2306
2357 | cell wall synthesis
lipopolysaccharide biosynthesis-related protein | natA | 296 | Na* ABC transporter (extrusion) (ATP-binding
protein) | | | | carboxypeptidase) (peptidoglycan biosynthesis) (spore cortex) | урјп
уqеЕ | 2649 | N-acetylmuramoyl-L-alanine amidase | natB | 297 | Na* ABC transporter (extrusion) (membrane | | dacF | 2445 | penicillin-binding protein (D-alanyl-D-alanine car- | yqfY | 2588 | peptidoglycan acetylation | A | 2750 | protein) | | ddlA | 508 | boxypeptidase) (peptidoglycan biosynthesis)
D-alanyl-D-alanine ligase A (peptidoglycan | yqil
yrhL | 2515
2771 | N-acetylmuramoyl-L-alanine amidase acyltransferase | nrgA
nupC | 3756
4050 | ammonium transporter pyrimidine-nucleoside transport protein | | uun (| 000 | biosynthesis) | yrrR | 2791 | penicillin-binding protein | oppA | 1219 | oligopeptide ABC transporter (binding protein | | dltA | 3951 | D-alanyl-D-alanine carrier protein ligase (lipotei- | yrvJ | 2818
3157 | N-acetylmuramoyl-L-alanine amidase
lipopolysaccharide N-acetylglucosaminyltrans- | | | (initiation of sporulation, competence develo | | dltB | 3953 | choic acid biosynthesis) D-alanine transfer from Dcp to undecaprenol- | ytcC | 3157 | ferase | оррВ | 1221 | ment) oligopeptide ABC transporter (permease) (ini | | | | phosphate (lipoteichoic acid biosynthesis) | ytkC | 3135 | autolytic amidase | | | tion of sporulation, competence developmen | | dltC | 3954 | D-alanine carrier protein (lipoteichoic acid biosynthesis) | ytxN | 3161 | lipopolysaccharide N-acetylglucosaminyltrans-
ferase | oppC | 1222 | oligopeptide ABC transporter (permease) (inition of sporulation, competence development | | dltD | 3954 | D-alanine transfer from undecaprenol-phos- | yubE | 3191 | N-acetylmuramoyl-L-alanine amidase | oppD | 1223 | oligopeptide ABC transporter (ATP-binding p | | | | phate to the poly(glycerophosphate) chain
(lipoteichoic acid biosynthesis) | yvcE
ywhE | 3575
3849 | cell wall-binding protein
penicillin-binding protein | | | tein) (initiation of sporulation, competence development) | | lltE | 3955 | involved in lipoteichoic acid biosynthesis | ywtD | 3697 | murein hydrolase | oppF | 1224 | oligopeptide ABC transporter (ATP-binding p | | gcaD | 56 | UDP-N-acetylglucosamine pyrophosphorylase | | TD 44 | IODODT (DINIDINIO DOCTEINIO ANID | | | tein) (initiation of sporulation, competence | | | | (peptidoglycan and lipopolysaccharide biosynthesis) | 1.2 | LIPO | ISPORT/BINDING PROTEINS AND
PROTEINS381 | opuAA | 321 | development) glycine betaine ABC transporter (ATP-binding | | gaA | 3670 | galactosamine-containing minor teichoic acid | aapA | 2766 | amino acid permease | | | protein) (osmoprotection) | | | 3669 | biosynthesis
galactosamine-containing minor teichoic acid | alsT
amyC | 1938
3099 | amino acid carrier protein maltose transport protein | opuAB | 322 | glycine betaine ABC transporter (permease) (osmoprotection) | | ggaB | | biosynthesis | amyD | 3098 | sugar transport | opuAC | 323 | glycine betaine ABC transporter (glycine | | gtaB | 3665 | UTP-glucose-1-phosphate uridylyltransferase | appA | 1213 | oligopeptide ABC transporter (oligopeptide- | opuBA | 2460 | betaine-binding protein) (osmoprotection) choline ABC transporter (ATP-binding protein | | ytB | 3662 | modifier protein of major autolysin LytC
(CWBP76) | аррВ | 1215 | binding protein)
oligopeptide ABC transporter (permease) | opuBA | 3462 | (osmoprotection) | | ytC | 3660 | N-acetylmuramoyl-L-alanine amidase (major | appC | 1216 | oligopeptide ABC transporter (permease) | opuBB | 3461 | choline ABC transporter (membrane protein) | | | 207 | autolysin) (CWBP49) | appD | 1211 | oligopeptide ABC transporter (ATP-binding pro- | opuBC | 3460 |
(osmoprotection)
choline ABC transporter (choline-binding pro | | ytD | 3687 | N-acetylglucosaminidase (major autolysin) (CWBP90) | appF | 1212 | tein) oligopeptide ABC transporter (ATP-binding pro- | | | tein) (osmoprotection) | | ytE. | 1018 | cell wall lytic activity (CWBP33) | | | tein) | opuBD | 3460 | choline ABC transporter (membrane protein) | | nbl
nraY | 3747
1587 | MreB-like protein
phospho-N-acetylmuramoyl-pentapeptide | araE
araN | 3485
2942 | L-arabinose transport (permease)
L-arabinose transport (sugar-binding protein) | opuCA | 3470 | (osmoprotection)
glycine betaine/carnitine/choline ABC trans- | | illai | 1007 | transferase (peptidoglycan biosynthesis) | araP | 2941 | L-arabinose transport (sugar-binding protein) | ориол | | porter (ATP-binding protein) (osmoprotection | | nreB | 2861 | cell-shape determining protein | | 00.00 | tein) | opuCB | 3469 | glycine betaine/carnitine/choline ABC trans- | | nreBH
nreC | 1517
2860 | cell-shape determining protein cell-shape determining protein | araQ | 2940 | L-arabinose transport (integral membrane pro-
tein) | opuCC | 3468 | porter (membrane protein) (osmoprotection) glycine betaine/carnitine/choline ABC trans- | | nreD | 2859 | cell-shape determining protein | azIC | 2729 | branched-chain amino acid transport | -, | | porter (osmoprotectant-binding protein) (osn | | nurA | 3778 | UDP-N-acetylglucosamine 1-carboxyvinyltrans- | azID | | branched-chain amino acid transport | opuCD | 3467 | protection)
glycine betaine/carnitine/choline ABC trans- | | nurB | 1592 | ferase (peptidoglycan biosynthesis) UDP-N-acetylenolpyruvoylglucosamine reduc- | bgIP | 4034 | phosphotransferase system (PTS) β-glucoside-
specific enzyme IIABC component | υράσε | 3407 | porter (membrane protein) (osmoprotection) | | | | tase (peptidoglycan biosynthesis) | blt | 2716 | multidrug-efflux transporter | opuD | 3076 | glycine betaine transporter (osmoprotection) | | nurC | 3049 | UDP-N-acetylmuramate-alanine ligase (peptido-
glycan biosynthesis) | bmr
braB | 2494
3027 | multidrug-efflux transporter
branched-chain amino acid transporter | opuE
pbuX | 728
2319 | proline transporter (osmoprotection) xanthine permease | | nurD | 1588 | UDP-N-acetylmuramoylalanine-p-glutamate lig- | brnQ | 2728 | branched-chain amino acid transporter | ptsG | 1457 | phosphotransferase system (PTS) glucose | | | 4500 | ase (peptidoglycan biosynthesis) | citM | 834 | secondary transporter of the Mg2+/citrate com- | ntol | 1459 | -specific enzyme IIABC component | | nurE | 1586 | UDP-N-acetylmuramoylananine-p-gluta-
mate-2,6-diaminopimelate ligase (peptidoglycan | csbX | 2838 | plex
α-ketoglutarate permease | ptsl | 1409 | phosphotransferase system (PTS) enzyme I
(general energy coupling protein of the PTS) | | | | biosynthesis) | cydC | 3976 | ABC transporter required for expression of | pyrP | 1618 | uracil permease (pyrimidine biosynthesis) | | nurF | 509 | UDP-N-acetylmuramoylalanyl- | dD | 3974 | cytochrome bd (ATP-binding protein) | rbsA
rbsB | 3703
3705 | ribose ABC transporter (ATP-binding protein
ribose ABC transporter (ribose-binding protein
ribose ABC transporter (ribose-binding protein
ribose ABC transporter (ribose-binding protein
ribose ABC transporter (ATP-binding protein
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribose
ribos | | | | D-glutamyl-2,6-diaminopimelate-D-alanyl-
D-alanyl ligase (peptidoglycan biosynthesis) | cydD | 3974 | ABC transporter required for expression of
cytochrome bd (ATP-binding protein) | rbsC | | ribose ABC transporter (ribose-biriding prote
ribose ABC transporter (permease) | | nurG | 1591 | UDP-N-acetylglucosamine-N-acetylmuramyl- | czcD | 2724 | cation-efflux system membrane protein | rbsD | 3702 | ribose ABC transporter (membrane protein) | | | | (pentapeptide)pyrophosphoryl-undecaprenol
N-acetylglucosamine transferase (peptidogly- | dppA
dppB | 1360
1361 | dipeptide ABC transporter (sporulation)
dipeptide ABC transporter (permease) (sporula- | rocC | 3876 | amino acid permease (arginine and ornithine utilization) | | | | can biosynthesis) | | | tion) | rocE | 4143 | amino acid permease (arginine and ornithine | | murZ | 3806 | UDP-N-acetylglucosamine 1-carboxyvinyltrans-
ferase (peptidoglycan biosynthesis) | dppC | 1362 | dipeptide ABC transporter (permease) (sporula- | sacP | 3904 | utilization)
phosphotransferase system (PTS) sucrose- | | bp | 1999 | penicillin-binding protein (peptidoglycan biosyn- | dppD | 1363 | tion) dipeptide ABC transporter (ATP-binding protein) | Saci | 3304 | specific enzyme IIBC component | | | | thesis) | | | (sporulation) | slp_ | 1533 | small peptidoglycan-associated lipoprotein | | bpA | 2583 | penicillin-binding protein 2A (peptidoglycan biosynthesis) (spore outgrowth) | dppE | 1364 | dipeptide ABC transporter (dipeptide-binding protein) (sporulation) | sunT
tetB | 2269
4188 | sublancin 168 lantibiotic transporter
tetracycline resistance protein | | bpB | 1581 | penicillin-binding protein 2B (peptidoglycan | ebrA | 1865 | multidrug resistance protein | treP | 850 | phosphotransferase system (PTS) trehalose | | | 400 | biosynthesis) (cell-division septum) | ebrB | 1864 | multidrug resistance protein | Aud A | 2722 | specific enzyme IIBC component | | bpC | 463 | penicillin-binding protein 3 (peptidoglycan biosynthesis) | ecsA
ecsB | 1077
1078 | ABC transporter (ATP-binding protein) ABC transporter (membrane protein) | trkA
yabM | 65 | potassium uptake
amino acid transporter | | bpD | 3233 | penicillin-binding protein 4 (peptidoglycan | expZ | 606 | ATP-binding transport protein | vbaE | 151 | ABC transporter (ATP-binding protein) | | | 3535 | biosynthesis) penicillin-binding protein 4* (peptidoglycan | feuA
feuB | 183
182 | iron-uptake system (binding protein)
iron-uptake system (integral membrane protein) | ybbF
ybcL | 191
212 | sucrose phosphotransferase enzyme II
chloramphenicol resistance protein | | bpE | | biosynthesis) (spore cortex) | feuC | 182 | iron-uptake system (integral membrane protein) | ybdA | 217 | ABC transporter (binding protein) | | bpF | 1083 | penicillin-binding protein 1A (peptidoglycan | fhuB | 3417 | ferrichrome ABC transporter (permease) | ybdB | 218 | ABC transporter (permease) | | bpX | 1765 | biosynthesis) (germination)
penicillin-binding protein (peptidoglycan biosyn- | fhuC | 3415 | ferrichrome ABC transporter (ATP-binding pro-
tein) | ybeC
ybfS | 231
257 | amino acid transporter
phosphotransferase system enzyme II | | | | thesis) | fhuD | 3418 | ferrichrome ABC transporter (ferrichrome-bind- | ybgF | 262 | histidine permease | | oonA | 2341 | penicillin-binding proteins 1A/1B (peptidogly-
can biosynthesis) | fhuG | 3416 | ing protein) ferrichrome ABC transporter (permease) | ybgH
ybxA | 264
150 | sodium/proton-dependent alanine transport
ABC transporter (ATP-binding protein) | | acE | 2903 | glutamate racemase (peptidoglycan biosynthe- | fruA | 1509 | phosphotransferase system (PTS) fructose- | ybxG | 227 | amino acid permease | | | | sis) | | | specific enzyme IIBC component | ycbE | 270 | glucarate transporter | | spoVD | 1584 | penicillin-binding protein (peptidoglycan biosyn-
thesis) (spore cortex) | gabP
glnH | 686
2802 | γ-aminobutyrate permease
glutamine ABC transporter (glutamine-binding) | ycbK
ycbN | 277
280 | efflux system
ABC transporter (ATP-binding protein) | | agA | 3680 | involved in polyglycerol phosphate teichoic acid | glnM | 2803 | glutamine ABC transporter (membrane protein) | yccK | 298 | ion channel | | | 3681 | biosynthesis
involved in polyglycerol phosphate teichoic acid | glnP
glnQ | 2804
2802 | glutamine ABC transporter (membrane protein)
glutamine ABC transporter (ATP-binding pro- | ycdl
ycel | 309
317 | ABC transporter (ATP-binding protein) transporter | | agB | | biosynthesis | | | tein) | yceJ | 320 | multidrug-efflux transporter | | agC | 3682 | involved in polyglycerol phosphate teichoic acid | glpF | 1002 | glycerol uptake facilitator | vcgH | 337 | amino acid transporter | | agD | 3680 | biosynthesis
glycerol-3-phosphate cytidylyltransferase (tei- | glpT
gltP | 235
255 | glycerol-3-phosphate permease
H*/glutamate symport protein | ycgO
yckA | 347
368 | proline
permease
amino acid ABC transporter (permease) | | | | choic acid biosynthesis) | altT | 1097 | H*/Na*-glutamate symport protein | yckB | 368 | amino acid ABC transporter (binding protein | | agE | 3679 | UDP-glucose:polyglycerol phosphate glucosyl-
transferase (teichoic acid biosynthesis) | glvC | 892 | phosphotransferase system (PTS) arbutin-like enzyme IIBC component | yckl | 410 | glutamine ABC transporter (ATP-binding pro-
tein) | | agF | 3677 | CDP-alvcerol:polyalvcerol phosphate alvcero- | gntP | 4115 | gluconate permease (gluconate utilization) | yckJ | 410 | glutamine ABC transporter (permease) | | ~ | | phosphotransferase (teichoic acid biosynthe- | hisP | 3004 | histidine transport protein (ATP-binding protein) | yckK | 411 | glutamine ABC transporter (glutamine-bindir | | agG | 3675 | sis)
teichoic acid translocation (permease) | hutM
ioIF | 4046
4077 | histidine permease inositol transport protein | yclF | 417 | protein)
di-tripeptide ABC transporter (membrane pro | | agH | 3674 | teichoic acid translocation (ATP-binding protein) | kdgT | 2322 | 2-keto-3-deoxygluconate permease (pectin uti- | | | tein) | | agO | 3649 | teichoic acid linkage unit synthesis | | | lization) | yclH
vcll | 424
426 | ABC transporter (permease) transporter | | uaA
uaB | 3658
3657 | biosynthesis of teichuronic acid
biosynthesis of teichuronic acid | lctP
levD | 330
2762 | L-lactate permease
phosphotransferase system (PTS) fructose- | ycll
yclN | 432 | ferrichrome ABC transporter (permease) | | uaC | 3656 | biosynthesis of teichuronic acid | | | specific enzyme IIA component | yclO | 433 | ferrichrome ABC transporter (permease) | | ıaD | 3655 | biosynthesis of teichuronic acid (UDP-glucose
6-dehydrogenase) | levE | 2762 | phosphotransferase system (PTS) fructose-
specific enzyme IIB component | yclP | 434 | ferrichrome ABC transporter (ATP-binding pr
tein) | | ıaE | 3653 | biosynthesis of teichuronic acid | <i>levF</i> | 2761 | phosphotransferase system (PTS) fructose- | yclQ | 435 | ferrichrome ABC transporter (binding protein | | uaF | 3652 | biosynthesis of teichuronic acid | | | specific enzyme IIC component | ycnB | 437 | multidrug resistance protein | | иаG
иаН | 3651
3650 | biosynthesis of teichuronic acid
biosynthesis of teichuronic acid | levG | 2760 | phosphotransferase system (PTS) fructose-
specific enzyme IID component | ycnJ
ycsG | 448
457 | copper export protein
branched chain amino acids transporter | | vapA | 4029 | cell wall-associated protein precursor | licA | 3959 | phosphotransferase system (PTS) lichenan- | ydbA | 493 | ABC transporter (binding protein) | | | 1153 | (CWBP200, 105, 62)
cell wall-associated protein precursor (CWBP23 | licB | 3961 | specific enzyme IIA component
phosphotransferase system (PTS) lichenan- | ydbE
ydbH | 497
500 | C4-dicarboxylate binding protein C4-dicarboxylate transport protein | | Vnr1 | | | IIUD | 020 I | specific enzyme IIB component | ydbri
ydbJ | 502 | ABC transporter (ATP-binding protein) | | wprA | | and serine protease CWBP52) | | | | | 566 | metabolite transport protein | | ydeR
ydfA | 578
580 | antibiotic resistance protein arsenical pump membrane protein | ytmJ
ytmK | | amino acid ABC transporter (binding protein)
amino acid ABC transporter (binding protein) | ycIK
ydbF | | two-component sensor histidine kinase [YclJ]
two-component sensor histidine kinase [YdbG] | |--------------|--------------|---|--------------|--------------|--|--------------|------------------|---| | ydfJ | 589 | antibiotic transport-associated protein | ytmL | 3006 | amino acid ABC transporter (permease) | ydfH | 587 t | two-component sensor histidine kinase [Ydfl] | | ydfL
ydfM | 595
596 | multidrug-efflux transporter regulator cation efflux system | ytmM
ytnA | 3125 | | yesM
yfiJ | 903 t | two-component sensor histidine kinase [YesN]
two-component sensor histidine kinase [YfiK] | | ydfO
ydgF | 597
608 | ABC transporter (binding protein) amino acid ABC transporter (permease) | ytrB
ytrE | 3118
3115 | ABC transporter (ATP-binding protein) ABC transporter (ATP-binding protein) | yhcY
yhjL | | two-component sensor histidine kinase [YhcZ]
sensory transduction pleiotropic regulatory pro- | | ydgH | 609
613 | transporter | ytsC | 3111
3110 | ABC transporter (ATP-binding protein) | vkoH | t | tein | | ydgK
ydhL | 626 | bicyclomycin resistance protein chloramphenicol resistance protein | ytsD
yttB | 3108 | | ykrQ | 1419 t | two-component sensor histidine kinase [YkoG]
two-component sensor histidine kinase | | ydhM
ydhN | 626
627 | cellobiose phosphotransferase system enzyme II cellobiose phosphotransferase system enzyme II | yubD
yubG | 3192
3188 | multidrug resistance protein
Na*-transporting ATP synthase | ykvD
yocF | | two-component sensor histidine kinase
two-component sensor histidine kinase [YocG] | | ydhO
ydiF | 627
646 | cellobiose phosphotransferase system enzyme II
ABC transporter (ATP-binding protein) | yufN
yufO | 3239
3240 | ABC transporter (lipoprotein) | yrkQ
ytrP | 2704 t | two-component sensor histidine kinase [YrkP] | | ydjD | 668 | H*-symporter | yufR | 3244 | organic acid transport protein | vtsB | 3112 t | wo-component sensor histidine kinase [YtsA] | | ydjK
yeaB | 676
687 | sugar transporter cation efflux system membrane protein | yufU
yufV | 3248
3249 | Na*/H* antiporter
Na*/H* antiporter | yufL
yvcQ | 3236 t | two-component sensor histidine kinase [YufM]
two-component sensor histidine kinase [YvcP] | | yecA
yesO | 712
761 | amino acid permease
sugar-binding protein | yugO
yunJ | 3218
3330 | | yvfT
yvqB | 3497 t | two-component sensor histidine kinase [YvfU]
two-component sensor histidine kinase [YvqA] | | yesP | 762 | lactose permease | yunK | 3331 | purine permease | yvqE | 3395 t | wo-component sensor histidine kinase [YvqC] | | yesQ
yfhA | 763
921 | lactose permease
iron(III) dicitrate transport permease | yurJ | 3345 | multiple sugar ABC transporter (ATP-binding pro-
tein) | yvrG
ywpD | | two-component sensor histidine kinase [YvrH]
two-component sensor histidine kinase | | yfhI
yfiB | 926
893 | antibiotic resistance protein ABC transporter (ATP-binding protein) | yurM
yurN | 3348
3349 | sugar permease
sugar permease | yxdK
yxjM | | two-component sensor histidine kinase [YxdJ]
two-component sensor histidine kinase [YxjL] | | yfiC . | 895 | ABC transporter (ATP-binding protein) | yurO | 3350 | multiple sugar-binding protein | yycG | | wo-component sensor histidine kinase [YycF] | | yfiG
yfiL | 900
905 | metabolite transport protein ABC transporter (ATP-binding protein) | yurY
yusC | 3363 | ABC transporter (ATP-binding protein) ABC transporter (ATP-binding protein) | 1.4 | MEMB | RANE BIOENERGETICS (ELECTRON | | yfiM
yfiN | 906
907 | ABC transporter (ATP-binding protein) ABC transporter (ATP-binding protein) | yusP
yusV | 3374
3379 | multidrug-efflux transporter
iron(III) dicitrate transport permease | | | SPORT CHAIN AND ATP
HASE)78 | | yfiS | 913 | multidrug resistance protein | yutK | 3307 | Na*/nucleoside cotransporter | atpA | 3784 A | ATP synthase (subunit α) | | yfiU
yfiY | 916
920 | multidrug-efflux transporter
iron(III) dicitrate transport permease | yuxJ
yvaE | 3448 | multidrug-efflux transporter
multidrug-efflux transporter | atpB
atpC | | ATP synthase (subunit a)
ATP synthase (subunit ε) | | yfiZ
yfjQ | 920
872 | iron(III) dicitrate transport permease
divalent cation transport protein | yvbW
yvcC | 3490
3579 | | atpD
atpE | 3782 A | ATP synthase (subunit ß)
ATP synthase (subunit c) | | yfkE | 865 | H*/Ca ² * exchanger | yvcR | 3565 | ABC transporter (ATP-binding protein) | atpF | 3786 | ATP synthase (subunit b)
ATP synthase (subunit b)
ATP synthase (subunit γ) | | yfkF
yfkH | 865
862 | multidrug-efflux transporter transporter | yvcS
yvdB | 3565
3561 | transporter | atpG
atpH | 3785 A | ATP synthase (subunit δ) | | yfkL
yflA | 861
844 | multidrug resistance protein
aminoacid carrier protein | yvdG
yvdH | 3555
3554 | maltose/maltodextrin-binding protein
maltodextrin transport system permease | atpl
cccA | 3787 A | ATP sýnthase (subunit i)
cytochrome <i>c</i> _{sso} | | yflE
yflF | 844
840 | anion-binding protein | yvdl | 3552
3538 | maltodextrin transport system permease | cccB | 3625 | cytochrome c ₅₈₁ | | yflS | 829 | phosphotransferase system enzyme II
2-oxoglutarate/malate translocator | yveA
yvfH | 3510 | L-lactate permease | ccdA
ctaA | | required for a late step of cytochrome c synthesis cytochrome caa ₃ oxidase (required for biosynthe- | | yfmC
yfmD | 826
825 | ferrichrome ABC transporter (binding protein)
ferrichrome ABC transporter (permease) | yvfK
yvfL | 3508
3506 | maltose/maltodextrin-binding protein
maltodextrin transport system permease | ctaB | 8 | sís)
cytochrome <i>caa</i> ₃ oxidase (assembly factor) | | yfmE
yfmF | 824
823 | ferrichrome ABC transporter (permease)
ferrichrome ABC transporter (ATP-binding protein) | yvfM
yvfR | 3505
3498 | maltodextrin transport system permease | ctaC | 1560 d | cytochrome caa ₃ oxidase (subunit II) | | yfmM | 815 | ABC transporter (ATP-binding protein) | yvgK | 3424 | molybdenum-binding protein | ctaD
ctaE | 1563 c | cytochrome <i>caa</i> ₃ oxidase (subunit I)
cytochrome <i>caa</i> ₃ oxidase (subunit III) | | yfmO
yfmR | 812
809 | multidrug-efflux transporter
ABC
transporter (ATP-binding protein) | yvgL
yvgM | 3424
3425 | molybdenum transport permease | ctaF
cydA | | cytochrome caa ₃ oxidase (subunit IV)
cytochrome bd ubiquinol oxidase (subunit I) | | yfnA
ygaD | 806
939 | metabolite transporter
ABC transporter (ATP-binding protein) | yvgW
yvgX | 3440
3443 | heavy metal-transporting ATPase | cydB
etfA | 3977 | cytochrome bd ubiquinol oxidase (subunit lí) | | ygaL | 961 | nitrate ABC transporter (binding protein) | yvgY | 3443 | mercuric transport protein | etfB | 2916 € | electron transfer flavoprotein (α subunit)
electron transfer flavoprotein (β subunit) | | ygaM
ygbA | 963
962 | ABC transporter (permease) ABC transporter (binding lipoprotein) | yvkA
yvmA | | multidrug-efflux transporter
transporter | fer
hmp | | ferredoxin
flavohemoglobin | | yhaQ
yhaU | 1062
1060 | ABC transporter (ATP-binding protein) Na*/H* antiporter | yvqJ
yvrA | | macrolide-efflux protein iron transport system | narG
narH | 3829 r | nitrate reductase (α subunit)
nitrate reductase (β subunit) | | yhcA | 977 | multidrug resistance protein | yvrB | 3403 | iron permease | narl | 3823 r | nitrate reductase (γ subunit) | | yhcG
yhcH | 981
982 | glycine betaine/L-proline transport
ABC transporter (ATP-binding protein) | yvrC
yvrO | 3403 | iron-binding protein
amino acid ABC transporter (ATP-binding protein) | narJ
ndhF | | nitrate reductase (protein J)
NADH dehydrogenase (subunit 5) | | yhcJ
yhcL | 984
986 | ABC transporter (binding lipoprotein) sodium-glutamate symporter | yvsH
ywbA | 3420
3938 | | qcrA | 2364 r | menaquinol:cytochrome c oxidoreductase (iron-
sulphur subunit) | | yhdG | 1023 | amino acid transporter | ywbF | 3933 | sugar permease | qcrB | 2364 r | menaquinol:cytochrome c oxidoreductase | | yhdH
yheH | 1024
1047 | sodium-dependent transporter ABC transporter (ATP-binding protein) | ywcA
ywcJ | | nitrite transporter | qcrC | | cytochrome <i>b</i> subunit)
menaquinol:cytochrome <i>c</i> oxidoreductase | | yhel
yheL | 1045
1044 | ABC transporter (ATP-binding protein) Na*/H* antiporter | ywfA
ywfF | 3874
3869 | | goxA | 3917 | (cytochrome b/c subunit)
cytochrome aa ₃ quinol oxidase (subunit II) | | yhfQ
yhjB | 1107
1120 | iron(III) dicitrate-binding protein
metabolite permease | ywhQ
ywjA | 3837
3821 | | qoxB | 3916 | cytochrome aa ₃ quinol oxidase (subunit I) | | yhjO | 1133 | multidrug-efflux transporter | ywoA | 3758 | bacteriocin transport permease | qoxC
qoxD | 3913 | cytochrome aa ₃ quinol oxidase (subunit III)
cytochrome aa ₃ quinol oxidase (subunit IV) | | yhjP
yitG | 1133
1177 | transporter binding protein
multidrug resistance protein | ywoD
ywoE | 3754
3753 | transporter permease | resA | | essential protein similar to cytochrome c biogenesis protein | | yitZ
yjbQ | 1194
1240 | multidrug resistance protein
Na*/H* antiporter | ywoG
ywpC | | antibiotic resistance protein | resB | 2420 € | essential protein similar to cytochrome c biogenesis protein | | yjdD | 1272 | fructose phosphotransferase system enzyme II | | | protein | resC | 2418 € | essential protein similar to cytochrome c biogene- | | yjkB
yjmB | 1296
1301 | amino acid ABC transporter (ATP-binding protein)
Na*:galactoside symporter | ywrA
ywrB | 3721
3720 | chromate transport protein
chromate transport protein | tlp | | sis protein
thioredoxin-like protein | | yjmG
ykaB | 1307
1350 | hexuronate transporter
low-affinity inorganic phosphate transporter | ywrK
ywtG | | arsenical pump membrane protein metabolite transport protein | trxA
trxB | 2912 t | thioredoxin
thioredoxin reductase | | ykbA | 1352 | amino acid permease | yxaM | 4100 | antibiotic resistance protein | ycgT | 352 t | thioredoxin reductase | | ykcA
ykfD | 1368 | ABC transporter (binding protein)
oligopeptide ABC transporter (permease) | yxcC
yxdL | 4070 | metabolite transport protein ABC transporter (ATP-binding protein) | ycnD
ydbP | | NADPH-flavin oxidoreductase
thioredoxin | | yknU
yknV | 1499
1501 | ABC transporter (ATP-binding protein) ABC transporter (ATP-binding protein) | yxdM
yxeB | 4069
4066 | ABC transporter (permease) ABC transporter (binding protein) | ydeQ
ydfQ | | NAD(P)H oxidoreductase
thioredoxin | | yknY | 1505 | ABC transporter (ATP-binding protein) cation ABC transporter (ATP-binding protein) | yxeM | 4059
4058 | amino acid ABC transporter (binding protein) | ydgl | 613 | NADH dehydrogenase | | ykoD
ykoK | 1390
1395 | Mg ²⁺ transporter | yxeN
yxeO | 4058 | amino acid ABC transporter (ATP-binding protein) | yfkO
yfmJ | 818 | NAD(P)H-flavin oxidoreductase
quinone oxidoreductase | | ykpA
ykrM | 1512
1416 | ABC transporter (ATP-binding protein) Na*-transporting ATP synthase | yxeR
yxiQ | 4054
4009 | | yjdK
yjlD | | cytochrome <i>c</i> oxidase assembly factor
NADH dehydrogenase | | ykuC
ykvW | 1476
1451 | macrolide-efflux protein
heavy metal-transporting ATPase | yxjA
yxkJ | 4005
3979 | pyrimidine nucleoside transport | ykuN
ykuP | 1486 f | flavodoxin
sulfite reductase | | ylmA | 1606 | ABC transporter (ATP-binding protein) | yxlA | 3970 | purine-cytosine permease | ykuU | 1492 2 | 2-cys peroxiredoxin | | yInA
yloB | 1630
1637 | anion permease calcium-transporting ATPase | yxlF
yxlH | 3968
3966 | multidrug-efflux transporter | ykvV
yneN | 1929 t | thioredoxin
thiol:disulfide interchange protein | | ynaJ
yncC | 1887
1896 | H*-symporter
metabolite transport protein | yyaJ
yybF | 4194
4180 | transporter | yojN
yoll | 2114 r | nitric-oxide reductase
thioredoxin | | yocN | 2098 | permease | vybJ | 4175 | ABC transporter (ATP-binding protein) | yosR | 2159 t | thioredoxin | | yocR
yocS | 2106
2106 | sodium-dependent transporter
sodium-dependent transporter | yybL
yybO | 4174
4169 | ABC transporter (permease) ABC transporter (permease) | ypdA
yqiG | 2401 t
2516 N | thioredoxin reductase
NADH-dependent flavin oxidoreductase | | yodE
yodF | 2129
2130 | aromatic metabolite transporter proline permease | yycB
yydl | 4159
4125 | ABC transporter (permease) ABC transporter (ATP-binding protein) | yqjM
yrkL | 2475 | NADH-dependent flavin oxidoreductase
NAD(P)H oxidoreductase | | yojA | 2125
2337 | gluconate permease | yyzE | 4122 | phosphotransferase systeme enzyme II | ythA | 3139 | cytochrome d oxidase subunit | | ypqE
yqeW | 2620 | phosphotransferase system enzyme II
Na*/P _i cotransporter | 1.3 | SENS | SORS (SIGNAL TRANSDUCTION)38 | ytpP
ytrC | 3117 | thioredoxin H1
cytochrome <i>c</i> oxidase subunit | | yqgG
yqgH | 2581
2580 | phosphate ABC transporter (binding protein)
phosphate ABC transporter (permease) | cheA | 1712 | two-component sensor histidine kinase [CheB/CheY] chemotactic signal modulator | ytrD
yufD | 3116 | cytochrome <i>c</i> oxidase subunit
NADH dehydrogenase (ubiquinone) | | yqgl | 2579 | phosphate ABC transporter (permease) phosphate ABC transporter (ATP-binding protein) | citS | 830 | two-component sensor histidine kinase [CitT] | yufT | 3246 | NADH dehydrogenase | | yqgJ
yqgK | 2578
2577 | phosphate ABC transporter (ATP-binding protein) | comP | 3255 | involved in early competence | yumB
yumC | 3301 t | NADH dehydrogenase
thioredoxin reductase | | yqiH
yqiX | 2515
2492 | lipoprotein
amino acid ABC transporter (binding protein) | degS | 3646 | two-component sensor histidine kinase [DegU] involved in degradative enzyme and competence | yusE
yutl | | thioredoxin
NADH dehydrogenase | | yqiY | 2491
2491 | amino acid ABC transporter (permease)
amino acid ABC transporter (ATP-binding protein) | kin A | 1400 | regulation | yvaB | 3445 | NAD(P)H dehydrogenase (quinone) | | yqiZ
yqjV | 2466 | multidrug resistance protein | kinA | 1469 | involved in the initiation of sporulation | ywcG
ywhN | 3840 t | NADPH-flavin oxidoreductase
ubiquinol-cytochrome c reductase | | yqkl
yraO | 2453
2745 | Na ⁺ /H ⁺ antiporter
citrate transporter | kinB | 3229 | involved in the initiation of sporulation | ywrO | 3708 | NAD(P)H oxidoreductase | | yrbD
ytbD | 2841
2968 | sodium/proton-dependent alanine carrier protein antibiotic resistance protein | kinC | 1518 | two-component sensor histidine kinase [Spo0A] | 1.5 | MOBIL | .ITY AND CHEMOTAXIS | | ytcP | 3087 | ABC transporter (permease) | | | involved in the initiation of sporulation (phosphorelay-independent) | cheC | r | nhibition of CheR-mediated methylation of
methyl-accepting chemotaxis proteins | | ytcQ
yteQ | 3086
3082 | lipoprotein sugar transport protein | lytS | 2957 | two-component sensor histidine kinase [LytT] involved in the rate of autolysis | cheD | 1715 r | required for methylation of methyl-accepting
chemotaxis proteins by CheR | | ytgA
ytgB | 3145
3144 | ABC transporter (membrane protein) ABC transporter (ATP-binding protein) | phoR | 2977 | two-component sensor histidine kinase [PhoP] involved in phosphate regulation | cheR | 2380 r | methyl-accepting chemotaxis proteins methyl- | | vtaC | 3143 | ABC transporter (membrane protein) | resE | 2416 | two-component sensor histidine kinase [ResD] | cheV | 1473 r | transferase
modulation of CheA activity in response to attrac- | | ythP
ytlC | 3071
3132 | ABC transporter (ATP-binding protein) anion transport ABC transporter (ATP-binding pro- | ybdK | 222 | involved in aerobic and anaerobic respiration two-component sensor histidine kinase [YbdJ] | cheW | | tants (CheW and CheY similar domains) modulation of CheA activity in response to attrac- | | ytlD | 3133 | tein) ABC transporter (permease) | ycbA
ycbM | 266
279 | two-component sensor histidine kinase [YcbB]
two-component sensor histidine kinase [YcbL] | flgB | t | iants
flagellar
basal-body rod protein | | ytlP | | ABC transporter (permease) | yccG | 295 | two-component sensor histidine kinase [YccH] | flgC | | flagellar basal-body rod protein | | | | | | r | Nature © Macmillan Publishers Ltd 1997 | | | | | flg | gΕ | 1700 | flagellar hook protein | cotX | | spore coat protein (insoluble fraction) | _ | | SASP) | |------------|-------------|--------------|--|----------------------|--------------|---|----------------|--------------|--| | | gK
gL | | flagellar hook-associated protein 1 (HAP1)
flagellar hook-associated protein 3 (HAP3) | cotY
cotZ | 1250
1249 | spore coat protein (insoluble fraction)
spore coat protein (insoluble fraction) | sspE | 937 | small acid-soluble spore protein (major γ-type SASP) | | | | | flagellin synthesis regulatory protein (anti-sigma | csgA | 228 | sporulation-specific SASP protein | sspF | 53 | small acid-soluble spore protein (minor α/β-type | | fll | hΑ | 1707 | factor [σ ^D])
flagella-associated protein | jag
kapB | 4213
3230 | SpollIJ-associated protein
activator of KinB in the initiation of sporulation | usd | 3748 | SASP) required for translation of spollID | | fll | hΒ | 1706 | flagella-associated protein | kapD | 3232 | inhibitor of the KinA pathway to sporulation | yknT | 1495 | sporulation protein σ ^E -controlled | | | hF
hO | 1709
3746 | flagella-associated protein
flagellar basal-body rod protein | kbaA | 159 | activation of the KinB signaling pathway to sporu-
lation | ykvU
ynzH | 1449
1901 | spore cortex membrane protein
spore coat protein | | fll | hΡ | 3745 | flagellar hook-basal body protein | obg | 2853 | GTP-binding protein involved in initiation of sporu- | yobW | | membrane protein σ^{K} -controlled | | fli
fli | | 3633
1692 | flagellar hook-associated protein 2 (HAP2)
flagellar hook-basal body protein | phrA | 1316 | lation (Spo0A activation) | yqgT | 2568
2483 | γ-D-glutamyl-L-diamino acid endopeptidase l
lipoprotein SpollIJ-like | | fli | | 1692 | flagellar basal-body M-ring protein | phrC | 430 | phosphatase (RapA) inhibitor (imported by Opp)
phosphatase (RapC) regulator / competence and | yqjG
yraD | | spore coat protein | | fli | | | flagellar motor switch protein | | 0000 | sporulation stimulating factor (CSF) | yraE | 2754 | spore coat protein | | fli
fli | | 1695
1695 | flagellar assembly protein
flagellar-specific ATP synthase | phrE
phrF | 2660
3846 | phosphatase (RapE) regulator
phosphatase (RapF) regulator | yraF
yraG | | spore coat protein
spore coat protein | | fli | | | flagellar protein required for formation of basal | phrG | 4141 | phosphatase (RapG) regulator | yrbA | 2845 | spore coat protein | | fli | K | 1698 | body
flagellar hook-length control | phrl
phrK | 548
2063 | phosphatase (Rapl) regulator
phosphatase (RapK) regulator | yrbB
yrbC | | spore coat protein
spore coat protein | | fli | L | | flagellar protein required for flagellar formation | rapA | 1315 | response regulator aspartate phosphatase | ytaA | 3161 | spore coat protein | | fli
fli | M | 1701 | flagellar motor switch protein | | 2771 | [Spo0F~P] | ytgP | | spore cortex protein | | fli | | 1704
1705 | flagellar protein required for flagellar formation
flagellar protein required for flagellar formation | rapB | 3771 | response regulator aspartate phosphatase [Spo0F~P] | ytpT
yyaA | 4208 | DNA translocase stage III sporulation protein
DNA-binding protein Spo0J-like | | fli | R | 1705 | flagellar protein required for flagellar formation | rapC | 428 | response regulator aspartate phosphatase | | | | | fli
fli | S | | flagellar protein
flagellar protein | rapD
rapE | 3743
2658 | response regulator aspartate phosphatase response regulator aspartate phosphatase | I.9
gerAA | | AINATION23
germination response to ∟-alanine | | fli | Y | 1702 | flagellar motor switch protein | rapF | 3845 | response regulator aspartate phosphatase | gerAB | | germination response to L-alanine | | fli | | | flagellar protein required for flagellar formation flagellin protein | rapG
rapH | 4139
750 | response regulator aspartate phosphatase response regulator aspartate phosphatase | gerAC
gerBA | 3392
3688 | germination response to L-alanine germination response to the combination of glu- | | | | | methyl-accepting chemotaxis protein (glucose | rapi | 547 | response regulator aspartate phosphatase | gerbA | | cose, fructose, L-asparagine, and KCl | | - | D | 3212 | and α-methyl-glucoside) methyl-accepting chemotaxis protein | rapJ
rapK | 304
2061 | response regulator aspartate phosphatase response regulator aspartate phosphatase | gerBB | 3689 | germination response to the combination of glu- | | 11 | срВ | 3212 | (asparagine, glutamine and histidine) | | 2552 | antagonist of SinR | gerBC | 3690 | cose, fructose, L-asparagine, and KCl
germination response to the combination of glu- | | m | срС | 1463 | methyl-accepting chemotaxis protein (cysteine, | soj | 4206 | centromere-like function involved in forespore | - T | | cose, fructose, L-asparagine, and KCI | | | | | proline, threonine, glycine, serine, lysine, valine and arginine) | | | chromosome partitioning / inhibition of Spo0A activation | gerCA | 2384 | heptaprenyl diphosphate synthase component I (menaquinone biosynthesis) | | | notA | | motility protein (flagellar motor rotation) | splB . | 1461 | spore photoproduct lyase | gerCB | 2383 | menaquinone biosynthesis methyltransferase | | | otB
oA | | motility protein (flagellar motor rotation)
methyl-accepting chemotaxis protein | spmA | 2423 | spore maturation protein (spore core dehydrata-
tion) | gerCC | 2382 | (menaquinone biosynthesis) heptaprenyl diphosphate synthase component II | | tlj | οВ | 3205 | methyl-accepting chemotaxis protein | spmB | 2422 | spore maturation protein (spore core dehydrata- | | | (menaquinone biosynthesis) | | | | 374
808 | methyl-accepting chemotaxis protein
methyl-accepting chemotaxis protein | spo0B | 2854 | tion)
sporulation initiation phosphoprotein (part of | gerD | 159 | germination response to L-alanine and to the | | | | 1113 | methyl-accepting chemotaxis protein | | | phosphorelay: Spo0F~P->Spo0B~P->Spo0A~P) | | | combination of glucose, fructose, L-asparagine, and KCl | | | | 1679 | flagellar biosynthetic protein | spo0E | 1430 | negative sporulation regulatory phosphatase | gerKA | 420 | germination response to the combination of glu- | | | xG
xH | 1699
1710 | flagellar hook assembly protein
flagellar biosynthesis switch protein | spo0J | 4206 | [Spo0A~P] chromosome positioning near the pole and trans- | gerKB | 423 | cose, fructose, L-asparagine, and KCl
germination response to the combination of glu- | | y | oaH | 2030 | methyl-accepting chemotaxis protein | | | port through the polar septum / antagonist of Soj | - | | cose, fructose, L-asparagine, and KCI | | | xD
xE | | flagellar motor apparatus
motility protein | spollAA
spollAB | 2444 | anti-anti-sigma factor [SpolIAB]
anti-sigma factor [σ ^F (SpolIAC)] and serine kinase | gerKC | 421 | germination response to the combination of glu-
cose, fructose, L-asparagine, and KCl | | У | vaQ | 3457 | transmembrane receptor taxis protein | | | [SpolIAA] | gerM | 2902 | germination (cortex hydrolysis) and sporulation | | | | | flagellar protein | spollB | 2864 | | - | 2025 | (stage II, multiple polar septa) | | yı
yı | | | flagellar protein
flagellar protein | spolID | 3777 | mutation) required for complete dissolution of the asymmet- | gpr
sleB | 2635
2399 | spore protease (degradation of SASPs)
spore cortex-lytic enzyme | | У | νzΒ | | flagellin | | | ric septum | yfkQ | 850 | spore germination response | | 1.6 | 3 | PROT | EIN SECRETION18 | spollE | 71 | serine phosphatase [SpollAA~P] (σ ^F activation) / asymmetric septum formation | yfkR
yfkT | 848
847 | spore germination protein
spore germination protein | | C | saA | 2079 | chaperonin involved in protein secretion | spollGA | 1603 | protease (processing of pro- σ^E to active σ^E) | ykvT | 1448 | spore cortex-lytic enzyme | | ffi | h
sY | | signal recognition particle
signal recognition particle | spolliAA
spolliAB | 2537 | mutants block sporulation after engulfment
mutants block sporulation after engulfment | yndD
yndE | 1907
1908 | spore germination protein
spore germination protein | | Is | р | 1616 | signal peptidase II | spollIAC | 2535 | mutants block sporulation after engulfment | yndF | | spore germination protein | | | | | secretion of major autolysin LytC
protein secretion (post-translocation chaperonin) | spollIAD
spollIAF | 2535 | mutants block sporulation after engulfment
mutants block sporulation after engulfment | 110 | TDAN | ICEODA ATION /COMPETENCE 20 | | | rsA
ecA | | preprotein translocase subunit | spollIAF | 2534 | mutants block sporulation after engulfment | l.10
cinA | | NSFORMATION/COMPETENCE20 competence-damage inducible protein | | | ecE | 118 | preprotein translocase subunit | spollIAG | 2533 | mutants block sporulation after engulfment
mutants block sporulation after engulfment | comC | 2864 | late competence protein required for processing | | 50 | ecF | 2828 | protein-export membrane protein (product also similar to SecD of <i>E. coli</i>) | | | DNA translocase required for chromosome parti- | comEA | 2640 | and translocation of ComGC
late competence operon required for DNA bind- | | | ecY | | preprotein translocase subunit | | | tioning through the septum into the forespore | | | ing and uptake | | |
pS
pT | 2432
1511 | signal peptidase I
signal peptidase I | spollIJ
spolIM | 4214
2450 | essential for σ^{G} activity at stage III required for dissolution of the septal cell wall | comEB | 2640 | late competence operon required for DNA bind-
ing and uptake | | Si | рU | 454 | signal peptidase I | spollP | 2634 | required for dissolution of the septal cell wall | comEC | 2639 | late competence operon required for DNA bind- | | | | 1122
2554 | signal peptidase I
signal peptidase I | spolIQ
spolIR | 3760
3794 | required for completion of engulfment required for processing of pro- σ^E | oomED | 2640 | ing and uptake | | | | 42 | signal peptidase II | spollSA | | lethal when synthesized during vegetative growth | comER
comFA | | non-essential gene for competence
late competence protein required for DNA uptake | | ya | | 81 | protein secretion PrsA homologue | spollSB | 1240 | in the absence of SpollSB | comFB | 3641 | late competence gene | | y | obE | 2057 | general secretion pathway protein | ъринов | 1340 | disruption blocks sporulation after septum formation | comFC
comGA | 3641
2559 | late competence gene
late competence gene | | 1.7 | | CELL | DIVISION21 | spoIVA | 2387 | required for proper spore cortex formation and | comGB | 2558 | DNA transport machinery | | | | | cell-division initiation protein (septum formation) cell-division initiation protein (septum formation) | spoIVB | 2520 | coat assembly intercompartmental signalling of pro- σ^{K} process- | | | exogenous DNA-binding
DNA transport machinery | | d | ivIVA | 1612 | cell-division initiation protein (septum placement) | | | ing/activation in the mother-cell | comGE | 2557 | DNA transport machinery | | | sA
sE | 1596
3625 | cell-division protein (septum formation)
cell-division ATP-binding protein | SPOIVCA | 2654 | site-specific DNA recombinase required for creating the sigK gene (excision of the skin element) | | | DNA transport machinery DNA transport machinery | | ft | | 77 | cell-division protein / general stress protein (class | spolVFA | 2857 | inhibitor of SpolVFB | comS | 390 | assembly link between regulatory components of | | • , | al | 1581 | Ill heat-shock) cell-division protein (septum formation) | spolVFB
spoVAA | 2856 | protease (processing of pro- σ^{K} to active σ^{K}) mutants lead to the production of immature | V | 3255 | the competence signal transduction pathway competence pheromone precursor (activation of | | | | | cell-division protein (septamormation) | | | spores | comX | 3200 | ComA) | | ft | sZ | 1597 | cell-division initiation protein (septum formation) | spoVAB | 2442 | mutants lead to the production of immature spores | mecA | 1229 | negative regulator of competence | | g | idA | 1685
4211 | glucose-inhibited division protein glucose-inhibited division protein | spoVAC | 2441 | | ypbH | 2403 | negative regulation of competence MecA homologue | | g | idB | 4209 | glucose-inhibited division protein | | 0444 | spores | | | ů . | | | | 2862
2859 | septum formation
cell-division inhibitor (septum placement) | spoVAD | 2441 | mutants lead to the production of immature spores | Ш | | RMEDIARY METABOLISM 742 | | | | | cell-division inhibitor (septum placement) | spoVAE | 2440 | mutants lead to the production of immature | II.1 | | ABOLISM OF CARBOHYDRATES AND RELATED ECULES261 | | V: | acA | 75 | (ATPase activator of MinC)
cell-cycle protein | spoVAF | 2439 | spores
mutants lead to the production of immature | II.1.1 | | CIFIC PATHWAYS214 | | УI | ħΕ | 925 | cell-division inhibitor | 1/D | 2020 | spores | abfA | 2939 | α-L-arabinofuranosidase | | y) | ioB
laO | | cell-division protein FtsH homologue cell-division protein | | 2829
60 | involved in spore cortex synthesis
thermosensitive mutant blocks spore coat forma- | abnA | 2949 | arabinan-endo 1,5L-arabinase (degradation of plant cell wall polysaccharide) | | yl | mH | 1611 | cell-division protein | | | tion | ackA | | acetate kinase | | УI | NCF | 3912 | cell-division protein | spoVE
spoVFA | 1590 | required for spore cortex synthesis dipicolinate synthase subunit A | acoA | 879 | acetoin dehydrogenase E1 component (TPP- | | 1.8 | 3 | SPOR | RULATION | spoVFB | 1745 | dipicolinate synthase subunit B | асоВ | 880 | dependent α subunit)
acetoin dehydrogenase E1 component (TPP- | | b | ofA
.fO | 30 | tULATION | | 56
2872 | required for spore cortex synthesis required for assembly of the spore coat | | | dependent β subunit) | | | | | forespore regulator of the σ^{K} checkpoint maturation of the outermost layer of the spore | spoVK | 1873 | disruption leads to the production of immature | acoC | 881 | acetoin dehydrogenase E2 component (dihy-
drolipoamide acetyltransferase) | | C | geB | 2148 | maturation of the outermost layer of the spore | spoVM | 1655 | spores required for normal spore cortex and coat synthe- | acoL | 882 | acetoin dehydrogenase E3 component (dihy- | | C | geC | | maturation of the outermost layer of the spore
maturation of the outermost layer of the spore | | | sis | acsA | 3039 | drolipoamide dehydrogenase)
acetyl-CoA synthetase | | Cį | geE | 2146 | maturation of the outermost layer of the spore | spoVR | 1015 | involved in spore cortex synthesis | acuA | 3039 | acetoin utilization | | | | | spore coat protein (outer)
spore coat protein (outer) | spoVS | 1769 | required for dehydratation of the spore core and assembly of the coat | acuB
acuC | | acetoin utilization acetoin utilization | | C | otC | 1905 | spore coat protein (outer) | spsA | 3892 | spore coat polysaccharide synthesis | adhA | 2756 | NADP-dependent alcohol dehydrogenase | | C | otD | 2332 | spore coat protein (inner) | spsB
spsC | 3891 | spore coat polysaccharide synthesis
spore coat polysaccharide synthesis | adhB | 2753 | alcohol dehydrogenase | | | | 1774
4166 | spore coat protein (outer)
spore coat protein | spsD | 3889 | spore coat polysaccharide synthesis | aldX
aldY | | aldehyde dehydrogenase
aldehyde dehydrogenase | | C | otG | 3716 | spore coat protein | spsE
spsF | 3888
3887 | spore coat polysaccharide synthesis
spore coat polysaccharide synthesis | alsD | 3709 | α-acetolactate decarboxylase (acetoin biosynthe- | | | | 3716
755 | spore coat protein (inner)
polypeptide composition of the spore coat | spsG | 3886 | spore coat polysaccharide synthesis | alsS | 3710 | sis) α-acetolactate synthase (acetoin biosynthesis) | | C | οt/B | 756 | polypeptide composition of the spore coat | spsl | 3885 | | amyE | 327 | α-amylase | | | ot/C
otK | 756
1926 | polypeptide composition of the spore coat spore coat protein | spsJ
spsK | 3883 | spore coat polysaccharide synthesis | amyX
araA | 3063 | pullulanase
L-arabinose isomerase (L-arabinose utilization) | | C | otL | 1926 | spore coat protein | sspA | 3025 | small acid-soluble spore protein (major α-type | araB | 2946 | L-ribulokinase (L-arabinose utilization) | | | | | spore coat protein (outer)
spore coat-associated protein | sspB | 1050 | SASP) small acid-soluble spore protein (major β-type | araD | 2945 | L-ribulose-5-phosphate 4-epimerase (L-arabinose utilization) | | C | otS | 3160 | spore coat protein | | | SASP) | araL | 2944 | L-arabinose operon | | C | otT
otV | 1280 | spore coat protein (inner)
spore coat protein (insoluble fraction) | sspC | 2155 | small acid-soluble spore protein (minor α/β -type SASP) | araM | 2943 | L-arabinose operon
6-phosphoglucosidase | | | | | spore coat protein (insoluble fraction) spore coat protein (insoluble fraction) | sspD | | small acid-soluble spore protein (minor α/β-type | bglA
bglC | | endo-1,4—glucanase (cellulose degradation) | | | | | | | Na | ture © Macmillan Publishers Ltd 1997 | - | | - , , , , , , , , , , , , , , , , , , , | | | | | | | | | | | | | 200 | | | | | | | | | |
--|--------------|--------------|--|--------------|--------------|--|--------|--------------|--| | 200 Contraction Control Co | | | | | | | | | | | 1.00 | | | endo1,3-1,4 glucanase (lichenan degradation)
catabolite repression HPr-like protein | vimE | | | | 2111
2108 | 2-oxoglutarate dehydrogenase (E1 subunit) 2-oxoglutarate dehydrogenase (dihydrolipoamide | | 1. | csn | 2748 | chitosanase | yjmF | | 2-deoxy-D-gluconate 3-dehydrogenase | sdhA | | transsuccinylase, E2 subunit) | | The company of | fruB | 1508 | fructose 1-phosphate kinase | yjmJ | 1311 | altronate hydrolase | sdhB | 2905 | succinate dehydrogenase (iron-sulphur protein) | | A | galE | 3990 | | ykcC
ykfB | | dolichol phosphate mannose synthase
chloromuconate cycloisomerase | sdhC | 2908 | | | The content of | galK
galT | | galactokinase (galactose metabolism) | | | polysugar degrading enzyme | | | succinyl-CoA synthetase (β subunit) | | 1.5 | - | | tose metabolism) | ykrW | 1427 | ribulose-bisphosphate carboxylase | yjmC | 1303 | malate dehydrogenase | | 1.00 | | | | ykuF | | | | | | | 1. | glgA | 3167 | | | | glucose 1-dehydrogenase
chitinase | ywkA | 3801 | malate dehydrogenase | | 1965 1975 | glgB | 3171 | 1,4glucan branching enzyme (glycogen biosyn- | yloR | 1653 | ribulose-5-phosphate 3-epimerase | 11.2 | META | ABOLISM OF AMINO ACIDS AND RELATED | | Column | glgC | 3169 | glucose-1-phosphate adenylyltransferase (glyco- | ynfF | 1943 | endo-xylanase | | 3277 | L-alanine dehydrogenase | | 50 | alaD | 3168 | gen biosynthesis) required for alvcoaen biosynthesis | yngE
voaC | 1951
2023 | propionyl-CoA carboxylase
xylulokinase | | 1516
2456 | ı-asparaginase | | | glgP | | glycogen phosphorylase (glycogen metabolism) | yoaD | 2024 | phosphoglycerate dehydrogenase | ansB | 2455 | L-aspartase | | 2007 100 | | | utilization) | yoal | 2031 | 4-hydroxyphenylacetate-3-hydroxylase | aprX | 1862 | intracellular alkaline serine protease | | 180 Security | | | | | | | argB | 1197 | | | 1966 | gntK | | gluconate kinase (gluconate utilization) | yqjD | | propionyl-CoA carboxylase | argC | 1195 | N-acetylglutamate γ-semialdehyde dehydroge- | | Comparison | | | utilization) | yrhG | 2780 | formate dehydrogenase | argD | 1198 | N-acetylornithine aminotransferase (arginine | | 200 | gpsA | 2389 | | yrhO | | | araE | 2142 | acetylornithine deacetylase (arginine biosynthe- | | A | gutB
ioIR | | sorbitol dehydrogenase | yrpG
vedC | | | | | sis) | | Part | iolC | 4081 | myo-inositol catabolism | ysfC | 2932 | glycolate oxidase subunit | | | thesis) | | | iolE | 4078 | myo-inositol catabolism | ytbE | 2969 | plant metabolite dehydrogenase | argG | | sis) | | April | iolG | 4076 | myo-inositol 2-dehydrogenase (inositol catabo-
lism) | | | NDP-sugar dehydrogenase
NDP-sugar epimerase | | | | | Section 1987 | | | myo-inositol catabolism | ytcl | 3024 | acetate-CoA ligase | | | transferase (arginine biosynthesis) | | 1.500 1.50 | | 4084 | myo-inositol catabolism | ytiB | | u i P-glucose-1-phosphate uridylyltransferase carbonic anhydrase | aroA | 3046 | | | Aug. 222 3. des 3 deconyclusorate interest (epith miles parties) | kdgA | 2323 | | ytoP
vttl | | endo-1,4glucanase
acetyl-CoA carboxylase | aroR | 2378 | mate pathway) | | 2002 2003 2004 - decay words the investment (petinn) tally yellow 2004 2005 continuence 2004 continuence 2004 continuence 2005 conti | kdgK | 2324 | 2-keto-3-deoxygluconate kinase (pectin utiliza- | yugF | 3227 | dihydrolipoamide Ś-acetyltransferase | aroC | | 3-dehydroquinate dehydratase (shikimate path- | | 255 Select-decourance processes (pools with the processes of proce | kduD | 2326 | 2-keto-3-deoxygluconate oxidoreductase (pectin | yugK | 3222 | NADH-dependent butanol dehydrogenase | | | shikimate 5-dehydrogenase (shikimate pathway) | | 2006 | kdul | 2325 | | yulC | | | aroE | 2368 | 5-enolpyruvoylshikimate-3-phosphate synthase (shikimate pathway) | | Control of the Cont | | | tion) | yulE | 3198 | L-rhamnose isomerase | | | chorismate synthase (shikimate pathway) | | Fig. 2016 Proceedings Procedure Pr | IctE | 329 | L-lactate dehydrogenase | yutF | 3318 | N-acetyl-glucosamine catabolism | | | amino acids biosynthesis) | | 100 | | | | vvaM | | | | | shikimate kinase (shikimate pathway)
aspartate-semialdehyde dehydrogenase | | 2394 Macrosoft-processmine-of-phosphate deceardyses Vision | melA | 3100 | α-D-galactoside galactohydrolase | yvcN | 3568 | N-hydroxyarylamine O-acetyltransferase | ask | 2910 | aspartokinase II attenuator | | 2566 Maceuloguicosamine de phrophase incomesse yell 256 Perceire 256 Perceire 257 Perceire 258 | | | N-acetylglucosamine-6-phosphate deacetylase | yvdA | 3561 | carbonic
anhydrase | | | asparagine synthetase
asparagine synthetase | | According to continue desiration March According to continue desiration March According to continue Accord | nagB | 3596 | (N-acetylglucosamine utilization) N-acetylglucosamine-6-phosphate isomerase | yvdF
vvdl | | | | | | | Part | | | (N-acetyl glucosamine utilization) | yvdM | 3547 | β-phosphoglucomutase | | | metabolism) | | sales mannose-6-phosphate isomerases yell-yelly 3465 glycolaridoses by py 345 gly | pel | 828 | pectate lyase | yvfO | 3502 | arabinogalactan endo-1,4-galactosidase | | | (2-oxoisovalerate dehydrogenase α subunit) | | 263 phosphorally youther synthesises or professional of the prosphoral properties properties of the prosphoral properties of the prosphoral properties of the prosphoral properties of the p | | | | | | | bfmBAB | 2498 | branched-chain α-keto acid dehydrogenase E1 (2-oxoisovalerate dehydrogenase β subunit) | | | | 2053 | phosphoenolpyruvate synthase | | | | bfmBB | 2497 | branched-chain α-keto acid dehydrogenase E2 | | ## discharge (ribose metabolism) | | | histidine-containing phosphocarrier protein of the | yvoE | 3592 | phosphoglycolate phosphatase | | | spermine/spermidine acetyltransferase | | seed 2002 sucrass-6-phosphate hydrolase yell- grown or the company of | | | ribokinase (ribose metabolism) | yvpA | 3590 | pectate lyase | cad | | | | sac Z 2759 Invename requisitory protein of Sacr' y 1970 2372 (glucose 1-dehydrogenase carb carb carb carb carb carb carb carb | | | | yvyH | | UDP-N-acetylglucosamine 2-epimerase aldehyde dehydrogenase | carA | 1199 | carbamoyl-phosphate transferase-arginine (sub- | | trefasos e-Sphosphate hydrolases y wyof a grant of the province provinc | sacC | 2759 | levanase | ywfD | 3872 | glucose 1-dehydrogenase | carB | 1200 | carbamoyl-phosphate transferase-arginine (sub- | | ton) you be illower at the control of | | | trehalose-6-phosphate hydrolase | ywqF | 3730 | NDP-sugar dehydrogenase | ctpA | 2133 | unit B) (arginine biosynthesis)
carboxy-terminal processing protease | | Ayrige Sign Syriges in Encogration yay 400 glucorate 5-derlytrogenase claytrogenase claytrogenas | xsa | 2914 | | yxbG
vxiA | | glucose 1-dehydrogenase
arabinan endo-1.5i -arabinosidase | cysE | | serine acetyltransferase (cysteine biosynthesis) | | Symbox S | | | xylose isomerase (xylose metabolism) | vxiF | 4000 | gluconate 5-dehydrogenase | | | (cysteine biosynthesis) | | Symbox 101 1946 emfort- fxylanase (xylandegradation) ypc 4156 formaldefly/de dehydrogenase 12 20 438 3482 ypcosamini-induces e-phosphate aminotrans- photocomminist 12 22 23 23 23 23 23 23 | xynA | 2054 | endo-1,4-xylanase (xylan degradation) | yyaE | 4202 | formate dehydrogenase | | | D-alanine racemase | | ybah 161 polysacharide deacetylase (polysis) phenocaminate descriptions of phenocaminate (polysis) phe | xynB
xvnD | 1888
1945 | xylan β-1,4-xylosidase (xylan degradation)
endo-1,4-xylanase (xylan degradation) | yyal
vvcR | | galactoside acetyltransferase
formaldehyde dehydrogenase | dapA | 1748 | dihydrodipicolinate synthase
(diaminopimelate/lysine biosynthesis) | | John State June State June State June State June Jun | ybaN | 161 | polysaccharide deacetylase | | | | dapB | 2359 | dihydrodipicolinate reductase | | Section Proceedings Section Processing Section Processing Section Processing Section S | ybcM | | glucosamine-fructose-6-phosphate aminotrans- | eno | 3477 | enolase (glycolysis) | dapG | | aspartokinase I (α and β subunits) | | Section Sect | vbfT | 258 | | | 3808
4127 | fructose-1,6-bisphosphate aldolase (glycolysis)
fructose-1,6-bisphosphatase (glyconeogenesis) | | | polypeptide deformylase
minor extracellular serine protease | | Second 1975 272 glucarate dehydrogenase (gly-colysis) 2016 2 | ycbC | | 5-dehydro-4-deoxyglucarate dehydratase | | | glyceraldehyde 3-phosphate dehydrogenase (gly- | | | L-glutamine-D-fructose-6-phosphate amidotrans- | | ycg6 306 oligo-16-glucosidase old 4073 fructose-16-bisphosphate aldolase (glycoylsis) pits 2 | ycbF | 272 | glucarate dehydratase | gapB | 2967 | glyceraldehyde 3-phosphate dehydrogenase (gly- | glnA | | glutamine synthetase | | yock 376 p-glucosidase pdh A pdh A carbino 3-hexulose 6-phosphate formaldehydr pdn B pdn A pdh B pdn A pdh B pdn A pdh B pdn A pdn B | | | oligo-1,6-glucosidase | ioIJ | 4073 | colysis)
fructose-1,6-bisphosphate aldolase (glycolysis) | gItA | 2014 | biosynthesis) | | ycsN 466 aryl-alcohol dehydrogenase pdb/s lyase yn-lacohol dehydrogenase pdb/s aryl-alcohol dehydro | ycgS
vckF | | | pckA
ndhA | | phosphoenolpyruvate carboxykinase | gltB | 2009 | | | yes W 466 aryl-alcohol dehydrogenase pdhD 1531 pruvate dehydrogenase C 2-oxoglutarate dehydro | yckG | | D-arabino 3-hexulose 6-phosphate formaldehyde | pdhB | 1529 | pyruvate dehydrogenase (E1 β subunit) | glyA | 3789 | serine hydroxymethyltransferase (glycine/ser- | | ydaf 43 acetyltransferase ydaf 43 cellulose synthase cellulose synthase cellulose synthase cellulose synthase pfix 2987 6-phosphofructokinase (glycolysis) ydhP 63 pyruvate oxidase pgi 3221 glucose-6-phosphate isomerase (glycolysis) ydhS 63 tructokinase pgi 3478 phosphoglycerate kinase pgi 4189 private kinase (glycolysis) pgi 4189 phosphoglycerate kinase (glycolysis) pgi 4189 private phosphoglycerate kinase (glycolysis) phosphoglycerate kinase (glycolysis) phosphoglycerate kinase (glycolysis) phosphoglycolate kip private | | | áryl-alcohol dehydrogenase | | | acetyltransferase E2 subunit) | hisA | 3584 | phosphoribosylformimino-5-aminoimidazole car- | | ydaP 482 cellulose synthase ydaP 98 pyruvate carbosphate isomerase (plycolysis) ydhP 628 pyruvate carbosphate isomerase (plycolysis) ydhP 628 propusate variables pgi 3221 (plucose-6-phosphate isomerase (glycolysis) ydhP 628 propusate variables pgi 3221 (plucose-6-phosphate isomerase (plycolysis) ydhP 629 mannanose-6-phosphate isomerase pgm 3478 phosphoglycerate kinase (glycolysis) ydhP 620 mannanose-6-phosphate isomerase pgm 3478 phosphoglycerate wase (glycolysis) ydiP 621 ructokinase pycA 1554 pyruvate carboxylase phosphoglycerate mutase (glycolysis) ydiP 622 place in indicate protein (synthasis) pyruvate in arboxylase protein (synthasis) in indicate (s | ydaD
ydaF | | acetyltransferase | pdhD | 1531 | pyruvate dehydrogenase / 2-oxoglutarate dehy-
drogenase (dihydrolipoamide dehydrogenase E3 | | | thesis) | | ydhP 628 plyucosidase pdp 3221 glucose-6-phosphate isomerase (glycolysis) hisC phosphosphosphosphosphosphosphosphosphos | | | | nfk | 2097 | subunit) | hisB | 3585 | | | ydhS632mannose-6-phosphate isomerase
ydhT3478phosphoglycerate mutase (glycolysis)
yruvate kinase (glycolysis)aminotransferaseaminotransferaseydjE670fructokinasepytA2986
yruvate kinase (glycolysis)hisF3587histidinol dehydrogenase (histidine biosynthesis)ydjP682arylesteraseldible 2-dehydrogenase regulationtri1919hisse (blase (pentose phosphate)hisF3587hisF cyclase-like protein (synthesis of D-erythro-imidazole glycorol phosphate)yesY774phalactosidaseybbT198phosphate isomerase (glycolysis)hisGyfhM937glucose 1-dehydrogenaseyda558histidine biosynthesis)yfhR937glucose 1-dehydrogenase (phydrolase opolise) phosphate)yda25616-phosphoglycerate mutase (glycolysis)hisHyfhR937glucose 1-dehydrogenaseydi2501dilydrolipoamide dehydrogenase (pentose phosphate)hurtyfhR937glucose 1-dehydrogenaseydi2501dilydrolipoamide dehydrogenase (pentose phosphate)hurtyfhR109phosphoephoophoophoophoophoophoophoophoophoo | ydhP | 628 | β-glucosidase | pgi | 3221 | glucose-6-phosphate isomerase (glycolysis) | hisC | 2371 | histidinol-phosphate aminotransferase (histidine | | ydhT 632 for solition of the strict of functions and the strict of functions and the strict of the strict of functions and the strict of functions and the strict of functions and the strict of functions are strictly as the strict of functions are strictly as a function of function of functions are strictly as a function of function of functions are strictly as a function of function of functions are strictly as a function of function of function of functions are strictly as a function of function of functions are strictly as a function of function of function of functions are strictly as a function of function of functions are strictly as a function of f | ydhR
ydhS | | | | | phosphoglycerate kinase (glycolysis) phosphoglycerate mutase (glycolysis) | | | biosynthesis) / tyrosine and phenylalanine
aminotransferase | | ydil_b 679 Liditol 2-dehydrogenase rydip 478 Liditol 2-dehydrogenase rydip 478 1919 triansktolase (péntose
phosphate) tipoi april trose phosphate) imidazole glycor johospháte) imidazole glycor johospháte) ydip/b 688 methanol dehydrogenase regulation yes? 774 rhamnogalacturonan acetylesterase ydel 558 horbosphate isomerase (glycolysis) hisH hisH hisH yfin/b 929 pepoxide hydrolase yhi/B 1109 phosphoglucomate dehydrogenase (glycolysis) hisH 3583 phosphoribosyl-AINP cyclohydrolase / phosphate josynthesis) yfin/b 869 polysaccharide deacetylase yqi/V 259 phosphate josynthesis hutH 4041 hutH hutH 4041 histidine biosynthesis) yfin/f 979 phosphoglycolate phosphate olehydrogenase yqi/V 2481 6-phosphogluconate dehydrogenase (pentose phosphate) hutH 4041 histidine biosynthesis) yfin/b 1022 glucose-1-phosphate polyderyde genase yqi/V 2481 6-phosphogluconate dehydrogenase (pentose phosphate) hutH 4041 histidine biosynthesis) yhd/b 1022 glucose-1-phosphate polydrogenase yqi/V 2481 6-phosphogluconate dehydrogenase (pentose phosphate) hutH 4041 histidine u | ydhT
vdiF | | mannan endo-1,4mannosidase
fructokinase | русА | 1554 | pyruvate carboxylase | | 3587 | histidinol dehydrogenase (histidine biosynthesis) | | yeaC 688 methanol dehydrogenase regulation yesY 774 rham palacturonan acetylesterase ydeA 558 glyceraldehyde 3-phosphate dehydrogenase (glycolysis) hisH hisI 3588 josphosphoribosyl-AMP cyclohydrolase / phosphoribosyl-AMP (histidine utilization / thoritory individual cyclohydrolase / phosphoribosyl-AMP cyclohydrolase / phosphoribosyl-AMP cyclohydrolase / phos | vdiL | 679 | L-iditol 2-dehydrogenase | tkt | 1919 | transketolase (pentose phosphate) | | | imidazole glycerol phosphate) | | yesY 774 hamnogalacturonan acetylesterase yesZ 774 psgalactocisdiase pspecified hydrolase yesZ 774 psgalactocisdiase pspecified hydrolase yesZ 774 psgalactocisdiase yhR 939 pepoxide hydrolase yesZ 774 psgalactocisdiase yhR 939 ploused -1dehydrogenase yesZ 774 psgalactocisdiase yhR 939 ploused -1dehydrogenase yesZ 1250 phosphoglycerate mutase (glycolysis) yhR 1109 phosphoglycerate mutase (glycolysis) yhR 1109 phosphoglycerate mutase (glycolysis) hisl 3883 phosphoratosyl-API pyrophosphotydrolase / hosphorationyl-API pyrophosphotydrolase (histidine biosynthesis) hom yhriful yall yesZ 1250 phosphoglycerate mutase (glycolysis) hosphoglycerate mutase (glycolysis) hisl 3883 phosphorationyl-API pyrophosphotydrolase / hosphorationyl-API pyrophosphotydrolase (histidine biosynthesis) hom yhriful yall yesZ 1250 phosphoglycerate mutase (glycolysis) hosphorate (pentose phosphate) hom yhriful yall yesZ 1250 phosphoglycerate mutase (glycolysis) yall yall yall yall yall yall ya | yeaC | | methanol dehydrogenase regulation | | | | nisG | 3587 | | | yfh/M 929 epoxide hydrolase yfh/R 1109 ph/ssphoglycerate mutase (glycolysis) ribosyl-ATP pyrophosphotydrolase (histidine biosynthesis) yfh/R 937 glucose-1-dehydrogenase yg/R 2651 6-phosphotgloconate dehydrogenase (pentose phosphate) hom 3315 homoserine dehydrogenase (histidine biosynthesis) yfh/H 798 glucose-1-phosphate cytidylytransferase yg/I 2481 6-phosphogluconate dehydrogenase (pentose phosphate) hut/b 4045 homoserine dehydrogenase (histidine utilization) yhc/W 97 yg/I 2481 6-phosphate 1-dehydrogenase (pentose phosphate) hut/b 4041 hut/b 4041 histidase (histidine utilization) yha/N 103 aido/keto reductase yw/I 3791 ribose 5-phosphate epimerase (pentose phosphate) hut/b 4041 histidase (histidine utilization) yhx/E 105 glucoase 1-dehydrogenase yw/I 3791 ribose 5-phosphate epimerase (pentose phosphate) hut/b 4041 hut/b 4041 midazolone-5-propionate hydrolase (histidine utilization) yhx/E 105 glucoase 1-dehydrogenase | yesY | | rhamnogalacturonan acetylesterase | | | glyceraldehyde 3-phosphate dehydrogenase (gly- | | 3585 | amidotransferase (histidine biosynthesis) | | iffs 869 polysaccharide deacetylase polysaccharide deacetylase prosphate hom 3315 homőoserine dehydrogenase (hreonine/methion-ine biosynthesis) yfmT 907 benzalfehyde dehydrogenase yglV 251 horm 3315 homőoserine dehydrogenase (hreonine/methion-ine biosynthesis) yfnH 798 glucose-1-phosphate prosphadycolate phosphates ygl/yl 2481 6-phosphogluconate dehydrogenase (pentose phosphate) hutH 4041 histidiase (histidine utilization) yhAV 1022 glucose-1-dehydrogenase ywlH 3807 transaldolase (pentose phosphate) hutH 4041 histidiase (histidine utilization) yhBV 1041 endo-1,4xylanase ywlH 3791 ribose 5-phosphate epimerase (pentose phosphate) hutU 4041 histidiase (histidine utilization) yhBV 1041 endo-1,4xylanase ywlH 3791 ribose 5-phosphate epimerase (pentose phosphate) hutU 4041 hiridiazolone-5-propionate hydrolase (histidine utilization) yhBV 1059 glucanase liVA 2233 time folicydratase (listidine utilization) | yfhM | 929 | epoxide hydrolase | | | phosphoglycerate mutase (glycolysis) | | 5500 | ribosyl-ATP pyrophosphohydrolase (histidine | | yfnH 798 glucose-1-phosphate cytldylytransferase ygK ygK 68 reticuline cytldase phosphate phosphates hutf 40f6 formiminoglutamate hydrolase (histidine utilization) from phosphate) yhdW 997 phosphoglycolate phosphatase ygI 248 6-phosphoglycolate dehydrogenase (pentose phosphate) aldor keto reductase hutf hutf hutf hutf hutf hutf hutf hutf hutf 4041 histidase (histidine utilization) histidase (histidine utilization) hutf 4042 ricoranse (histidine utilization) hutf 4042 ricoranse (histidine utilization) hutf 4042 ricoranse (histidine utilization) ricoranse (histidine utilization) hutf 4042 ricoranse (histidine utilization) ricoranse (histidine utilization) hutf 4042 ricoranse (histidine utilization) ricoranse (histidine utilization) 4042 | yfijS_ | 869 | polysaccharide deacetylase | | | phosphate) | hom | 3315 | homoserine dehydrogenase (threonine/methion- | | yak 968 reticuline oxidase yak y | yfmT
yfnH | | | | | dihydrolipoamide dehydrogenase | | 4045 | ine biosynthesis) | | Second Content of the t | ygaK | 958 | reticuline oxidase | | | phosphate) | | | tion) | | yhAN 1030 Idlo/keto reductates yWH 3807 transaldolase (pentose phose phose phose) plate) iization) yhBN 1041 endo-1,4—xylanase yWF 3791 ribose 5-phosphate epimerase (pentose phose phose phose) plate) hutU 4402 vorcanase (histidine utilization) yhxB 1050 plucanase ilvA 2293 threonine dehydratase (isoleucine biosynthesis) yhxB 1051 alcohol dehydrogenase III.3 TCA CYCLE 19 ilvA 2896 cetolactate synthase (large subunit) yisS 1161 myo-insitol 2-dehydrogenase citA 1021 citrate synthase I ilvA 2894 keto-lacid reductoisomerase (valine/isoleucine biosynthesis) yifF 1175 mandelate racemase citC 2980 isocitrate dehydrogenase ilvD 2302 dihydroxy-acid dehydratase (valine/isoleucine biosynthesis) yifE 1274 mannose-6-phosphate isomerase citG 3389 murrate hydratase ilvD 2302 dihydroxy-acid dehydratase (valine/isoleucine biosynthesis) yjgC 1285 formate dehydratase ilvD 2894 acetolactate synthase (large subunit) mals 088 mirate hydratase ilvD 2302 dihydroxy-acid dehydratase (valine/isoleucine biosynthesis) < | yhdF | 1022 | glucose 1-dehydrogenase | | | phosphate) | | | imidazolone-5-propionate hydrolase (histidine uti- | | yhth 1095 glucanase phate) livA 2293 threonine dehydratase (isoleucine biosynthesis) yhxB 1006 phosphomannomutase livB 2896 accollactate synthase (large subunit) yhxD 1115 ribitol dehydrogenase II.13 TCA CYCLE 19 2896 accollactate synthase (large subunit) yisS 1164 myo-inositol 2-dehydrogenase oitA 1021 citrate synthase I ivC 284 ketol-acid reductoisomerase (valine/isoleucine biosynthesis) yifY 1175 mandelate racemase citC 2990 isocitrate dehydrogenase iivD 2022 dihydroxy-acid dehydratase (valine/isoleucine biosynthesis) yifZ 1274 mannose-6-phosphate isomerase citG 3389 fumarate hydratase iivD 2020 dihydroxy-acid dehydratase (small subunit) yjeZ 1274 mannose-6-phosphate isomerase citH 2979 malate dehydrogenase iivD 2894 acetolactate synthase (small subunit) yjeZ 1285 format dehydrogenase citZ 2981 citrate synthase II yjeZ 1285 format dehydrogenase citZ 2898 acetolactate synthase (small subunit) | yhdN | | aldo/keto reductase | ywjH
ywlF | 3807
3791 | transaldolase (pentose phosphate) | | | lization) | | yhxC 1115 alcohol dehydrogenase II.13 TCA CYCLE 19 (valine/isoleucine biosynthesis) yhxD 1118 ribitol dehydrogenase citA 1021 citrate synthase I iivC 2894 ketol-acid reductoisomerase (valine/isoleucine biosynthesis) yisS 1164 myo-inositol2-dehydrogenase citB 1926 aconitate hydratase iivD 2302 dihydroxy-acid dehydrogenase (valine/isoleucine biosynthesis) yifY 1192 L-gulonolactone oxydase citG 3389 fumarate hydratase iivD 2302 dihydroxy-acid dehydrogenase (valine/isoleucine biosynthesis) yjdE 1274 mannose-6-phosphate isomerase citH 2979 malate dehydrogenase iivN 2894 acetolactate synthase (small subunit) yjgC 1285 formate dehydrogenase mals 368 malate dehydrogenase | yhfE | 1095 | glucanase | , ··· | | phate) | ilvA | 2293 | threonine dehydratase (isoleucine biosynthesis) | | yisS 116 millioriterilyurigerlase citA 1021 citrate synthase I inVC 2894 keto-acid reductoisomerase (valine)/soleucine yisS yisF 1175 mandelate racemase citB 1926 aconitate Hydratase biosynthesis) yifY 1192 L-gulonolactone oxydase citG 3389 fumarate hydratase inVC 2892 dihydroxy-acid dehydratase (valine/isoleucine biosynthesis) yifY 1192 L-gulonolactone oxydase citG 3389 fumarate hydratase biosynthesis biosynthesis) yifZ 1274 mannose-6-phosphate isomerase citH 2979 malate dehydrogenase iivV 2894 acetolactate synthase (small subunit) yieA 1281 endo-1,4—xylanase citZ 2981 citrate synthase II wilded theydrogenase iivV 2894 acetolactate synthase (small subunit) mals 308 malate dehydrogenase | yhxC | 1115 | alcohol dehydrogenase | II.1.3 | TCA | CYCLE | | | (valine/isoleucine biosynthesis) | | yiff 1175 mandelate racemase citC 2980 isocitrate dehydrogenase iivD 2302 dihydroxy-acid dehydratase (valine/isoleucine biosynthesis) yifY 1192 Laglunolactone oxydase citG 3389 fumarate hydratase biosynthesis biosynthesis yjdE 1274 mannose-6-phosphate isomerase citH 2979 malate dehydrogenase iivN 2894 acetolactate synthase (small subunit) yjgC 1285 formate dehydrogenase citZ 2981 citrate synthase
II yjgC 1285 formate dehydrogenase sos malate dehydrogenase | yisS | 1164 | myo-inositol 2-dehydrogenase | | 1021
1926 | citrate synthase I
aconitate hydratase | | | biosynthesis) | | tyjdE 1274 mannose-6-phosphate isomerase citH 2979 malate dehydrogenase iivN 2894 acetolactate synthase (small subunit) tyjeA 1281 endo-1,4—xylanase citZ 2981 citrate synthase II tyjeC 1285 formate dehydrogenase malst 3068 malate dehydrogenase malate dehydrogenase | yitF | 1175 | mandelate racemase | citC | 2980 | isocitrate dehydrogenase | ilvD | 2302 | dihydroxy-acid dehydratase (valine/isoleucine | | yjgC 1285 formate dehydrogenase malS 3058 malate dehydrogenase | yjdE | 1274 | mannose-6-phosphate isomerase | citH | 2979 | malate dehydrogenase | ilvN | 2894 | | | Nature © Macmillan Publishers Ltd 1997 | yjgC | 1285 | formate dehydrogenase | | 3058 | malate dehydrogenase | | | | | | | | | | 1 | Nature © Macmillan Publishers Ltd 1997 | | | | | Nature © Macmillan Publishers Ltd 1997 | |--| | | | | 331110 | | n of the <i>Bacillus subtilis</i> prot | em-cc | | | |---------------------|--------------|---|--------------|--------------|---|--------------|--------------|--| | ıΑ | 4083 | (valine/isoleucine biosynthesis) | yqjE | | tripeptidase | xpt | 2319 | xanthine phosphoribosyltransferase (purine biosynthesis) | | WA. | 4083 | methylmalonate-semialdehyde dehydrogenase (valine metabolism) | yqjN
yqjO | 2475 | amino acid degradation
pyrroline-5-carboxylate reductase | yaaF | 23 | deoxypurine kinase subunit | | i | 1189 | intracellular proteinase inhibitor | vaiR | | D-serine dehydratase | yaaG | 24 | deoxypurine kinase subunit | | pA
bl | 1386
1771 | major intracellular serine protease
2-amino-3-ketobutyrate CoA ligase | yrbE
yrhA | | opine catabolism
cysteine synthase | yabR
yerA | 70
713 | polyribonucleotide nucleotidyltransferase adenine deaminase | | uΑ | 2893 | 2-isopropylmalate synthase (leucine biosynthe- | yrhB | 2785 | cystathionine γ-synthase | yfkN | 859 | 2',3'-cyclic-nucleotide 2'-phosphodiesterase | | иB | 2891 | sis) 3-isopropylmalate dehydrogenase (leucine | yrhP
yrpC | 2768
2738 | dihydrodipicolinate reductase
glutamate racemase | yhaM
yhcR | 1069
991 | CMP-binding factor
5'-nucleotidase | | | | biosynthesis) | yrrN | 2794 | protease | virY | 1144 | DNA exonuclease | | uC | 2890 | 3-isopropylmalate dehydratase (large subunit)
(leucine biosynthesis) | yrrO
ysnE | 2793
2897 | protease
acetyltransferase | yjbM
yjbP | | GTP pyrophosphokinase diadenosine tetraphosphatase | | иD | 2889 | 3-isopropylmalate dehydratase (small subunit) | ytfD | 3146 | N-acylamino acid racemase | ykkE | 1377 | formyltetrahydrofolate deformylase | | | | (leucine biosynthesis) | ytkP | 3066 | cysteine synthase | ylbB | 1565 | IMP dehydrogenase | | sA | 2437 | diaminopimelate decarboxylase (lysine biosyn-
thesis) | yubC
yugH | 3193
3226 | cysteine dioxygenase
aspartate aminotransferase | yloD
ymaA | 1641
1868 | guanylate kinase
ribonucleoprotein | | sC | 2910 | aspartokinase II (α and β subunits) | yurG | 3341 | aspartate aminotransferase | yncB | 1895 | micrococcal nuclease | | netB | 2305 | (diaminopimelate/lysine biosynthesis)
homoserine <i>O</i> -succinyltransferase (methionine | yurH
yurL | 3343
3347 | N-carbamyl-L-amino acid amidohydrolase
opine catabolism | yncF
yosN | 1899
2165 | deoxyuridine 5'-triphosphate pyrophosphat
ribonucleoside-diphosphate reductase (α s | | ELD | 2300 | biosynthesis) | yurP | 3351 | opine catabolism | yosiv | 2100 | unit) | | etC | 1385 | cobalamin-independent methionine synthase | yurR | | opine catabolism | yosO | 2164 | ribonucleoside-diphosphate reductase (α s | | etK | 3128 | (methionine biosynthesis) S-adenosylmethionine synthetase | yurT
yusH | 3354
3366 | methylglyoxalase
glycine cleavage system protein H | yosP | 2161 | unit) ribonucleoside-diphosphate reductase (β si | | pr | 245 | extracellular metalloprotease | yusM | 3373 | proline dehydrogenase | | | unit) | | isB | 362 | assimilatory nitrate reductase (electron transfer subunit) | yusX
yutL | 3381
3306 | oligoendopeptidase
diaminopimelate epimerase | yosS | 2159 | deoxyuridine 5'-triphosphate nucleotidohyd
lase | | sC. | 360 | assimilatory nitrate reductase (catalytic subunit) | yuxL | 3312 | acylaminoacyl-peptidase | ypfD | 2395 | ribosomal protein S1 homologue | | asD | 358 | assimilatory nitrite reductase (subunit) | yvaK | 3454 | carboxylesterase | yqiB | 2528 | exodeoxyribonuclease VII (large subunit) | | isE
irB | 355
1186 | assimilatory nitrite reductase (subunit)
extracellular neutral protease B | yvfD
yvjB | | serine O-acetyltransferase
carboxy-terminal processing protease | yqiC
yrdF | | exodeoxyribonuclease VII (small subunit)
ribonuclease inhibitor | | rΕ | 1541 | extracellular neutral metalloprotease | ywaA | 3956 | branched-chain amino acid aminotransferase | yrrU | 2787 | purine nucleoside phosphorylase | | gB
+A | 3757 | nitrogen-regulated PII-like protein aminotransferase | ywaD | 3947
3881 | aminopeptidase
glutamate dehydrogenase | yumD | 3302 | GMP reductase allantoinase | | tA
tB | 1472
3228 | aminotransferase | yweB
ywfG | 3868 | aspartate aminotransferase | yunH
yunL | 3332 | uricase | | рΤ | 3994 | peptidase T | ywhF | 3849 | spermidine synthase | yurl | 3343 | ribonuclease | | eА | 2851 | prephenate dehydratase (phenylalanine biosynthesis) | ywhG
ywrD | 3848
3720 | agmatinase
γ-glutamyltransferase | ywaC | 3949 | GTP-pyrophosphokinase | | eВ | 2852 | chorismate mutase (phenylalanine biosynthe- | yxeP | | γ-glutamyltransferase
aminoacylase | 11.4 | META | ABOLISM OF LIPIDS | | | | sis) | | | | accA | 2988 | acetyl-CoA carboxylase (α subunit) (long-ch | | οA | 1379 | γ-glutamyl phosphate reductase (proline biosyn-
thesis) | II.3 | | ABOLISM OF NUCLEOTIDES AND NUCLEIC S83 | accB | 2531 | fatty acid biosynthesis)
acetyl-CoA carboxylase (biotin carboxyl car | | οВ | 1378 | γ-glutamyl kinase (proline biosynthesis) | adeC | 1521 | adenine deaminase | | | subunit) (long-chain fatty acid biosynthesis) | | Н | 2017 | involved in proline biosynthesis (salt-inducible) | adk | 146 | adenylate kinase | accC | 2531 | acetyl-CoA carboxylase (biotin carboxylase | | oJ
cX | 2016
3533 | glutamate 5-kinase (proline biosynthesis)
amino acid racemase | apt
cdd | 2823
2611 | adenine phosphoribosyltransferase
cytidine/deoxycytidine deaminase | acdA | 3813 | subunit) (long-chain fatty acid biosynthesis) acyl-CoA dehydrogenase | | A | 3879 | pyrroline-5 carboxylate dehydrogenase (argi- | cmk | 2396 | cytidylate kinase | acpA | | acyl carrier protein (fatty acid biosynthesis) | | . D | 2070 | nine and ornithine utilization) | ctrA | 3811 | CTP synthetase (pyrimidine biosynthesis) | cdsA | 1721 | phosphatidate cytidylyltransferase (phosph | | cB
cD | 3878
4145 | involved in arginine and ornithine utilization
ornithine aminotransferase (arginine and | deoD | 2135 | purine nucleoside phosphorylase (purine nucle-
oside salvage) | dgkA | 2611 | lipid biosynthesis)
diacylglycerol kinase (phospholipid biosyntl | | | | ornithine utilization) | dra | 4051 | deoxyribose-phosphate aldolase | - | | sis) | | F | 4142 | arginase (arginine and ornithine utilization) | don | 0440 | (nucleotide/deoxyribonucleotide catabolism) | fabD | 1663 | malonyl CoA-acyl carrier protein transacyla | | rA | 2410 | phosphoglycerate dehydrogenase (serine biosynthesis) | drm | 2448 | phosphodeoxyribomutase (purine nucleoside salvage) | fabG | 1664 | (fatty acid biosynthesis) 3-ketoacyl-acyl carrier protein reductase (fat | | C | 1076 | phosphoserine aminotransferase (serine | guaA | 692 | GMP synthetase (GMP biosynthesis) | | | acid biosynthesis) | | 1 | 1770 | biosynthesis)
threonine 3-dehydrogenase (threonine catabo- | guaB | 16 | inositol-monophosphate dehydrogenase (GMP | glpQ | 234 | glycerophosphoryl diester phosphodiester | | | 1770 | lism) | hipO | 3000 | biosynthesis)
hippurate hydrolase | IcfA | 2919 | (glycerol metabolism)
long chain acyl-CoA synthetase (fatty acid | | В | 3313 | homoserine kinase (threonine biosynthesis) | hprT | 76 | hypoxanthine-guanine phosphoribosyltrans- | | | metabolism) | | C
A | 3314
2372 | threonine synthase (threonine biosynthesis)
tryptophan synthase (a subunit) (tryptophan | m alle | 2201 | ferase (purine salvage) | lipA | 292
910 | lipase | | | LUIL | biosynthesis) | ndk
nin | 2381
372 | nucleoside diphosphate kinase
inhibitor of the DNA degrading activity of NucA | lipB
mmgA | 2513 | lipase
acetyl-CoA acetyltransferase | | В | 2373 | tryptophan synthase (β subunit) (tryptophan | nrdE | 1868 | ribonucleoside-diphosphate reductase (major | mmgB | 2512 | 3-hydroxybutyryl-CoA dehydrogenase | | С | 2374 | biosynthesis)
indol-3-glycerol phosphate synthase (trypto- | nrdF | 1870 | subunit) ribonucleoside-diphosphate reductase (minor | mmgC | 2511
593 | acyl-CoA dehydrogenase
carboxylesterase NA | | | | phan biosynthesis) | mui | 1070 | subunit) | nap
pgsA | 1762 | phosphatidylglycerophosphate synthase | | D | 2375 | anthranilate phosphoribosyltransferase (trypto- | nucA | 372 | membrane-associated nuclease | | | (acidic phospholipid biosynthesis) | | E | 2377 | phan biosynthesis)
anthranilate synthase (tryptophan biosynthesis) | nucB
pdp | 2652
4049 | sporulation-specific extracellular nuclease
pyrimidine-nucleoside phosphorylase | plsX
pnbA | 1662
3530 | involved in fatty acid/phospholipid synthesi
p-nitrobenzyl esterase | | F | 2373 | phosphoribosyl anthranilate
isomerase (trypto- | pnp | 2446 | purine nucleoside phosphorylase (purine nucle- | psd | 249 | phosphatidylserine decarboxylase (phosph | | :A | 2270 | phan biosynthesis) | | 1700 | oside salvage) | 1 | 240 | lipid biosynthesis) | | 4 | 2370 | prephenate dehydrogenase (tyrosine biosynthesis) | pnpA
prs | 1739
58 | polynucleotide phosphorylase
phosphoribosyl pyrophosphate synthetase | pssA | 248 | phosphatidylserine synthase (phospholipic
biosynthesis) | | eΑ | 3768 | urease (γ subunit) | | | (nucleotide biosynthesis) | sqhC | 2101 | squalene-hopene cyclase (hopanoid metal | | ₽B
₽C | 3768
3767 | urease (β subunit)
urease (α subunit) | purA | 4156 | adenylosuccinate synthetase (AMP biosynthe- | ybfK | 247 | lism) | | | 3907 | minor extracellular serine protease | purB | 700 | sis) adenylosuccinate lyase (purine biosynthesis) | yclB | 412 | carboxylesterase
phenylacrylic acid decarboxylase | | 90 | 38 | lysine decarboxylase | purC | 701 | phosphoribosylaminoimidazole succinocarbox- | ydbM | 505 | butyryl-CoA dehydrogenase | | gE | 259
265 | branched-chain amino acid aminotransferase glutaminase | purD | 710 | amide synthetase (purine biosynthesis) | ydcB
yfjR | 515
871 | holo- acyl-carrier protein synthase
3-hydroxyisobutyrate dehydrogenase | | a)
C | 290 | asparaginase | puiD | /10 | phosphoribosylglycinamide synthetase (purine biosynthesis) | yıjn
yhaR | 1061 | 3-hydroxbutyryl-CoA dehydratase | | M | 344 | proline oxidase | purE | 698 | phosphoribosylaminoimidazole carboxylase l | yhdO | 1031 | 1-acylglycerol-3-phosphate O-acyltransfera | | jΝ
E | 345
415 | 1-pyrroline-5-carboxylate dehydrogenase prolyl aminopeptidase | purF | 705 | (purine biosynthesis)
phosphoribosylpyrophosphate amidotrans- | yhdW
yhfB | 1038
1093 | glycerophosphodiester phosphodiesterase
3-oxoacyl-acyl-carrier protein synthase | | V | 432 | homoserine dehydrogenase | puir | 100 | ferase (purine biosynthesis) | ynīB
yhfJ | 1093 | lipoate-protein ligase | | ıG | 441 | 4-aminobutyrate aminotransferase | purH | 708 | phosphoribosylaminoimidazole carboxy formyl | yhfL | 1100 | long-chain fatty-acid-CoA ligase | | H
A | 443
452 | succinate-semialdehyde dehydrogenase
3-isopropylmalate dehydrogenase | | | formyltransferase / inosine-monophosphate
cyclohydrolase (purine biosynthesis) | yhfS
yhfT | 1110
1111 | acetyl-CoA C-acetyltransferase
long-chain fatty-acid-CoA ligase | | J | 459 | allophanate hydrolase | purK | 699 | phosphoribosylaminoimidazole carboxylase II | yisP | 1159 | phytoene synthase | | D
M | 718
729 | glutamate synthase (ferredoxin) | | 700 | (purine biosynthesis) | yjaX | 1208 | 3-oxoacyl- acyl-carrier protein synthase | | N
A | 729
1081 | amidase
aminoacylase | purL | 702 | phosphoribosylformylglycinamidine synthetase II (purine biosynthesis) | yjaY
yjbW | 1209
1247 | 3-oxoacyl-acyl-carrier protein synthase
enoyl-acyl-carrier protein reductase | | lR | 1034 | aspartate aminotransferase | purM | 706 | phosphoribosylaminoimidazole synthetase | yjdA | 1268 | 3-oxoacyl- acyl-carrier protein reductase | | eM
K | 1041
1152 | D-alanine aminotransferase
5-oxo-1,2,5-tricarboxilic-3-penten acid decar- | purM | 708 | (purine biosynthesis) | ykhA | 1372
1465 | acyl-CoA hydrolase | | • | 1102 | boxylase | purN | 108 | phosphoribosylglycinamide formyltransferase (purine biosynthesis) | ykwC
ymfl | 1465
1759 | 3-hydroxyisobutyrate dehydrogenase
3-oxoacyl- acyl-carrier protein reductase | | 2 | 1157 | asparagine synthase | purQ | 703 | phosphoribosylformylglycinamidine synthetase | yngF | 1951 | 3-oxoacyl- acyl-carrier protein reductase
3-hydroxbutyryl-CoA dehydratase | | N
G | 1167
1231 | opine aminotransferase
oligoendopeptidase | purT | 244 | I (purine biosynthesis)
phosphoribosylglycinamide formyltransferase 2 | yngG
vnal | 1952
1955 | hydroxymethylglutaryl-CoA lyase
long-chain acyl-CoA synthetase | | 7 | 1243 | sarcosine oxidase | | | (purine biosynthesis) | yngl
yngJ | 1957 | butyryl-CoA dehydrogenase | | , | 1258 | cystathionine γ-synthase cystathionine β-lyase | pyrAA | 1622 | carbamoyl-phosphate synthetase (glutaminase | yocE | 2089 | fatty-acid desaturase | | Α | 1259
1359 | cystathionine β-lyase
pyrroline-5-carboxylate reductase | pyrAB | 1623 | subunit) (pyrimidine biosynthesis)
carbamoyl-phosphate synthetase (catalytic | yocJ
yodR | 2096
2143 | ACP phosphodiesterase
butyrate-acetoacetate CoA-transferase | | / | 1425 | aspartate aminotransferase | | | subunit) (pyrimidine biosynthesis) | yodS | 2144 | 3-oxoadipate CoA-transferase | | Q
R | 1488
1489 | tetrahydrodipicolinate succinylase
hippurate hydrolase | pyrB | 1620 | aspartate carbamoyltransferase (pyrimidine | yoxD | 2019 | 3-oxoacyl- acyl-carrier protein reductase | | R
И | 1551 | glutaminase | pyrC | 1621 | biosynthesis) dihydroorotase (pyrimidine biosynthesis) | yqiD
yqiK | 2526
2514 | geranyltranstransferase
glycerophosphodiester phosphodiesteras | | В | 1607 | acetylornithine deacetylase | pyrD | 1627 | dihydroorotate dehydrogenase (pyrimidine | yqiS | 2504 | phosphate butyryltransferase | | V | 1658 | phosphoglycerate dehydrogenase | | | biosynthesis) | yqiU | 2502 | branched-chain fatty-acid kinase | | A
G | 1658
1757 | L-serine dehydratase
processing protease | pyrDII | 1626 | dihydroorotate dehydrogenase (electron trans-
fer subunit) (pyrimidine biosynthesis) | yqjQ
ysiB | 2471
2917 | ketoacyl reductase 3-hydroxbutyryl-CoA dehydratase | | Н | 1758 | processing protease | pyrE | 1629 | orotate phosphoribosyltransferase (pyrimidine | ytkK | 3011 | 3-oxoacyl- acyl-carrier protein reductase | | κG | 1742 | processing protease | | | biosynthesis) | ytpA | 3123 | lysophospholipase | | I
D | 1885
1898 | phosphoribosylanthranilate isomerase alanine racemase | pyrF | 1628 | orotidine 5'-phosphate decarboxylase (pyrimi-
dine biosynthesis) | yusJ
vusK | 3368
3369 | butyryl-CoA dehydrogenase
acetyl-CoA C-acyltransferase | | Ν | 2074 | L-amino acid oxidase | relA | 2822 | GTP pyrophosphokinase (stringent response) | yusK
yusL | 3372 | 3-hydroxyacyl-CoA dehydrogenase | | T | 2145 | adenosylmethionine-8-amino-7-oxononanoate | smbA | 1719 | uridylate kinase (pyrimidine biosynthesis) | yusQ | 3376 | acyloate catabolism | | Δ | 2403 | aminotransferase | tdk | 3802 | thymidine kinase | yusR | 3376 | 3-oxoacyl- acyl-carrier protein reductase | | A
vA | 2403 | glutamate dehydrogenase
carboxypeptidase | thyA | 1901 | thymidylate synthase A (deoxyribonucleotide biosynthesis) | yusS
yvaG | 3377
3450 | 3-oxoacyl- acyl-carrier protein reductase
3-oxoacyl- acyl-carrier protein reductase | | 1 | 2644 | dihydrodipicolinate reductase | thyB | 2297 | thymidylate synthase B (deoxyribonucleotide | yvrD | 3404 | ketoacyl-carrier protein reductase | | 1 | 2549 | aminomethyltransferase | | | biosynthesis) | ywfH | 3866 | 3-oxoacyl- acyl-carrier protein reductase | | | 2547 | glycine dehydrogenase
glycine dehydrogenase | tmk
udk | 39
2792 | thymidylate kinase
uridine kinase (pyrimidine salvage) | ywhB
ywiE | 3853 | 4-oxalocrotonate tautomerase
cardiolipin synthetase | | | | U / | | | | | | | | nJ
nK
nS
T | 2546
2539 | 3-dehydroquinate dehydratase
leucine dehydrogenase | upp | 3788 | uracil phosphoribosyltransferase (pyrimidine salvage) | ywjE | 3816 | cardiolipin synthetase
cardiolipin synthase | | | 2740 | budrous muriotoul (co. d. co. | uibT | 1045 | thiamin biograthesis | rooD | 20 | DNA repair and gonetic recessions: | |--------------|--------------|---|--------------|--------------|---|--------------|--------------
--| | уwpВ | 3/43 | hydroxymyristoyl-(acyl carrier protein) dehy-
dratase | yjbT
yjbU | 1245
1245 | thiamin biosynthesis
thiamin biosynthesis | recR
ruvA | 29
2836 | DNA repair and genetic recombination
Holliday junction DNA helicase | | yxjD | | 3-oxoadipate CoA-transferase | yjbV | 1246 | phosphomethylpyrimidine kinase | ruvB | 2835 | Holliday junction DNA helicase | | yxjE | 4001 | 3-oxoadipate CoA-transferase | ykpB
ykvK | 1513
1440 | thiamin biosynthesis
6-pyruvoyl tetrahydrobiopterin synthase | sbcD
ylpB | | exonuclease SbcD homologue
ATP-dependent DNA helicase | | 11.5 | | ABOLISM OF COENZYMES AND PROSTHETIC | ykvL | 1440 | coenzyme PQQ synthesis | yocl | 2095 | ATP-dependent DNA helicase | | 61- 4 | GROU | JPS | ylbQ | 1577
1633 | pyrimidine-thiamine biosynthesis | yorK | 2180 | single-strand DNA-specific exonuclease
SNF2 helicase | | bioA | 3094 | adenosylmethionine-8-amino-7-oxononanoate
aminotransferase (biotin biosynthesis) | yInD
yInF | 1635 | uroporphyrin-III C-methyltransferase
uroporphyrin-III C-methyltransferase | yqhH
yrrC | | conjugation transfer protein | | bioB | | biotin synthetase (biotin biosynthesis) | ylol | 1642 | pantothenate metabolism flavoprotein | yrvE | 2825 | single-strand DNA-specific exonuclease | | bioD
bioF | | dethiobiotin synthetase (biotin biosynthesis)
8-amino-7-oxononanoate synthase (biotin biosyn- | yngH
yodC | 1954
2127 | biotin carboxylase
nitroreductase | ywqA | 3735 | SNF2 helicase | | DIOI | | thesis) | yqgN | 2574 | 5-formyltetrahydrofolate cyclo-ligase | 111.4 | | PACKAGING AND SEGREGATION10 | | biol | 3089 | cytochrome P450-like enzyme (biotin biosynthe- | yqjS
yrrL | 2469
2796 | | grlA | | DNA gyrase-like protein (subunit A) | | bioW | 3094 | sis) 6-carboxyhexanoate-CoA ligase (biotin biosyn- | yrrM | 2795 | folate metabolism
caffeoyl-CoA <i>O</i> -methyltransferase | grlB
gyrA | 7 | DNA gyrase-like protein (subunit B)
DNA gyrase (subunit A) | | | | thesis) | yueD | 3265 | sepiapterin reductase | gyrB | 5 | DNA gyrase (subunit B) | | dfrA | 2296 | dihydrofolate reductase (glycine/purine/DNA pre-
cursor synthesis, conversion of dUMP to dTMP) | yueJ
yueK | 3261
3260 | pyrazinamidase/nicotinamidase
nicotinate phosphoribosyltransferase | hbs
smc | 2385
1666 | non-specific DNA-binding protein HBsu chromosome segregation SMC protein homo- | | dhaS | 2100 | aldehyde dehydrogenase | yuiG | 3293 | biotin metabolism | SITIC | 1000 | logue | | dhbA | 3291 | 2,3-dihydro-2,3-dihydroxybenzoate dehydroge- | yurB | 3335 | | smf | 1682 | DNA processing Smf protein homologue | | dhbB | 3288 | nase (2,3-dihydroxybenzoate biosynthesis)
isochorismatase (2,3-dihydroxybenzoate biosyn- | yurC
yurD | 3338 | 4-hydroxybenzoyl-CoA reductase | topA
topB | 1683
476 | DNA topoisomerase I
DNA topoisomerase III | | | | thesis) | yutB | 3320 | lipoic acid synthetase | yonN | 2225 | HU-related DNA-binding protein | | dhbC | 3291 | isochórismate synthase (2,3-dihydroxybenzoate biosynthesis) | ywaB
ywkE | 3950
3796 | | III E | DNIA | SYNTHESIS244 | | dhbE | 3289 | 2,3-dihydroxybenzoate-AMP ligase (enterobactin | ywoC | | isochorismatase | III.5 | nivA. | 31N1 HE3I3244 | | | | synthetase component E) (2,3-dihydroxybenzoate biosynthesis) | II.6 | MET | ABOLISM OF PHOSPHATE9 | III.5.1 | INITIA | ATION19 RNA polymerase major sigma factor (σ^{A}) | | dhbF | 3287 | involved in 2,3-dihydroxybenzoate biosynthesis | phoA | 1018 | alkaline phosphatase A | sigA
sigB | 2601
522 | RNA polymerase major sigma factor (σ°)
RNA polymerase general stress sigma factor (σ°) | | folA | 87 | dihydroneopterin aldolase (folate biosynthesis) | phoB | 621 | alkaline phosphatase III | sigD | | RNA polymerase flagella, motility, chemotaxis and | | folC | 2866 | folyl-polyglutamate synthetase (folate biosynthesis) | phoD
phoH | 284
2615 | phosphodiesterase/alkaline phosphatase
phosphate starvation-induced protein | oiaE | 1604 | autolysis sigma factor (σ^D)
RNA polymerase sporulation mother cell-specific | | foID | 2529 | methylenetetrahydrofolate dehydrogenase / | xpaC | 36 | hydrolysis of 5-bromo 4-chloroindolyl phosphate | sigE | 1004 | (early) sigma factor (σ^E) (SpollGB) | | | | methenyltetrahydrofolate cyclohydrolase (purines | ybfM | 248
1409 | alkaline phosphatase
alkaline phosphatase | sigF | 2443 | RNA polymerase sporulation forespore-specific | | folK | 87 | and amino acids biosynthesis) 7,8-dihydro-6-hydroxymethylpterin pyrophosphok- | ykoX
ylaK | 1549 | abaaabata atau intian ladi inibla aratala | sigG | 1605 | (early) sigma factor (σ ^F) (SpolIAC)
RNA polymerase sporulation forespore-specific | | | | inase (dihydrofolate biosynthesis) | yngC | 1947 | alkaline phosphatase | | | (late) sigma factor (σ^G) (SpollIG) | | ggt | 2004 | γ-glutamyltranspeptidase (glutathione metabo-
lism) | II.7 | MET | ABOLISM OF SULPHUR8 | sigH | 117 | RNA polymerase vegetative and early stationary- | | gsaB | 943 | glutamate-1-semialdehyde aminotransferase | yisZ | 1170 | adenylylsulfate kinase | sigL | 3513 | phase sigma factor (σ^H) (Spo0H)
RNA polymerase sigma factor (σ^L) | | hemA | | glutamyl-tRNA reductase (porphyrin biosynthesis) | yitA | 1171 | sulfate adenylyltransferase | sigV | 2769 | RNA polymerase ECF-type sigma factor (σ^{V})
RNA polymerase ECF-type sigma factor (σ^{W}) | | hemB | 2874 | δ-aminolevulinic acid dehydratase (porphyrin biosynthesis) | yitB
yInB | 1172
1632 | phospho-adenylylsulfate sulfotransferase sulfate adenylyltransferase | sigW
sigX | 195
2414 | RNA polymerase ECF-type sigma factor (σ^{N}) RNA polymerase ECF-type sigma factor (σ^{X}) | | hemC | 2876 | porphobilinogen deaminase (porphyrin biosyn- | yInC | 1633 | adenylylsulfate kinase | sigY | 3970 | RNA polymerase ECF-type sigma factor (σ^{Y}) | | hemD | 2875 | thesis)
uroporphyrinogen III cosynthase (porphyrin | yuiH | 3293 | sulfite oxidase
sulfite reductase | sigZ | 2742 | RNA polymerase ECF-type sigma factor (σ ²) | | HeIIID | 2010 | biosynthesis) | yvgQ
yvgR | | sulfite reductase
sulfite reductase | spollIC | 2701 | RNA polymerase sporulation mother cell-specific (late) sigma factor (σ^{K}) (C-terminal half) | | hemE | 1086 | uroporphyrinogen III decarboxylase (porphyrin | Ш | | RMATION PATHWAYS 482 | spoIVCE | 2652 | RNA polymerase sporulation mother-cell-specific | | hemH | 1087 | biosynthesis)
ferrochelatase (porphyrin biosynthesis) | III.1 | | REPLICATION22 | xpf | 1324 | (late) sigma factor (σ^{K}) (N-terminal half)
RNA polymerase PBSX sigma factor-like | | hemL | | glutamate-1-semialdehyde 2,1-aminotransferase | dnaA | 0 | initiation of chromosome replication | yhdM | | RNA polymerase ECF-type sigma factor | | hemN | 2630 | (porphyrin biosynthesis)
coproporphyrinogen III oxidase (porphyrin | dnaB | 2965 | initiation of chromosome replication / membrane | ykoZ | 1411 | RNA polymerase sigma factor | | nemi | | biosynthesis) | dnaC | 4158 | attachment protein
replicative DNA helicase | ylaC | 1043 | RNA polymerase EČF-type sigma factor | | hemX | 2877 | negative effector of the concentration of HemA | dnaD | | initiation of chromosome replication | III.5.2 | REGU | JLATION213 | | hemY | 1088 | protoporphyrinogen IX oxidase (porphyrin biosynthesis) | dnaE
dnaG | | DNA polymerase III (α subunit) DNA primase | abh | 1517 | transcriptional regulator of transition state genes (AbrB-like) | | menB | 3149 | dihydroxynapthoic acid synthetase | dnal | 2963 | primosome component (helicase loader) | abrB | 45 | transcriptional pleiotropic regulator of transition | | menD | 3151 | (menaquinone biosynthesis) 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-car- | dnaN
dnaX | 2
27 | DNA polymerase III (β subunit) | | | state genes (aprE, comK, ftsAZ, hpr, motAB, nprE, | | mend | 3131 | boxylate synthase / 2-oxoglutarate decarboxylase | holB | 41 | DNA polymerase III (γand τ subunits) DNA polymerase III (δ' subunit) | acoR | 883 | pbpE, rbs, spo0H, spoVG, spo0E, tycA) transcriptional activator of the acetoin dehydroge- | | | 04.40 | (menaquinone biosynthesis) | polA | 2975 | DNA polymerase I | | | nase operon (acoABCL) | | menE | 3148 | O-succinylbenzoic acid-CoA ligase (menaquinone biosynthesis) | poIC
priA | 1727
1643 | DNA polymerase III (α subunit)
primosomal replication factor Y | ahrC | 2522 | transcriptional regulator of arginine metabolism | | menF | 3153 | menaquinone-specific isochorismate synthase | rnh | 1677 | ribonuclease H | alsR | 3711 | expression (roc operons) transcriptional regulator of the α-acetolactate | | moaB | 3014 | (menaquinone biosynthesis) molybdopterin precursor biosynthesis | rtp | 2018 | replication terminator protein | _ | | operon (alsSD) | | moaD | 1499 | molybdopterin converting factor (subunit 1) | ssb
yerF | 4199
719 | single-strand DNA-binding protein
ATP-dependent DNA helicase | ansR | 2456 | transcriptional repressor of the ansAB operon (Xre family) | | moaE | 1498 | molybdopterin converting factor (subunit 2) | yerG | 721 | DNA ligase | araR | 3485 | transcriptional repressor of the arabinose operon | | mobA
mobB | 1495
1498 | molybdopterin-guanine dinucleotide biosynthesis
molybdopterin-guanine dinucleotide biosynthesis | yoqV
yorL | 2192
2179 | DNA ligase
DNA polymerase III (α subunit) | azIB | 2729 | (araABDLMNPQ)
transcriptional repressor of the azIBCD operon | | moeA | 1497 | molybdopterin biosynthesis protein | ypcP | 2311 | 5'-3' exonuclease | birA | | transcriptional repressor of the biotin operon | | moeB
mtrA | 1496
2385 | molybdopterin biosynthesis protein
GTP cyclohydrolase I
(tetrahydrofolate biosynthe- | ywpH | 3740 | single-strand DNA-binding protein | | | (bioWAFDBI) / biotin acetyl-CoA-carboxylase syn- | | | | sis) | III.2 | DNA | RESTRICTION/MODIFICATION AND | bltR | 2716 | thetase
transcriptional regulator of the bltD operon | | nadA | | quinolinate synthetase (quinolinate biosynthesis) | | REPA | JR39 | bmrR | 2495 | transcriptional activator of the bmrUR operon | | nadB
nadC | 2849
2847 | L-aspartate oxidase (quinolinate biosynthesis)
nicotinate-nucleotide pyrophosphorylase | adaA | 204 | methylphosphotriester-DNA alkyltransferase /
transcriptional activator of the adaAB operon | ccpA | 3044 | transcriptional regulator involved in carbon | | | | (NAD/NADP biosynthesis) | adaB | 204 | O°-methylguanine-DNA methyltransferase | cheB | 1711 | catabolite control
two-component response regulator-like [CheA] / | | nadE | 338 | NH ₃ -dependent NAD* synthetase (NAD biosynthesis) | alkA | 203 | DNA-3-methyladenine glycosylase | | | methyl-accepting chemotaxis proteins-glutamate | | narA | 3772 | molybdopterin precursor biosynthesis | dat
dinB | 1421
608 | O ⁶ -methylguanine DNA alkyltransferase
nuclease inhibitor | cheY | 1703 | methylesterase
two-component response regulator [CheA] | | nasF | 355 | uroporphyrin-III C-methyltransferase (porphyrin | dinG | 2352 | ATP-dependent DNA helicase | 5.767 | .,00 | involved in modulation of flagellar switch bias | | nifS | 2849 | biosynthesis)
required for NAD biosynthesis | exoA
mthD | 4198
2172 | 3'-exo-deoxyribonuclease
modification methylase Bsu | nieD | 1000 | (chemotaxis) | | pabA | 84 | p-aminobenzoate synthase glutamine amido- | mtbP
mutL | 1778 | DNA mismatch repair | citR | 1020 | transcriptional repressor of the citrate synthase I gene (citA) | | | | transferase (subunit B) / anthranilate synthase
(subunit II) (folate and tryptophan biosynthesis) | mutM | 2972 | formamidopyrimidine-DNA glycosidase | citT | 832 | two-component response regulator [CitS] | | pabB | 83 | p-aminobenzoate synthase (subunit A) (folate | mutS
mutT | 1775
488 | DNA mismatch repair (recognition) mutator protein | codY | 1690 | transcriptional pleiotropic repressor (expression of srfA, comK, dpp, gabP, hut, ureABC) | | | | biosynthesis) | nth | 2345 | endonuclease III (DNA repair) | comA | 3253 | two-component response regulator [ComP] of | | pabC | 85 | aminodeoxychorismate lyase (folate biosynthesis) | sms
ung | 106
3897 | DNA repair protein homologue
uracil-DNA glycosylase | comK | 1117 | late competence genes / surfactin production
competence transcription factor (CTF), final | | panB | 2354 | ketopantoate hydroxymethyltransferase (pan- | uvrA | 3612 | excinuclease ABC (subunit A) | COITIN | 107 | autoregulatory control switch prior to competence | | panC | 2353 | tothenate biosynthesis)
pantothenate synthetase (pantothenate biosyn- | uvrB
uvrC | 3614
2912 | excinuclease ABC (subunit B)
excinuclease ABC (subunit C) | comQ | 3256 | development transcriptional regulator of late competence oper- | | | | thesis) | uvrX | 2271 | UV-damage repair protein | COITIC | 3200 | on (comG) and surfactin expression (srfA) | | panD | 2352 | aspartate 1-decarboxylase (pantothenate biosynthesis) | ydiO | 655 | DNA-methyltransferase (cytosine-specific) | ctsR | 101 | transcriptional repressor of class III stress genes | | ribA | 2429 | GTP cyclohydrolase II / 3,4-dihydroxy-2-butanone | ydiP
ydiS | 656
660 | DNA-methyltransferase (cytosine-specific)
DNA restriction | degA | 1163 | (clpC, clpP)
transcriptional activator involved in the degrada- | | | | 4-phosphate synthase (riboflavin biosynthesis) | yfhQ | 935 | A/G-specific adenine glycosylase | 9-1 | | tion of glutamine phosphoribosylpyrophosphate | | ribB | 2429 | riboflavin synthase (α subunit) (riboflavin biosynthesis) | yfjP
yisT | 872
1165 | DNA-3-methyladenine glycosidase II
nuclease inhibitor | degU | 3611 | amidotransferase
two-component response regulator [DegS] | | ribC | 1737 | riboflavin kinase / FAD synthase (riboflavin | vicD | 1255 | ATP-dependent DNA helicase | uego | 3044 | involved in degradative enzyme and competence | | ribG | 2431 | biosynthesis) riboflavin-specific deaminase (riboflavin biosyn- | yjhB | 1290 | mutator MutT protein | 4 5 | 10=- | regulation (sacB, degQ, comK) | | | | thesis) | yozK
yprA | 2064
2336 | DNA repair protein
ATP-dependent helicase | deoR | 4052 | transcriptional repressor of the dra/nupC/pdp operon (deoxyribonucleoside) | | ribH | 2428 | riboflavin synthase (β subunit) (riboflavin biosyn- | ypvA | 2329 | ATP-dependent helicase | fnr | 3831 | transcriptional regulator of anaerobic genes | | ribT | 2427 | thesis) reductase (riboflavin biosynthesis) | yqfS
vaiH | 2593
2483 | | fruP | 1507 | (narK, narGHJI) | | sul | | dihydropteroate synthase (dihydrofolate biosyn- | yqjH
yqjW | 2465 | ATP/GTP-binding protein | fruR | | transcriptional repressor of the fructose operon (fruRBA) | | thiA | 955 | thesis)
synthesis of the pyrimidine moiety of thiamin (thi- | yshC | 2924 | DNA polymerase β | gerE | 2904 | transcriptional regulator required for expression | | | | amin biosynthesis) | yshD
ysxA | 2922
2862 | DNA mismatch repair protein
DNA repair protein | glcR | 3739 | of late spore coat genes
transcriptional repressor involved in the expres- | | thiC | 3930 | thiamine-phosphate pyrophosphorylase (thiamin | yvcl | 3572 | mutator MutT protein | - | | sion of the phosphotransferase system | | thiD | 3900 | biosynthesis) phosphomethylpyrimidine kinase (thiamin biosyn- | ywjD
yxIJ | | UV-endonuclease
DNA-3-methyladenine glycosidase | glcT | 1456 | transcriptional antiterminator essential for the | | | | thesis) | y∧U | | · · · · · · · · · · · · · · · · · · · | glnR | 1877 | expression of the ptsGHI operon
transcriptional repressor of the glutamine syn- | | thiK | 3931 | hydroxyethylthiazole kinase (thiamin biosynthesis) | III.3 | DNA | RECOMBINATION17 | | | thetase gene (glnA) | | yaal | 26 | isochorismatase | addA
addB | 1139
1136 | ATP-dependent deoxyribonuclease (subunit A) ATP-dependent deoxyribonuclease (subunit B) | glpP | 1001 | transcriptional antiterminator and control of
mRNA stability of glpD | | ydiA | 640 | thiamin-monophosphate kinase | recA | 1764 | multifunctional protein involved in homologous | gltC | 2014 | transcriptional activator of the glutamate synthase | | ydiG
yhaV | | molybdopterin precursor biosynthesis
coproporphyrinogen III oxidase | | | recombination and DNA repair (LexA-autocleav- | | | operon (gltAB) | | yhcB | | | recF | 3 | age) DNA repair and genetic recombination | gltR | 2725 | transcriptional repressor of the glutamate syn-
thase operon (gltAB) | | | 979 | flavodoxin | recr | | | | | | | yhfU
vhy∆ | 1112 | biotin biosynthesis | recN | 2522 | DNA repair and genetic recombination | gntR | 4113 | transcriptional repressor of the gluconate operon | | yhtU
yhxA | 1112 | | | 2522 | | gntR | 4113 | | | gutR | 667 | transcriptional activator of the sorbitol dehydroge- | ydeC | 562 | transcriptional regulator (AraC/XylS family) | III.5.4 | | /INATION | |---|--|---|--|---|---|--|---
---| | hpr | 1073 | nase gene (gutA)
transcriptional repressor of sporulation and extra- | ydeE
ydeF | 564
564 | transcriptional regulator (AraC/XylS family)
transcriptional regulator (GntR family) / amino- | nusA
nusG | 1732
118 | transcription termination
transcription antitermination factor | | | | cellular proteases genes (aprE, nprE, sin) | | | transferase (MocR-like) | rho | | transcriptional terminator Rho | | hrcA | 2629 | transcriptional repressor of class I heat-shock genes (dnaK, groESL) | ydeL | 571 | transcriptional regulator (GntR family) / amino-
transferase (MocR-like) | yqhZ | 2529 | transcription termination | | hutP | 4040 | transcriptional activator of the histidine utilization | ydeS | 578 | transcriptional regulator (TetR/AcrR family) | III.6 | | MODIFICATION1 | | ioIR | 4084 | operon (hutPHUIGM)
transcriptional repressor of the myo-inositol | ydeT
ydfD | 579
583 | transcriptional regulator (ArsR family)
transcriptional regulator (GntR family) / amino- | cspR
deaD | 970
4016 | rRNA methylase homolog
ATP-dependent RNA helicase | | | | catabolism operon (iolABCDEFGHIJ/ iolRS) | | | transferase (MocR-like) | miaA | 1866 | tRNA isopentenylpyrophosphate transferase | | kdgR | 2325 | transcriptional repressor of the pectin utilization
operon (kdgRKAT) | ydfl
ydgG | 589
609 | two-component response regulator [YdfH]
transcriptional regulator (MarR family) | queA | 2834 | S-adenosylmethionine tRNA ribosyltransferase (queuosine biosynthesis) | | lacR | 3509 | transcriptional repressor of the β-galactosidase | ydgJ | 613 | transcriptional regulator (MarR family) | rncS | 1665 | ribonuclease III | | levR | 2765 | gene (<i>lacA</i>) transcriptional activator of the levanase operon | ydhC
ydhQ | 616
630 | transcriptional regulator (GntR family)
transcriptional regulator (GntR family) | rnpA
rph | 4214
2901 | ribonuclease P (protein component)
ribonuclease PH | | | | (levDEFG/sacC) | yerO | 732 | transcriptional regulator (TetR/AcrR family) | tgt | 2833 | tRNA-guanine transglycosylase (queuosine | | lexA
licR | 1918
3963 | transcriptional repressor of the SOS regulon
transcriptional regulator (antiterminator) of the | yesN
yesS | 760
765 | two-component response regulator [YesM]
transcriptional regulator (AraC/XylS family) | trmD | 1675 | biosynthesis)
tRNA methyltransferase | | | | lichenan operon (licBCAH) | yetL | 790 | transcriptional regulator (MarR family) | truA | 153 | pseudouridylate synthase I | | licT | 4012 | transcriptional antiterminator required for sub-
strate-dependent induction and catabolite repres- | yezC
yfiF | 711
898 | transcriptional regulator (Lrp/AsnC family)
transcriptional regulator (AraC/XylS family) | truB | 1736
511 | tRNA pseudouridine 5S synthase | | | | sion of bgIPH | yfiK | 905 | two-component response regulator [YfiJ] | ydbR
yefA | 737 | ATP-dependent RNA helicase
RNA methyltransferase | | ImrA | 290 | transcriptional repressor of the lincomycin operon | yfiV | 916 | transcriptional regulator (MarR family)
transcriptional regulator (MerR family) | vfj0 | 873 | RNA methyltransferase | | IrpA | 551 | (ImrBA)
transcriptional Lrp-like regulator (repression of | yfmP
ygaG | 812
944 | transcriptional regulator (Fur family) | yfmL
yloM | 816
1647 | RNA helicase
RNA-binding Sun protein | | | | glyA transcription and KinB-dependent sporula- | yhbl | 976 | transcriptional regulator (MarR family) | yqfR | 2595 | ATP-dependent RNA helicase | | IrpB | 552 | tion)
transcriptional Lrp-like regulator (repression of | yhcF
yhcZ | 981
1009 | transcriptional regulator (GntR family)
two-component response regulator [YhcY] | ysgA
yugl | 2931
3225 | rRNA methylase polyribonucleotide nucleotidyltransferase | | | | glyA transcription and KinB-dependent sporula- | yhdl | 1027 | transcriptional regulator (GntR family) / amino- | III.7 | | FEIN SYNTHESIS9 | | IrpC | 476 | tion)
transcriptional regulator (Lrp/AsnC family) | yhdQ | 1033 | transferase (MocR-like)
transcriptional regulator (MerR family) | III.7.1 | | SOMAL PROTEINS5 | | lytR | 3662 | attenuator role for lytABC and lytR expression | yhgD | 1089 | transcriptional regulator (TetR/AcrR family) | rpIA | 119 | ribosomal protein L1 (BL1) | | lytT | 2956 | two-component response regulator [LytS] involved in the rate of autolysis | yhjM
yisR | 1129
1162 | transcriptional regulator (Lacl family)
transcriptional regulator (AraC/XylS family) | rpIB
rpIC | 137
136 | ribosomal protein L2 (BL2)
ribosomal protein L3 (BL3) | | msmR | 3096 | transcriptional regulator (Lacl family) | yisV | 1166 | transcriptional regulator (GntR family) / amino- | rpID | 136 | ribosomal protein L4 | | mta | 3764 | transcriptional activator of multidrug-efflux trans-
porter genes (bmr and blt) | yjdC | 1270 | transferase (MocR-like)
transcriptional antiterminator (BgIG family) | rpIE
rpIF | 141
142 | ribosomal protein L5 (BL6)
ribosomal protein L6 (BL8) | | mtrB | 2384 | tryptophan operon RNA-binding attenuation pro- | yjdl | 1277 | transcription regulation | rpll | 4163 | ribosomal protein L9 | | paiA | 3304 | tein (TRAP)
transcriptional repressor of sporulation, septation | yjmH
ykoG | 1308
1391 | transcriptional regulator (Lacl family)
two-component response regulator [YkoH] | rpIJ
rpIK | 120
119 | ribosomal protein L10 (BL5)
ribosomal protein L11 (BL11) | | pun1 | 55074 | and degradative enzyme genes (aprE, nprE, | ykoM | 1398 | transcriptional regulator (MarR family) | rpIL | 121 | ribosomal protein L12 (BL9) | | paiB | 3304 | phoA, sacB)
transcriptional repressor of sporulation and | ykuM
ykvE | 1485
1433 | transcriptional regulator (LysR family)
transcriptional regulator (MarR family) | rpIM | 154 | ribosomal protein L13 | | | | degradative enzyme genes | ykvZ | 1455 | transcriptional regulator (Lacl family) | rpIN
rpIO | 140
144 | ribosomal protein L14
ribosomal protein L15 | | phoP | 2978 | two-component response regulator [PhoR] involved in phosphate regulation (phoA, phoB, | ymfC | | transcriptional regulator (GntR family) | rpIP | 139 | ribosomal protein L16 | | | | phoD, resABCDE) | ynel | | two-component response regulator (CheY homo-
logue) | rpIQ
rpIR | 150
143 | ribosomal protein L17 (BL15)
ribosomal protein L18 | | pksA | 1781 | transcriptional regulator of the polyketide syn- | yoaU
yobD | 2045 | transcriptional regulator (LysR family) | rpIS | 1675 | ribosomal protein L19 | | purR | 54 | thase operon (pks)
transcriptional repressor of the purine operon | yobD | 2056 | transcriptional regulator (phage-related) (Xre family) | rpIT
rpIU | 2952
2855 | ribosomal protein L20
ribosomal protein L21 (BL20) | | | | (purEKBCLQFMNHD) | yobQ | | transcriptional regulator (AraC/XylS family) | rpIV | 138 | ribosomal protein L22 (BL17) | | pyrR | 1618 | transcriptional attenuation of the pyrimidine oper-
on (pyrPBCADFE) / uracil phosphoribosyltrans- | yocG
yofA | 2007 | two-component response regulator [YocF]
transcriptional regulator (LysR family) | rpIW
rpIX | 137
141 | ribosomal protein L23
ribosomal protein L24 (BL23) (histone-like protein | | | | ferase activity (minor) (pyrimidine biosynthesis) | yonR | 2221 | transcriptional regulator (phage-related) (Xre fami- | | | HPB12) | | rbsR | 3700 | transcriptional repressor of the ribose operon
(rbsRKDACB) | yozA | 2084 | ly)
transcriptional regulator (ArsR family) | rpmA
rpmB | 2854
1655 | ribosomal protein L27 (BL24)
ribosomal protein L28 | | resD | 2417 | two-component response regulator [ResE] | yozG | 2043 | transcriptional regulator | rpmC | 140 | ribosomal protein L29 | | | | involved in aerobic and anaerobic respiration
(resA, ctaA, qcrABC, fnr) | ypIP
ypoP | 2294 | transcriptional regulator
(σ-dependent)
transcriptional regulator (MarR family) | rpmD
rpmE | 144
3802 | ribosomal protein L30 (BL27)
ribosomal protein L31 | | ribR | 3001 | transcriptional regulator of riboflavin biosynthesis | yppQ | 2287 | transcriptional regulator (PilB family) | rpmF | 1575 | ribosomal protein L32 | | rocR | 4145 | genes
transcriptional activator of arginine utilization | ypuN
yqaE | 2414 | negative regulator of σ ^x activity transcriptional regulator (phage-related) | rpmG | 117
4215 | ribosomal protein L33
ribosomal protein L34 | | 70071 | | operons (rocABC, rocDEF) | yque | | (Xre family) | rpmH
rpml | 2952 | ribosomal protein L35 | | sacT | 3906 | transcriptional antiterminator involved in positive
regulation of sacA and sacP | yqcJ
yqfV | 2657 | transcriptional regulator (ArsR family)
transcriptional regulator (Fur family) | rpmJ | 148 | ribosomal protein L36 (ribosomal protein B) | | sacV | 532 | transcriptional regulator of the levansucrase gene | yqhN | 2543 | transcriptional regulator | rpsB
rpsC | 1717
139 | ribosomal protein S2
ribosomal protein S3 (BS3) | | sacY | 3942 | (sacB) transcriptional antiterminator involved in positive | yqiR | 2506 | transcriptional regulator (σ-dependent)
transcriptional regulator (Fur family) | rpsD | 3035 | ribosomal protein S4 (BS4) | | Saci | 3342 | regulation of levansucrase and sucrase synthesis | yqkL
yraB | 2755 | transcriptional regulator (MerR family) | rpsE
rpsF | 143
4199 | ribosomal protein S5
ribosomal protein S6 (BS9) | | senS | 959 | transcriptional regulator of extracellular enzyme | yraN | 2746 | transcriptional regulator (LysR family)
transcriptional regulator (LysR family) | rpsG | 130 | ribosomal protein S7 (BS7) | | sinR | 2552 | genes (amyE, aprE, nprE)
transcriptional regulator of post-exponential- | yrdQ
yrhl | 2721
2777 | transcriptional regulator (TetR/AcrR family) | rpsH
rpsl | 142
154 | ribosomal protein S8 (BS8)
ribosomal protein S9 | | | | phase responses genes (aprE, comK, kinB, sigD, | yrhM | 2770 | anti-sigma factor [σ ^V] | rpsJ | 135 | ribosomal protein S10 (BS13) | | slr | 3529 | spo0A, spollA, spollE, spollG) transcriptional activator of competence develop- | yrkP
ysiA | | two-component response regulator [YrkQ]
transcriptional regulator (TetR/AcrR family) | rpsK
rpsL | 148
130 | ribosomal protein S11 (BS11)
ribosomal protein S12 (BS12) | | | | ment and sporulation genes | ysmB | 2904 | transcriptional regulator (MarR family) | rpsM | 148 | ribosomal protein S13 | | splA | 1461 | transcriptional regulator of the spore photoprod-
uct lyase operon (splAB) | ytdP
ytll | 3083 | transcriptional regulator (AraC/XylS family)
transcriptional regulator (LysR family) | rpsN
rpsO | 142
1738 | ribosomal protein S14
ribosomal protein S15 (BS18) | | spo0A | 2518 | two-component response regulator [KinC] central | ytrA | 3118 | transcriptional regulator (GntR family) | rpsP | 1673 | ribosomal protein S16 (BS17) | | | | for the initiation of sporulation (spo0A, abrB, kinA, kinC, spolIA, spolIE, spolIG) (part of phosphore- | ytsA
ytzE | 3113 | two-component response regulator [YtsB] transcriptional regulator (DeoR family) | rpsQ
rpsP | 140 | ribosomal protein S17 (BS16) | | | | lay: Spo0B~P->Spo0A~P) | yufM | 3238 | two-component response regulator [YufL] | rpsR
rpsS | 138 | ribosomal protein S18
ribosomal protein S19 (BS19) | | spo0F | 3809 | two-component response regulator [KinA, KinB]
involved in the initiation of sporulation (part of | yugG
yulB | 3227 | transcriptional regulator (Lrp/AsnC family)
transcriptional regulator (DeoR family) | rpsT | 2635
2620 | ribosomal protein S20 (BS20)
ribosomal protein S21 | | | | phosphorelay: Spo0F~P->Spo0B~P) | yurK | 3345 | transcriptional regulator (GntR family) | rpsU
ybxF | 129 | ribosomal protein L7AE family | | spolIID | 3748 | transcriptional regulator of σ^E and σ^K -dependent genes | yusO
yusT | 3374 | transcriptional regulator (MarR family)
transcriptional regulator (LysR family) | yhzA
ylxQ | 965
1733 | ribosomal protein S14
ribosomal protein L7AE family | | spoVT | 64 | transcriptional positive and negative regulator of | yvbA | 3466 | transcriptional regulator (ArsR family) | yvyD | 3631 | ribosomal protein S30AE family | | tenA | 1242 | σ ^G -dependent genes
transcriptional regulator of extracellular enzyme | yvbU
yvcP | 3488 | transcriptional regulator (LysR family)
two-component response regulator [YvcQ] | | | | | | | genes (aprE, nprE, phoA, sacB) | yvdE | 3558 | transcriptional regulator (Lacl family) | III.7.2
alaS | | IOACYL-TRNA SYNTHETASES2!
alanyl-tRNA synthetase | | tenl | 1243 | transcriptional activator of extracellular enzyme genes | yvdT
yvfl | 3540
3509 | transcriptional regulator (TetR/AcrR family)
transcriptional regulator (GntR family) | argS | 3834 | arginyl-tRNA synthetase | | tnrA | 1397 | transcriptional pleiotropic regulator invoved in | vvfU | 3496 | two-component response regulator [YvfT] | asnS
aspS | 2347
2816 | aspartyl-tRNA synthetase | | | | global nitrogen regulation (expression of nrgAB, nasB, gabP, ureABC, glnRA) | yvhJ
yvkB | 3646 | transcriptional regulator
transcriptional regulator (TetR/AcrR family) | cysS | 113 | cysteinyl-tRNA synthetase | | treR | 853 | transcriptional repressor of the trehalose operon | yvoA | 3596 | transcriptional regulator (GntR family) | gltX
glyQ | 111
2608 | glutamyl-tRNA synthetase
glycyl-tRNA synthetase (α subunit) | | xre | 1321 | (trePAR)
transcriptional repressor of PBSX genes | yvqA
yvqC | 3385 | two-component response regulator [YvqB]
two-component response regulator [YvqE] | glyS | 2607 | alvcvl-tRNA synthetase (B subunit) | | xre
xylR | 1891 | transcriptional repressor of the xylose operon | yvrH | 3409 | two-component response regulator [YvrG] | hisS
hisZ | 2817
3588 | histidyl-tRNA synthetase
histidyl-tRNA synthetase | | yacF | 88 | (xyIAB) transcriptional regulator (nitrogen regulation pro- | ywaE
ywbl | 3945 | transcriptional regulator (MarR family)
transcriptional regulator (LysR family) | ileS | 1613 | isoleucyl-tRNA synthetase | | | | tein) | ywfK | 3864 | transcriptional regulator (LysR family) | leuS
lysS | 3104
89 | leucyl-tŘNA synthetase
lysyl-tRNA synthetase | | ybbB
ybdJ | 185
221 | transcriptional regulator (AraC/XylS family)
two-component response regulator [YbdK] | ywhA
ywoH | | transcriptional regulator (MarR family)
transcriptional regulator (MarR family) | metS | 46 | methionyl-tRNA synthetase | | | | transcriptional regulator (AraC/XylS family) | ywqM | 3723 | transcriptional regulator (LysR family) | pheS
pheT | 2930
2929 | phenylalanyl-tRNA synthetase (α subunit)
phenylalanyl-tRNA synthetase (β subunit) | | ybfl | 244 | | ywrC | 3720 | transcriptional regulator (Lrp/AsnC family)
transcriptional regulator | proS | 1725 | prolyl-tRNA synthetase | | ybfP | 244
251 | transcriptional regulator (AraC/XyIS family) | | | a a reor iproriar regulator | serS | 21 | seryl-tRNA synthetase | | ybfP
ybgA
ycbB | 244
251
258
267 | transcriptional regulator (AraC/XyIS family)
transcriptional regulator (GntR family)
two-component response regulator [YcbA] | ywtF
yxaD | 4109 | transcriptional regulator (MarR family) | thrS | 2960 | threonyl-tRNA synthetase (maior) | | ybfP
ybgA
ycbB
ycbG | 244
251
258
267
273 | transcriptional regulator (AraC/XylS family)
transcriptional regulator (GntR family)
two-component response regulator [YcbA]
transcriptional regulator (GntR family) | ywtF
yxaD
yxdJ | 4109
4072 | transcriptional regulator (MarR family)
two-component response regulator [YxdK] | thrZ | 2960
3855 | threonyl-tRNA synthetase (major)
threonyl-tRNA synthetase (minor) | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH | 244
251
258
267
273
278
296 | transcriptional regulator (AraC/XVIS family) transcriptional regulator (GntR family) two-component response regulator (YcbA) transcriptional regulator (GntR family) two-component response regulator [YcbM] two-component response regulator [YccG] | ywtF
yxaD
yxdJ
yxjL
yxjO | 4109
4072
3993
3991 | transcriptional regulator (MarR family) two-component response regulator [YxdK] two-component response regulator [YxjM] transcriptional regulator (LysR family) | thrZ
trpS | 2960
3855
1219 | threonyl-tRNA synthetase (major)
threonyl-tRNA synthetase (minor)
tryptophanyl-tRNA synthetase | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH
yceK | 244
251
258
267
273
278
296
320 | transcriptional regulator (AraC/XylS family) transcriptional regulator (Gnff family) two-component response regulator (YobA) transcriptional regulator (Gnf family) two-component response regulator (YobM) two-component response regulator (YobM) two-component response regulator (YobG) transcriptional regulator (Arsf family) | ywtF
yxaD
yxdJ
yxjL
yxjO
yyaG | 4109
4072
3993
3991
4197 | transcriptional regulator (MarR family) two-component response regulator [YxdK] two-component response regulator [YxjM] transcriptional regulator (LysR family) transcriptional regulator (Lacl family) | thrZ
trpS
tyrS
tyrZ | 2960
3855
1219
3037
3946 | threonyl-tRNA synthetase (major)
threonyl-tRNA synthetase (minor)
tryptophanyl-tRNA synthetase
tyrosyl-tRNA synthetase (major)
tyrosyl-tRNA synthetase (minor) | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH | 244
251
258
267
273
278
296 | transcriptional regulator (AraC/XylS family) transcriptional regulator (GntR family) two-component response regulator (YcbA) transcriptional regulator (GntR family) two-component response regulator (YcbM) two-component response regulator (YcbM) two-component
response regulator (YccG) transcriptional regulator (ArsR family) transcriptional regulator (LysR family) | ywtF
yxaD
yxdJ
yxjL
yxjO
yyaG
vvaN | 4109
4072
3993
3991 | transcriptional regulator (MarR family) two-component response regulator [YxdK] two-component response regulator [YxjM] transcriptional regulator (LysR family) | thrZ
trpS
tyrS
tyrZ
valS | 2960
3855
1219
3037
3946
2869 | threonyl-tRNA synthetase (major)
threonyl-tRNA synthetase (minor)
tryptophanyl-tRNA synthetase
tyrosyl-tRNA synthetase (major)
tyrosyl-tRNA synthetase (minor)
valyl-tRNA synthetase | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH
yceK
ycgK
yclA
yclJ | 244
251
258
267
273
278
296
320
341
412
426 | transcriptional regulator (AraC/XylS family) transcriptional regulator (Britf Family) two-component response regulator (YcbA) transcriptional regulator (Gritf family) two-component response regulator (YcbM) two-component response regulator (YcbM) two-component regulator (Arsf family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) two-component response regulator (YcIK) | ywtF
yxaD
yxdJ
yxjL
yxjO
yyaG
yyaN
yybA
yybE | 4109
4072
3993
3991
4197
4189
4183
4180 | transcriptional regulator (MarR family) two-component response regulator (YxdK) two-component response regulator (YxdK) transcriptional regulator (LysR family) transcriptional regulator (Lacl family) transcriptional regulator (MarR family) transcriptional regulator (MarR family) transcriptional regulator (MarR family) transcriptional regulator (JusR family) | thrZ
trpS
tyrS
tyrZ
valS
ytpR | 2960
3855
1219
3037
3946
2869
3052 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase (major) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase (minor) valyl-tRNA synthetase phenylalanyl-tRNA synthetase phenylalanyl-tRNA synthetase (β subunit) | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH
yceK
ycgK
yclA
yclJ
ycnC | 244
251
258
267
273
278
296
320
341
412
426
438 | transcriptional regulator (AraC/Xy/S family) transcriptional regulator (Girff family) two-component response regulator (YcbA) transcriptional regulator (Girff family) two-component response regulator (YcbM) two-component response regulator (YcbM) two-component response regulator (YcC) transcriptional regulator (ArsR family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) two-component response regulator (YcK) two-component response regulator (YcK) transcriptional regulator (LysR family) | ywtF
yxaD
yxdJ
yxjL
yxjO
yyaG
yyaN
yybA
yybE
yycF | 4109
4072
3993
3991
4197
4189
4183
4180
4154 | transcriptional regulator (Mar R family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) transcriptional regulator (LysR family) transcriptional regulator (Lacl family) transcriptional regulator (MarR family) transcriptional regulator (MarR family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) | thrZ
trpS
tyrS
tyrZ
valS
ytpR | 2960
3855
1219
3037
3946
2869
3052 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptopharyl-tRNA synthetase (minor) tryptopharyl-tRNA synthetase (yrosyl-tRNA synthetase (major) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase phenylalanyl-tRNA synthetase (β subunit) | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH
yceK
ycgK
yclA
yclJ
ycnC
ycnF | 244
251
258
267
273
278
296
320
341
412
426
438
441 | transcriptional regulator (AraC/Xy/S family) transcriptional regulator (Grtf family) two-component response regulator (YobA) transcriptional regulator (Grtf family) two-component response regulator (YocM) two-component response regulator (YocG) transcriptional regulator (AraSt family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) two-component response regulator (Yolf) two-component response regulator (Yolf) transcriptional regulator (Grtf family) transcriptional regulator (Grtf family) transcriptional regulator (Grtf family) / amino-transferase (MocA-like) | ywtF
yxaD
yxdI
yxjL
yxjO
yyaG
yyaN
yybA
yybE
yycF
yydK | 4109
4072
3993
3991
4197
4189
4183
4180
4154
4122 | transcriptional regulator (Mark Family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) transcriptional regulator (Lysk family) transcriptional regulator (Lacl family) transcriptional regulator (Mark family) transcriptional regulator (Lysk family) transcriptional regulator (Lysk family) two-component response regulator (TyxoG) transcriptional regulator (GntR family) | thrZ
trpS
tyrS
tyrZ
valS
ytpR
III.7.3
fmt
infA | 2960
3855
1219
3037
3946
2869
3052
INITI/
1646
148 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase tyrosyl-tRNA synthetase tyrosyl-tRNA synthetase (major) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase (minor) valyl-tRNA synthetase (β subunit) ATION | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH
yceK
ycgK
yclA
yclJ
ycnC
ycnF | 244
251
258
267
273
278
296
320
341
412
426
438
441 | transcriptional regulator (AraC/Xy/S family) transcriptional regulator (Gnff family) two-component response regulator (YobA) transcriptional regulator (Gnff family) two-component response regulator (YobM) two-component response regulator (YobM) two-component response regulator (YobM) transcriptional regulator (LysR family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) two-component response regulator (YolK) transcriptional regulator (Teff AcrR family) transcriptional regulator (Gnff family) / aminotransferase (MocR-like) transcriptional regulator (DeoR family) | ywtF
yxaD
yxdJ
yxjL
yxjO
yyaG
yyaN
yybA
yybE
yycF
yydK | 4109
4072
3993
3991
4197
4189
4183
4180
4154
4122
ELON | transcriptional regulator (Mark Family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) transcriptional regulator (Lacl family) transcriptional regulator (Mark Family) transcriptional regulator (Mark Family) transcriptional regulator (Mark Family) transcriptional regulator (LysR family) two-component response regulator (YycG) transcriptional regulator (GriR family) | thrZ
trpS
tyrS
tyrZ
valS
ytpR
III.7.3
fmt
infA
infB | 2960
3855
1219
3037
3946
2869
3052
INITI/
1646
148
1733 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase tyrosyl-tRNA synthetase tyrosyl-tRNA synthetase (minor) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase phenylalanyl-tRNA synthetase (β subunit) ATION methionyl-tRNA formyltransferase initiation factor IF-1 initiation factor IF-2 | | ybfP
ybgA
ycbB
ycbG
ycbL
yccH
yceK
ycgK
yclA
yclJ
ycnC
ycnF | 244
251
258
267
273
278
296
320
341
412
426
438
441 | transcriptional regulator (AraC/XylS family) transcriptional regulator (GntR family) two-component response regulator (YobA) transcriptional regulator (GntR family) two-component response regulator (YobM) two-component response regulator (YobM) two-component response regulator (YobM) transcriptional regulator (LysR family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) two-component response regulator (YolfK transcriptional regulator (GntR family) / aminotransferase (MocR-like) transcriptional regulator (GntR family) transcriptional regulator (GntR family) transcriptional regulator (GntR family) transcriptional regulator (GntR family) / aminotransferase (MocR-like) transcriptional regulator (GntR family) / aminotransferase (MocR-like) transcriptional regulator (GntR family) / amino- | ywtF
yxaD
yxdJ
yxjC
yxjG
yyaG
yyaN
yybA
yybE
yycF
yydK
III.5.3
greA
mfd | 4109
4072
3993
3991
4197
4189
4183
4180
4154
4122
ELON
2791
60 | transcriptional regulator (Mark family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) transcriptional regulator (LysR family) transcriptional regulator (Lacl family) transcriptional regulator (Mark family) transcriptional regulator (Mark family) transcriptional regulator (LysR family) two-component response regulator (YycG) transcriptional regulator (GntR family) VGATION | thrZ
trpS
tyrS
tyrZ
valS
ytpR
III.7.3
fmt
infA | 2960
3855
1219
3037
3946
2869
3052
INITI/
1646
148
1733
2952 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase tyrosyl-tRNA synthetase tyrosyl-tRNA synthetase (major) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase (minor) valyl-tRNA synthetase (pinor) tyrosyl-tRNA formyltransferase initiation factor IF-1 initiation factor IF-2 initiation factor IF-3 initiation factor IF-3 | | ybfP
ybgA
ycbB
ycbC
ycbL
yccH
yceK
yclA
yclI
ycnC
ycnF
ycnK
ycsO
ycxD | 244
251
258
267
273
278
296
320
341
412
426
438
441
449
461
406 | transcriptional regulator (AraC/Xy/S family) transcriptional regulator (Gnff family)
two-component response regulator (YobA) transcriptional regulator (Gnff family) two-component response regulator (YobM) two-component response regulator (YobM) two-component response regulator (YoCG) transcriptional regulator (ArsR family) transcriptional regulator (LysR family) transcriptional regulator (LysR family) transcriptional regulator (Gnff amino-transferase (MocA-like) | ywtF
yxaD
yxdD
yxjL
yxjO
yyaG
yyaN
yybA
yybE
yydK
III.5.3
greA
mfd
papS | 4109
4072
3993
3991
4197
4189
4183
4180
4154
4122
ELOÑ
2791
60
2356 | transcriptional regulator (Mark Family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component regulator (Lysk family) transcriptional regulator (Mark Family) transcriptional regulator (Mark Family) transcriptional regulator (Mark Family) transcriptional regulator (Lysk family) transcriptional regulator (Lysk family) transcriptional regulator (GniR family) stranscriptional regulator (GniR family) IGATION | thrZ
trpS
tyrS
tyrZ
valS
ytpR
III.7.3
fmt
infA
infB
infC | 2960
3855
1219
3037
3946
2869
3052
INITI/
1646
148
1733
2952
1736 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase tyrosyl-tRNA synthetase tyrosyl-tRNA synthetase (minor) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase phenylalanyl-tRNA synthetase (β subunit) ATION methionyl-tRNA formyltransferase initiation factor IF-1 initiation factor IF-2 | | ybfP
ybgB
ycbB
ycbL
yccbL
ycck
ycgK
yclA
yclA
yclA
ycnC
ycnF
ycnC
ycnF
ycxD
ycxD | 244
251
258
267
273
278
296
320
341
412
426
438
441
449
461
406 | transcriptional regulator (AraC/Xy/S family) transcriptional regulator (Gnff family) two-component response regulator (YobA) transcriptional regulator (Gnff family) two-component response regulator (YobM) two-component response regulator (YoCG) transcriptional regulator (ArsR family) transcriptional regulator (ArsR family) transcriptional regulator (LysR family) two-component response regulator (YolK] two-component response regulator (YolK] transcriptional regulator (Teff/AcrR family) transcriptional regulator (Gnff (ArsR family) transcriptional regulator (Gnff family) | ywtF
yxaD
yxdD
yxiL
yxjO
yyaG
yyaK
yybE
yybE
yybE
yydK
III.5.3
greA
mfd
papS
rpoA
rpoB | 4109
4072
3993
3991
4197
4189
4183
4180
4154
4122
ELON
2791
60
2356
149
122 | transcriptional regulator (Mark Family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component regulator (Lxs Family) transcriptional regulator (Lxs Family) transcriptional regulator (Mark Family) transcriptional regulator (MyxB family) transcriptional regulator (MyxB family) two-component response regulator (TycG) transcriptional regulator (GniR family) IGATION | thrZ
trpS
tyrS
tyrZ
valS
ytpR
III.7.3
fmt
infA
infB
infC
rbfA
ykrS | 2960
3855
1219
3037
3946
2869
3052
INITI/
1646
148
1733
2952
1736
1423 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptopharyl-tRNA synthetase tyrosyl-tRNA synthetase tyrosyl-tRNA synthetase (major) tyrosyl-tRNA synthetase (minor) valyl-tRNA synthetase (minor) valyl-tRNA synthetase (β subunit) ATION methionyl-tRNA formyltransferase initiation factor IF-1 initiation factor IF-2 ribosome-binding factor A initiation factor eIF-2B (α subunit) | | ybfP
ybgB
ycbB
ycbG
ycbL
yccH
ycgK
yclA
yclA
yclA
ycnC
ycnC
ycnF
ycnK
ycsO
ycxD | 244
251
258
267
273
278
296
320
341
412
426
438
441
449
461
406 | transcriptional regulator (AraC/Xy/S family) transcriptional regulator (GntR family) two-component response regulator (YcbA) transcriptional regulator (GntR family) two-component response regulator (YcbA) two-component response regulator (YcbM) two-component response regulator (YcbM) two-component response regulator (YcbM) transcriptional regulator (LysR family) transcriptional regulator (LysR family) two-component response regulator (YclK) two-component response regulator (YclK) transcriptional regulator (GntR family) transcriptional regulator (GntR family) transcriptional regulator (GntR family) transcriptional regulator (IcB | ywtF
yxaD
yxdD
yxjL
yxjO
yyaG
yyaA
yybA
yybE
yycF
yydK
III.5.3
greA
mfd
papS
rpoA | 4109
4072
3993
3991
4197
4189
4183
4180
4154
4122
ELON
2791
60
2356
149
122
126 | transcriptional regulator (Mark family) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) two-component response regulator (YxdK) transcriptional regulator (LysR family) transcriptional regulator (Mark family) transcriptional regulator (Mark family) transcriptional regulator (LysR family) two-component response regulator (YycG) transcriptional regulator (GntR family) IGATION | thrZ
trpS
tyrS
tyrZ
valS
ytpR
III.7.3
fmt
infA
infB
infC
rbfA | 2960
3855
1219
3037
3946
2869
3052
INITI/
1646
148
1733
2952
1736
1423
ELON
2538 | threonyl-tRNA synthetase (major) threonyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase (minor) tryptophanyl-tRNA synthetase (trosyl-tRNA formyltransferase initiation factor IF-1 initiation factor IF-2 initiation factor IF-3 IF-3 initiation factor IF-3 initiation factor IF-3 initiation IF-3 initiation factor IF-3 initiation factor IF-3 initiation IF-3 initiation factor IF-3 initiation IF-3 initiation IF-3 initiation IF-3 initiation IF-3 initiation IF | | lepA
tsf | | pinding protein
ation factor Ts | yvfE
yvtB | | spore coat polysaccharide biosynthesis serine protease Do | xkdC
xkdD | 1322
1323 | PBSX prophage
PBSX prophage | |----------------|--------------------------------|---|----------------|--------------|--|--------------|--------------|---| | tufA
ylaG | 133 elonga | ation factor Tu
pinding elongation factor | ywqC
ywqD | 3732 | capsular polysaccharide biosynthesis capsular polysaccharide biosynthesis | xkdE
xkdF | 1327
1328 | PBSX prophage
PBSX prophage | | | | | ywqE | 3731 | capsular polysaccharide biosynthesis | xkdG | 1329 | PBSX prophage | | III.7.5
frr | TERMINATIO
1720 riboso | DN3
ome recycling factor | ywsC
ywtA | 3700
3698 | capsular polyglutamate biosynthesis
capsular polyglutamate biosynthesis | xkdH
xkdl | 1330
1331 | PBSX prophage
PBSX prophage | | prfA
prfB | 3797 peptid | DN | ywtB
yyxA | 3698 | capsular polyglutamate biosynthesis
serine protease Do | xkdJ
xkdK | 1331
1332 | PBSX prophage
PBSX prophage | | | | | | | · | xkdM | 1333 | PBSX prophage | | III.8
amhX | PROTEIN MO
325 amido | ODIFICATION27 shydrolase | IV.2
aadK | 2736 | XIFICATION | xkdN
xkdO | 1334
1334 | PBSX prophage
PBSX prophage | | lgt | 3593 prolipo | oprotein diacylglyceryl transferase (lipopro- | ahpC
ahpF | 4118
4119 | alkyl hydroperoxide reductase (small subunit)
alkyl hydroperoxide reductase (large subunit) / | xkdP
xkdQ | 1338
1339 | PBSX prophage
PBSX prophage | | map | 147 methic | osynthesis)
onine aminopeptidase | | | NADH dehydrogenase | xkdR | 1340 | PBSX prophage | | pcp
ppiB | 287 pyrroli
2435 peptid | idone-carboxylate peptidase
lyl-prolyl isomerase | bmrU | 2493 | multidrug resistance protein cotranscribed with
bmr | xkdS
xkdT | 1340
1341 | PBSX prophage
PBSX prophage | | prkA | 973 serine | protein kinase | cah | 342 | cephalosporin C deacetylase | xkdU | 1342
1343 | PBSX prophage | | tgl
ybdM | 3212 transg
224 proteir | Jlutaminase
n kinase | сурА
сурХ | 3603 | cytochrome P450-like enzyme
cytochrome P450-like enzyme | xkdV
xkdW | 1345 | PBSX prophage
PBSX prophage | | ydiC
ydiD | 642 glycop
643 riboso | protein endopeptidase
pmal-protein-alanine N-acetyltransferase | katA
katB | | vegetative catalase 1 catalase 2 | xkdX
xkdY | 1345
1345 | PBSX prophage
PBSX prophage lytic exoenzyme | | ydiE | 643 glycop | orotein endopeptidase | katX | 3964 | catalase | xtmA | 1325 | PBSX terminase (small subunit) | | yfkJ
yflG | 862 proteir
840 methic | n-tyrosine phosphatase
onine aminopeptidase | ksgA | 51 | dimethyladenosine transferase (kasugamycin resistance) | xtmB
xtrA | 1325
1324 | PBSX terminase (large subunit) PBSX prophage | | yjcK | 1261 riboso | mal-protein-alanine N-acetyltransferase | mmr
padC | 3857
3532 | methylenomycin A resistance protein
ferulate decarboxylase | ycdD
ydcL | 304
530 | L-alanoyl-p-glutamate peptidase integrase | | ykrB
ykvY | 1453 Xaa-Pi | Imethionine deformylase
ro dipeptidase | penP | 2048 | β-lactamase | ydcM | 531 | immunity region protein in prophage | | yloP
yppP | 1651 proteir
2287 peptid | n kinase
le methionine sulfoxide reductase | pksS | 1859 | hydroxylase of the polyketide produced by the pks cluster | yhgE
yjbJ | 1090
1235 | phage infection protein
lytic transglycosylase | | yqeT | 2624 riboso | mal protein L11 methyltransferase | sodA
sodF | 2585 | superoxide dismutase
superoxide dismutase | yjqB
ymaC | 1318
1863 | phage-related replication protein
phage-related protein | |
yqhT
ytel | 2539 Xaa-Pi
3020 protea | ro dipeptidase
ase IV | tetL | 4188 | tetracycline resistance leader peptide | ymaH | 1867 | host factor-1 protein | | ytjP
ytvA | 3068 Xaa-H
3105 proteir | lis dipeptidase
n kinase | thdF
tmrB | 4212
339 | thiophen and furan oxidation tunicamycin resistance | ymfD
ymfE | 1755
1756 | phage-related protein
phage-related protein | | ytxM | 3150 prolyl | aminopeptidase | yaaN | 36 | toxic cation resistance | yndL
yobO | 1914
2075 | phage-related replication protein
phage-related pre-neck appendage protein | | yuiE
ywlE | 3297 leucyl
3791 proteir | aminopeptidase
n-tyrosine-phosphatase | ybbE
ybfO | 190
250 | β-lactamase
erythromycin esterase | yokA | 2284 | DNA recombinase | | yxaL | 4102 serine | threonine protein kinase | ybxl
ycbJ | 229
276 | β-lactamase viomycin phosphotransferase | yokL
yolB | 2274
2272 | phage-related protein
phage-related protein | | III.9 | PROTEIN FO | DLDING8 | ycbR | 283 | toxic cation resistance protein | yomA | 2264 | holin | | dnaK
groEL | 2627 class l | I heat-shock protein (chaperonin) I heat-shock protein (chaperonin) | yceC
yceD | 312
312 | tellurium resistance protein tellurium resistance protein | yomJ
yomP | 2248
2243 | phage-related immunity protein
phage-related protein | | groES | 650 class I | l heat-shock protein (chaperonin) | yceE
yceF | 313
314 | tellurium resistance protein
tellurium resistance protein | yomR
yomS | 2242
2241 | phage-related protein
phage-related lytic exoenzyme | | tig
ykkC | 2887 trigger
1376 chape | r factor (prolyl isomerase)
eronin | yceH | 316 | toxic anion resistance protein | yoqD | 2200 | phage-related DNA-binding protein anti-repressor | | ykkD
yvdR | 1376 chape
3541 chape | eronin | ycsF
ydbD | 457
496 | lactam utilization protein
manganese-containing catalase | yoqZ
yosQ | 2190
2160 | phage-related protein
phage-related endodeoxyribonuclease | | yvdS | 3541 chape | | ydfB | 581
618 | antibiotic resistance protein | yqaB
yqaJ | 2700
2696 | phage-related protein phage-related protein | | <u>IV</u> | | CTIONS 289 | ydhE
yerP | 732 | macrolide glycosyltransferase
acriflavin resistance protein | yqaK | 2695 | phage-related protein | | IV.1 | ADAPTATIOI | N TO ATYPICAL CONDITIONS 72 | yetM
yetO | 790
792 | salicylate 1-monooxygenase
cytochrome P450 / NADPH-cytochrome P450 | yqaM
yqaO | 2694
2692 | phage-related protein
phage-related protein | | bsaA
clpC | 104 class l | nione peroxidase
III stress response-related ATPase (repres- | | | reductase | yqaS | 2690 | phage-related terminase small subunit | | clpE | | competence)
ependent Clp protease-like | yfIM
yfnC | 836
804 | nitric-oxide synthase
fosmidmycin resistance protein | yqaT
yqbA | 2689
2688 | phage-related terminase large subunit
phage-related protein | | clpP | 3545 ATP-d | ependent Clp protease proteolytic subunit | ygaF
yhjG | 943
1122 | thiol-specific antioxidant protein monooxygenase | yqbD
yqbE | 2684
2683 | phage-related protein
phage-related protein | | clpQ | 1688 β-type | III heat-shock protein)
subunit of the 20S proteasome | yisY | 1169 | chloride peroxidase | yqbH | 2682 | phage-related protein | | cĺpX | 2885 ATP-d | ependent Clp protease ATP-binding subunit
III heat-shock protein) | yjiB
yjiC | 1291
1292 | monooxygenase
macrolide glycosyltransferase | yqbl
yqbJ | 2681
2681 | phage-related protein
phage-related protein | | clpY | 1688 ATP-d | ependent Clp protease-like | ykfA
ykkB | 1366 | immunity to bacteriotoxins N-acetyltransferase | yqbK
yqbL | 2680
2679 | phage-related protein
phage-related protein | | csbB
cspB | | response protein
cold-shock protein | ykoY | 1410 | toxic anion resistance protein | yqbM | 2679 | phage-related protein | | cspC
cspD | 559 cold-s | hock protein
hock protein | yndN
yocD | 1916
2088 | fosfomycin resistance protein
immunity to bacteriotoxins | yqbN
yqbO | 2677
2677 | phage-related protein
phage-related protein | | cstA | 2937 carboi | n starvation-induced protein | yojK | 2117 | macrolide glycosyltransferase | yqbP
yqbQ | 2672
2671 | | | ctc
degQ | 59 genera
3256 degrad | al stress protein
dative enzyme production | yojM
yokD | 2281 | superoxide dismutase
aminoglycoside N3*acetyltransferase | yqbR | 2670 | phage-related protein | | degR | 2308 degrad | dative enzyme production | yqcM
yqfP | 2655 | arsenate reductase penicillin tolerance | yqbS
yqbT | 2670
2670 | phage-related protein
phage-related protein | | dnaJ
dps | 2625 heat-s
3136 stress | chock protein (activation of DnaK)
and starvation-induced gene controlled by | yrhJ | 2776 | cytochrome P450 / NADPH-cytochrome P450 | yqcA | 2669 | phage-related protein | | gbsA | σ ^B
3186 glycine | e betaine aldehyde dehydrogenase (osmo- | yrpB | 2736 | reductase 2-nitropropane dioxygenase | yqcC
yqcD | 2668
2667 | phage-related protein
phage-related protein | | | protec | ction) | ytgl
ytnJ | 3017 | thiol peroxidase
nitrilotriacetate monooxygenase | yqcE
yqxG | 2666
2666 | phage-related protein
phage-related lytic exoenzyme | | gbsB
grpE | 2628 heat-s | ol dehydrogenase (osmoprotection)
shock protein (activation of DnaK) | yubB | 3195 | bacitracin resistance protein (undecaprenol | yqxH | | holin | | gsiB
gspA | | al stress protein
al stress protein | yusl | 3366 | kinase)
arsenate reductase | IV.5 | TRAN | NSPOSON AND IS 10 | | hit | 1076 Hit-like | e protein involved in cell-cycle regulation | yvbT
yvdP | 3487 | alkanal monooxygenase reticuline oxidase | ydcP
ydcQ | | transposon protein | | htpG
htrA | 1359 serine | III heat-shock protein (chaperonin)
protease Do (heat-shock protein) | ywcH | 3910 | monooxygenase | ydcR | 535 | transposon protein
transposon protein | | ispU
IonA | 1387 activat | tion of σ ^H
III heat-shock ATP-dependent protease | ywnH
yxel | | phosphinothricin acetyltransferase
penicillin amidase | yddB
yddE | 537
538 | transposon protein
transposon protein | | IonB | 2884 Lon-lik | ke ATP-dependent protease | yxeK | 4061 | monooxygenase
streptothricine acetyl-transferase | yddH
yefB | 544
739 | transposon protein
site-specific recombinase | | mrgA
rsbR | 3383 metallo
519 positiv | oregulation DNA-binding stress protein
ve regulator of σ^B activity (interaction with | yyaR | | | yefC | 739 | resolvase | | | RsbS) | ive regulator of σ^B activity (antagonist of | IV.3
pksB | ANTII | BIOTIC PRODUCTION30 involved in polyketide synthesis | yneB
yocA | | resolvase
transposon-related protein | | rsbS | RsbT) | | pksC | 1783 | involved in polyketide synthesis | | | | | rsbT | proteir | ve regulator of σ ⁸ activity (switch
n/serine kinase [RsbS]) | pksD
pksE | 1785 | involved in polyketide synthesis involved in polyketide synthesis | IV.6
bex | 2610 | ELLANEOUS26 GTP-binding protein | | rsbU | 521 indired | ct positive regulator of σ ^B activity (serine shatase [RsbV~P]) | pksF
pksG | 1788
1789 | involved in polyketide synthesis
involved in polyketide synthesis | csbA
csfB | 3614
36 | putative membrane protein σ ^F -transcribed gene | | rsbV | 522 positiv | ve regulator of σ^B activity (anti-anti-sigma | pksH | 1790 | involved in polyketide synthesis
involved in polyketide synthesis | ctaG | 1564 | function unknown | | rsbW | 522 negati | [RsbW]) ive regulator of σ^B activity (switch | pksl
pksJ | 1791
1792 | involved in polyketide synthesis | eag
ecsC_ | 1430
1079 | small membrane protein function unknown | | | proteir
[σ ^B]) | n/serine kinase [RsbV], anti-sigma factor | pksK
pksL | 1794 | polyketide synthase
polyketide synthase | mmgE
nifZ | 2509
3027 | function unknown
NifS protein homologue | | rsbX | 523 indired | ct negative regulator of σ^B activity (serine | pksM | 1821 | polyketide synthase
polyketide synthase
polyketide synthase | sapB | 726 | mutant activates alkaline phosphatase during | | ycdH | 308 adhes | ohatase [RsbS~P])
sion protein | pksN
pksP | 1835 | polyketide synthase | sbp | 1595 | sporulation independently of σ^E and σ^E small basic protein | | ydaG
yfiQ | 473 genera | al stress protein
ce adhesion | pksR
ppsA | 1850
1997 | polyketide synthase
peptide synthetase | veg
yacl | 53
102 | function unknown creatine kinase | | ykrL | 1414 heat-s | shock protein | ppsB | 1990 | peptide synthetase | ybaL | 157 | ATP-binding Mrp-like protein | | ykzA
yloA | 1381 genera
1637 fibrone | al stress protein
ectin-binding protein | ppsC
ppsD | 1974 | peptide synthetase
peptide synthetase | ycbU
yerN | 287
730 | NifS protein homologue
pet112-like protein | | yloU | 1655 alkalin | ne-shock protein | ppsE
sbo | 1963 | peptide synthetase
subtilosin A | yhdP
yhdT | 1033
1035 | hemolysin
hemolysin | | ynbA
ynzF | 1880 δ-endo | | sfp | 408 | surfactin production | yheG | 1049 | calcium-binding protein | | yocK
yocM | 2097 genera
2098 small h | al stress protein
heat-shock protein | srfAA
srfAB | 377
387 | surfactin synthetase / competence
surfactin synthetase / competence | ypIQ
yqxC | 2295
2523 | hemolysin-like | | yodU | 2151 capsu | ılar polysaccharide biosynthesis | srfAC
srfAD | 398
402 | surfactin synthetase / competence
surfactin synthetase / competence | yrkA
yrvO | 2720
2811 | hemolýsin-like
NifS protein homologue | | yokG
ypqP | 2279 δ-endo
2286 capsu | lar polysaccharide biosynthesis | sunA | | sublancin 168 lantibiotic antimicrobial precursor | yuaG | 3181 | epidermal surface antigen | | ytxG
ytxH | 3047 genera | al stress protein
al stress protein | yomB | 2264 |
peptide
bacteriocin | yurV
yurW | 3357
3358 | NifU protein homologue
NifS protein homologue | | ytxJ | 3046 genera | al stress protein | yukL | 3282 | antibiotic synthetase | yutl | | NifU protein homologue | | yveK
yveL | 3528 capsu | llar polysaccharide biosynthesis
llar polysaccharide biosynthesis | yukM | | antibiotic synthetase | V | SIMIL | AR TO UNKNOWN PROTEINS 668 | | yveM
yveN | 3527 capsu | ılar polysaccharide biosynthesis
ılar polysaccharide biosynthesis | IV.4
codV | PHAG
1687 | GE-RELATED FUNCTIONS83 integrase/recombinase | V.1 | FROM | M B. SUBTILIS177 | | yveO | 3524 exopo | lysaccharide biosynthesis | ripX | 2449 | integrase/recombinase | | | ## OTHER ORGANISMS | | yveP
yveQ | 3522 capsu | llar polysaccharide biosynthesis
llar polysaccharide biosynthesis | xhlA
xhlB | | involved in cell lysis upon induction of PBSX
hydrolysis of 5-bromo 4-chloroindolyl phosphate | V.2 | | | | yveR
yveT | 3521 spore | coat polysaccharide biosynthesis | xkdA | | upon induction of PBSX (holin)
PBSX prophage | VI | NO S | IMILARITY 1,053 | | yvfC | | llar polysaccharide biosynthesis | xkdB | 1321 | PBSX prophage Vature © Macmillan Publishers Ltd 1997 | | | | | | | | | r | valure & Macilillari Publishers Ltd 1997 | | | | | | | | | | | | | |