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Abstract

The aim of this work is the development of a robust and accurate time integrator for
the simulation of the dynamics of multibody systems composed by rigid and/or flexible
bodies subject to frictionless contacts and impacts. The integrator is built upon a previ-
ously developed nonsmooth generalized-α scheme time integrator which was able to deal
well with nonsmooth dynamical problems avoiding any constraint drift phenomena and
capturing vibration effects without introducing too much numerical dissipation. However,
when dealing with problems involving nonlinear bilateral constraints and/or flexible el-
ements, it is necessary to adopt small time step sizes to ensure the convergence of the
numerical scheme. In order to tackle these problems more efficiently, a fully decoupled
version of the nonsmooth generalized-α method is proposed in this work, avoiding these
inconveniences. Several examples are considered to assess its accuracy and robustness.

Keywords: nonsmooth contact dynamics, flexible multibody system, generalized-αmethod,
time-stepping schemes

1 Introduction

The aim of this work is the development of methods for the numerical simulation of the non-
smooth dynamics of multibody systems involving rigid and/or flexible elements which can be
subject to frictionless contacts and impacts. These systems are characterized by bilateral con-
straints which are associated to kinematic joints interconnecting the bodies, and by unilateral
constraints stemming from the frictionless contacts and impacts. An additional difficulty comes
from the presence of flexible elements, with vibration effects that need to be efficiently captured
by the numerical scheme.

For the robust and accurate simulation of such systems, special attention must be paid to
the adopted time integration scheme as it not only has to deal successfully with the nonsmooth
character of the problem but also with the vibration effects. Time integrators for nonsmooth
dynamics can be classified in two main groups: event-driven and time-stepping integrators.
The former are based on the exact detection of impacts by accordingly adapting the time step
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size. However, they become inefficient in situations involving a large number of impact events.
A different strategy is adopted in this work, which falls under the category of time-stepping
integrators. These techniques share the common feature that the time step size does not need
to be adapted to impact events. The most widespread time-stepping integrators for nonsmooth
dynamical systems are the Schatzman–Paoli scheme [1, 2], which is based on a central difference
scheme, and the Moreau–Jean scheme [3, 4, 5], which is based on a θ-method. Despite their
robustness for dealing with problems involving a large number of impacts, they generally lead
to poor approximations of vibration phenomena. Additionally, in the Moreau–Jean scheme,
the constraints are only imposed at velocity level which leads to the violation of the constraints
at position level and, in consequence, a drift phenomenon is observed [6].

These problems have been studied in the literature of nonsmooth dynamics, mainly dealing
with the use of higher order integrators for the smooth or free-flight part of the motion [6, 7, 8,
9, 10], and with the simultaneous imposition of the constraints at position and at velocity levels
[11, 12, 6]. The imposition of the constraints at acceleration level was also analyzed recently
by Brüls et al. [10]. The current work takes as starting point the nonsmooth generalized-α
(NSGA) introduced by Brüls et al. in [6] and proposes a modification to improve its robustness
for problems with nonlinear bilateral constraints and/or flexible components.

The NSGA deals with the transient simulation of nonsmooth dynamical systems comprised
of rigid and/or flexible bodies, kinematic joints and frictionless contacts. It is characterized by
the splitting of the involved fields into a smooth and a (nonsmooth) impulsive contribution,
where the former is integrated with second order accuracy by means of the generalized-α scheme
and the latter with first-order accuracy. Also, the involved unilateral and bilateral constraints
are exactly satisfied both at position and at velocity levels. This results in a numerical scheme
which involves three coupled subsets of equations or sub-problems to be solved at each time
step: one for the smooth prediction of the motion, and two others for correcting that prediction
at position and at velocity levels with the nonsmooth contributions. The existing coupling
stems from the adopted splitting in which the smooth sub-problem depends on the position
correction and on the velocity jump. Therefore, if a semi-smooth Newton approach is used
to solve the derived formulation without making any additional assumption, at each nonlinear
iteration the method would have to deal monolithically with the complete set of unknowns. In
order to avoid this issue, Brüls et al. [6] proposed to neglect the terms coupling the smooth
sub-problem with the other ones from the tangent matrix. The advantage of this procedure is
that the algorithm can be described as a sequence of three sub-problems, instead of having to
solve the complete set of equations monolithically. This approximation is fully justified when
the adopted step size tends to zero. However, for problems with flexible bodies and nonlinear
bilateral constraints, this approximation led to a slow convergence of the global scheme, or even
to the divergence of the scheme if a small enough step size was not adopted. In order to overcome
this difficulty, the current work proposes to modify the way to do the splitting in order to ensure
a full decoupling of the different subsets of equations, so that the three sub-problems can be
processed in a sequential decoupled manner without any approximation. Here, the adjective
decoupled is used because the resulting numerical scheme involves the sequential solution of
three sub-problems without neglecting any term in the discrete problem. This implies that the
proposed decoupled scheme results in a robust alternative especially for problems characterized
by nonlinear bilateral constraints and flexible elements. In this work, only frictionless problems
are considered, but the procedure can be easily extended to friction problems as well.

The paper is organized as follows. In Section 2, the nonsmooth equations of motion are
stated. Several alternatives that can be found in the literature for the splitting of the smooth
and nonsmooth components of the motion are addressed in Section 3 in order to subsequently
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introduce a splitting which leads to a decoupled formulation of the integrator. Next, the
numerical performance of the proposed method is studied in Section 4. The conclusions and
future work are given in Section 5.

2 Equations of motion

After spatial semi-discretization, the equations of motion for a frictionless multibody system
with unilateral and bilateral constraints expressed at velocity level are written in the following
form:

q̇+ = v+ (1a)

M(q) dv − gTq di = f(q,v, t) dt (1b)

−gUq v+ = 0 (1c)

if gj(q) ≤ 0 then 0 ≤ gjq v
+ + ej gjq v

− ⊥ dij ≥ 0, ∀ j ∈ U (1d)

where

• t is time, and dt is the corresponding standard Lebesgue measure.

• q(t) is the vector of coordinates, which are absolutely continuous in time.

• U denotes the set of indices of the unilateral constraints, U is its complementarity set,
i.e., the set of bilateral constraints, C = U ∪ U is the full set of constraints.

• g is the combined set of bilateral and unilateral constraints, and gq(q) is the corresponding
matrix of constraint gradients.

• q̇+(t) = limτ→t,τ>t q̇(τ) and v+(t) = limτ→t,τ>t v(τ) are the right limits of the velocity,
which are functions of bounded variations. Similarly, v−(t) = limτ→t,τ<t v(τ) is the left
limit of the velocity. It is assumed, without loss of generality, that v+ and v− are related
at an impact event by the Newton impact law gjqv

+(t) = −ej gjqv−(t), where ej is the
coefficient of restitution at the contact point j ∈ U . In what follows, for simplicity v(t)
and q̇(t) will be used to denote v+(t) and q̇+(t), respectively.

• f(q,v, t) = f ext(t)−f cin(q,v)−f damp(q,v)−f int(q) collects the external, complementary
inertia, damping and internal forces.

• M (q) is the mass matrix which may, in general, depend on the coordinates.

• dv is the differential measure associated with the velocity v assumed to be of bounded
variations.

• di is the impulse measure of the unilateral contact reaction and the bilateral constraint
forces.

• The measures dv and di have the following decomposition:

dv = v̇ dt+
∑
i

(v(ti)− v−(ti)) δti (2)

di = λ dt+
∑
i

pi δti (3)
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where λ is the vector of smooth Lagrange multipliers associated with the Lebesgue mea-
surable constraint forces, δti the Dirac delta supported at ti, and pi is the impulse pro-
ducing the jump at the instant ti.

3 Decoupled version of the NSGA method

The original NSGA method proposed by Brüls et al. [6] is characterized by three coupled sub-
problems: one for the smooth part of motion, and two others for the nonsmooth contributions
at position and velocity levels. In order to avoid solving the three systems of equations mono-
lithically, the terms coupling the smooth prediction to the corrections at position and at velocity
levels are neglected. However, as it will be shown in the numerical examples, this can have
serious consequences on the convergence of the method.

The derivation of the time integration scheme to be proposed here follows the same key
steps as described in [6]. However, two differences should be highlighted. Firstly, the splitting
is modified in order to ensure a full decoupling of the different subsets of equations. Secondly, the
equations are formulated using an augmented Lagrangian approach which combines Lagrange
multiplier and penalty terms. The advantage of using an augmented Lagrangian method is the
presence of a penalty term which adds convexity to the objective function and improves the
convergence of the Newton iteration far from the solution. This factor does not influence the
accuracy of the computed solution [13].

3.1 Splitting strategy

The splitting of the variables aims at isolating the impulsive terms from the smooth contribu-
tions to the motion. Let us consider a time interval (tn, tn+1], and let ˙̃v(t) be a function of
bounded variations, which can be defined in several different ways as it will be discussed below.
Then, the nonsmooth impulsive contribution to the motion dw can be defined by decomposing
the measure of the velocity dv as

dv = dw + ˙̃v dt (4)

where ˙̃v dt is a purely diffuse measure. The smooth contribution to the velocity field, denoted
by ṽ(t), is computed by integration of ˙̃v(t) with the initial values ṽ(tn) = v(tn). On the other
hand, the smooth contribution to the position, denoted as q̃(t), is computed by integration of
˙̃q(t) = ṽ(t) with the initial values q̃(tn) = q(tn). By construction, the variables ṽ(t) and q̃(t)
are, respectively, absolutely continuous and C1 in time and, in this sense, they only capture a
smooth part of the motion.

The smooth part of the trajectory is obtained from the time integration of the acceleration
variable ˙̃v by a second order method, whereas dw is integrated using a first-order Euler implicit
scheme. Hence, it is recommended to capture as much information as possible in ˙̃v to gain
accuracy. Several alternatives exist for defining the smooth part of motion in the splitting, as
described next.

• The optimal choice would be to take ˙̃v , v̇, so that ˙̃v captures all diffuse contributions in
the equation of motion. This alternative was investigated in [10] based on a formulation of
the constraints at acceleration level, bringing certain advantages such as the elimination
of spurious oscillations of the constraints after impact events.

• Some simplifications can be proposed to avoid the need of using acceleration constraints
and to eliminate the Linear Complementarity Problem (LCP) in the definition of ˙̃v.
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For instance, Chen et al. [7] defined ˙̃v to satisfy the equations of motion at almost any
time t (when there is no impact) without accounting for the bilateral and the unilateral
constraints and associated forces.

• A third alternative is proposed in [6], in which a compromise between the option of taking
˙̃v , v̇ and that of Chen et al. [7] is made by defining an initial value problem for the
smooth contributions in which the bilateral constraints and forces are considered. In this
case, the smooth contributions to the position q̃(t), the velocity ṽ(t), the acceleration
˙̃v(t) and the Lagrange multiplier λ̃(t) satisfy

˙̃q = ṽ (5a)

M(q) ˙̃v − gTq λ̃ = f(q,v, t) (5b)

−gUq (q) ṽ = 0 (5c)

λ̃U = 0 (5d)

with the initial values ṽ(tn) = v(tn) and q̃(tn) = q(tn). It is remarked that only bilat-
eral constraints at velocity level are taken into account in this formulation and that the
Lagrange multipliers of the unilateral constraints are set to zero.

• A fourth alternative could be obtained by setting the smooth acceleration variable ˙̃v to
zero so that all the dynamics would be integrated using the Euler implicit method (with
a loss of accuracy with respect to the other options).

• The first three alternatives for the definition of ˙̃v have the disadvantage that the resulting
equations depend on the total position and velocity, that is, they depend not only on
the smooth components of the position and the velocity, but also on the nonsmooth
(impulsive) components. Therefore, these formulations are characterized by a smooth sub-
problem which is coupled with the set of equations defining the nonsmooth contributions.
In order to avoid this coupling, we propose to define the smooth sub-problem as the
solution of the following initial value problem:

˙̃q = ṽ (6a)

M (q̃) ˙̃v − gTq̃ λ̃ = f(q̃, ṽ, t) (6b)

−gUq̃ (q̃) ṽ = 0 (6c)

λ̃U = 0 (6d)

with the initial values ṽ(tn) = v(tn) and q̃(tn) = q(tn), and where the matrix of constraint
gradients gq̃(q̃) is computed in terms of q̃ only. It should be observed that this fifth
definition of ˙̃v only depends on the smooth contributions to the motion, q̃ and ṽ, a
property that naturally leads to a sequence of decoupled sub-problems.

An elimination of dv and ˙̃v from Eqs. (1b,4,6b) yields the equations for the nonsmooth
contributions

M (q) dw − gTq [di− λ̃ dt] = f ∗(q,v, q̃, ṽ, ˙̃v, t) dt (7)

together with the set of bilateral and unilateral constraints Eqs. (1c-1d), and where

f ∗(q,v, q̃, ṽ, ˙̃v, t) = f(q,v, t)− f(q̃, ṽ, t) + (gTq − gTq̃ )λ̃− (M (q)−M (q̃)) ˙̃v (8)
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3.2 Constraints at position and velocity levels

The constraints in the derived set of equations are imposed at velocity level only. Moreau’s
viability Lemma [14] implies that the exact solution of these equations also satisfies the con-
straints at position level. However, the numerical solution will not satisfy them at position level
because of a drift phenomenon. Therefore, the equations of motion are reformulated as in [6]
such that the unilateral and bilateral constraints appear both at position and velocity levels.
This procedure is inspired by the index-reduction proposed by Gear, Gupta and Leimkuhler
for bilaterally constrained mechanical systems [15]. By introducing an additional Lagrange
multiplier µ, the velocity equation (1a) is relaxed:

M (q)q̇ = M(q)v + gTq µ

and by adding the constraints on position, the set of equations to be solved becomes

M(q̃) ˙̃v − gU ,Tq̃ λ̃U = f(q̃, ṽ, t) (9a)

−gUq̃ ṽ = 0 (9b)

λ̃U = 0 (9c)

dv = dw + ˙̃v dt (9d)

M (q) q̇ − gTq µ = M (q)v (9e)

−gU(q) = 0 (9f)

0 ≤ gU(q) ⊥ µ ≥ 0 (9g)

M (q) dw − gTq [di− λ̃ dt] = f ∗(q,v, q̃, ṽ, ˙̃v, t) dt (9h)

−gUq v = 0 (9i)

if gj(q) ≤ 0 then 0 ≤ gjq v + ej gjq v
− ⊥ dij ≥ 0, ∀j ∈ U (9j)

3.3 Time stepping scheme

3.3.1 Velocity jump and position correction variables

Time integration of the velocity measure dv, Eq. (4), over the time interval (tn, t] gives

v(t) =

∫
(tn,t]

dw + ṽ(t) = W (tn; t) + ṽ(t) (10)

with the definition W (tn; t) =
∫

(tn,t]
dw and where the properties v(tn) = ṽ(tn) and q(tn) =

q̃(tn) were used. By construction, the nonsmooth variable W (tn; t) captures all velocity jumps
taking place in the interval (tn, t].

In order to obtain a similar decomposition of the position variable, it is first recalled that
v(t) and q̇(t) are not formally equivalent, where the variable q̇(t) is related to the position
variable q(t) by the relation ∫

(tn,t]

q̇(τ)dτ = q(t)− q(tn) (11)

Time integration of the smooth component ṽ(t) gives∫
(tn,t]

ṽ(τ)dτ = q̃(t)− q(tn) (12)
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where the property q̃(tn) = q(tn) was used. Subtracting Eq. (12) from Eq. (11) results in

q(t) =

∫
(tn,t]

[q̇(τ)− ṽ(τ)]dτ + q̃(t) = U(tn; t) + q̃(t) (13)

with the definition of the position correction U(tn; t) =
∫

(tn,t]
[q̇(τ)− ṽ(τ)]dτ . Considering that

q(t) is absolutely continuous and that q̃(t) is C1, Eq. (13) implies that U(tn; t) is absolutely
continuous on the interval (tn, tn+1].

In summary, we have the following expressions for the splitting of the total velocity and
position

v(t) = ṽ(t) +W (tn; t) (14a)

q(t) = q̃(t) +U (tn; t) (14b)

where the nonsmooth contributions W (tn; t) and U(tn; t) are defined by

W (tn; t) =

∫
(tn,t]

dw (15a)

U(tn; t) =

∫
(tn,t]

[q̇(τ)− ṽ(τ)]dτ (15b)

where, by construction, W (tn; tn) = 0 and U(tn; tn) = 0. In what follows, the multipliers
Λ(tn; t) and ν(tn; t) are taken as

Λ(tn; t) =

∫
(tn,t]

[di− λ̃(τ) dτ ], (16a)

ν(tn; t) =

∫
(tn,t]

[µ(τ) +Λ(tn; τ)] dτ, (16b)

with Λ(tn; tn) = ν(tn; tn) = 0.

3.3.2 Discrete approximations of W and U

The discrete approximations of the involved variables are now introduced. The time instant at
which a discretized variable is evaluated will be indicated with a subscript, e.g., gn+1 represents
the approximation of g(tn+1). Also the discrete approximation ofW (tn; tn+1) (resp. U(tn; tn+1),
Λ(tn; tn+1) or ν(tn; tn+1)) will be denoted as Wn+1 (resp., Un+1, Λn+1 or νn+1).

Firstly, a discrete expression for Eq. (9h) is obtained by time integration∫
(tn,tn+1]

M (q) dw −
∫

(tn,tn+1]

gTq [di− λ̃ dt] =

∫
(tn,tn+1]

f ∗(q,v, q̃, ṽ, ˙̃v, t) dt (17)

The three terms involved in the above expression can be interpreted as nonsmooth contributions,
in the sense that each of them represents a difference between the actual motion and the
smooth motion. Indeed, dw is the difference between dv and ˙̃v dt and the expression of f ∗

in (8) involves the difference between three operators (f , gq and M ) evaluated for the actual
motion and for the smooth motion. According to the NSGA method, the integration of these
nonsmooth contributions is based on first-order approximations M(q(τ)) = M (q(t)) + O(h)
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and gTq (q(τ)) = gTq (q(t)) +O(h), ∀τ ∈ (tn, tn+1] and an Euler implicit discretization∫
(tn,tn+1]

M (q(t)) dw 'M (qn+1)

∫
(tn,tn+1]

dw 'M(qn+1) Wn+1 (18)∫
(tn,tn+1]

gTq (q(t)) [di− λ̃ dt] ' gTq,n+1

∫
(tn,tn+1]

[di− λ̃ dt] ' gTq,n+1 Λn+1 (19)∫
(tn,tn+1]

f ∗(q(t),v(t), q̃(t), ṽ(t), ˙̃v(t), t) dt ' hf ∗n+1 (20)

This leads to the discrete equation

M (qn+1) Wn+1 − gTq,n+1 Λn+1 − hf ∗n+1 = 0 (21)

Secondly, a discrete expression for Eq. (9e) is obtained by time integration∫
(tn,tn+1]

M (q) q̇ dt−
∫

(tn,tn+1]

gTq µ dt =

∫
(tn,tn+1]

M (q)v dt (22)

Then, Eq. (14a) is used together with the approximation

M (q(t)) W (tn; t) ' gTq (q(t)) Λ(tn; t) + hf ∗(q(t),v(t), q̃(t), ṽ(t), ˙̃v(t), t) (23)

which can be derived in a similar way as Eq. (21). We obtain∫
(tn,tn+1]

M (q) (q̇ − ṽ) dt−
∫

(tn,tn+1]

gTq (Λ(tn; t) + µ(t)) dt

= h

∫
(tn,tn+1]

f ∗(q,v, q̃, ṽ, ˙̃v, t) dt

(24)

Again, the three terms involved in the above equality are interpreted as nonsmooth contributions
and are thus integrated based on first-order approximations and an Euler implicit discretization∫

(tn,tn+1]

M(q) (q̇ − ṽ) dt 'M (qn+1)

∫
(tn,tn+1]

(q̇ − ṽ) dt

'M (qn+1)Un+1

(25)

∫
(tn,tn+1]

gTq (Λ(tn; t) + µ(t)) dt ' gTq,n+1

∫
(tn,tn+1]

(Λ(tn; t) + µ(t)) dt

' gTq,n+1νn+1

(26)

and Eq. (20). This leads to the discrete equation

M (qn+1)Un+1 − gTq,n+1νn+1 − h2f ∗n+1 = 0 (27)

We will see later that this equation shall be used to compute the position correction Un+1,
after the evaluation of the smooth motion q̃n+1, ṽn+1, ˙̃vn+1 but before the evaluation of the
velocity jump Wn+1 and of the total velocity vn+1. The dependency of the operator f ∗ on
the velocity then leads to a coupling between the equation for the position correction and the
equation for the velocity jump. The mass matrix depends continuously on the configuration q.
Since q = q̃ +U and U is O(h), then M(q) = M(q̃) +O(h). Therefore, a simplified version
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of Eq. (27) is considered to avoid the coupling between the position and velocity variables and
to eliminate the dependency of the mass matrix on U

M (q̃n+1)Un+1 − gTq,n+1νn+1 − h2f pn+1 = 0 (28)

with
f pn+1 = f(qn+1, ṽn+1, tn+1)− f(q̃n+1, ṽn+1, tn+1) + (gTq,n+1 − gTq̃,n+1)λ̃n+1 (29)

In summary, we get the following discrete equations

M(qn+1) Wn+1 − gTq,n+1 Λn+1 − hf ∗n+1 = 0 (30a)

M (q̃n+1)Un+1 − gTq,n+1νn+1 − h2f pn+1 = 0 (30b)

Let us remark that, if impacts occur and h → 0, W (tn; tn+1) = O(1) and Λ(tn; tn+1) = O(1)
since the velocity may exhibit finite jumps, whereas U (tn; tn+1) = O(h) and ν(tn; tn+1) = O(h)
since the position remain continuous. The position corrections eliminate the introduced drift,
because the exact instant at which impacts develop is not known, and the velocity jumps are
approximated over the time step.

It should be observed that Eqs. (30) can be further simplified by neglecting the terms which
are multiplied by h and h2, getting the following results:

M (qn+1) Wn+1 − gTq,n+1 Λn+1 = 0 (31a)

M (q̃n+1) Un+1 − gTq,n+1 νn+1 = 0 (31b)

By adopting this simplification, the order of the resulting integration algorithm would still be
O(h). However, for some problems it is necessary to use very small stepsizes for obtaining the
accuracy of an integrator based on Eqs. (30) as it will be shown in the numerical examples. It
can be argued that the force term f is very sensitive to the position correction U for problems
involving nonlinear flexible components, and it should be well represented to avoid needing
small stepsizes. Therefore, the complete version of the jump equations in Eqs. (30) is retained.

The discrete complementarity conditions at velocity and at position levels are the same as
those introduced in [6]:

if gj(qn+1) ≤ 0 then 0 ≤ gjq,n+1 vn+1 + ej gjq,n vn ⊥ Λjn+1 ≥ 0, ∀j ∈ U (32a)

0 ≤ gU(qn+1) ⊥ νUn+1 ≥ 0 (32b)

The complete time integration scheme is obtained by combining this first-order approx-
imation of the nonsmooth variables and equations, with a one-step and second-order time
integration scheme for the smooth variables. The generalized-α method is used for the smooth
part, although other DAE time integration schemes could also be considered. This hybrid time
integration scheme is formulated to advance the solution at each step as follows.

3.3.3 Computation of the smooth motion

As previously proposed in Eqs. (9a–9c), the smooth motion is defined by a modified form of
the equations of motion at time step n+ 1 where the contributions of the unilateral constraints
and associated reaction forces are ignored, i.e.,

M(q̃n+1) ˙̃vn+1 − f(q̃n+1, ṽn+1, tn+1)− gU ,Tq̃,n+1

(
ksλ̃

U
n+1 − psgUq̃,n+1 ṽn+1

)
= 0

−ksgUq̃,n+1 ṽn+1 = 0
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where the Lagrange multiplier λ̃U has been augmented with a penalty parameter ps ≥ 0 in
order to add convexity to the objective function [13], and where ks > 0 is a scaling factor for
the Lagrange multiplier. The scaling factor ks contributes to an improvement of the condition
number of the iteration matrix yielding a better convergence rate.

These equations are completed with the difference equations:

q̃n+1 = qn + hvn + h2(0.5− β)an + h2βan+1 (34a)

ṽn+1 = vn + h(1− γ)an + hγan+1 (34b)

(1− αm)an+1 + αman = (1− αf ) ˙̃vn+1 + αf ˙̃vn (34c)

where an+1 is a pseudo acceleration term that arises in the generalized-α integrator scheme [16].
The numerical coefficients γ, β, αm, and αf can be chosen to achieve a desired level of high-
frequency dissipation, represented by spectral radius at infinity ρ∞ ∈ [0, 1], while minimizing
unwanted low-frequency dissipation [17]:

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, γ = 0.5 + αf − αm, β = 0.25(γ + 0.5)2 (35)

Equations (33-34) only involve the smooth position q̃n+1 and velocity ṽn+1 and are thus
decoupled from the variables Wn+1, Un+1, qn+1, and vn+1. Therefore, these five equations

can be solved for the five variables q̃n+1, ṽn+1, λ̃Un+1, ˙̃vn+1 and an+1 using a Newton-Raphson
algorithm without any information about the other variables.

3.3.4 Computation of the position correction

After the computation of the smooth motion, the position correction Un+1 is computed in
order to obtain a position qn+1 which satisfies the bilateral constraints gU(qn+1) = 0 and the
non-penetration constraints gU(qn+1) ≥ 0. Using Eq. (30b) and the discrete complementarity
condition (32b), this problem writes

M(q̃n+1)Un+1 − h2f pn+1 − gTq,n+1 νn+1 = 0

−gU(qn+1) = 0

0 ≤ gU(qn+1) ⊥ νUn+1 ≥ 0

An augmented Lagrangian approach as presented by Alart and Curnier [18] is adopted to
solve this LCP. Accordingly, the augmented Lagrangian for the set of bilateral and unilateral
constraints C of the sub-problem at position level is given by

LCp(Un+1,νn+1) =
∑
j∈U

[
−kpνjn+1g

j
n+1 +

pp
2
gjn+1g

j
n+1 −

1

2pp
dist2(ξjn+1,R+)

]
+
∑
i∈U

[
−kpνin+1g

i
n+1 +

pp
2
gin+1g

i
n+1

]
where ξn+1 = kpνn+1 − ppgn+1 is the augmented Lagrange multiplier at position level with
kp > 0 a scaling factor and pp > 0 a penalty coefficient, and where the distance of a point
z ∈ Rn to the convex set C is defined as dist(z, C) = ||z − prox(z, C)|| with prox(z, C) =
argminz∗∈C

1
2
||z − z∗||2. The adoption of this augmented Lagrangian results in the following
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set of equations for the sub-problem at position level:

M (q̃n+1)Un+1 − h2f pn+1 − gA,Tq,n+1 ξ
A
n+1 = 0 (37a)

−kpgAn+1 = 0 (37b)

−k
2
p

pp
νAn+1 = 0 (37c)

where the active set A ≡ An+1 and its complement A ≡ An+1 are given by

An+1 = U ∪
{
j ∈ U : ξjn+1 ≥ 0

}
, (38a)

An+1 = C \ An+1 (38b)

The terms associated to the constraints were obtained from the stationary condition δLCp = 0.
The resulting set of equations can be solved in terms of the unknown variables Un+1, qn+1 and
νn+1 using a Newton semi-smooth method.

3.3.5 Computation of the velocity jump

After the computation of the position field, the velocity jump Wn+1 is computed such that the
velocity vn+1 satisfies the bilateral constraints gUq vn+1 = 0 and the impact law gjq,n+1vn+1 +

ejNg
j
q,nvn ≥ 0 for all unilateral constraints j ∈ U that are active at position level, i.e., that satisfy

ξjn+1 ≥ 0. Using Eq. (30a) and the discrete complementarity condition (32a), the equations for
this problem are given by

M (qn+1)Wn+1 − hf ∗n+1 − gTq,n+1Λn+1 = 0

−gUq,n+1vn+1 = 0

if gj(qn+1) ≤ 0 then 0 ≤ gjq,n+1 vn+1 + ej gjq,n vn ⊥ Λjn+1 ≥ 0,

∀j ∈ U

In order to solve this LCP problem, we proceed in a similar manner as we did for the sub-
problem at position level. However, the activation of a given unilateral constraint j ∈ U at
velocity level depends on the activation condition gj(qn+1) ≤ 0, see Eq. (39a). This condition is
equivalent to ξjn+1 ≥ 0, which is more robust from the algorithmic point of view, and therefore
adopted in this work. The augmented Lagrange multiplier at velocity level is defined by

σn+1 = kvΛn+1 − pvg◦n+1 (40)

where pv > 0 is the penalty parameter, kv > 0 is the scaling factor for the Lagrange multiplier
Λ, and g

◦
n+1 is a notation for the impact law

g
◦j
n+1 = gjq,n+1vn+1 + ejgjq,nvn (41)

which applies to every j ∈ C. The coefficients associated to bilateral constraints are trivially
defined as ej = 0 ∀ j ∈ U . Then, the augmented Lagrangian for this case is given by

LCv(Wn+1,Λn+1) =
∑
j∈U

[
−kvΛjn+1g

◦j
n+1 +

pv
2
g
◦j
n+1g
◦j
n+1 −

1

2pv
dist2(σjn+1,R+)

]
+
∑
i∈U

[
−kvΛin+1g

◦i
n+1 +

pv
2
g
◦i
n+1g
◦i
n+1

]
11



This results in the following set of equations for the problem at velocity level:

M (qn+1)Wn+1 − hf ∗n+1 − gB,Tq,n+1 σ
B
n+1 = 0 (42a)

−kvg◦Bn+1 = 0 (42b)

−k
2
v

pv
ΛBn+1 = 0 (42c)

where the active set B ≡ Bn+1 and its complement B ≡ Bn+1 are given by

Bn+1 = U ∪ {j ∈ An+1 : σjn+1 ≥ 0} (43a)

Bn+1 = C \ Bn+1 (43b)

The terms associated to the constraints were obtained from the stationary condition δLCv = 0.
The resulting set of equations can be solved in terms of the unknown variables Wn+1, vn+1 and
Λn+1 using a Newton semi-smooth method.

3.3.6 Global numerical procedure

The three sub-problems (33, 37, 42) need to be solved at each time step, one for the smooth
motion, another for the position correction, and, lastly, one for the velocity jump. These
are computations which can generally be organized in a sequential manner. In [6] and [10],
the sub-problem defining the smooth variables involve the total position qn+1 and velocity
vn+1 fields. As a consequence, some global iterations over the three sub-problems have to be
implemented, which tend to penalize the numerical cost of the procedure. In contrast, the
sub-problem defining the smooth motion is strictly independent of the position correction and
velocity jump, and the problem at position level is independent of the velocity jump. In this
way, the three sub-problems can be solved in a purely decoupled sequential manner.

Each sub-problem can be solved using a semi-smooth Newton method. The correction
terms should satisfy the integration formulae, therefore, the corrections ∆ ˙̃vn+1 and ∆qn can be
eliminated in terms of ∆ṽn+1, ∆Wn+1 and ∆Un+1:

∆vn+1 = ∆ṽn+1 +∆Wn+1 (44a)

∆ ˙̃vn+1 = (1− αm)/((1− αf )γh)∆ṽn+1 (44b)

∆qn+1 = hβ/γ ∆ṽn+1 +∆Un+1 (44c)

Then, the vectors of independent corrections are given by

∆xs =

{
∆ṽn+1

∆λ̃
U
n+1

}
, ∆xp =


∆Un+1

∆νAn+1

∆νAn+1

 , ∆xv =


∆Wn+1

∆ΛBn+1

∆ΛBn+1

 (45)

and the correction equations for each sub-problem are obtained as

Sit ∆x
i = −ri, for i = s, p, v (46)

where rs, rp and rv have been used to denote the residuals of Eqs. (33), (37) and (42), respec-
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tively, and where the iteration matrices are given by

Sst =

[
Ss

∗
t −ksgU ,Tq̃,n+1

−ks
(
gUq̃,n+1 + hβ

γ
Gs
)

0

]
(47)

Spt =

 Sp
∗

t −kpgA,Tq,n+1 0
−kpgAq,n+1 0 0

0 0 −k2p
pp
IA

 (48)

Svt =

 Sv
∗
t −kvgB,Tq,n+1 0

−kvgBq,n+1 0 0

0 0 −k2v
pv
IB

 (49)

where IA and IB are identity matrices and

Ss
∗

t =
1− αm

h(1− αf )γ
M (q̃n+1) +Ct +

hβ

γ
Ks

t ,

Ks
t =

∂
(
M (q̃n+1) ˙̃vn+1 − gU ,Tq̃,n+1 (ksλ̃

U
n+1 − ps gUq̃,n+1 ṽn+1) − f(q̃n+1, ṽn+1, tn+1)

)
∂q̃n+1

,

Ct = psg
U ,T
q̃,n+1g

U
q̃,n+1 −

∂f(q̃n+1, ṽn+1, tn+1)

∂ṽn+1

, Gs =
∂(gq̃,n+1ṽn+1)

∂q̃n+1

,

Sp
∗

t = M (q̃n+1)−
∂
(
gA,Tq,n+1ξ

A
n+1

)
∂qn+1

− h2∂f
p(qn+1, q̃n+1, ṽn+1, tn+1)

∂qn+1

,

Sv
∗

t = M (qn+1) + pvg
B,T
q,n+1g

B
q,n+1 − h

∂f(qn+1,vn+1, tn+1)

∂vn+1

(50)

As mentioned before, the solution does not depend on the value of parameters ks, kp, kv, ps, pp
and pv. Nevertheless, the matrix conditioning and convergence rate do depend on their values,
and therefore they are determined as in [19]:

ks = ps =
m̄

h
, kp = pp = m̄, kv = pv = m̄

where m̄ is a characteristic mass of the problem.
The integrator is summarized in Algorithm 1. The criterion used for checking the Newton

scheme convergence in each sub-problem is denoted simply as ||ri|| < tol, for i = s, p, v.
However, the actual expression of the convergence criterion is given by

||ri|| < tolr

(∑
k

||rik||+ tolf

)
(51)

where tolr is a given relative tolerance, rik is the k-th term contributing to the residual ri, tolf
is a reference value of tolerance and || · || is the L2 norm of ·.
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Algorithm 1 Decoupled nonsmooth generalized-α time integration scheme

1: Inputs: initial values q0 and v0;
2: Compute consistent value of ˙̃v0

3: a0 := ˙̃v0

4: for n = 0 to nfinal − 1 do
5: ˙̃vn+1 := 0, λ̃Un+1 := 0, νn+1 := 0
6: Λn+1 := 0, Un+1 := 0, Wn+1 := 0
7: an+1 := 1/(1− αm)(αf ˙̃vn − αman)
8: vn+1 := ṽn+1 := vn + h(1− γ)an + hγan+1

9: qn+1 := qn + hvn + h2(1/2 − β)an + h2βan+1

10: Step 1 (smooth motion):
11: for i = 1 to imax do
12: Compute residual rs

13: if ||rs|| < tol then break end if
14: Compute the iteration matrix Sst
15: ∆xs := −(Sst )

−1rs

16: ṽn+1 := ṽn+1 +∆ṽ
17: ˙̃vn+1 := ˙̃vn+1 + (1− αm)/((1− αf )γh)∆ṽ
18: qn+1 := qn+1 + hβ/γ∆ṽ

19: λ̃
U
n+1 := λ̃

U
n+1 +∆λ̃

U

20: end for
21: Step 2 (projection on position constraints):
22: for i = 1 to imax do
23: Compute residual rp

24: if ||rp|| < tol then break end if
25: Compute Spt
26: ∆xp := −(Spt )

−1rp

27: Un+1 := Un+1 +∆U
28: qn+1 := qn+1 +∆U
29: νn+1 := νn+1 +∆ν
30: end for
31: Step 3 (projection on velocity constraints):
32: for i = 1 to imax do
33: Compute residual rv

34: if ||rv|| < tol then break end if
35: Compute Svt
36: ∆xv := −(Svt )−1rv

37: Wn+1 := Wn+1 +∆W
38: vn+1 := ṽn+1 +Wn+1

39: Λn+1 := Λn+1 +∆Λ
40: end for
41: an+1 := an+1 + (1− αf )/(1− αm) ˙̃vn+1

42: end for
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4 Numerical examples

Four numerical examples are considered to study the accuracy and robustness of the proposed
methodology, Fig. 1. Special emphasis is made on showing the improvements brought to the
original NSGA [6]. The average and the maximum number of iterations per time step as well
as the rate of convergence with each integrator, are compared. In the case of the original
NSGA, the reported number of iterations is actually computed as the number of times that a
linearized system of equations has to be solved per global time step. The results obtained with
the original NSGA are denoted by CS (Coupled-Solution), whilst the ones resulting from the
new algorithm are denoted by DS (Decoupled-Solution). The convergence rates are computed
with an error evaluated with the L1 norm:

Error(h) =

∑N
n=0 |fn − f(tn)|∑N

n=0 |f(tn)|
(52)

where N is the number of time steps, fn is the numerical solution and f(tn) is the reference
solution. The reference solution is taken as the numerical solution for a very small stepsize
using the original NSGA. The tolerances tolr and tolf in the convergence criterion of the
Newton solver, are both adopted equal to 10−5. The spectral radius is taken as ρ∞ = 0.8.

Three of the four examples involve a spatial discretization. When performing the conver-
gence study for these examples, the number of elements is kept constant and only the time
stepsize is varied.

Both integrators have been implemented in the finite element code Oofelie [20]. The finite
elements for flexible multibody systems are described in [13] and the coordinates are the nodal
absolute translations and rotations. The discretization of rotation variables relies on a Lie
group time integration method directly adapted from [21].

The examples have been chosen to highlight important aspects of the proposed strategy.
In the first example, the impact of a rigid rectangular parallelepiped body with a large initial
angular velocity is solved to show how the presence of gyroscopic forces and of the coupling
stemming from nonlinear bilateral constraints (which represent the rigid body) influence the
solvers performance. Next, the horizontal impact of an elastic bar is considered to study the
ability of the proposed algorithm to deal with flexibility. In the third example, the behaviour
of the integrators for problems with nonlinear flexible beams is considered by studying the
bouncing of a flexible pendulum. Lastly, the bouncing of a 3D flexible cube is examined to
investigate the performance of the method for 3D nonlinear finite element models.

4.1 Impact of a rigid rectangular parallelepiped body

This example consists in the impact of a rigid rectangular parallelepiped body on a rigid
support, Fig. 1(a). This problem does not involve flexibility, but is subject to nonlinear bi-
lateral constraints that model the rigidity of the body. The nonlinear bilateral constraints
couple the smooth problem to the sub-problem at position level in the CS algorithm, influ-
encing the required number of iterations for convergence. A large initial angular velocity is
imposed, making it necessary to accurately account for gyroscopic effects. The important
contribution of gyroscopic forces allows to evaluate the appropriateness of the approximation
f(qn+1,vn+1, tn+1) ≈ f(qn+1, ṽn+1, tn+1) at the position level in the DS solver.

The parameters of the problem are m = 46.8 kg, lx = 0.1 m, ly = 0.2 m, lz = 0.3 m,
ag = 9.81 m/s2 and restitution coefficient e = 0.8. The inertia tensor J is diagonal with
entries Jxx = m(l2y + l2z)/12, Jyy = m(l2x + l2z)/12 and Jzz = m(l2y + l2x)/12. The body center
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(a) Impact of a rigid rectan-
gular parallelepiped.

(b) Horizontal impact of an
elastic bar.

(c) Bouncing flexible pen-
dulum. (d) Bouncing 3D flexible

cube.

Figure 1: Numerical examples.

of mass has initial conditions: angular velocity Ω0 = [60, 60, 0]T rad/s, translation velocity
v0 = [3, 0, 0]T m/s and initial position x0 = [0, 0, 1]T m. The reference solution is obtained
with a stepsize of h = 10−5 s using the CS solver. The z-displacement and velocity of node xp
for a stepsize of h = 10−3 s is plotted in Fig. 2(a), whilst in Fig. 2(b) the convergence analysis of
both integrators is shown. As it can be seen, both methods converge with the same convergence
rate and error. However, the average and the maximum number of iterations, Figs. 3(a-b), make
clear that the new splitting strategy of DS is more robust than CS for problems with nonlinear
bilateral constraints and important gyroscopic contributions. In addition, we observe that the
approximation f(qn+1,vn+1, tn+1) ≈ f(qn+1, ṽn+1, tn+1) at position level in the DS solver does
not affect the accuracy of the obtained results for the considered example.

4.2 Horizontal impact of an elastic bar

The horizontal impact of an elastic bar is analyzed, see Fig. 1(b). This example deals with a
linear flexible model with no bilateral constraints, allowing to understand convergence problems
associated to flexibility. It should be noted that in the case of the CS solver, the smooth sub-
problem is coupled to the position sub-problem through the internal elastic forces which depend
on the total position q.

The bar starts moving from a distance d0 in an undeformed configuration with a uniform
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(a) Solution obtained for both solvers for h = 10−3 s.
Showing the gap and its time derivative for the node
xp, see Fig. 1(a).
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Figure 2: Results obtained for the impact of a rigid rectangular parallelepiped body.
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Figure 3: Rigid rectangular parallelepiped problem: number of iterations taken by the DS and
CS solvers.

initial velocity field v0, and bounces back after impacting a rigid wall. The impact is horizontal
and no gravity is considered [6]. The parameters of this test are: Young modulus E = 900
Pa, density ρ = 1 kg/m3, undeformed initial length L = 10 m, initial distance from the wall
d0 = 5.005 m, initial velocity v0 = 10 m/s and restitution coefficient e = 0. The bar is
discretized using 200 finite elements. The reference solution is computed with a time step of
h = 10−5 s using the CS solver. Three different nonsmooth integrators are tested: the original
NSGA (CS) solver, the decoupled NSGA based on Eqs. (30a, 30b), and the decoupled NSGA
based on Eqs. (31a, 31b). The solutions obtained with the two latter options are respectively
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Figure 4: Horizontal impact of an elastic bar: number of iterations for convergence.
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dow t = (0, 1.5) s for the horizontal displacement and
velocity of the node located at 0.45 m from the tip of
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Figure 5: Convergence analysis for the horizontal impact of an elastic bar.

denoted by DS and DSn (Decoupled-Solution neglecting the f p and f ∗ terms).
The average and maximum number of iterations for each strategy can be observed in Figs.

4(a-b). Since the problem is linear, the maximum number of iterations in the DS and DSn
strategies is only one per sub-problem for any value of stepsize h. On the other hand, the
number of iterations required by the original solver (CS) is quite high, and it even diverged
for stepsizes greater than or equal to h = 10−2 s. Therefore, the advantage of the proposed
splitting becomes quite clear.

Figures 5(a-b) show the convergence analysis for two nodes of the bar (one at the tip and
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(b) Displacement and velocity of the node located at
0.45 m from the tip of the bar.

Figure 6: Comparison of the results obtained for different stepsizes using the decoupled solver
with (DSn) and without (DS) neglecting the f p and f ∗ terms.

another located 0.45 m from the tip). It can be seen that the robustness improvement in the DS
strategy is obtained without damaging the convergence rate neither the accuracy. However, in
the decoupled strategy DSn, where the f p and f ∗ terms were neglected, the error is larger than
for the DS strategy for moderately large stepsizes. A comparison of the results of DSn and DS
for different stepsizes is shown in Figs. 6(a-b). It is important to highlight that for moderately
large stepsizes, the DSn solution does not reproduce certain key aspects of the physical solution,
such as, for instance, the bouncing back ot the bar (h = 0.03 s), or a quite long delay in the
bouncing back with respect to the reference solution (h = 0.01 s), Fig. 6(a). In addition, the
contact forces deviate considerably from what is expected. Therefore, these results indicate
that the term f(q, ṽ, tn+1) − f(q̃, ṽ, tn+1) ≈ ∂f

∂q
Un+1 has an important contribution to the

position correction for large values of h and cannot be neglected. Another error is evidenced by
observing the computed displacement and velocity at the node located at 0.45 m from the tip of
the bar, Fig. 6(b). When neglecting the f p and f ∗ terms for h = 0.03 s, the computed solution
satisfies the non-penetration condition at the tip node, Fig. 6(a), but the node at 0.45 m from
the tip penetrates the wall, see Fig. 6(b).

4.3 Bouncing of a flexible pendulum

The bouncing of a flexible beam pendulum hitting an obstacle is next studied, Fig. 1(c). This
test allows to assess the performance of the integrators for problems involving nonlinear flexible
beams. The pendulum is constrained to swing in the x-y plane around a pivot located at
the origin. The properties of the beam are: undeformed length L = 1 m, cross-section area
A = 10−4 m2, cross-section inertia I = 8.33 10−10 m4, shear section area As = 5/6A, Young
modulus E = 2.1 1011 N/m2, density ρ = 7800 kg/m3 and Poisson ratio ν = 0.3. The beam is
in horizontal position at the initial configuration with zero velocity, and begins to fall under the
action of gravity ag = 9.81 m/s2. The tip of the beam hits a rigid wall located at x =

√
2/2,

with a coefficient of restitution e = 0.
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The beam is discretized into 8 equally-spaced nonlinear beam elements. The unilateral
constraint representing the impact condition is 0 ≤ gU = x−

√
2/2 ⊥ diU ≥ 0 and is enforced

at the tip node. The reference solution is computed with a stepsize of h = 10−6 s by using the
original NSGA (CS) solver.
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(a) Solution obtained for both solvers for h = 10−4 s.
Showing the y component of the displacement and the
velocity fields at the tip of the beam.
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Figure 7: Results obtained for the bouncing flexible pendulum.
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Figure 8: Bouncing flexible pendulum: number of iterations taken by the DS and CS solvers.

The y component of the displacement and the velocity at the tip of the beam calculated
using h = 10−4 s for both solvers are plotted in Fig. 7(a). The average and maximum number of
iterations are shown in Figs. 8(a-b). It can be observed that for the three largest stepsizes, the
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original NSGA does not converge, Fig. 8. In addition, when it converges for smaller stepsizes,
it takes a large number of iterations at impact events (see the maximum number of iterations).
On the contrary, the proposed decoupled solver (DS) requires a small number of iterations for
convergence.

4.4 Bouncing of a 3D flexible cube
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(a) Solution obtained for both solvers for h = 3·10−5 s.
Showing the z component of the displacement and the
velocity fields at node x1, see Fig. 1(d).
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Figure 9: Results obtained for the bouncing of a 3D flexible cube.

In what follows a 3D example is considered. It consists in a 3D flexible cube which bounces
against a rigid plane due to the action of gravity ag = 9.81 m/s2, Fig. 1(d). The cube is
discretized into 125 equal tri-linear hexahedral geometrically nonlinear finite elements. It is
assumed that the material responds linearly. The cube has an undeformed side length L1 =
0.1 m, the Young modulus is E = 90 Pa, the density is ρ = 1 kg/m3, the Poisson ratio is
ν = 0.3 and the centroid of the cube is initially located at 0.35 m from the floor with a zero
initial velocity. The restitution coefficient is e = 0. Contact elements are defined between the
floor plane and each node on the cube face.

The z component of the displacement and the velocity at node x1, computed using h =
3 · 10−5 s for both solvers, are plotted in Fig. 9(a). The convergence analysis for both solvers
is shown in Fig. 9(b). As it can be observed, a convergence rate close to order 1 is achieved
for the proposed solver (DS). The original NSGA (CS) algorithm also exhibits order 1 with the
same accuracy, but only for stepsizes smaller than or equal to 3 ·10−5 s. For large stepsizes, the
CS solver does not converge (Figs. 10(a-b)). The proposed DS solver deals well with flexible
problems characterized by large displacements for any time stepsize. On the contrary, the
original NSGA (CS) requires adopting a very small stepsize to get convergence.
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Figure 10: Bouncing 3D flexible cube: number of iterations taken by the DS and CS solvers.

5 Conclusions

A fully decoupled nonsmooth generalized-α integration method was presented. Like its prede-
cessor, it does not suffer from any drift phenomena as it imposes the constraints both at position
and at velocity levels. Additionally, it is well suited for problems with vibration effects as it
integrates the smooth component of the motion with the second order accurate generalized-α
method.

The algorithm was implemented as a sequence of three sub-problems to be solved at each
time step. The most distinctive feature of the new algorithm was that the sub-problem defining
the smooth part of the motion is strictly independent of the position correction and of the
velocity jump, so that the solution of the three sub-problems could be performed in a purely
decoupled sequential manner.

Four numerical examples were presented, showing that the proposed method improves the
robustness for problems involving nonlinear bilateral constraints and/or flexible elements, with-
out deteriorating the accuracy of the original NSGA method. The number of iterations was
reduced and much larger time steps could be adopted.

A variant of the new method, in which the f p and f ∗ terms were neglected, was analyzed in
the examples. The computed results showed that neglecting those terms could lead to results of
bad quality if sufficiently small stepsizes were not adopted. Hence, it was recommended to take
into account those terms in the implementation of the decoupled algorithm. The application of
this new algorithm to deal with frictional contact problems is studied in a companion paper.
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[13] Géradin, M., and Cardona, A., 2001. Flexible Multibody Dynamics: A Finite Element
Approach. Wiley.

[14] Moreau, J., 1999. “Numerical aspects of the sweeping process”. Computer Methods in
Applied Mechanics and Engineering, 177(3-4), pp. 329–349.

23



[15] Gear, C., Leimkuhler, B., and Gupta, G., 1985. “Automatic integration of euler-lagrange
equations with constraints”. Journal of Computational and Applied Mathematics, 12-13,
pp. 77–90.
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