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A damage to crack transition framework for ductile materials

by Julien Leclerc

The simulation of the whole ductile fracture from the large-scale yielding to the localised
crack initiation and propagation, is still challenging for scientists and engineers, especially
under complex loading conditions. In this work, we develop a computationally e�cient and
energetically consistent damage to crack transition framework to address this issue. In ad-
dition, we provide an appropriate porous material model as well as the related calibration
procedure.

Practically, an implicit non-local damage model represents the �rst di�use damage stage,
possibly beyond the softening onset. Once a crack insertion criterion is satis�ed, a crack is
introduced using a cohesive band model (CBM). This latter, contrarily to a cohesive zone model
(CZM), accounts for 3D stress states during the crack opening which is mandatory in order
to predict accurate results. The framework is implemented inside a Discontinuous Galerkin
(DG) framework following the extrinsic CZM/DG formalism. Those choices ensure to the
scheme interesting numerical properties demonstrated in this work: robustness upon failure,
mesh-independence, energetic consistency and a reasonable trade-o� between computational
e�ciency and simplicity.

The framework is �rst applied to a damage-enhanced elastic behaviour where the cohesive
band thickness, the only introduced numerical parameter by the CBM, is determined from
energetic considerations. It is then extended to the context of large strains and porous plas-
ticity. Therewith, a micromechanics model including void nucleation, growth and coalescence,
is presented. A suited crack insertion criterion is derived from a micro-mechanics coalescence
model. In both cases, the numerical model is validated using experimental results from the
literature.

Finally, the damage to crack transition model is validated with respect to an extensive
experimental campaign studying a high-strength steel. The material and numerical models
parameters are calibrated following micromechanics-based arguments. The framework, hence
calibrated, is shown to be able to accurately predict the material behaviour until complete
failure under di�erent stress conditions and to include failure anisotropy. In particular, the
complex experimental crack path on round bars and on grooved plates in plane strain is
reproduced.
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: Tensorial contraction
⊗ Dyadic product
JxK Interface jump operator
〈x〉 Mean operator
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‖x‖ Euclidean norm
|x| Absolute value
∂f
∂x Partial derivative of the function f with resp. to the var. x
ẋ Partial time-derivative of the variable x
ẍ Second partial time-derivative of the variable x
∇x Gradient operator with respect to the current con�guration
∇0x Gradient operator with respect to the initial con�guration
∇2x Laplace operator with respect to the current con�guration
∇2

0x Laplace operator with respect to the initial con�guration
∆x Increment of the variable x
δx Variation of the variable x
HD (x) Heavyside function
HB (x) Linear-step function
I Second-order identity tensor
xdev Deviatoric counterpart of the tensor x
xT Symmetric counterpart of the tensor x
tr (x) Trace of the tensor x
Idev 4-th order deviatoric symmetric identity tensor

Topology (with respect to the current con�guration)

Ω Material body in the current con�guration
Γ Material external boundary surface of Ω
ΓD Dirichelet part of the external surface Γ
ΓN Neumann part of the external surface Γ
n Unitary normal vector to Γ in the current con�guration
ΓI Interface surfaces inside Ω
ΓIU Uncracked part of the interface surfaces ΓI

ΓIC Cracked part of the interface surfaces inside ΓI

Ω+, Ω− Partition of Ω due to ΓI in the current con�guration
nI Unitary normal vector to interface surface ΓI

sI, s
′
I Unitary tangent vector to interface surface ΓI

Topology (with respect to the initial or reference con�guration)

Ω0 Material body in the initial con�guration
Γ0 Material external boundary surface of Ω0

ΓD0 Dirichelet part of the external surface Γ0

ΓN0 Neumann part of the external surface Γ0

N Unitary normal vector to Γ0 in the initial con�guration
ΓI0 Interface surfaces inside Ω0

ΓIU0 Uncracked part of the interface surfaces ΓI0

ΓIC0 Cracked part of the interface surfaces inside ΓI0

Ω+
0 , Ω

−
0 Partition of Ω0 due to ΓI0 in the initial con�guration

NI Unitary normal vector to interface surface ΓI0

SI,S
′
I Unitary tangent vector to interface surface ΓI0

Ωb0 Cohesive band volume in the reference con�guration

Kinematic variables

x, y, z Spatial cartesian coordinates [m]
r Radial cylindrical coordinates [m]
θ Azimuthal cylindrical coordinates [rad]
z Axial cylindrical coordinates [m]
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x Current material position vector [m]
X Initial material position vector [m]
XI Initial material position vector on the crack interface ΓI0 [m]
u Displacement vector [m]
F Deformation gradient tensor [−]
Re Rotation part of the elastic deformation gradient tensor [−]
Ue Symmetric part of the elastic deformation gradient tensor [−]
ε Cauchy strain tensor [−]
J Jacobian of the deformation gradient tensor [−]
C Right Cauchy strain tensor [−]
E Natural or logarithmic strain tensor [−]

Stress variables

σ Cauchy stress tensor [Pa]
κ Kirchho� stress tensor [Pa]
τ Corotational Kirchho� stress tensor [Pa]
P First Piola-Kirchho� stress tensor (PK1) [Pa]
pτ Pressure in terms of the Kirchho� stresses [Pa]
pσ Pressure in terms of the Cauchy stresses [Pa]
xeq Von Mises or J2-equivalent value of the stress x [Pa]
T Stress triaxiality [−]
ζ Lode variable [−]
θ Lode angle [−]
ρ Density per unit volume in the current con�guration

[
kg/m3

]
ρ0 Density per unit volume in the reference con�guration

[
kg/m3

]
b Volumic external force in the cur. con�g. per unit of cur. volume

[
N/m3

]
b0 Volumic external force in the cur. con�g. per unit of init. volume

[
N/m3

]
t̄N Surfacic external force in the cur. con�g. per unit of cur. surface [Pa]
t̄N0 Surfacic external force in the cur. con�g. per unit of init. surface [Pa]

Energetic variables

ψ Helmholtz (reversible) free energy per volume
[
J/m3

]
ϕ Dissipated energy per volume

[
J/m3

]
Wint Work of the internal forces per volume

[
J/m3

]
Ψ Total Helmholtz free energy [J]
Φ Total dissipated energy [J]
Wsurf Total work of the surfacic forces [J]
Wext Total work of the external forces [J]
Wint Total work of the internal forces [J]

Elastic damage constitutive behaviour

Z Internal variable [−]
H Hooke tensor [Pa]
D Damage [−]

HD Sti�ness tensor of the damaged material [Pa]
Y Damage energy release rate

[
J/m3

]
e Equivalent elastic strain [−]
lc Non-local length [m]
Cl Non-local symmetric tensor

[
m2
]

w Non-local weight function [−]
WG Non-local Green weight function [−]
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WG−BC Boundary contribution to the non-local Green weight function [−]

Plasticity

φ Yield function [−]
φG Gurson yield function [−]
φGTN GTN-model yield function [−]
φT Thomason yield function [−]
φT+(φT−) Tension (compression) part of the Thomason yield function [−]

CφT Concentration factor of the Thomason model [−]
τY Yield stress in terms of Kirchho� stress [Pa]
τY0 Initial yield stress in terms of Kirchho� stress [Pa]
R Hardening function in terms of Kirchho� stress [Pa]
h Derivative of h in terms of the equivalent plastic strain [Pa]
V Overstress function in terms of the equivalent plastic strain rate [Pa]
σY Yield stress in terms of Cauchy stress [Pa]
σY0 Initial yield stress in terms of Cauchy stress [Pa]
d Deviatoric equivalent plastic strain [−]
q Volumetric equivalent plastic strain [−]
p Matrix equivalent plastic strain [−]
γ Plastic multiplier [Pa]
v Plastic increment vector [−]
rp Plastic return residues in terms of v [−]
Np Plastic normal [1/Pa]
Nd Deviatoric part of the plastic normal [1/Pa]
Nq Volumetric plastic normal [1/Pa]
Nd

G Deviatoric part of the plastic normal of the Gurson model [1/Pa]
Nq

G Volumetric plastic normal of the Gurson model [1/Pa]
Nd

T Deviatoric part of the plastic normal of the Thomason model [1/Pa]
Nq

T Volumetric plastic normal of the Thomason model [1/Pa]

Micromechanics

fV Local porosity fraction [−]
fV0 Initial porosity fraction [−]

f̃V Non-local porosity fraction [−]

f̂V E�ective porosity fraction [−]
fVC

Critical porosity fraction (GTN model) [−]
δGTN Phenomenological acceleration rate of porosity growth (GTN model) [−]
f?V Phenomenological/corrected porosity value (GTN model) [−]
fVf

Porosity value at failure without correction (GTN model) [−]
f?Vf

Phenomenological/corrected porosity value at failure (GTN model) [−]

χ Cell ligament ratio [−]
λ Cell aspect ratio [−]
fVnucl

Nucleated porosity fraction [−]
An Plastic strain-controlled nucleation rate [−]
Bn Shear-induced growth rate function [−]
kω Shear-induced growth coe�cient [−]
σnc Critical stress nucleation tensor [Pa]
σn Inclusions nucleation stress tensor [Pa]
k Tensorial stress concentration factor [−]

Cohesive band model
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hb Cohesive band thickness [m]
Fb Enhanced cohesive band deformation gradient [−]
εb Cohesive band Cauchy strain tensor [−]
σb Cohesive band Cauchy stress tensor [Pa]
Pb Cohesive band PK1 tensor [Pa]
Db Cohesive band damage value [−]
Dc Damage value linked to the crack insertion [−]
ε̂c Equivalent elastic strain value linked to the crack insertion [−]
σ̂c Critical e�ective stress value linked to the crack insertion [Pa]
βc Opening mode I/II ratio [−]
Gc Energy release rate (by unit of crack surface created)

[
J/m2

]
tI Interface traction force per unit of current surface [Pa]
tI0 Interface traction force per unit of initial surface [Pa]
δc Critical crack opening value [m]

Finite element discretisation

B Finite volume element
S Finite surface element
Nn Number of node in an element
xe,s Variable related to the element e or s
xa,b,... Variable related to the node a, b, ...
Na Shape function linked to the node a [−]
wu Test functions linked to the displacement �eld [m]
wẽ Test functions linked to the non-local equivalent strain �eld [−]
wZ̃ Test functions linked to the non-local variable �eld [−]
q Finite element unknowns vector [m,−]
f e ,f s Elementary force vector linked to element e or s

[
N,m3

]
M Finite element mass matrix [kg]
r Finite element residual vector

[
N,m3

]
K,K,K Finite element sti�ness variable

[
N/m,N,m3,m2

]
C,C,C,C Material tangent variable

[
Pa,Pa/m,−,m−1

]
βs Stability parameter [−]
hs Mesh characteristic size parameter [m]
lmesh Mesh size [m]
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Chapter 1

Introduction

1.1 General context

With the development of computational tools, the mechanical simulations of an industrial
product gain more and more in importance. Accurate and reliable numerical predictions allow
reducing the cost of expensive experimental campaigns while improving structural design.
It is even more crucial in some sectors. For instance, in aeronautics, mechanical reliability
improvements and weight savings are highly encouraged by strong economic and environmental
incentives. Moreover, simulations of fragmentations or impacts a�ord precious insights in the
physical process with a reduced cost compared to real experiments.

However, the modelling of ductile fracture under complex loading conditions involves many
unsolved challenges for scientists and engineers. As illustrated for a metal sheet on Fig. 1.1,
this process usually starts with a homogeneous or spread damage evolution (step (a) to (b)).
In this example, this damage is materialised by small defects or cracks under the microscopic
scale. Typically, small voids nucleate from inclusions that break or separate themselves from
the steel matrix (Pineau, Benzerga, and Pardoen, 2016). These latter gradually grow. During
the process, the damage evolution eventually localises due to material softening or mechanical
instabilities (steps (b) and (c)). At some point, the cavities in the most damaged area start to
fuse with their neighbours. This coalescence process provokes the onset of macroscopic cracks
(step (d)). These discontinuities then propagate through the material, leading to its failure
(step (e)). However, the origin, the behaviour and the sequence of the damage process strongly
vary from a material to another (Noell, Carroll, and Boyce, 2018). In the following, we focus
on the particular case consisting in two phases: a di�use growth stage followed by a localised
damage step.

When this kind of failure process is considered in its globality, i.e. including both the
di�use growth and localisation stages, regular numerical models, generally based on �nite
element methods (FEM), are of very limited reliability. At best, they need to be calibrated
on a case by case basis while others do not conserve mass and energy or su�er from numerical
issues. In short, no solution is nowadays totally predictive. The ideal sought framework
should be able to predict the failure of ductile metals under various loading conditions while
avoiding case-dependent calibration. Among others, mesh-dependency has to be prevented.
It is also mandatory to be energetically consistent. In other words, general physical principles
as mass and energy conservations have to be ensured. Moreover, the ideal framework should
be a trade-o� between implementation simplicity, 3D simulation capabilities, scalability and
computational e�ciency.

In this context, this thesis will investigate this gap while keeping in mind the ideal numerical
properties. It will attempt to �ll in this lack with a suitable numerical framework, along
with an adapted material model and a calibration procedure. Indeed, in terms of numerical
approaches, traditional frameworks developed in a �nite element (FE) formulation may be
separated in two categories. On the one hand, the �rst category gathers the models based
on the Continuous Damage Mechanics (or CDM) (Chaboche, 1988; Lemaitre, 1986; Lemaitre
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(a)

𝐹

𝑢

Diffuse damage stage Localised damage stage

(b) (c) (d) (e)

Figure 1.1: Example of typical failure process observed for a metal sheet with two holes un-
der a traction test (the force is applied horizontally). Pictures (Source: radome.ec-nantes.fr)
show the horizontal strain field using DIC (Digital Image Correlation) at different steps of
the damage evolution: (a) elastic regime, (b) softening onset, (c) strain localisation, (d) crack
initiation and propagation and (e) final failure. Each step can be classified either in the diffuse

or the localised damage stage. .

𝒕Undamaged material

Crack front

Cohesive jump

Cohesive zoneCrack lips

Figure 1.2: Schematic representation of a growing failure process using a Cohesive Zone
Model (CZM). All the damage process is concentrated on the crack surface while the vicinity

stays intact.

et al., 2009). On the other hand, the second family is rather inspired by the fracture mechanics
(Anderson, 2017; Zehnder, 2012).

1.1.1 Discontinuous approaches

On the one side, this category of fracture modelling, the discontinuous approaches, idealises
the material degradation by the propagation of a sharp discrete crack. One of the most
popular adaptations of this approach to numerical methods is the cohesive zone model (CZM),
schematised on Fig. 1.2. It was initiated by Barenblatt (1962) and Dugdale (1960) and �rstly
used in a FE context by Hillerborg, Modéer, and Petersson (1976). The damage process and
energy dissipation emanate from crack surfaces creation in the process zone. Meanwhile, the
uncracked parts stay intact. The model is de�ned through its traction-separation law (TSL).
This law describes how the bonding forces between the crack lips irreversibly decrease while
the crack opening (or the cohesive jump) increases.

However, the use of CZM implies extensive modi�cations of the FE discretisation to take
into account the description of discontinuities. The most popular methods to address this issue
are (i) the extended �nite element method (XFEM (Moës, Dolbow, and Belytschko, 1999;

http://radome.ec-nantes.fr
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𝒕

(a) an extrinsic cohesive zone,

𝑡

𝑢

(b) an extrinsic
TSL,

𝒕

(c) an intrinsic cohesive zone,

𝑡

𝑢

(d) an intrinsic
TSL.

Figure 1.3: Comparison of the crack front modelling between (a) an extrinsic and (b) an
intrinsic Cohesive Zone Model (CZM), and their respective (c) extrinsic and (d) intrinsic

traction-separation law (TSL).

Vigueras et al., 2015)), (ii) the embedded localization method (EFEM (Linder and Armero,
2007)), (iii) the interface elements (Hillerborg, Modéer, and Petersson, 1976), and (iv) the
Discontinuous Galerkin (DG) method (Mergheim, Kuhl, and Steinmann, 2004). The �rst two
methods consist in respectively a global and a local enrichment of the displacement �eld: the
crack can propagate through the bulk elements following an arbitrary path. The third method
introduces a CZM using an interface element between two neighbouring volume elements. Two
main insertion techniques exist. On the one hand, Camacho and Ortiz (1996) and Pandol�
et al. (2000) inserted cohesive interface elements on the �y between two volume elements once
their crack initiation criterion is reached. In this case, the cohesive law is so-called extrinsic as
it represents only the crack opening (see Figs. 1.3a and 1.3b). However, this dynamic insertion
by node splitting decreases the scalability of the method as the mesh topology is modi�ed;
unless a graph-based internal structure is used (Mota, Knap, and Ortiz, 2008; Paulino et al.,
2008). On the other hand, the insertion can also be performed before the simulation, at
its beginning (see Fig. 1.3c). The CZM is therefore so-called intrinsic (Needleman, 1987;
Tvergaard, 1990; Xu and Needleman, 1994). As shown on Fig. 1.3d, the intrinsic TSL has to
represent the pre-crack material response (i.e. the loading part), by opposition to Fig. 1.3b.
The crack criterion is implicitly incorporated within the TSL (which can be assimilated to
the maximal stress value). Unfortunately, the presence of the initial loading phase induces
non-consistent elastic responses and mesh-dependency as demonstrated by Falk, Needleman,
and Rice (2001) and Tabiei and Zhang (2017) e.g. Therefore, the intrinsic method is restricted
to simple and a priori known crack paths (Xu and Lu, 2013). The fourth method, analogous
to the third one, overcomes the issues of intrinsic and extrinsic interface methods by involving
a Discontinuous Galerkin (DG) �nite element discretisation. The DG method is based on
the concept of ensuring inter-element continuity in a weak sense. Therefore, discontinuities
are dormant, and thus, inherently present between elements since the beginning in the DG
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damaged material

Undamaged material

Fictitious crack 

surface

Figure 1.4: Schematic representation of a growing failure process modelled by a continuous
damage mechanics (CDM).

formulation. Cracks can be easily inserted by releasing the DG-constraints at crack initiation
and replacing them by the cohesive relation. By this way, the hybrid DG-CZM scheme easily
allows a large number of crack insertion and propagation without scalability or consistency
issues as demonstrated by Radovitzky et al. (2011).

The CZM approach succeeds well in the prediction of brittle or small-scale yielding mate-
rials, when the damage can be assumed to be concentrated at the crack surface. However, it
logically fails to accurately represent the di�use damage phase of any ductile failure. Indeed,
it is unable to represent the complex interactions between the free crack surface creation and
the homogeneous damage di�usion.

1.1.2 Continuous approaches

On the other side, the other category of fracture modelisation, the continuous damage me-
chanics (CDM), allows modelling a large range of di�erent degradation processes using any
classical �nite element formulations. The main idea is to sum up the material history and the
progressive mechanical degradation through the intermediary of internal or damage variables.
Practically, as shown on Fig. 1.4, damage di�usively grows (from an initial state in blue on
the schematic) with the deformation until a point where the material is considered as fully
damaged or broken (in brown).

From the numerical point of view, continuous damage models can be distinguished from
the way they consider and compute these variables: there are coupled and decoupled models.
Decoupled ones simplify the problem by disregarding any coupling between the evolution of
the damage and the mechanical properties. In this case, damage variables simply determine
when the material fails by using a fracture locus. The complexity level of such failure surface
is various (Johnson and Cook, 1985; Liu, Kang, and Ge, 2019, e.g.). Conversely, coupled
damage models directly impact the material behaviour. The model formulation can be a mix
between a purely phenomenological approach and a micromechanical-based description. For
instance, the model pioneered by Chaboche (1988) and Lemaitre (1986) acts on the Young's
modulus (see Lemaitre et al. (2009)), gradually reducing its e�ective value during the damage
evolution. Another example is the Gurson model (Gurson, 1977), which belongs to a more
general family, the porous models. In this case, the degradation of macroscopic mechanical
properties derives from the evolution of microscopic porosities distributed inside the material.

However, the coupled CDM, under a local form, exhibit a mesh dependency during the
softening regime, as it has been demonstrated many times in the literature (Baºant, Belytschko,
and Chang, 1984; Peerlings et al., 2001; Pijaudier-Cabot and Baºant, 1987; Reusch, Svendsen,
and Klingbeil, 2003a, e.g.). Indeed, at the material softening onset, the equations become
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ill-posed as they loose their ellipticity. The damage growth therefore concentrates itself in a
one-element-thick volume. Results will thus depend on the mesh size and orientation. However,
this issue is overcome by introducing regularisation methods like phase �eld approaches (de
Borst and Verhoosel, 2016; Miehe, Welschinger, and Hofacker, 2010; Miehe et al., 2016; Shen,
Waisman, and Guo, 2019, e.g.) or non-local models (Nguyen, Korsunsky, and Belnoue, 2015;
Peerlings et al., 1998; Pijaudier-Cabot and Baºant, 1987). The phase �eld replaces the cracks
by a regularised or di�usive crack �eld. However, there is no real damage evolution de�nition,
preventing the use of complex models such as porous models under a pure phase �eld. The
non-local models drop the local action principle: some local internal variables are substituted
by their non-local averaged counterpart. The non-local averaging can be done through an
integral (Pijaudier-Cabot and Baºant, 1987) or a di�erential procedure. The latter option
has the advantage to naturally treat boundaries and complex geometries. For instance, the
implicit non-local method, pioneered by Peerlings et al. (1996), involves non-local variables
separately interpolated from the displacement �eld. A characteristic length, resulting from
the interaction distance between micro-defects, controls the process di�usion. The non-local
models may be generalised under a micromorphic approach (Aldakheel, 2017; Forest, 2009)
using non-local thermodynamic potentials.

These non-local CDM succeed well in the description of di�use damage mechanisms. How-
ever, numerical issues arise at the end of the damage process since highly damaged elements
induce spurious damage di�usion. In response, Geers et al. (1998) and others (Poh and Sun,
2017; Vandoren and Simone, 2018) have developed transient-gradient models. In the latter,
the non-local length fades at a high level of damage to lower this spurious spread. Besides,
Aldakheel, Wriggers, and Miehe (2018) have used a phase-�eld approach near failure to re-
strain the spread of the micromorphic (i.e. non-local) approach developed in a previous work
(Aldakheel, 2017).

Nevertheless, those failure simulations still entail highly distorted elements in highly dam-
aged zones around the real crack surface, a�ecting numerical convergence. Element erosion
and remeshing can be set up as in the work of Mediavilla, Peerlings, and Geers (2006). How-
ever, in addition to be potentially computationally ine�cient, this procedure leads to mass and
energy losses. The �rst inconsistency may be limited by reporting the deleted element mass
on neighbouring nodes/elements. The second one may be decreased by postponing as much
as possible the deletion. Nonetheless, at the end of the day, crack initiation and propagation
do not necessarily involve a negligible amount of fracture energy and do not de�nitely occur
at the very end of the fracture process. Moreover, a proper crack modelling is mandatory in
the context of fracture or fragmentation simulations, or to multi-physics problems (e.g. heat
or electrical conduction, �uid leakage).

1.1.3 Damage to crack transition framework

In brief, both the fracture mechanics and the continuous damage mechanics are used to simu-
late ductile fracture in the literature. However, although they perform well in their respective
scope, neither continuous nor discontinuous approaches are able to describe alone the whole
ductile process. This reason led to develop damage models with a crack transition in order
to take advantage of the complementary of both approaches, as schematised on Fig. 1.5. In
such a framework, a CDM simulates the initial homogeneous damage stage (left side). Then,
a crack is introduced using a CZM until complete failure (right side). This last one can be
inserted with any crack insertion technique, i.e. using either remeshing (Cuvilliez et al., 2012),
XFEM (Wang and Waisman, 2018), EFEM or DG (Aduloju and Truster, 2019; Wu, Becker,
and Noels, 2014).

This transition between non-local damage models and cohesive zone methods is meaningful
since numerous papers (Cazes et al., 2009, 2010; Dufour et al., 2008; Leclerc et al., 2018;



6 Chapter 1. Introduction

Figure 1.5: Schematic representation of a growing failure process using a continuous damage
model followed by a cohesive zone model inside a damage to crack transition framework.

Mazars and Pijaudier-Cabot, 1996; Wang and Waisman, 2016; Wu et al., 2016; Wu, Becker,
and Noels, 2014, e.g.) have drawn energetic equivalences between both approaches. Indeed, for
instance, Cazes et al. (2009, 2010) and Mazars and Pijaudier-Cabot (1996) have demonstrated
that either the non-local CDM alone or the CDM-CZM transition framework is consistent
as long as the total dissipated energy during the whole fracture process corresponds to the
physically-based one. Therefore, at its insertion, the CZM has to dissipate the amount of
energy not yet dissipated by the non-local model. This energetic quantity can be determined
by comparison for a mode I crack in a one-dimensional setting in terms of a reached value of
damage or e�ective stress (Comi, Mariani, and Perego, 2007; Cuvilliez et al., 2012; Wu, Becker,
and Noels, 2014, e.g.). Besides, Cazes et al. (2009) constructed their TSL by conserving the
equivalence of dissipated energy increments with the pure non-local model.

However, as pointed out by Wu, Becker, and Noels (2014), the classical CZM does not
include the in�uence of in-plane stress components, and thus does not correctly represent pres-
sure and triaxiality, or Lode variable e�ects. Usually, the CZM shape is �xed. The dissipated
energy is stated in advance. No coupling with in-plane stress components, or Poisson e�ect,
is including. However, Brünig, Gerke, and Schmidt (2018), Faleskog and Barsoum (2013),
Nahshon and Hutchinson (2008), and Xue, Faleskog, and Hutchinson (2013) have shown that
those latter e�ects are essential for accurate predictions of ductile failure. According to some
authors (Remmers et al., 2013; Tvergaard and Hutchinson, 1992), those aspects can be ignored
if the CZM is inserted at a very high level of damage. In which case, the surface contribution
would be smaller and negligible compared to the volumic dissipation. However, as previously
explained, crack initiation and propagation do not necessarily involve a negligible amount of
fracture energy. Those e�ects have to be logically taken into account in the traction-separation
law.

Therefore, to include those necessary e�ects, a simple method is to de�ne CZM key pa-
rameters explicitly dependent on stress triaxiality (Siegmund and Brocks, 2000). But this
relation rises the complex question of its proper calibration in terms of the material history.
Scheyvaerts, Pardoen, and Onck (2010) have approached this issue by using a micromechanical
model or simulations on representative volume elements (RVE) to predict the unloading slope
in terms of the stress triaxiality. A more general and natural way is to rede�ne a 3D stress
state at the interface and deduce from it the cohesive behaviour (Bosco, Kouznetsova, and
Geers, 2015; Esmaeili, Steinmann, and Javili, 2017; Huespe et al., 2009; Remmers et al., 2013;
Tvergaard, 2004, e.g.). This implicitly incorporates a triaxiality-dependent behaviour during
the crack propagation stage. These approaches distinguish themselves by the procedure to
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Figure 1.6: Schematic representation of the cohesive band model.

obtain the cohesive 3D state. Esmaeili, Javili, and Steinmann (2016a,b) and Esmaeili, Stein-
mann, and Javili (2017) have computed it through the coupling with an energetic interface.
Huespe et al. (2009, 2012) have introduced a damaging band of �nite thickness as an embedded
weak discontinuity through the elements. A 3D state has been recovered through multi-scale
analyses: Bosco, Kouznetsova, and Geers (2015) have extracted the cohesive behaviour from a
RVE. Tvergaard (2004) have used the jump discontinuity to compute a 3D-strain state at an
intrinsic cohesive interface. Remmers et al. (2013) have enhanced the strain state by adding
surrounding in-plane bulk deformation to model the behaviour of a delaminating interface.

1.2 Objectives

The objective of this thesis is to develop an energetically consistent damage to crack transition
framework suitable for ductile failure. In particular, the framework should be able to predict
the failure under various loading conditions while minimising case-dependent calibration. The
method is requested to be consistent, mesh-independent, scalable and computationally e�-
cient, and applicable in a large deformation 3D setting. Besides, the developed methodology
should be versatile enough to account for di�erent material behaviours.

The model developed in this thesis is initiated from the last solution suggested by Remmers
et al. (2013), the so-called the Cohesive Band Model (CBM). When the crack criterion is
reached in the last failure steps, we assume that all the subsequent material degradation
occurs in a thin band surrounding the crack surface. As represented on Fig. 1.6, the cohesive
model is taken as representative of this thin band behaviour. The strain state inside this band
corresponds to the neighbouring bulk strains enriched with the cohesive jump. By rede�ning
the underlying constitutive material model in a local form, a stress tensor, and then the surface
tension between the crack lips, are evaluated. The presented method has the advantages of
(i) requiring relatively few modi�cations of the cohesive model compared to the multi-scale or
the �nite band method; (ii) o�ering the possibility of reusing the underlying damage material
model and the interface Gauss points of the DG-scheme and (iii) following on-the-�y the local
stress state and material history. These advantages ensure that the developed method can
achieved the stated objectives since it allows modelling the crack formation whilst accounting
for the damaging process physics. Nonetheless, an adapted calibration procedure needs to be
provided.

In particular, the developed framework includes an implicit non-local damage model (Peer-
lings et al., 1996; Reusch, Svendsen, and Klingbeil, 2003a,b) and a cohesive band model
(Remmers et al., 2013) inside a DG-formulation (Radovitzky et al., 2011). In other words,
the initial di�use damage state is simulated using an implicit non-local damage model without
mesh-dependency beyond the onset of softening. This is of particular importance when con-
sidering a physically-based crack initiation criterion which can physically be met in the strain
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softening stage, as it will be shown by several examples in this thesis. Once this crack inser-
tion criterion is satis�ed, an extrinsic cohesive band is inserted between volume elements using
the Discontinuous Galerkin framework. The cohesive band model allows the determination
on-the-�y of the cohesive behaviour while taking into account the current local 3D stress state
and the material history. Apart from the crack insertion criterion, the CBM only introduces
one extra parameter: the cohesive band thickness which controls the total dissipated energy.
Guidelines to calibrate the band thickness is extracted from the study of its e�ects.

Moreover, the framework is implemented with damage models of increasing complexity to
demonstrate its versatility. In particular, the numerical scheme is initiated in the context of
linear elasticity in small strains (Geers, 1997). Afterwards, we develop a suited porous elasto-
plastic model in the context of ductile failure. Derived from a Gurson-like approach (Pineau,
Benzerga, and Pardoen, 2016), they include void growth and coalescence models. Furthermore,
we also compare various crack transition criteria and post-crack insertion behaviours, which
can di�er from the pre-crack behaviour. On the other hand, the underlying material model
can be reused with relatively minor changes. Besides, for both CDM contexts, we also provide
the calibration procedure for the constitutive behaviour as well the transition framework.

Furthermore, we show that the numerical scheme meets the expected numerical properties.
Although the use of EFEM, XFEM (Vigueras et al., 2015, e.g.) or any other crack insertion
techniques is conceivable, the DG-CZM (or DG-CBM) combination has still several advantages
in terms of the desired numerical properties against its competitors. Indeed, even if the crack
path is limited to element boundaries, the crack insertion is naturally managed by the DG-
CBM scheme. Conversely, although enrichment methods (i.e. the XFEM or EFEM) enable
propagation along arbitrary paths, a crack direction criterion needs to be provided. This
task is not trivial in 3D, in particular with the aim of considering fragmentation. Moreover,
their implementation require radical changes in the numerical scheme (particularly in 3D,
see Agathos et al. (2018) for instance). Comparatively, the DG-method requires only the
implementation of interface elements. Its parallelisation is simply done using a face-based
ghost implementation (Wu et al., 2013). Unfortunately, the hybrid DG-CZM (or DG-CBM)
method implies an increase of the system size and a �ne mesh to accurately describe the
crack patterns with interface elements as demonstrated by Molinari et al. (2007). However,
this drawback is mitigated by the high scalability of the method. Ultimately, all the crack
insertion techniques require anyway a �ne mesh to correctly describe the patterns.

1.3 Outline

This thesis is organised as follows. After this introduction, in Chapter 2, the framework will
be �rst established in the context of small displacements in the elastic regime. Energetic
equivalence will be discussed with a 1D case in a semi-analytical way. In particular, the
cohesive band and the e�ects of its thickness will be studied. A relation between the non-
local length and the cohesive thickness will be drawn such that the energy dissipated by the
hybrid CDM/CBM framework corresponds to the energy that would be dissipated by a pure
non-local damage simulation. Afterwards, the announced capabilities of the framework will
be demonstrated in 2D as well as in 3D. In particular, proof of mesh insensitivity will be
brought. Evidences of the inclusion of triaxiality e�ects will be shown. Moreover, the method
will be compared to the phase �eld approach. Finally, experimental results obtained by Geers
(1997) on short glass-�ber reinforced polymers (short-GFRP) will be reproduced. In addition
to available experimental results, this material is chosen because of its mechanical properties.
Indeed, it deforms elastically with a relatively important ductility thanks to the reinforcement
with glass �bers (Geers, 1997).
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Chapter 3 will be devoted to the extension of the framework to the ductile case. According
to the micromechanical process described earlier, a porous plastic model will be �rst devel-
oped. It will incorporate a coupling between several plasticity models. Namely, a Gurson
model (Gurson, 1977) represents the di�use damage process linked to the void growth phase.
Meanwhile, a Thomason model (Thomason, 1985a,b) simulates the coalescence stage. The
transition framework will be adapted to this case and di�erent crack insertion criteria and
behaviours will be compared. Moreover, using data available in literature, the bene�ts of such
a framework will be demonstrated. In particular, we will show that the non-local model is
essential to obtain reliable and meaningful results. Moreover, the value of the framework will
be demonstrated by reproducing typical failure modes in di�erent triaxiality states. Indeed,
after a short calibration procedure, we will show that the model is rich enough to qualita-
tively reproduce the slant and the cup-cone fracture modes respectively in plane strain and in
axisymmetric states.

Once the capabilities of the framework will have been demonstrated in the �rst chapters, the
developed transition framework will be calibrated to reproduce the behaviour of a high-strength
steel alloy in Chapter 4. To achieve this goal, guidelines for the experimental campaign will be
�rst emitted. These experiments have been performed by Marie-Stéphane Colla and Matthieu
Marteleur (UCLouvain) in the context of the collaborative project MRIPF. A methodology
will be developed to limit sensitivity analysis and trial-and-error procedure as a large number
of material parameters is involved. In addition to classical mechanical tests, this procedure
will involve cell simulations, as suggested by Van Dung Nguyen (ULiege) in the context of
the MRIPF project, and microstructure analyses realised pre- and post-mortem to reduce the
�tting parameters. Moreover, an anisotropic nucleation model will be developed and calibrated
to reproduce failure anisotropy in accordance to microstructural measurements. Finally, it will
be shown that a complex failure mode such as the cup-cone of a round bar or the slant one
of a plate can be reproduced both qualitatively in terms of the failure surface shape and
quantitatively in terms of the failure strength.

1.4 Contributions

In this thesis we have introduced the following original contributions:

1. The development of a continuum-damage-mechanics to crack transition framework based
on a cohesive band model accounting for the triaxiality state during the crack opening;

2. The application of the framework in the case of damage-enhanced elasticity with the
determination of the cohesive band thickness from energetic considerations;

3. The extension of the framework to a porous plasticity model, with the determination of
the crack insertion from a localisation criterion and the de�nition of the cohesive band
evolution law from a localisation micro-mechanics model;

4. The identi�cation of the porous model parameters, and in particular of an anisotropic
porosity nucleation model, from experimental tests.

We published the following papers related to this thesis:

• Julien Leclerc, Ling Wu, Van-Dung Nguyen, Ludovic Noels (2018). A damage to crack
transition model accounting for stress triaxiality formulated in a hybrid nonlocal implicit
discontinuous Galerkin-cohesive band model framework. International Journal for Nu-
merical Methods in Engineering, 113(3), 374�410.
https://doi.org/10.1002/nme.5618
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• Julien Leclerc, Van-Dung Nguyen, Thomas Pardoen, Ludovic Noels (2020). A micro-
mechanics-based non-local damage to crack transition framework for porous elastoplastic
solids. International Journal of Plasticity, 127, 102631.
https://doi.org/10.1016/j.ijplas.2019.11.010

• Matthieu Marteleur, Julien Leclerc, Marie-Stéphane Colla, Van-Dung Nguyen, Ludovic
Noels, Thomas Pardoen (In preparation). Micro-mechanics-based modelling of high-
strength forged steel - Part I. Micromechanics and experimental campaigns.

• Julien Leclerc, Matthieu Marteleur, Marie-Stéphane Colla, Van-Dung Nguyen, Thomas
Pardoen, Ludovic Noels (In preparation). Micro-mechanics-based modelling of high-
strength forged steel - Part II. Porous-plastic damage to crack transition.
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Chapter 2

Transition in small strain elastic
regime1

In this chapter, emphasis is on the development of the framework methodology in small strain
elasticity. The question of energy consistency will be also assessed and numerical properties
will be studied, in order to pave the way to more complex behaviours.

Practically, Section 2.1 is dedicated to the constitutive model descriptions. At �rst, the
continuous damage model (CDM) and the cohesive band model (CBM) are separately devel-
oped following a thermodynamic approach in the context of small displacements in the elastic
regime. Isotropic and isothermal behaviours are also assumed. Then, the framework is partic-
ularised to the non-local elastic damage model developed by Geers et al. (1998), Peerlings et al.
(1998), and Peerlings et al. (1996). Despite the model simplicity, this choice is motivated by
the large number of studies available in the literature. Moreover, this model was calibrated for
short glass-�ber reinforced polymers (short-GFRP) (Geers, 1997) which allows us to validate
the applications in regard to experimental results. This material has the advantage to deform
elastically with a relatively important ductility thanks to the reinforcement with glass �bers.

During this �rst step, emphasis is to energy consistency under di�erent stress triaxiality
states. Section 2.2 will be devoted to energetic consistency. In particular, the failure of a
bar under tension is studied in a semi-analytical way in order to derive a relation between
the numerical thickness of the CBM and the characteristic length of the non-local damage
model. This relation is such that the energy dissipated by the hybrid CDM/CBM framework
corresponds to the energy that would be dissipated by a pure non-local damage simulation,
i.e. without crack insertion. Therefore no new numerical parameter is introduced in the
modelisation.

Using these results, Section 2.3 is devoted to the numerical implementation of the hybrid
CDM/CBM framework in a parallel setting.

The developed method is �nally illustrated through numerical examples in Section 2.4. In
particular, it is shown that the e�ects of the triaxiality state can be captured by the cohesive
band model. The mesh insensitivity of the CDM/CBM framework is �rst studied on a 2D
holed plate. Then, by modifying the boundary conditions, di�erent stress triaxiality states are
investigated and the improvements brought by the new framework when compared to a pure
continuum damage model and to a cohesive zone model, are demonstrated. The methodol-
ogy is then compared with a phase �eld approach as both numerical schemes share common
characteristics. We refer to the recent comparisons between the two approaches provided by
de Borst and Verhoosel (2016) and Steinke, Zreid, and Kaliske (2017). The numerical pre-
dictions of the hybrid CDM/CBM on single edge notched specimens are therefore compared
to the phase �eld results available in the literature (Miehe, Welschinger, and Hofacker, 2010).
Finally, the model is validated with experimental measurements from the literature (Geers,
1997) on the standard Compact Tension Specimen (CTS) made of short-GFRP.

1This chapter is an adapted version of the paper Leclerc et al. (2018)
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Figure 2.1: The body deformation mapping u (X, t) defining the transformation of the
material body in the reference configuration Ω0 (left) to the current configuration Ω (right).

2.1 Constitutive models for the damage to crack transition

In this section, the damage to crack transition framework is presented. At �rst, the non-local
continuum damage mechanics model used for the early damage stage is detailed following a
thermodynamical approach. Then, the formulation of the cohesive band model is developed.
Finally, the relations are particularised for a linear isotropic elastic law involving a non-local
damage model.

2.1.1 Non-local continuum damage mechanics

Let Ω0 ⊂ R3 be a structural body in the reference con�guration at the initial time t = 0 as
shown on Fig. 2.1. Its counterpart in the current con�guration at a given time t > 0 during the
mechanical deformation is Ω ⊂ R3. Its external boundary surface Γ0 at initial time becomes
Γ at the current con�guration. It is divided into a Neumann part ΓN where a surface traction
is prescribed and a Dirichlet part ΓD where a displacement is prescribed. These two distinct
parts satisfy ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = Γ ∀t.

2.1.1.1 Kinematic relationships

During the time evolution of the body Ω, the motion of a material particle initially at the
position X ∈ Ω0 and currently at the position x(X, t) ∈ Ω, is de�ned by the displacement
�eld u(X, t) = x(X, t) −X. The derivative of the current spatial position in terms of the
material con�guration, or in other words, the deformation gradient, reads

F =∇0x =
∂x

∂X
= I +

∂u

∂X
, (2.1)

with I the second-order identity tensor, and ∇0 the gradient operator with respect to the
initial con�guration. One can also de�ne the Jacobian J = detF > 0.

In a small deformation context, one can derive the Cauchy strain tensor ε from the sym-
metric part of the deformation gradient

ε =
1

2

[
F + FT

]
− I. (2.2)

2.1.1.2 Governing relationships

The mechanical behaviour of the material body obeys to classical conservation laws presented
here. The mass conservation links the initial density ρ0 and the current one ρ through the
Jacobian by

ρ0 = Jρ in Ω. (2.3)
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In the current con�guration, the linear momentum conservation in terms of the Cauchy
stress tensor σ reads

ρü =∇ · σ + b on Ω, (2.4)

where ρ is the density, b are body-forces per unit of volume and ∇ is the gradient operator
with respect to the current con�guration. Angular momentum is ensured by the symmetry of
the Cauchy stress tensor σ. Boundary conditions are applied on the current external surface.
Prescribed displacement ū(t) and traction surface t̄N(t) are respectively stipulated on the
Dirichlet boundary ΓD and on the Neumann one ΓN:

σ · n = t̄N in ΓN,
u = ū on ΓD,

(2.5)

where n is the outward unit normal to Γ.

2.1.1.3 Energetic relationships

The boundary value problem stated by Eqs. (2.4)-(2.5) is completed by a material constitutive
law. This law can be expressed as

σ(t) = σ
(
F(t);Z(t′), t′ ∈ [0, t]

)
, (2.6)

where Z(t′) is the vector of internal variables representing all the material history.
A thermodynamic potential function (so-called state function) can be associated to each

equilibrium state of the system in terms of a strain tensor and of the state variables Z(t′).
For simplicity, an elastic isothermal case in a small deformation setting with isotropic damage
model is considered in this chapter. Accordingly, the law (2.6) can be expressed as

σ(t) = σ
(
ε(t);Z(t′), t′ ∈ [0, t]

)
. (2.7)

The (irreversible) material degradation is assumed to be described through a scalar damage
variable D which varies monotonically from 0 (undamaged material) to 1 (at complete frac-
ture). At this point, the sti�ness vanishes and the material is unable to sustain any subsequent
load.

If the free (reversible) Helmholtz energy per unit volume inside the damaged material, ψ,
is chosen as this thermodynamic potential, one has in terms of a damage variable and of a
quadratic form of elastic strains:

ψ (ε, D) =
1

2
ε :HD (D) : ε, (2.8)

where HD is the positive-de�nite fourth-order sti�ness tensor in terms of the isotropic scalar
damage value D. The evolution of this free energy with respect to time reads

ψ̇ (ε, D) =
∂ψ

∂ε
: ε̇+

∂ψ

∂D
Ḋ = σ : ε̇− Y Ḋ with

 σ = ∂ψ
∂ε =HD : ε;

Y = − ∂ψ
∂D = −1

2
ε : ∂H

D

∂D : ε,
(2.9)

where Y is de�ned as the damage energy release rate.
The variation of dissipated energy ϕ̇ is constrained by the second thermodynamic principle

formulated by the Clausius-Duhem inequality

ϕ̇ = Ẇint − ψ̇ = σ : ε̇− ψ̇ ≥ 0, (2.10)
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in which the �rst term involves the speci�c internal work Wint. By using the previous Eq.
(2.9), one has

ϕ̇ = Y Ḋ ≥ 0, (2.11)

which implies Ḋ, Y ≥ 0 and ∂HD

∂D to be a semi-negative de�nite tensor matrix. The total
dissipated power inside the structural volume Ω is determined by

Φ̇vol =

∫
Ω
ϕ̇ dV =

∫
Ω
Y Ḋ dV ≥ 0. (2.12)

The evolution of the damage D is governed by the strain history of the material through a
loading function φ ≤ 0 that governs the damage growth. In its local form, the loading function
depends only on the local strain components and history by a function g through:

Ḋ =

{
g (Y, Z) if φ (D(t), ε(t);Z(t′), t′ ∈ [0, t]) = 0 and φ̇ = 0 ;

0 if φ < 0, or φ = 0 and φ̇ < 0.
(2.13)

However, this local form loses its solution uniqueness when softening appears, resulting
in spurious localisation and mesh dependency issues. A well-posed problem can be recovered
by using the non-local implicit method (Peerlings et al., 1998). The main idea is to replace
one internal variable Zi ∈ Z (as damage, accumulated plastic strains...) by its non-local
counterpart Z̃i ∈ Z̃, which corresponds to a weighted average on neighbouring material points.
In other words, Z̃ can be computed by

Z̃ (X) =
1

V

∫
V
Z (Y )w (‖Y −X‖) dY , (2.14)

where V is a characteristic volume around pointX, and w (‖Y −X‖) is the normalised weight
function that depends on the distance between both points X and Y only. This function w
de�nes the in�uence of the neighbouring material points and satis�es

1

V

∫
V
w (‖Y −X‖) dY = 1. (2.15)

As the integral form of Eq. (2.14) would be di�cult to evaluate for non-regular geometries, it is
therefore replaced by a more convenient di�usion-like partial di�erential equations. Indeed, as
detailed by Peerlings et al. (2001), for speci�c weight functions, Eq. (2.14) can be transformed
into a di�erential form associated with a natural boundary condition:

Z̃ − l2c∇2Z̃ = Z in Ω , (2.16)

∇Z̃ · n = 0 on Γ . (2.17)

The local value acts as a source term and lc, the characteristic length of the material, governs
the spreading or the averaging volume V of the non-local value.

Adding this boundary value problem to Eq. (2.4) allows thus restoring the solution unique-
ness. Therefore, the damage evolution is rewritten in its non-local form in terms of the averaged
variable:

Ḋ =


g
(
Y, Z̃, Z

)
if φ

(
D(t), ε(t); Z̃(t′), Z(t′), t′ ∈ [0, t]

)
= 0

and φ̇ = 0;

0 if φ < 0, or φ = 0 and φ̇ < 0.

(2.18)

Equations (2.8) to (2.18) remain valid for any isothermal isotropic elastic behaviour. In this
work, we consider a linear isotropic elastic law enhanced with an implicit non-local isotropic
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damage evolution to complete the boundary value problem stated by Eqs. (2.4)-(2.5) and
(2.16)-(2.17). The constitutive relations are detailed in Section 2.1.3.

2.1.2 Cohesive band model

Let ΓI (and resp. ΓI0) be a discontinuity surface dividing the structural volume Ω (Ω0) into
two parts: Ω+ and Ω− (Ω+

0 and Ω−0 ). The unit normal nI to ΓI is de�ned oriented towards Ω+

as illustrated in Fig. 2.2, the unit tangential vectors sI and s′I de�ne with nI an orthonormal
local basis at the interface. The vectors NI, SI and S′

I are their counterparts in the reference
con�guration. At a given time t, the discontinuity path ΓI (resp. ΓI0) is divided into an
already cracked part ΓIC (ΓIC0) and an uncracked one ΓIU (ΓIU0), satisfying ΓIU ∩ ΓIC = 0
and ΓIU ∪ ΓIC = ΓI.

In the following equations, we introduce two operators to link variable values •+ and •−
from both sides of ΓI:

the jump operator: J•K = [•+ − •−] , and

the mean operator: 〈•〉 =
1

2
[•+ + •−] .

(2.19)

Pioneered by Barenblatt (1962) and Dugdale (1960), the cohesive zone model describes
the irreversible evolution of attraction forces tI between both separation planes in terms of
the crack opening JuK. In this case, the dissipated energy during the crack opening process
corresponds to the fracture energy per unit crack surface Gc:

Gc =

∫ δc

0
tI · d JuK , (2.20)

where δc is a critical opening value at which the complete fracture state is reached (i.e. when
the attraction forces vanished). The dissipated power is related to the rate of crack surface
creation Ȧ by

Φ̇surf = GcȦ. (2.21)

Hence, this model is intrinsically surfacic, by opposition to the bulk law which is volumic
and depends on a 3D-state. In this work, the idea exploited is to replace the classical cohesive
zone model by a cohesive band one (Remmers et al., 2013), representative of a thin band
surrounding the crack surface. In this way, the underlying model is close to the reality of
the failure process. Indeed, after a preliminary di�use damage stage, all the degradation for
ductile materials tends to localise in a thin band, before the appearance of macroscopic cracks
and the complete loss of mechanical integrity. Moreover, this method reconstructs a pseudo

𝒖(𝑿)

Ω0
+

Ω0
−

𝑵I 𝒖 𝑿, 𝑡

Ωb0

𝛤I0
𝒏I

𝛤IU

𝛤IC

Figure 2.2: A discontinuity surface ΓI0 in the reference configuration Ω0 (left) and the
current configuration Ω (right).
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𝒖cont(𝑿) HD(𝑿) 𝒖(𝑿)𝒖(𝑿) = +

Ω0
− Ω0

+ 𝑿I

𝑿 ⋅ 𝑵I

𝛤I0

𝒖(𝑿)

(a)

𝒖cont(𝑿) HB(𝑿) 𝒖(𝑿)𝒖(𝑿) ≃ +

Ω0
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+

𝑿 ⋅ 𝑵I

𝛤I0 𝑿I

Ωb0 𝒖(𝑿)

(b)

Figure 2.3: (a) Discontinuous displacement field decomposition around the crack surface
ΓIC0 into a smoothed (continuous) part ucont. (X) and a jump or discontinuous one Ju (X)K.
(b) With the cohesive band approximation, the discontinuous part is smeared through a
numerical thin band Ωb0. The displacement values at both crack sides, u− and u+, are

obtained by respectively u− = u−
cont. + u−

b and u+ = u+cont. + u+
b .

3D-state at the interface and harmonises itself with the volumic nature of the bulk law, thus
including naturally triaxiality e�ects.

Similarly to the work of Remmers et al. (2013), the displacement �eld u (X) inside the
volume can be conveniently separated as illustrated in Fig. 2.3a into a smoothed (continuous)
part ucont. (X) and a jump or discontinuous one Ju (X)K according to:

u (X) = ucont. (X) + HD (X) Ju (X)K , (2.22)

with the Heaviside's function HD (X)

HD (X) =

{
0 if X ∈ Ω−0 ;
1 if X ∈ Ω+

0 .
(2.23)

By using the cohesive band model, the discontinuity surface is assumed to be smoothed
and smeared through a numerical thin band Ωb0 of thickness hb (Huespe et al., 2012) as
shown in Fig. 2.3b. Without losing any generality, ΓIC is assumed to be locally planar and it
corresponds to the mid-plan of the encompassing band Ωb0. The displacement �eld u (X) is
thus rewritten as

u (X) = ucont. (X) + HB (X) Ju (X)K , (2.24)

with the function HB (X) corresponding to a piecewise linear-step:

HB (X) =


0 if X ∈ Ω−0 rΩb0;
(X −XI) ·NI

hb
+

1

2
if X ∈ Ωb0;

1 if X ∈ Ω+
0 rΩb0,

(2.25)

where XI is a point on the mid plan of the band, on the crack surface. By smearing the jump
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across the thickness, the displacement �eld remains continuous inside the band and allows us
to de�ne a strain tensor.

The band deformation gradient Fb is computed by derivating the band displacement �eld
of Eq. (2.24), leading to

Fb = I +
∂ucont. (X)

∂X
+

1

hb
Ju (X)K⊗NI +

(
(X −XI) ·NI

hb
+

1

2

)
∂ Ju (X)K
∂X

. (2.26)

The band, resulting from strain localisation, is assumed to be very thin regarding to its longi-
tudinal dimensions: the band thickness hb is �nite but negligible compared to others structural
dimensions. The determination of hb will be discussed in Section 2.2.4. The band deformation
gradient Fb deduced from Eq. (2.26) is thus approximated on both sidesX±I accordingly with
the chosen DG-discretisation (see Section 2.3) by

F±b = F± +
1

hb
JuK⊗NI +

1

2

∂ JuK
∂X

, (2.27)

where F± = F
(
X±I

)
. In this last equation, the displacement discontinuity Ju (X)K is assumed

constant along the thickness, i.e

∂ Ju (X)K
∂X

·NI = 0 , (2.28)

since the normal jump is of limited size with respect to the crack length.
For numerical stability reasons, when considering damage-enhanced elasticity2, the current

jump-enhanced bulk components FN, de�ned as

FN = F ·NI ⊗NI, (2.29)

are replaced by their counterparts at the crack insertion FNc, which are related to the de-
formation gradient at the crack insertion Fc in the same way as Eq. (2.29). Indeed, using
jump-enhanced current components implies a permanent stress equilibrium between the inter-
face and the bulk which is not always the case during dynamic integration. If this balance is
not satis�ed, the delay in the decrease of the bulk contributions could induce spurious damage
growth. In this chapter, F±b is thus approximated by

Fb
±
iJ = F±iJ + FNc

±
iJ − FN

±
iJ +

JuiKNIJ

hb
+

1

2

∂ JuiK
∂XJ

, (2.30)

or by using the local basis decomposition,

Fb
±
iJ = F±iJ + nIinIk

[(
Fc
±
kL − IkL

) δn

δmax
n

−
(
F±kL − IkL

)]
NILNIJ

+ sIisIk

[(
Fc
±
kL − IkL

) δt

δmax
t

−
(
F±kL − IkL

)]
NILNIJ

+ s′Iis
′
Ik

[(
Fc
±
kL − IkL

) δs

δmax
s

−
(
F±kL − IkL

)]
NILNIJ

+
JuiKNIJ

hb
+

1

2

∂ JuiK
∂XJ

.

(2.31)

In this last equation, δn, δt, and δs correspond to e�ective opening components along the
directions of the local basis (nI, sI, s

′
I), and δmax

n , δmax
t and δmax

s are their maximal values

2In the context of the porous plasticity presented in the next chapter, we do not need to introduce this
correction since plasticity stabilises the process.
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reached during crack opening, following

δmax
n = max

(
δn(t′), t′ ∈ [0, t]

)
;

δmax
t = max

(
δt(t
′), t′ ∈ [0, t]

)
; (2.32)

δmax
s = max

(
δs(t
′), t′ ∈ [0, t]

)
.

The introduction of the ratio coe�cients δn/δ
max
n , δt/δ

max
t , and δs/δ

max
s allows recovering a

deformation gradient equal to the identity in case of unloading up to crack closing in each
direction of the local basis (nI, sI, s

′
I). To avoid an indetermination in case of unloading just

after crack insertion, an o�set δ0 is added to the e�ective openings δn, δt, and δs at crack
insertion. Practically, the e�ective opening in the di�erent directions read

δn = JuK · nI + δ0, δt = JuK · sI + δ0, and δs = JuK · s′I + δ0. (2.33)

The value of δ0 is �xed around 10−3hb, to be small enough in order to avoid spurious jump
o�set without hurting numerical convergence or stability.

In a similar way as to derive the bulk Cauchy strain tensor ε in Eq. (2.2), its band
counterpart εb is derived from the band deformation gradient Fb following

εb =
1

2

[
Fb + Fb

T
]
− I. (2.34)

Afterwards, the stress state σb inside the band is computed from the constitutive bulk law in
its local version since the material in the band has a uniform internal variable state across its
thickness. So, by similarity to Eq. (2.7), one has:

σb(t) = σb

(
εb(t);Z(t′), t′ ∈ [0, t]

)
, (2.35)

where the damage evolution is described by a local damage model similar to Eq. (2.13):

Ḋ =

{
g (Y, Z) if φ (D(t), εb(t);Z(t′), t′ ∈ [0, t]) = 0 and φ̇ = 0 ;

0 if φ < 0, or φ = 0 and φ̇ < 0.
(2.36)

At the crack initiation occurring at time tc, for a deformation gradient Fc and a Cauchy strain
tensor εc, the damage and internal variables are initialised from the material state at cracking
onset in order to avoid stress discontinuity and to conserve history continuity. The cohesive
traction force is now recovered by:

tI = σb · nI. (2.37)

By this way, the values of the cohesive forces are dependent on the in-plane stretch components
and using the behaviour of that band as a cohesive law allows the triaxiality e�ects to be
introduced during the last stage of failure within a formalism similar to a cohesive zone model.

2.1.3 Implicit non-local damage model for isotropic elasticity

All previous relations are applicable to elastic isothermal material laws with isotropic damage
models in a small deformation setting and can be particularised for a speci�c material be-
haviour. We assume here linear isotropic elasticity modi�ed to take into account the isotropic
damaging process. By considering an isotropic damage model and a constant elastic tensor
for linear elasticity, the free energy introduced in Eq. (2.8) becomes

ψ (ε, D) =
1

2
(1−D) ε :H : ε, (2.38)
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whereHD is replaced by (1−D)H, introducingH as the Hooke's tensor of the virgin material.
The partial derivatives of the free energy yield the equations for the Cauchy stress tensor and
the energy release rate

σ = ∂ψ
∂ε = (1−D)H : ε = (1−D) σ̂;

Y = − ∂ψ
∂D =

1

2
ε :H : ε,

(2.39)

by using the concept of e�ective Cauchy stress tensor σ̂ introduced by Lemaitre et al. (2009).
These de�nitions are compatible with constraints resulting from Eq. (2.11) as long as D is
semi-monotonically increasing, considering the positive de�nite nature of the Hooke's tensor.

The evolution of the damage D, described by Eq. (2.18), is governed by the strain history
of the material through an historical parameter κ. It corresponds to the maximum equivalent
strain reached during the material history. The loading function in Eq. (2.18) reduces to

φ(ẽ, D, κi) = ẽ− κ(κi, D) ≤ 0. (2.40)

In this formula, ẽ is a non-local equivalent strain and κi is the initial threshold, limiting the
domain of linear elasticity. The local equivalent strain e is de�ned as the norm of the positive
principal strain components ε+i

e =

√ ∑
i=1,2,3

(
ε+i
)2
. (2.41)

This way, only the tensile contributions are included while keeping the e�ects of multi-axial
tension. The non-local equivalent strain �eld is then obtained by solving the di�usion equation
(2.16), which is rewritten as

ẽ− l2c∇2ẽ = e , (2.42)

where lc plays the role of the characteristic length of damage di�usion extension. Its link with
hb will be discussed in Section 2.2.4. The di�usion equation is completed with the natural
boundary condition (2.17) which is rewritten as

∇ẽ · n = 0 . (2.43)

In this work, the damage law is a power-law, de�ned by two exponents: α and β. The
damage evolution is triggered at κi and failure occurs when the strain reaches the critical value
κc:

Ḋ (κ) =


0 if κ < κi;

(1−D)

(
β

κ
+

α

(κc − κ)

)
κ̇ if κi < κ < κc;

0 if κc < κ.

(2.44)

By integration, an explicit function of D in terms of κ is available:

D (κ) =


0 if κ < κi ;

1−
(κi

κ

)β ( κc − κ
κc − κi

)α
if κi < κ < κc ;

1 if κc < κ.

(2.45)

After crack insertion, the damage evolution inside the band, described by the local form
(2.36), is now depending on the local equivalent band strain. The damage growth criterion
(2.40) thus becomes

φ (eb, D, κi) = eb − κ(κi, D) ≤ 0, (2.46)

where eb follows the variation of the local equivalent band strain ėb = ė, and is initiated at the
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crack insertion eb (tc) = ẽ (tc). Further details on the σb computation are given in Appendix
A.2.

2.2 Energetic equivalence during transition

In the damage to crack transition framework presented in the previous section, a new quantity
was introduced: the cohesive band thickness. In this case, this variable is not an additional
material parameter but this new numerical parameter can be determined from the underlying
non-local model to ensure the energetic consistency. To this end, we study in this section a
one-dimensional case in order to demonstrate the properties of the cohesive band model. In
particular, the relation between the non-local length and the cohesive band thickness is derived
to ensure energy consistency during the transition. The results can then be applied to general
3D simulations. Indeed, as the variations in the crack plane are negligible compared to those
normal to the crack plane, the problem can be locally reduced to a one-dimensional problem
at the crack front as suggested by Cazes et al. (2009).

2.2.1 Energy consideration

Several works have studied the equivalences between di�use damage models and cohesive zone
ones. For instance, Cazes et al. (2009) have shown that a cohesive zone can substitute for a
non-local damage model as long as the total dissipated energy is conserved.

Indeed, in a hybrid or coupled scheme, energy can be dissipated, on the one hand through
damage or others internal variables evolution inside the volume elements (dΦvol) following Eq.
(2.12) or, on the other hand, through the crack opening of a cohesive zone (dΦsurf) following
Eq. (2.21). At the end of the process, the total dissipated energy Φtot,h in a hybrid scheme is
the sum of both contributions:

Φtot,h = Φvol + Φsurf . (2.47)

By comparison with a pure non-local model where all energy dissipation Φtot,nl results from
the volume elements (i.e. dΦvol 6= 0, dΦsurf = 0), both frameworks (hybrid and pure non-local)
are equivalent in an energetic point of view if the dissipated energy in both cases is conserved
and corresponds to the physical fracture energy Φtot,phys. One has thus:

Φtot,phys = Φtot,nl = Φtot,h = Φvol + Φsurf . (2.48)

This last equation can be rewritten as

Φsurf = Φtot,nl − Φvol, (2.49)

which gives an equation for Φsurf and expresses the fact that the cohesive zone has to dissi-
pate the remaining energy not yet dissipated by the non-local model to ensure an energetic
equivalence between both frameworks.

2.2.2 One dimensional problem setting

Let us assume that the body Ω reduces to a uniform bar of length L and constant section A as
represented on Fig. 2.4. Displacements are prescribed at the extremities (u(0, t) = ū0(t) = 0
and u(L, t) = ūL(t) with ūL(0) = 0). During the traction test assumed to occur under quasi-
static conditions and without body forces, a strain localisation and �nally a crack appear at
xI = L/2, where x is the axial coordinate varying in [0, L].
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Figure 2.4: Geometry of the uniform 1D bar.

2.2.2.1 Non-local problem

Due to the geometry, the Cauchy stress tensor reduces to σxx = σ with all the others compo-
nents vanishing. The equilibrium equations (2.4) enforce a constant stress value σ along the
bar and the Hooke's law becomes

σ = [1−D (ẽ(x))]Eε(x), (2.50)

where E is the Young's modulus, and Eq. (2.2) is rewritten as

ε(x) =
∂u(x)

∂x
. (2.51)

This strain is linked to the boundary conditions by a compatibility equation:∫ L

0
ε(x)dx = u|x=L = ūL(t). (2.52)

The non-local problem presented by Eqs. (2.42) and (2.43) reduces to

ẽ(x)− l2c
∂2ẽ(x)

∂x2
= e(x) with

∂ẽ(x)

∂x

∣∣∣∣
x=0,L

= 0. (2.53)

For a uni-axial traction, the equivalent strain e(x) corresponds to ε(x). This di�erential
problem is equivalent to Eq. (2.14) with the Green functionsWG(x, y) used as weigth functions,
leading to

ẽ(x) =

∫ L

0
WG(y, x)e(y)dy. (2.54)

For the one-dimensional bar problem, the corresponding Green functions (Peerlings et al.,
2001) read

WG(x, y) =
1

2lc
exp

[
−|x− y|

lc

]
+WG−BC(x, y), (2.55)

with WG−BC(x, y) depending on the boundary conditions

WG−BC(x, y) =
C1(y)

2lc
exp

[
x

lc

]
+
C2(y)

2lc
exp

[
L− x
lc

]
, (2.56)

where

C1(y) =
2 cosh

[
y
lc

]
exp

[
2L
lc

]
− 1

and C2(y) =
2 cosh

[
L−y
lc

]
exp

[
2L
lc

]
− 1

. (2.57)



22 Chapter 2. Transition in small strain elastic regime

Finally, the damage evolution is computed from Eq. (2.45) with the damage growth criterion
(2.40) and with κ (t) = max (e (t′) , t′ ∈ [0, t]).

Using Eqs. (2.38), (2.50) and considering a uniform value of σ along the bar, the increment
of the internal work dWint and the free energy Ψvol stored in the system are written as

dWint = A

∫ L

0
dWintdx = A

∫ L

0
(σdε) dx = σAdūL,

Ψvol = A

∫ L

0
ψdx = A

∫ L

0

1

2
σε(x)dx =

A

2
σūL,

(2.58)

and the dissipated energy inside the bar can be obtained as follows

dΦvol = dWint − dΨvol = AσdūL −
A

2
d (σūL) =

A

2
(σdūL − ūLdσ) . (2.59)

2.2.2.2 Cohesive band model

When a crack is inserted, a discontinuity JuK in the displacement �eld is introduced at the
centre of the localisation zone. The damaging process concentrates inside the cohesive zone
while the remaining part of the bar is elastically unloaded. Thus the compatibility condition
becomes:

ūL =

∫ L

0
ε(x)dx+ JuK . (2.60)

During this process, the damage is only increasing at the crack surface in a local way as
expressed by Eq. (2.13) and depends on the band strain. The band strain is obtained by
applying Eq. (2.31) in the case of a monotonically increasing jump:

εb = εc(
L

2
) +

JuK
hb

, (2.61)

where εc is the strain value at crack initiation. The bulk material is then elastically unloaded
whilst the damage distribution in the volume remains constant and equal to the damage
distribution Dc (x) reached at the insertion of the cohesive band. The equilibrium equation
thus reads

σ = (1−Dc (x))Eε(x) = σb = (1−Db (εb))Eεb. (2.62)

Following the work of Wu, Becker, and Noels (2014), the free energy associated with the
crack surface in a one-dimensional setting is assumed to be stated under the form Ψsurf =
Ψsurf (JuK ;Z), or in other words, to be dependent on the jump and some internal variables Z.
If the material unloading is linear elastic, the closing of the cohesive band follows the same
non-dissipative behaviour. The free energy reduces thus to

Ψsurf =
A

2
σ JuK , (2.63)

and, using the work done by the cohesive force dWsurf = Aσd JuK, the energy dissipation is
equal to

dΦsurf = dWsurf − dΨsurf = Aσd JuK− A

2
d (JuKσ) =

A

2
(σd JuK− JuK dσ) . (2.64)

2.2.3 Semi-analytical resolution of the localisation problem

The equations for both cases (non-local and hybrid frameworks) have been simpli�ed in the
previous paragraphs to a one-dimensional case. Such a system of equations has been solved by
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Wu, Becker, and Noels (2014) using a cohesive zone model (instead of a cohesive band model)
by assuming that the transition occurs at a damage value close to one. In this work, a more
general solving strategy is developed in order to extract the cohesive band behaviour and to
deduce an appropriate band thickness value.

2.2.3.1 Non-local problem

The problem considers as unknowns the strain �eld, which is discretized and represented by
its n discrete values. From the discrete strain �eld εi , i = 1, ..., n, the non-local strain is
computed by using the convolution of Eq. (2.54) and therefore the damage �eld and the stress
�eld σi are obtained from Eq. (2.45) and Eq. (2.50), respectively. As unstable branches can
appear, the equations are formulated to involve an arc-length method (de Borst et al., 2012;
Riks, 1979) to be able to capture snap-back behaviours. Concretely, an additional unknown,
a loading parameter λ, is added, bringing the total number of unknowns to n+ 1. The system
of n+ 1 equations can be rewritten under a residual form r

(
εi , λ

)
as

r
(
εi , λ

)
=


σi+1 − σi for i = 1, ..., n− 1,∫ L

0
ε(x)dx− λv̄,∑

j

(
∆εj

)2
+ ϑ2∆λ2v̄2 −∆l2,

(2.65)

where the �rst n − 1 equations correspond to the static equilibrium, the next one to the
compatibly equation, and the last one is introduced by the arc-length method to control the
loading variation. In this last equation, ϑ is a numerical scaling parameter, v̄ is a characteristic
displacement v̄ = ūL/λ which is associated with the loading parameter λ, and ∆l is the arc-
length. In the last equation, ∆εj and ∆λ correspond to the increments respectively of the jth

discrete strain value and of the loading parameter between two consecutive steps. The integral
in Eq. (2.65) is computed using the trapezoidal rule.

A predictor-corrector scheme with an iterative Newton-Raphson procedure is applied to
solve the system, with the tangent matrix Kal of the problem reading

Kal =


∂σi+1

∂εj
− ∂σi

∂εj
0

∂

∂εj

∫ L

0
ε(x)dx −v̄

2∆εj 2ϑ2∆λv̄2

 , (2.66)

wherein the partial derivatives are computed by perturbation. As two possible solutions,
namely elastic unloading or damage increase, always exist, the last one is promoted by the
predictor that gives the guess state of the �rst iteration. Once the system has converged, the
arc-length value ∆l is adapted in terms of the number of iterations needed to converge.

2.2.3.2 Crack insertion

After crack insertion, the system is modi�ed to take into account the discontinuity and the
linear elastic unloading of the structure. As the bulk behaviour is now linear (linear elastic
unloading), the problem reduces to only two unknowns: the total bulk displacement

∫ L
0 ε(x)dx

and the crack opening JuK. After transition, the jump, initially zero, is increased at each step
and the corresponding cohesive band strain, damage, and stress are computed using Eqs.
(2.61), (2.45) and (2.62), respectively. Knowing the axial stress, the bulk state can be deduced
from its sti�ness as it behaves linearly with respect to the stress.
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Figure 2.5: Stress response (a) for a uniform strain state, and (b) with localisation for
different values of lc.

2.2.4 Band thickness computation and relation with the damage process

zone

As both cases (non-local and hybrid framework) can now be solved, we are able to compare
both model dissipations, to characterise the behaviour of the cohesive band model, and to
compute the energetically-consistent value of the band thickness. As a numerical example, the
material properties are assimilated to short glass-�ber-reinforced polypropylene (short-GFRP)
(Geers, 1997). In this case, the Young's modulus E has a value of 3.2 [GPa]. The damage
law (2.44) parameters are κi = 0.011, κc = 0.5, α = 5.0, and β = 0.75. Figure 2.5a shows the
stress response in the absence of strain localisation e�ect, or in other words, with a uniform
strain value. By derivating Eq. (2.50), the damage value Dsoft at which strain softening regime
begins is given by

Dsoft = D (κsoft) = 0.51 with κsoft = max

(
(1− β)κc

1− β + α
; κi

)
. (2.67)

In order to trigger the localisation, a defect at the middle of the bar has been introduced
in a similar way as by Dufour et al. (2008) by weakening by 1% the Young's modulus E on
1% of the bar length (at the bar centre). Figure 2.5b shows that the results are dependent
on the ratio lc/L: a lower value of this ratio induces a more brittle behaviour. The fracture
process can be divided into two parts. Before localisation, a homogeneous damage evolution
takes place inside the bar, according to the curve on Fig. 2.5a. Then, during the softening, a
localisation zone develops around the defect, in which the damage grows, while other parts of
the bar are elastically unloaded.

In the following analyses, the bar is taken of unitary length, L = 1 [m], and the non-local
length is taken equal to 0.05L.

2.2.4.1 In�uence of the band thickness hb

Now, we introduce a discontinuity once a critical damage value Dc is reached. To have mean-
ingful results, this value has to be high enough above Dsoft in order to be in the strain softening
regime. Here, Dc is taken equal to 0.8. At this point, 40% of the total fracture energy in the
reference non-local case, Φtot,nl, has already been dissipated (this value corresponds to Φvol

in Eq. (2.47)) and a cohesive band is introduced. Figure 2.6a illustrates the e�ect of the
band thickness on the stress response. By analogy to a classical cohesive zone, equivalent
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Figure 2.6: (a) Stress response for the hybrid framework with a cohesive band introduced
at Dc = 0.8 and different values of hb. (b) The corresponding traction-separation laws.
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Figure 2.7: Ratio of the dissipated energy by the transition scheme Φtot,h compared to the
reference value Φtot,nl (i.e. the pure non-local case) (a) in terms of the band thickness for

Dc = 0.8 and lc = 0.05L and (b) in terms of the non-local length.

traction-separation laws can be extracted for comparison as shown in Fig. 2.6b. One can see
that a decreasing value of hb leads to a more brittle behaviour of the bar. When hb tends to
0, the cohesive band is almost perfectly brittle. The corresponding dissipated energy Φtot,h is
plotted in Fig. 2.7a and shows a linear dependency to hb. In particular, the contribution of the
cohesive band to the dissipation vanishes for a vanishing band thickness. For this given critical
damage value (Dc = 0.8), the conservation of the total dissipated energy (Φtot,h (hb) = Φtot,nl)
is obtained for hb = 5.4lc.

2.2.4.2 In�uence of the non-local length on the band thickness

As the non-local length is directly related to the spreading of damage, the dissipated energy
increases linearly with lc as long as there is no boundary e�ects, or in other words, as long as
the damage process zone is much smaller than the bar length. The dissipated energy shown
in Fig. 2.7b is conserved if the ratio hb/lc is kept constant for small values of lc/L.
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Figure 2.8: (a) The fracture energy which remains to be dissipated by the cohesive model
G∗

c in terms of damage value of crack insertion. (b) The corresponding band thickness in
terms of damage value of crack insertion.

2.2.4.3 In�uence of the critical damage on the band thickness

The fracture energy which remains to be dissipated by a cohesive model G∗c , divided by the
non-local characteristic length lc to remove its in�uence, is represented in Fig. 2.8a in terms
of the damage at crack insertion. The in�uence of the damage value at crack insertion on hb

is shown in Fig. 2.8b. The lowest meaningful value of Dc here is governed by the localisation
onset, occurring practically at the uniform damage value observed far from the crack tip (here
at D = 0.62), which is slightly higher than the theoretical (and minimal) value Dsoft = 0.51.
This o�set is due to the localisation latency and can be reduced if the ratio lc/L is lowered.
For moderate values of critical damage transition point, hb is constant. Then, as Dc tends to
one, the corresponding value of hb starts growing rapidly. This unphysical behaviour can be
explained by the involved non-local model: high strains values at the centre produces spurious
damage di�usion and energy dissipation. This issue can be addressed by using a variable
characteristic length as by Geers et al. (1998).

2.2.4.4 In�uence of the damage model on the band thickness

In Figs. 2.9a and 2.9b, the dissipated energy is represented in terms of respectively the damage
exponent α and of the initial damage threshold κi for the pure non-local model and for the
CBM with Dc = 0.8. For the damage exponent α, the error in the energy due to the insertion
of the CBM is within 2% for α ∈ [3.5; 8]. This range of α ensures that localisation has occured
at the crack insertion. For lower values of α crack insertion occurs before localisation regime,
leading to a higher error on the dissipated energy. For the second parameter, the relative
error on the dissipated energy is under 3% for κi ∈ [0.005; 0.018]. As Dsoft increases with
smaller κi, a higher error is expected for such values (9.6% for κi = 0.001 for which the
corresponding Dsoft is equal to 0.927). Therefore, as long as the CBM is inserted during the
localisation regime, the band thickness is independent of the damage model parameters as
those e�ects are already included in the computation of the cohesive response by reusing the
same constitutive relations.

2.2.4.5 Determination of the cohesive band thickness summary

In this subsection we have studied the e�ect of the cohesive band thickness of the hybrid
CDM/CBM framework on the failure of a one-dimensional bar under tension. It has been
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Figure 2.9: The dissipated energy for non-local model (a) in terms of the damage exponent
α and (b) in terms of the initial damage threshold κi.

shown in Fig. 2.6 that increasing the numerical band thickness hb results in increasing the
ductility of the material since the energy dissipated by the model increases, see Fig. 2.7a.
However in order to avoid, on the one hand, the introduction of a new parameter, and, on
the other hand, a method that would be sensitive to the point at which the damage to crack
transition occurs, we have ensured energy consistency of the hybrid CDM/CBM with a pure
non-local model, i.e. without crack insertion. Indeed, it has been shown that for the damage
law (2.44), by selecting hb = 5.4lc, the hybrid CDM/CBM framework dissipates the same
amount of energy than the pure non-local model for di�erent values of the non-local length lc,
for di�erent points of the crack insertion, and for di�erent possible parameters of the damage
law. The numerical band thickness hb is thus directly related to the non-local length lc and
is no longer a model parameter. However, the non-local length lc remains a model parameter
that a�ects the softening response. Moreover, if another damage model is used, the numerical
band thickness hb should be evaluated again in order to ensure energy consistency.

2.3 Discontinuous Garlerkin framework and �nite element dis-

cretisation

In this section, the implementation of the hybrid energetically-consistent CDM/CBM scheme
inside a Discontinuous Galerkin (DG) framework is detailed. In particular, the weak form
is developed from the strong form, leading to interface terms related to the DG formalism.
Then, based on a �nite element discretisation, a di�erential set of equations is obtained and
integrated either following (i) a quasi-static implicit scheme, (ii) the α− generalised method
or (iii) a coupled implicit-explicit scheme. The numerical properties of these schemes are also
summarised.

2.3.1 Discontinuous Galerkin framework

The discontinuous Galerkin method is designed to solve various kinds of partial di�erential
equations. Similarly to classical continuous Galerkin �nite element methods, the geometry is
also approached by polyhedral elements. Inside them, the interpolated �eld is approximated
by nodal shape polynomial functions associated to each node. However, the support of a node
is limited to the element to which it belongs. While the intra-element continuity is warranted
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by the shape functions, the inter-element continuity is therefore, not strongly but, weakly
ensured by compatibility and penalty terms introduced by the DG formalism. The inherent
presence of interface discontinuities allows then naturally initiating and propagating a large
number of cracks simultaneously without numerical problems by just switching the DG terms
by the cohesive law. Despite the increase of the system size due to the formalism, the high
scalability of the method mitigates this drawback. Indeed, the decoupling between elements
eases parallel implementation. The following lines explain how the non-local DG formalism
developed by Wu, Becker, and Noels (2014) is extended to the hybrid CDM/CBM scheme.

2.3.1.1 Strong form of equations

The evolution of the body Ω through time, determined by the �eld (u, ẽ) , is assessed by the
set of partial di�erential equations (2.4) and (2.42) associated with boundary conditions (2.5)
and (2.43).

Cracked ΓIC and uncracked ΓIU interface surfaces are present inside the structural volume.
As the exact solution

(
uexact, ẽexact, σexact, ∇ẽexact

)
is continuous on the uncracked surfaces,

one has q
uexact

y
= 0,

q
σexact

y
= 0,q

ẽexact
y

= 0,
q
l2c∇ẽexact

y
= 0 on ΓIU.

(2.68)

For the cracked parts, the interface traction tI between both crack lips is determined by

JtIK = 0; tI = 〈σb〉 · nI;
(
l2c∇ẽexact

)
· nI = 0 on ΓIC, (2.69)

which express the equilibrium of the traction forces over the interface, and their evaluation
from the cohesive band model (2.37). The last equation of Eq. (2.69) considers a cracked
surface as a free boundary in terms of the non-local variable, see a discussion in the work of
Wu, Becker, and Noels (2014).

2.3.1.2 Weak form of equations

The body Ω of external surface Γ is divided in �nite elements Be of boundary Se . The internal
boundary of the elements ΓI = ∪eSe \Γ is divided between cracked interface surfaces ΓIC and
uncracked ones ΓIU, satisfying ΓIC ∪ ΓIU = ΓI and ΓIC ∩ ΓIU = ∅. Between each pair of
neighbouring elements (arbitrary called Be+ and Be−), an interface element Ss is inserted on
their common boundary surface Ss = Se+ ∩ Se−.

In a discontinuous Galerkin approach, an element-wise continuous polynomial approxima-
tion of (u, ẽ) is sought. Consequently, the test functions (wu, wẽ) are also continuous inside
the elements and discontinuous across them, i.e. (wu, wẽ) ∈ H1 (Be) and (wu, wẽ) ∈ L2 (Ω).3

The weak form is obtained by multiplying the di�erential equations by the test functions and
by performing an integration by parts over each element. Indeed, as discontinuities are present
inside the body, the integration has to be performed element-wise, resulting in the emergence
of supplementary terms, so-called consistency terms, on the interfaces in comparison with clas-
sical continuous Galerkin methods. Similarly to the work of Wu, Becker, and Noels (2014),

3In the former, H1 corresponds to the Hilbert space and L2 to the square-integrable function space
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one thus has∫
Ω

(ρwu · ü+∇wu : σ) dV +

∫
ΓIC

JwuK · 〈σb〉 · nIdS +

∫
ΓIU

JwuK · 〈σb〉 · nIdS

=

∫
Ω
wu · bdV +

∫
ΓN

wu · t̄NdS, (2.70)∫
Ω

(
wẽẽ+ l2c∇wẽ ·∇ẽ

)
dV +

∫
ΓIU

JwẽK
〈
l2c∇ẽ

〉
· nIdS =

∫
Ω
wẽedV.

Compatibility equations u+−u− = 0 and ẽ+− ẽ− = 0 are weakly added to the formulation
(2.70) in order to enforce weakly the inter-element continuity on ΓIU and the stability of the
system: the so-called symmetrisation and stability terms are added at the element interfaces.
The �rst one ensures an optimal convergence rate with respect to the mesh size in the case
of uncracked bodies while the second one ensures the stability throught a su�ciently high
quadratic penalty term. Introducing hs as the mesh characteristic size (this is not the mesh
size lmesh since hs depends on the polynomial approximation) and βs the penalty parameter,
the weak form (2.70) is reformulated as �nding the �eld (u, ẽ) such that

∫
Ω

(ρwu · ü+∇wu : σ) dV +

∫
ΓIC

JwuK · 〈σb〉 · nIdS +

∫
ΓIU

JwuK · 〈σ〉 · nIdS

+

∫
ΓIU

JuK · 〈H :∇wu〉 · nIdS +

∫
ΓIU

JwuK⊗ nI :

〈
βs

hs
H
〉

: JuK⊗ nIdS

=

∫
Ω
wu · bdV +

∫
ΓN

wu · t̄NdS, (2.71)∫
Ω

(
wẽẽ+ l2c∇wẽ ·∇ẽ

)
dV +

∫
ΓIU

JwẽK
〈
l2c∇ẽ

〉
· nIdS +

∫
ΓIU

JẽK
〈
l2c∇wẽ

〉
· nIdS

+

∫
ΓIU

JwẽKnI

〈
βs

hs
l2c

〉
· nI JẽK dS =

∫
Ω
wẽedV,

is satis�ed for ∀ (wu, wẽ) kinematically admissible.

2.3.1.3 Finite element discretisation

Now, the �nite element discretisation is derived from the weak form (2.71). The displacement
�eld u (X) and the non-local e�ective strain ẽ (X) are interpolated by the same nodal shape
functions, as well as their respective test functions in the volume element Be :

u (X) =
Nn∑
a=1

Na (X)ua , ẽ (X) =
Nn∑
a=1

Na (X) ẽa , and

wu (X) =
Nn∑
a=1

Na (X) δua , wẽ (X) =
Nn∑
a=1

Na (X) δẽa ,

(2.72)

where Na (X) are the shape functions evaluated at node a, and Nn the number of nodes per

volume elements. The unknowns are gathered inside the nodal vectors qa =
[
(ua)T ẽa

]
T

associated with each node a, and inside a global vector q =
[
uT ẽT

]
T for all the unknowns of

the mesh. Applying the discrete �elds (2.72) to the weak form (2.71), and taking into account
the inter-element discontinuities, we obtain this following set of di�erential equations{

Mü+ fu int (q) + fu I (q) = fext

fẽ int (q)− fe int (q) + fẽ I (q) = 0
∀t > 0, (2.73)
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with the following initial conditions

ua (t = 0) = 0, u̇a (t = 0) = ˙̄ua
0 , (2.74)

where ˙̄ua
0 is the nodal vector of initial velocities. In the system (2.73), M corresponds to the

discretised mass matrix; the vectors fu int, fu I, and fext state respectively for the internal,
interface, and external forces related to the displacement �eld, and the vectors fẽ int, fe int,
and fẽ I state respectively for the non-local internal, local internal, and interface forces related
to the non-local �eld. The expressions, development, and computation of these vectors can be
found in Appendix A.3.

The numerical properties connected to spatial discretisation of the presented framework in-
herit from those of the interior penalty formulation for elliptic problems (Noels and Radovitzky,
2006), as discussed by Wu, Becker, and Noels (2014). During crack propagation, the dissipated
energy and the crack path converge for unstructured meshes as the cohesive band model can
be assimilated to an extrinsic cohesive zone, for which such a property has been shown by
Molinari et al. (2007). As large systems need to be solved, the presented framework is imple-
mented in parallel inside Gmsh (Geuzaine and Remacle, 2009) using the scalable face-based
ghost element implementation, detailed by Wu et al. (2013).

In all the simulations of this work, parabolic Lagrangian 6-node triangular or 10-node
tetrahedron bulk elements are used respectively for 2D and 3D computations. Those elements
are under-integrated following the Gauss quadrature rule with respectively 3 and 4 Gauss
points. Regarding the interface elements, 3-node segment and 6-node triangular elements are
involved with a full integration (i.e. involving respectively 3 and 6 Gauss points) to avoid
spurious penetration modes, as explained by Noels and Radovitzky (2008).

2.3.1.4 Damage to crack transition

Inside this DG framework, both cracked and uncracked interface terms are integrated through
the interface elements Ss , present from the beginning and inserted between each volume el-
ement. Once the criterion of crack initiation is reached at a Gauss point on ΓIU, this one is
thereafter associated to ΓIC and the DG terms are replaced by the cohesive one. Since only
the computation of the elementary force term is modi�ed at crack insertion, topology or mesh
modi�cations are avoided, which makes the implementation computationally e�cient.

The damage is not directly used as a crack insertion criterion: it is based on the norm of the
e�ective traction forces at the interface (Wu et al., 2013). This criterion avoids simultaneous
crack insertion around an element of quasi-constant damage value and adds a directional
component. Practically, switch occurs if

1

1−D

√
‖tI · nI‖2 +

1

β2
c

‖tI − ‖tI · nI‖nI‖2 > σ̂c and if tI · nI > 0, (2.75)

where ‖•‖ states for the norm, tI = σ · nI for the surface traction, σ̂c for the critical e�ective
stress value, and βc for the ratio between opening mode I and mode II. Practically, this
parameter is set as the ratio between fracture toughness of mode I and mode II. A distribution
is applied on σ̂c (a scatter of 1% around the mean value σ̂c) for explicit simulations in order
to capture crack propagation as proposed by Zhou and Molinari (2004).

During crack propagation, once the majority of the Gauss points of an interface element
have switched to the cohesive band model, the CBM is also introduced on the remaining Gauss
points of that interface element although Eq. (2.75) is not satis�ed yet. By this way, spurious
rotation of elements around one point/line is avoided. Once an interface element is completely
opened, damage evolution is blocked inside the neighbouring bulk elements as they should be
elastically unloaded. Moreover, the bulk local equivalent strain evolution, e of Eq. (2.42), is
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𝒖𝑎 𝑘 , ǁ𝑒
𝑎 (𝑘)

Compute stress quantites
(𝝈, ǁ𝑒) or 𝝈b
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• 𝛜 and ǁ𝑒 on Ω0;
• 𝛜, ǁ𝑒, 𝒖 , 𝜵 𝒖 on ΓI0
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Figure 2.10: The implicit monolithic scheme structure.

limited to the maximal value it ever reached in order to avoid spurious damage spread and
crack insertion around the element, but also to force elastic unloading. In case of crack closing
and penetration, a normal quadratic penalty force is added. This form is preferred to a linear
one in order to avoid tangent discontinuities and improve convergence.

2.3.2 Numerical time integration

The set of di�erential equations (2.73) has to be integrated. Di�erent schemes are considered in
this work. On the one hand, the system can be integrated in a fully coupled iterative procedure
either under quasi-static loading assumption as detailed in Section 2.3.2.1, or considering the
dynamic e�ects using the α-generalised method (Chung and Hulbert, 1993) as detailed in
Section 2.3.2.2. On the other hand, a weakly coupled explicit-implicit scheme can be used as
explained in Section 2.3.2.3.

2.3.2.1 Quasi-static implicit integration scheme

The whole procedure is schematised on Fig. 2.10. Under the assumption of quasi-static
loading, the inertia or acceleration force term Mü in the set of di�erential equations (2.73)
can be neglected. In absence of strain rate e�ects, the time has therefore here only a role
of chronological ordering and the system is integrated in an incremental way. An iterative
Newton-Raphson procedure is used to compute the equilibrium state at each discrete time
step tn+1 , given the system state at tn and the time step ∆t = tn+1 − tn . The system (2.73)
is rewritten in the residual form r

(
q(k)(tn+1 ), tn+1

)
r
(
q(k)(tn+1 ), tn+1

)
= fq

(
q(k)(tn+1 ), tn+1

)
, (2.76)

which corresponds to the force unbalance at time tn+1 . In this last equation, q(k)
(
tn+1

)
corresponds to the �elds values at iteration (k) and at time step tn+1 . fq (q (t)) states for the
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sum of the internal, external and interface force terms as

fq (q(t)) =

[
fu int (q(t)) + fu I (q(t))− fu ext(t)
fẽ int (q(t))− fe int (q(t)) + fẽ I (q(t))

]
. (2.77)

The Newton-Raphson linearisation reads

r
(
q(k+1 ), tn+1

)
= r

(
q(k), tn+1

)
+
∂r
(
q(k), tn+1

)
∂q

∣∣∣∣∣
q(k)

∆q(k)
(
tn+1

)
= 0 , (2.78)

or, again using the residual form (2.76),

∂fu int

∂u︸ ︷︷ ︸
Kuu int

∆u+
∂fu int

∂ẽ︸ ︷︷ ︸
Kuẽ int

∆ẽ+
∂fu I

∂u︸ ︷︷ ︸
Kuu I

∆u+
∂fu I

∂ẽ︸ ︷︷ ︸
Kuẽ I

∆ẽ = fext

(
tn+1

)
− fu int

(
q(k)

)
− fu I

(
q(k)

)
,

(2.79)
and,

∂fẽ int

∂u︸ ︷︷ ︸
Kẽu int

∆u+
∂fẽ int

∂ẽ︸ ︷︷ ︸
Kẽẽ int

∆ẽ− ∂fe int

∂u︸ ︷︷ ︸
Keu int

∆u− ∂fe int

∂ẽ︸ ︷︷ ︸
Keẽ int

∆ẽ+
∂fẽ I

∂u︸ ︷︷ ︸
Kẽu I

∆u+
∂fẽ I

∂ẽ︸ ︷︷ ︸
Kẽẽ I

∆ẽ

= fe int

(
q(k)

)
− fẽ int

(
q(k)

)
− fẽ I

(
q(k)

)
, (2.80)

in which the matrices K... are the contributions to the sti�ness matrix. Their expressions are
reported in Appendix A.4. The correction ∆q(k)

(
tn+1

)
is computed by solving the system

(2.79)-(2.80)

K
(
q(k)(tn+1 ), tn+1

)
∆q(k)

(
tn+1

)
= −r

(
q(k)(tn+1 ), tn+1

)
, (2.81)

with K, the sti�ness matrix. If explicitly written, (2.81) corresponds to

[
Kuu int + Kuu I Kuẽ int + Kuẽ I

Kẽu int −Keu int + Kẽu I Kẽẽ int −Keẽ int + Kẽẽ I

]
︸ ︷︷ ︸

K(q(k))

[
∆u
∆ẽ

]
︸ ︷︷ ︸
∆q(k)

=

[
fext

(
tn+1

)
− fu int

(
q(k)

)
− fu I

(
q(k)

)
fe int

(
q(k)

)
− fẽ int

(
q(k)

)
− fẽ I

(
q(k)

)] ,︸ ︷︷ ︸
r(q(k))

(2.82)

and its resolution for ∆q gives the new guess q(k+1 ) = q(k) + ∆q(k) at the end of the iteration
k. This Newton-Raphson procedure has to be repeated until the convergence is reached. To
ensure a well-conditioned system, a ratio is applied between the force equilibrium and the
non-local system. Finally, snap-back can be captured by considering a path following scheme
as introduced in Section 2.2.3.1.

The main advantage of the fully coupled implicit solving is that it is unconditionally stable.
However, implicit iterations are time-consuming. Convergence needs small time steps and
cannot always be reached, especially in case of local snap-backs, unstable crack propagations,
or in the case of the arising of new rigid body modes because of the full separation of the
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structure.

2.3.2.2 α-generalised implicit integration scheme

In this section, the set of equations (2.73) obtained previously is integrated through time using
the α-generalised method developed by Chung and Hulbert (1993). The unknowns at time
tn+1 and their time derivatives are approximated following

q
(
tn+1

)
= q (tn) + ∆tq̇ (tn) +

[
1
2 − β

]
∆t2q̈ (tn) + β∆t2q̈

(
tn+1

)
,

q̇
(
tn+1

)
= q̇ (tn) + [1− γ] ∆tq̈ (tn) + γ∆tq̈

(
tn+1

)
,

(2.83)

introducing β and γ as the Newmark integration parameters. From the force balance system
(2.73) weighted at time tn and tn+1 , a residual form r

(
q(k)(tn+1 ), tn+1

)
is obtained as

r
(
q(k)(tn+1 ), tn+1

)
= [1− αM]

[
M 0
0 0

]
q̈(k)

(
tn+1

)
+ αM

[
M 0
0 0

]
q̈ (tn)

+ [1− αF]fq
(
q(k)

(
tn+1

))
+ αFfq (q (tn))

, (2.84)

where q(k)(tn) is the nodal values vector of the �eld at iteration k and at time step tn. The
parameter αM weights the inertia forces expressed at time tn+1 and tn while αF scales the
sum of the internal, external and interface force terms fq (q(t)) de�ned by Eq. (2.77).

The iterative Newton-Raphson scheme is initialised by considering the initial acceleration
at tn+1 as null in Eq. (2.83). The new state at the iteration k + 1 is then obtained from the
correction ∆q(k)

(
tn+1

)
by

q(k+1)
(
tn+1

)
= q(k)

(
tn+1

)
+ ∆q(k)

(
tn+1

)
,

q̇(k+1)
(
tn+1

)
= q̇(k)

(
tn+1

)
+ γ

β∆t ∆q(k)
(
tn+1

)
,

q̈(k+1)
(
tn+1

)
= q̈(k)

(
tn+1

)
+ 1

β∆t2
∆q(k)

(
tn+1

)
.

(2.85)

This correction is computed by solving the system (2.81), using, instead of K, the following
tangent matrix S

S =
∂r

∂q
= [1− αM]

1

β∆t2

[
M 0
0 0

]
+ [1− αF]K (2.86)

where the sti�ness matrix K is de�ned in Eq. (2.82). The values of the four integration
parameters are determined in terms of the (in�nite) spectral radius ρ∞ in the work of Chung
and Hulbert (1993).

This numerical integration scheme is unconditionally stable, allowing large time steps and
mitigating the large CPU cost of the material law integration. Despite we do not focus on
dynamic e�ects in this work, the introduction of inertial e�ects has a stabilising e�ect on
the solution. They ease, for instance, to overcome local or global snap backs, unstable crack
propagations, or the arising of new rigid body modes due to dust elements.

2.3.2.3 Coupled explicit-implicit integration scheme

The �rst set of equations in the system (2.73) can be integrated with an explicit integration
scheme. The numerical method developed by Hulbert and Chung (1996) is considered here
because of its second-order accuracy and its controlled numerical damping. From the solution
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at time tn , the solution at the next time step tn+1 = tn + ∆t is obtained by

üa
(
tn+1

)
= 1

1−αM

Nn∑
b=1

(
M−1

)ba (
f b

ext (tn)− f b
u int (tn)− f b

u I (tn)
)
− αM

1−αM
üa (tn) ,

u̇a
(
tn+1

)
= u̇a (tn) + (1− γM) ∆tüa (tn) + γM∆tüa

(
tn+1

)
, and

ua
(
tn+1

)
= ua (tn) + ∆tu̇a (tn) +

(
1
2 − βM

)
∆t2üa (tn) + βM∆t2üa

(
tn+1

)
,

(2.87)

with the parameters αM, βM and γM depending on the sought numerical dissipation (Hulbert
and Chung, 1996).

Since there is no mass matrix associated to the non-local equation, the remaining system
has to be solved implicitly. By linearising the non-local equation (2.73) around the state q(k)

obtained at a given iteration k, one has in terms of the non-local increment ∆ẽ:

Kẽẽ∆ẽ = fe int

(
q(k)

)
− fẽ int

(
q(k)

)
− fẽ I

(
q(k)

)
, (2.88)

where

Kẽẽ =
∂fẽ int

∂ẽ︸ ︷︷ ︸
Kẽẽ int

− ∂fe int

∂ẽ︸ ︷︷ ︸
Keẽ int

+
∂fẽ I

∂ẽ︸ ︷︷ ︸
Kẽẽ I

. (2.89)

The expressions for these sti�ness matrices can be found in Appendix A.4. Taking advantage of
the unconditional stability of the implicit resolution of the non-local equations, these equations
are solved every 100 to 1000 time steps to avoid computational over-costs.

The main advantages of this weakly coupled scheme are its low-cost of step computation
and the lower restrictions due to convergence problem. However, a stability criterion on the
time step has to be respected to ensure method stability. Indeed, the explicit time integration
of the �rst set of equations in Eq. (2.73) using the Hulbert-Chung algorithm is conditionally
stable. The time step ∆t is bounded to satisfy a Courant-Friedrichs-Lewy (CFL) condition.
The stability criterion depends on the spatial DG-discretisation mesh size hs, the sound speed
cs, the stability parameter βs, and the stability non-dimensional frequency of the time inte-
gration method Ωs ≤ 2 (Hulbert and Chung, 1996). The CFL-condition reads ∆t < hsΩs

2cs
√
βs

(Noels and Radovitzky, 2008).

2.4 Numerical applications and triaxiality e�ects

In this section, the numerical properties of the developed non-local damage/cohesive band
model (CDM/CBM) transition are investigated through numerical examples. In particular,
the impact of the triaxiality e�ect is studied. During this section, the numerical predictions of
the hybrid CDM/CBM are compared with the results of the non-local scheme without crack
insertion (N-L), and with the results obtained with an hybrid scheme involving a (classical)
cohesive zone model (CDM/CZM) as developed by Wu, Becker, and Noels (2014). When
available, the numerical predictions are compared with phase �eld results or validated with
experimental results from the literature.

2.4.1 Slit plate

At �rst, the CDM/CBM is applied on a simple 2D slit specimen. After having veri�ed the
mesh insensitivity, the specimen is subjected to various loading ratio coe�cients in order to
show its sensibility of the method to triaxiality e�ects in contrast with the CDM/CZM model.

The 2D specimen consists in a square plate of length W = 40 [mm]. A thin elliptical hole
of major radius a/2 = 6 [mm] and minor one a/20 is introduced at its centre. The plate is
under plane strain condition along its thickness t. The geometry is illustrated in Fig. 2.11a.
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Figure 2.11: (a) The slit plate geometry with W = 40 [mm] and a = 12 [mm]; and (b) its
mesh.

Table 2.1: Material properties for short glass-fiber-reinforced polypropylene.

Elastic model properties, Eq. (2.38)
Young's Modulus E 3.2 [GPa]
Poisson ratio ν 0.28

Damage model properties, Eq.(2.44):
Initial damage threshold κi 0.011
Failure equivalent strain κc 0.50
Damage exponents α 5.0

β 0.75
Non-local model properties, Eq.(2.42):
Non-local length l2c 2.0

[
mm2

]

The plate is loaded by applying a force F̄y on the top boundary and a force F̄x = kF̄y on the
right boundary. The plate edges are constrained to stay straight while the ratio k between
the vertical and horizontal force is kept constant during each test. By varying the proportion
between the vertical and horizontal loading conditions, the stress triaxiality T (ratio pσ/σeq

between the pressure pσ = tr (σ) /3 and equivalent von Mises stress σeq) inside the system
evolves. The plate is uniformly meshed with 7058 6-node triangles of 0.8 [mm] mean size
(unless stated otherwise) as shown in Fig. 2.11b. These elements involve quadratic shape
functions for the displacement and the non-local �eld discretisations. The system is solved
using the implicit scheme detailed in Section 2.3.2.1 completed by a path following method in
order to capture a possible snap-back.

The material behaviour is assimilated to an isotropic non-local damage linear elastic model,
combined with a cohesive band model as described in Section 2.1.3 or with a cohesive zone as
done by Wu, Becker, and Noels (2014) for the sake of comparison. The material parameters
are reported in Table 2.1 (Geers, 1997; Wu, Becker, and Noels, 2014). The damage to crack
transition parameters for the hybrid CDM/CBM and CDM/CZM are listed in Table 2.2. The
damage to crack transition is triggered by an e�ective critical stress σ̂c, which is identical



36 Chapter 2. Transition in small strain elastic regime

Table 2.2: Damage to crack transition parameters for the slit plate.

Crack insertion criterion, Eq. (2.75):
E�ective critical stress σ̂c 280 [MPa]
Critical damage Dc 0.85
Mixed-mode ratio βc 0.87

Cohesive band model:
Band thickness hb 7.6 [mm]

Cohesive zone model (Wu, Becker, and Noels, 2014):
Remaining energy G∗c 21.4

[
kJ/m2

]

(a) lmesh =
3.20 [mm], 536

elements

(b) lmesh =
1.60 [mm], 1820

elements

(c) lmesh =
0.8 [mm], 6944

elements

Figure 2.12: The mesh of the slit plate with different uniform mesh sizes lmesh.

for both hybrid frameworks. An approximate corresponding value4 of damage Dc at which
transition occurs can be obtained by comparison with the one-dimensional case. The e�ective
critical stress σ̂c is here chosen to insert crack at a damage value around 0.75 for a uniaxial
loading, in order to highlight the di�erences between the three models. The fracture energy
G∗c of the cohesive zone model, corresponding to the remaining energy needed to be dissipated
after crack transition, is extracted from the one-dimensional simulation as shown in Fig. 2.8a.
The values used here are slightly higher than the corresponding ones used by Wu, Becker, and
Noels (2014) because Wu, Becker, and Noels (2014) used a variable non-local length instead of
a constant one in this work. For the cohesive band model, only the band thickness is required
and has been computed in Section 2.2.

2.4.1.1 Mesh insensitivity

The mesh insensitivity of the CDM/CBM framework is here investigated. The force evolution
in terms of the displacement and the total dissipated energy are compared for di�erent mesh
sizes. The involved simulations have constrained crack paths along the symmetry planes in
order to focus on the cohesive band e�ect only since the other framework features are mesh-
independent. Indeed, because a non-local model is used, no mesh-dependency is expected
during the softening before crack insertion (Peerlings et al., 1998), providing that the mesh
size is su�ciently small in regard to the characteristic length. Moreover, the crack path should
converge for the extrinsic cohesive zone (Molinari et al., 2007) during the crack propagation.

4This is an approximate value since it is obtained for the stress triaxiality which corresponds to a uniaxial
loading
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Figure 2.13: (a) Vertical loading force in terms of the vertical displacement ūy for the dif-
ferent mesh sizes and (b) the corresponding total dissipated energy. The reference dissipated

energy Φref is here the value associated with the finest mesh.

The problem is simulated with the 3 di�erent meshes shown in Fig. 2.12. The vertical
loading force evolutions in terms of the vertical displacement ūy and for a loading ratio k = 0
are shown in Fig. 2.13a for the di�erent mesh sizes. The three curves are similar, although
unloading-loading cycles are observed at crack insertion due to the combination of damage
freezing around cracked interfaces and the use of the path-following method. The depth of
those cycles is more pronounced with an increasing mesh size. Moreover, a larger mesh size
delays the crack insertion since the stress at the crack tip is lower at the �rst Gauss point. The
total dissipated energy in terms of the mesh size is represented in Fig. 2.13b and no signi�ant
variation is observed with respect to the mesh size. The di�erence results from the numerical
approximations (loading increments).

2.4.1.2 Study of the triaxiality e�ects

The plate is now loaded with di�erent ratio coe�cients k = [−1/2; 0; 1/2] and the simulation
results obtained by using the non-local model (N-L), the hybrid CDM/CBM model, and the
hybrid CDM/CZM model are compared. The three models are identical before crack insertion.
The damage �elds are represented just before �rst crack insertion in Figs. 2.14a to 2.14c for
the di�erent values of k. The three distributions have a similar pattern but are more developed
for the lower value of k since the transition occurs later in those less constrained states. The
corresponding triaxiality distributions are shown in Figs. 2.14d to 2.14f and, as expected, are
di�erent for each case and increases with k.

After initiation, the cracks propagate near the median line of the plate for both hybrid
frameworks while strains and damage continue to grow for simulations involving the non-local
model only. The �nal damage distributions at material failure (when the vertical force drops
to 0) are presented in the deformed con�gurations in Fig. 2.16. Globally, for a given numerical
model, the damage �elds at failure tend to be more spread for smaller values of k. For the
non-local model, high damage values spread around the �ctitious crack surface due to the
highly stretched elements while damage evolution is stopped behind the crack tip with the
hybrid frameworks. For a given value of k, the �nal crack opening is higher with the cohesive
band model than with the cohesive zone, which expresses a less brittle behaviour for the band
model.

The evolutions of the vertical loading forces Fy in terms of the vertical displacements ūy

are reported in Figs. 2.16a, 2.16c, and 2.16e for the three frameworks. Increasing k tends
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(a) k = −1/2 (b) k = 0 (c) k = 1/2
0.50 1𝐷

(d) k = −1/2 (e) k = 0 (f) k = 1/2
0.6−0.75 2

𝑇

Figure 2.14: (a-c) Damage D field and (d-f) triaxiality T state at first crack insertion for
different values of k.
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Figure 2.15: Damage field at material failure for the pure non-local, CDM/CBM, and
CDM/CZM frameworks, and for different values of the loading ratio k.
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Figure 2.16: Vertical loading force Fy (left) and dissipated energy Φ (right) vs. vertical
displacement ūy evolutions for the pure non-local, CDM/CBM, and CDM/CZM frameworks,
and for different values of the loading ratio k. The reference dissipated energy Φref is here

the value associated with the pure non-local model and k = 0.
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globally to rise the peak stress value but to decrease the displacement value at which this peak
is reached. When comparing the models, no di�erence is observable before crack insertion as
expected. During crack propagation, the CDM/CZM exhibits a more brittle behaviour than
the hybrid CDM/CBM and than the non-local model. This is explained by the fact that
CDM/CZM does not account for the triaxiality induces by the out-of-plane plane strain state
and by the loading ratio k. The maximum stress value reached is higher for the non-local
model than for the CDM/CBM but this is balanced by a longer response tail with the CBM.
This longer tail results in a larger crack opening at failure than with the the �ctitious crack
opening of the pure non-local model. This could be avoided by considering a di�erent damage
evolution law in the CBM after shift has occurred. In order to address this issue, we will
consider a coalescence model as governing law of the CBM in the next chapter.

The corresponding dissipated energy evolutions are shown in Figs. 2.16b, 2.16d, and
2.16f where Φref is de�ned as being the energy dissipated by the pure non-local model with
k = 0. During the crack propagation, the results of the hybrid CDM/CBM predictions remain
closer from those of the non-local model than the prediction of the CDM/CZM until the
sample is totally cracked. Despite the two dissipation rates di�er, the �nal total amounts
of dissipated energy are coherent between the non-local model and the CDM/CBM for the
di�erent triaxiality states. The CDM/CBM di�ers from the non-local model by maximum 5%;
this di�erence can be partially explained by the non-straight crack pattern which increases the
crack surface and thus the dissipation.

Besides, the more brittle behaviour of CDM/CZM previously mentioned re�ects that the
CDM/CZM is unable to dissipate the correct amount of energy, resulting in one order of
magnitude higher in the error for all tests (i.e. around 30%). This is explained by the inability
of the CZM to incorporate stress triaxiality e�ects since the fracture energy of the cohesive
zone is �xed in advance (here, calibrated on a one-dimensional uniaxial tension). Moreover, the
crack criterion is based on an e�ective stress. Therefore, the damage value at crack insertion
is not guaranteed. To overcome these problems, the CZM could be calibrated for each speci�c
case, which is avoided by the CDM/CBM since the cohesive band thickness does not depend on
the damage insertion value. Nevertheless, this approach would not account for the variation of
stress triaxiality state during the sample loading, whistle the CDM/CBM framework includes
those triaxiality e�ects and therefore is able to follow the variation of dissipated energy.

2.4.2 Single edge notched specimens

The hybrid CDM/CBM framework is now compared to the phase �eld framework applied to
brittle fracture (Miehe, Welschinger, and Hofacker, 2010, e.g.). To this end, the single edge
notched specimens considered by de Borst and Verhoosel (2016) and Miehe, Hofacker, and
Welschinger (2010) are simulated under tensile and shear loading conditions.

2.4.2.1 Material parameters

The elastic material properties reported by de Borst and Verhoosel (2016) and Miehe, Hofacker,
and Welschinger (2010) are a Young's modulus E = 210.0 [GPa] and a Poisson ratio ν = 0.3.
The critical energy release rate is Gc = 2700

[
J/m2

]
and the length scale associated to the

phase �eld results is lpf = 15× 10−3 [mm]. The plane strain state is assumed.
First, the material parameters of the underlying non-local damage model of the hybrid

CDM/CBM framework have to be calibrated with respect to the brittle behaviour studied by
de Borst and Verhoosel (2016) and Miehe, Hofacker, and Welschinger (2010). In particular, the
non-local length, the damage model, and the crack insertion properties have to be determined.
The elastic properties are taken as such, see Table 2.3. The damage model is parametrised
in order to �t the one-dimensional homogeneous response related to the phase �eld approach,
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Figure 2.17: Stress response (a) for a one-dimensional uniform strain state, and (b) with
localisation in a bar of length L = 0.5 [mm]. (c) Corresponding fracture energy which
remains to be dissipated in terms of crack damage insertion. (d) Comparison between non-
local damage profile and the idealised phase field one; the vertical dashed lines represent the

phase field smeared crack of width 4lpf .

Table 2.3: Material properties for the single edge notched specimen tests.

Elastic model properties, Eq. (2.38):
Young's Modulus E 210.0 [GPa]
Poisson ratio ν 0.3

Damage model properties, Eq.(2.44):
Initial damage threshold κi 0.0049
Failure equivalent strain κc 0.49
Damage exponents α 40.0

β 0.0

Non-local model properties, Eq.(2.42):
Non-local length lc 16.5× 10−3 [mm]



2.4. Numerical applications and triaxiality e�ects 43

Table 2.4: Damage to crack transition parameters for the single edge notched specimen
tests.

Crack insertion criterion, Eq. (2.75):
E�ective critical stress σ̂c 5.9 [GPa]
Critical damage Dc 0.85
Mixed-mode ratio βc 0.87

Cohesive band model:
Band thickness hb 89.1× 10−3 [mm]

see the discussion of de Borst and Verhoosel (2016), and in particular the peak stress σ̂pf
c and

strain ε̂pf
c , with

σ̂pf
c =

9

16

√
GcE

6lpf
= 1.42 [GPa] and ε̂pf

c =

√
Gc

6lpfE
= 0.012. (2.90)

To this end, the power damage law (2.45) is still used and the value of the exponent β is �xed to
a small value while a high value of α is chosen in order to ensure a fast stress decrease followed
by a long tail, which characterises the one-dimensional homogeneous phase �eld response.
The two remaining parameters κi and κc are then computed in order to ensure that the stress
peak corresponds to the values given by (2.90). The chosen material damage parameters
are summarised in Table 2.3 and the corresponding stress-strain response is compared to the
one-dimensional homogeneous phase �eld response in Fig. 2.17a.

The non-local length is now calibrated using the previously described one-dimensional
simulations with localisation, see Section 2.2, with the aim of recovering the same fracture
energy Gc after localisation than the phase �eld model input. The resulting non-local length
is evaluated to be lc = 16.5× 10−3 [mm]. The corresponding one-dimensional stress response
�with localisation� of the non-local damage model is represented on Fig. 2.17b. The fracture
energy after localisation onset �which corresponds to a damage value Dsoft = 0.44 as obtained
from (2.67)� in terms of the crack damage insertion is shown on Fig. 2.17c. Clearly the critical
energy release rate evaluated at softening onset is close to Gc = 2700

[
J/m2

]
. Moreover, it

can be seen in Fig. 2.17d that a comparable damage di�usion between the non-local damage
model and the phase �eld solution is recovered. In this �gure, the damage pro�le obtained at
failure is compared with the idealised damage distribution of the phase �eld method, which
reads (de Borst and Verhoosel, 2016)

Dpf (x) = exp
(
− |x| /2lpf

)
. (2.91)

Apart from the non-zero homogeneous damage value of the non-local model, both distributions
exhibit a similar damage spread.

For the damage to crack transition parameters, the insertion e�ective stress is chosen so
that the crack initiation appears around a damage value Dc = 0.85. The cohesive band
thickness hb is still computed as determined in Section 2.2 and is equal to hb = 5.4lc.

2.4.2.2 Tensile tests

The tensile boundary conditions applied on the plate of width W = 1 [mm] are represented
on Fig. 2.18a. A prescribed vertical displacement is applied on the top edge while lateral
edges remain traction-free. Both bottom and top edges are constrained along the horizontal
direction. The specimen is meshed with 2779 quadratic triangular elements as shown on Fig.
2.18b. Small elements, with a characteristic size of 0.01 [mm] are used along the expected
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Figure 2.18: The single edge notched specimen geometries (left) of width W = 1 [mm]
with their boundary conditions and the corresponding meshes (right) for the tensile (a-b)

and shear cases (c-d).
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Figure 2.19: Damage field (a and d) before crack insertion and at material failure for (b
and e) the pure non-local case and (c and f) the CDM/CBM frameworks. Displacements have
been magnified for the hybrid CDM/CBM in order to visualise the crack path. The damage

distributions are reported for the tensile (first row) and shear (second row) tests.
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Figure 2.20: Loading force (for a 1 [mm]-thick plate) vs. displacement evolution for the
pure non-local, the hybrid CDM/CBM framework, and the phase field framework for (a) the

tensile test and (b) the shear test.
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crack path while coarser ones are used away from it. The system is solved using the implicit
scheme detailed in Section 2.3.2.1 completed with a path-following method due to possible
snap-back.

The damage �eld before �rst crack insertion is developing at the crack tip, as shown
on Figs. 2.19a and is then growing along the symmetry plane. The distributions obtained at
material failure for the pure non-local model and the hybrid CDM/CBM framework are shown
respectively on Fig. 2.19b and 2.19c. The close-to-one damage band obtained with the non-
local model is replaced by a crack for the hybrid CDM/CBM framework which is surrounded
by lower damage values. The force evolution for both models is now compared on Fig. 2.20a
with the results reported for the phase �eld method by Miehe, Hofacker, and Welschinger
(2010). Comparable results are obtained with the three methods: failure appears for the same
peak load although it is slightly delayed for the non-local model and the hybrid CDM/CBM
framework. For this application the pure non-local simulation exhibits a stronger snap-back
than the hybrid CDM/CBM framework because of the spreading of the highly damage zone
arising with the former method.

2.4.2.3 Shear tests

Shear boundary conditions are now applied on the previous specimen as illustrated in Fig.
2.18a: vertical displacements are constrained along all edges while a horizontal one is applied
on the top one. The mesh, represented on Fig. 2.18b, consists of 5362 quadratic triangles.
Small elements (around 0.01 [mm] characteristic size) are located along a 45◦-line along which
the crack is assumed to propagate. The zone of re�nement is wide enough in order to correctly
describe the damage di�usion and to avoid any arti�cial guidance of the crack. The hybrid
CDM/CBM system is solved using the coupled explicit-implicit integration scheme detailed in
Section 2.3.2.3.

Figure 2.19d illustrates the damage distribution developing below the crack tip before �rst
crack insertion. The distributions obtained for the same remaining force as the reported phase
�eld results (Miehe, Hofacker, and Welschinger, 2010) are shown on Figs. 2.19e and 2.19f for
respectively the pure non-local model and the hybrid CDM/CBM framework. The close-to-one
damage band obtained with the non-local model is replaced by a crack kinking for the hybrid
CDM/CBM framework. Note that because the hybrid CDM/CBM simulations have been
conducted with a dynamic explicit integration, some single dust elements arise during the crack
opening and have been removed for visualisation purpose. The force vs. displacement histories
of both models are compared on Fig. 2.20b with the phase �eld predictions reported in Miehe,
Hofacker, and Welschinger (2010). Note that because the hybrid CDM/CBM simulations have
been conducted with a dynamic explicit integration, the resulting numerical oscillations have
been �ltered for visualisation purpose. The reached peak load is about 10 % lower when using
non-local CDM although the softening strain is the same than with the phase-�eld model.
However the peak stress of the phase �eld simulations is sensitive to the associated length
scale lpf .

2.4.3 Compact tension specimen test

This test was studied experimentally (Geers, 1997) using the non-local CDM developed by
Geers et al. (1998). The Compact Tension Specimen (CTS) tests were carried out on short
glass-�ber-reinforced polypropylene. The geometry is shown in Fig. 2.21a with the dimensions
W = 50 [mm], an = 10 [mm] and the thickness t = 3.8 [mm].

The specimen is meshed with 5099 10-node 3D tetrahedral elements and partitioned be-
tween 16 processors as shown in Fig. 2.21b. Quadratic shape functions are used to approximate
both the displacement and the non-local �elds. Due to the symmetry of the system, only one
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Figure 2.21: (a) The Compact-Tension Specimen geometry with W = 50 [mm], an =
10 [mm] and t = 3.8 [mm]; and (b) its partitioned mesh.

0 1 2 3 4
Displ. [mm]

0

500

1000

1500

2000

F
o
rc

e
[N

]

Exp. [54]
N-L
CDM/CBM
CDM/CZM

(a)

0 1 2 3 4
Displ. [mm]

0

500

1000

1500

2000

F
o
rc

e
[N

]

N-L
CDM/CBM
CDM/CZM

(b)

Figure 2.22: Loading force vs. pin displacement evolutions with the hybrid CDM/CBM
framework, the CDM/CZM, the pure non-local, and the experimental measurements in (a)

plane stress state and (b) in plane strain state.
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Figure 2.23: Damage field at pin displacement d = 2 [mm] in the whole sample (top) and
zoomed on the process zone (bottom) for the non-local model (left), the hybrid CDM/CBM

(centre) and the hybrid CDM/CZM (right).
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Figure 2.24: Damage field at pin displacement d = 4 [mm] in the whole sample (top) and
zoomed on the process zone (bottom) for the non-local model (left), the hybrid CDM/CBM

(centre) and the hybrid CDM/CZM (right).
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half of the thickness is e�ectively modelled. A �ner mesh is used near the expected crack
path while a coarser one is used in other mesh regions. To apply the loading, loading pins are
modelled with quarters of cylinder of higher sti�ness (E = 30 [GPa]). The displacements of
the pin axes are controlled in the vertical direction and constrained in the other ones, while
axes rotation is left free. The material properties are reported in Table 2.1. The system is
solved using the coupled explicit-implicit integration scheme detailed in Section 2.3.2.3.

The hybrid CDM/CBM framework is applied on the CTS in plane stress and compared
with the experimental results (Geers, 1997), the CDM/CZM, and with the pure non-local
model. The sample is also simulated in plane strain state using the three frameworks. The set
of damage to crack transition parameters is given in Table 2.2.

The loading force with respect to the displacements between both pins (evaluated for the
full thickness), is represented in Fig. 2.22a in the plane stress state for the three di�erent
frameworks and for the experiment results (Geers, 1997) 5. Note that because the simulations
have been conducted with a dynamic explicit integration, the resulting numerical oscillations
have been �ltered for visualisation purpose. If numerical and experimental results are globally
consistent, the CBM shows a better agreement with the experimental results than the other
frameworks. A small discrepancy is observed from the beginning between the numerical results
and the experimental ones, which is not due to the numerical framework, but to the �nite
element model itself since it is present even in the elastic part of the simulation. Indeed, the
loading pins introduce a spurious compliance as there are not perfectly rigid; They should
be replaced by rigid springs in compression without tension sti�ness. Before crack insertion,
no di�erence is observed between the frameworks as expected. After the crack is inserted for
both the CDM/CBM framework and the CDM/CZM framework, the curve predicted by the
non-local model keeps increasing, resulting in an higher peak value. Then, the force quickly
drops, due to the high damage spreading within the specimen. For the hybrid frameworks,
both models allow a transition without unacceptable loss of energy. However, a much better
agreement is obtained with the CDM/CBM than the CDM/CZM. Indeed, taking advantage
of the constant value of the band thickness, the CBM does not su�er from the variation of
damage value at which crack insertions occur. A similar analysis can be carried out in the
plane strain state shown in Fig. 2.22b.

The corresponding damage �elds in the plate stress con�guration are presented in the
deformed con�guration in Figs. 2.23a to 2.23f for a pin displacement d = 2 [mm]. At this
point, all models predict similar results. A crack has just started to propagate in the hybrid
frameworks while damage is slightly more developed for the non-local model. For d = 4 [mm]
in Figs. 2.24a to 2.24f, the simulation involving only the non-local model su�ers from high
element distortions and spurious damage spreads from either side of the physical crack surface
as no limiting mechanism was introduced. This non-physical spread reaches the free border
of the initial notch. This problem is avoided with the hybrid frameworks where damage
development is replaced by a crack propagation. In this case, the damage zone thickness
remains constant along the crack path.

2.5 Conclusions

In this chapter, we have established a numerical framework based on a non-local CDM/CBM
transition in the context of small displacements and in the elastic regime. The di�use damage
stage is modelled by a non-local implicit damage model. Its purpose is to simulate the di�use
degradation process without su�ering from a mesh dependency. However, large distortions
appear inside the most damaged elements, which induce spurious damage spreading and nu-
merical problems. To overcome this issue, a discontinuity is inserted through a cohesive band

5The experimental results from Geers (1997) have been translated in order to pass by the origin.
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to simulate the last failure stage. It consists in a cohesive model with a �nite thickness along
which the stress is assumed to be uniform. The strains in this band are reconstructed by
enhancing the neighbouring bulk strain by the cohesive jump. From this strain tensor, the
bulk material damage constitutive law is used in its local way to compute the corresponding
traction forces.

In order to assess the framework behaviour, energetic equivalence and consistency have
been discussed with a 1D case in a semi-analytical way. It appears that, once the soften-
ing onset is reached, the dissipated energy depends directly on the characteristic lengths, i.e
the non-local length and/or the cohesive band thickness. A relation between the non-local
length and the cohesive thickness can be drawn such that the energy dissipated by the hybrid
CDM/CBM framework corresponds to the energy that would be dissipated by a pure non-local
damage simulation, independently of the damage parameters or the insertion point.

Moreover, several numerical examples, in 2D and 3D, demonstrated the expected numerical
properties of the proposed scheme. In particular, we have demonstrated the interest of the
CBM over the classical CZM and pure non-local model. Indeed, CBM includes triaxiality
e�ects during the �nal stage and avoids spurious damage di�usion. Moreover, the method
actually inherits from the scalability of the DG-scheme. Finally, we have shown that the
CDM/CBM method is able to produce comparable results to the phase �eld approach.

Furthermore, we have also validated the method by comparison with experimental results
published by Geers (1997). Meanwhile, we have again con�rmed the bene�ts of the CDM/CBM
framework compared to the cohesive zone or the pure non-local model. Indeed, only the
CDM/CBM framework is able to dissipate the correct amount of energy in regards to the
experimental results obtained on a CTS specimen.

However, the involved material behaviour is here limited to the elastic regime in small
strains. In the next chapter, we will extend the framework to more elaborated models in the
context of large deformations. In particular, elasto-plastic porous models will be addressed.
Despite the higher complexity of the constitutive relations, we will show that the numerical
properties demonstrated here are conserved. Moreover, we will explore the possibility to use
di�erent crack criteria and a coalescence behaviour after the crack insertion.
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Chapter 3

Transition framework applied to
ductile materials1

In order to illustrate the transition framework on a simpli�ed case, an elastic damage model
was used in the previous chapter inside the hybrid framework. Henceforth, the hybrid frame-
work will be adapted in this chapter to a family of more complex constitutive models which
represent in a realistic way the ductile failure process in metals (and in some polymers ex-
hibiting cavitations): the porous plasticity models.

As schematised on Fig. 3.1, the ductile damage process usually starts with the nucleation
of voids or microcracks which add up to the pre-existing porosity resulting from the metal
processing inside the metal matrix (step 1). The porosity then grows by plastic �ow spread
inside the matrix (step 2). This process ends with strain and damage localisation due to shear
bands or to microscopic voids coalescing together (Tekoglu, Hutchinson, and Pardoen, 2015).
This leads to the coalescence stage where the plastic �ow is localised between voids (step 3).
This mechanisms then leads to the initiation and propagation of a macroscopic crack, and
ultimately to material failure.

Several CDM have been developed to model this failure process. The simplest approaches
consist in using the progressive accumulation of damage to determine when failure occurs
(Brünig, Gerke, and Schmidt, 2018; Johnson and Cook, 1985, e.g.). On the one hand, in
the phenomenological CDM approaches as the Lemaitre et al. (2009) damage model, the
damage growth induces the material properties degradation until failure. On the other hand,
some models rely on the evolution of micromechanical-based behaviour. Among them, the
Gurson model family has been developed since the seventies to take into account the e�ects
of microscopic porosity evolution in metals. Only the main relevant stages in its �fty years of
existence are recalled here: Benzerga et al. (2016), Besson (2010), and Pineau, Benzerga, and
Pardoen (2016) have provided complete reviews of the extensions and applications. Inspired
from Rice and Tracey (1969) solutions for an isolated void, the initial model of Gurson (1977)
addressed the problem of the plastic yield locus of spherical voids in a rigid perfectly-plastic
matrix. The model derivation implies an associated plastic �ow. It also gives an evolution law
derived from mass conservation for the porosity or void volume fraction parameter fV.

The model was modi�ed over the years to improve the accuracy of the void growth predic-
tion and to represent fracture and coalescence using phenomenological arguments. This �rst
led to a widely used and studied version, the so-called Gurson-Tvergaard-Needleman (GTN)
model (Tvergaard and Needleman, 1984). In this version, void nucleation has been added to
the damage growth rate (Chu and Needleman, 1980), accounting for the strain and/or stress-
controlled contribution of newly created voids. The source of these new voids mostly comes
from the debonding or the cracking of inclusions inside the material. Heuristic parameters
were also added to the yield surface to better �t �nite element (FE) void cell simulations
(Tvergaard, 1981). Finally, a corrected e�ective porosity was introduced in the yield surface

1This chapter is an adapted version of the paper Leclerc et al. (2020)
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Figure 3.1: Schematic representation of a typical ductile failure process by (1) nucleation,
(2) growth and (3) coalescence of voids, accompanied of SEM (scanning electron microscope)

pictures.

near fracture to obtain realistic ductilities (Tvergaard and Needleman, 1984). This substi-
tution aims at phenomenologically mimicking the damage growth acceleration due to void
coalescence.

However, as shown by physical observations (see Fig. 3.1) and FE cell simulations by
Koplik and Needleman (1988), the coalescence is more than just an abrupt void growth ac-
celeration: the latter is rather a consequence of the former. Indeed, after a relatively di�use
plasticity and damage development stage, material behaviour suddenly changes into a localised
deformation state. Plastic �ow also shifts direction. All these changes indicate the onset of a
new deformation mechanism. Therefore, even if a proper calibration of the GTN model can
crudely reproduce the coalescence, a di�erent model is more suitable to describe and to pre-
dict this physical process (Benzerga and Leblond, 2010; Besson, 2010; Brocks, Sun, and Hönig,
1995). In this context, di�erent coalescence modes compete depending on the loading condi-
tions and the micromechanical structure as recently studied by Brünig, Gerke, and Schmidt
(2018), Cortese, Nalli, and Rossi (2016), Liu, Wong, and Guo (2016), Pineau, Benzerga, and
Pardoen (2016), and Roth et al. (2018). The most investigated mode is by internal necking:
the onset of coalescence is reached when plastic �ow localises inside the intervoid ligament
oriented normal to the main loading direction. The model of Thomason (1985a,b) provides
a criterion based on the plastic limit-load of the intervoid ligament under tensile-dominated
stress. This approach was then completed with evolution laws for the geometrical parame-
ters of voids by Pardoen and Hutchinson (2000) and Benzerga (2002), and a fully analytical
expression of the criterion was derived by Benzerga and Leblond (2014). Furthermore, by
rewriting the criterion for arbitrary orientation, Pardoen and Hutchinson (2000) and Benz-
erga, Besson, and Pineau (2004) derived a yield surface for the coalescence stage to be used
in combination to a void growth surface. However, shear stress e�ects are not accounted for
by the Thomason model. To address this issue, Tekoglu, Leblond, and Pardoen (2012) and
Torki et al. (2017) have extended the Thomason approach combining shear and tensile loading.
Reddi, Areej, and Keralavarma (2019) have obtained similar results by using the multi-surface
yield criterion developed by Keralavarma and Chockalingam (2016) and Keralavarma (2017).
Furthermore, Nguyen, Pardoen, and Noels (2020) have proposed a non-local multi-surface
model introducing a shear-dominated coalescence surface in addition to the growth and in-
ternal necking coalescence modes. In addition, Torki (2019) uni�ed both void growth and
coalescence criteria under tensile and shear conditions in a unique but complex yield function.
Besides, Leblond and Mottet (2008) have provided an approximate solution of the problem
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by substituting the central voided region of the RVE by a sandwich made of von Mises and
porous layers.

Despite numerous studies and extensions, namely for coalescence representation as those
previously described, the Gurson model stays inaccurate for low or vanishing stress triaxiality.
In particular, the GTN model predicts the absence of void growth (i.e. or damage) in pure
shear. Ignoring the void shape is only acceptable for initial spherical voids and inclusions at
high triaxiality as they tend to more or less maintain their initial shape in these conditions.
However, under shear-dominated stress, it is no more the case. To overcome this issue, Nahshon
and Hutchinson (2008) added a shear-induced porosity growth term, henceforth enabling void
growth without hydrostatic pressure in the Gurson model. Besides, Rousselier (1987) and
Tanguy and Besson (2002) extracted the so-called Rousselier model, in which the yield surface
is close to Gurson one but derived from a thermodynamic approach, which also generates
damage growth under pure shear. The inclusion of void shape and evolution requires more
complex constitutive models including void shape e�ect and evolution. For instance, the
Gologanu model (Gologanu, Leblond, and Devaux, 1993, 1994) adapts the Gurson analysis
for spheroidal voids. High porosity e�ects can also be accurately captured by combining the
Gurson model with the mean-�eld homogenisation as recently done by El Ghezal and Doghri
(2018).

As the framework developed in chapter 2 is intended to be applied to ductile elastoplastic
solids, a porous plastic model as described by Besson (2009) is chosen as constitutive ma-
terial model. It includes the description of the void growth and coalescence steps, but also
the nucleation model developed by Chu and Needleman (1980) and the shear-induced growth
term proposed by Nahshon and Hutchinson (2008). The model is set in a �nite-strain setting.
Moreover, it is developed under a non-local form as initiated by Reusch, Svendsen, and Kling-
beil (2003b). Once again, this is of particular importance when considering a physically-based
crack initiation criterion which can be met in the strain softening stage, as it will be shown
in this chapter. Furthermore, the monolithic resolution of the combined non-local damage-
cohesive band model requires the evaluation in a closed form of the weak formulation and
material models tangent operators.

Two coalescence models are then successively considered. On the one hand, with a view to
the model veri�cation with the analyses by Huespe et al. (2012), a numerical crack insertion
criterion is used to detect crack initiation at loss of ellipticity, whilst the crack opening is
governed by an adequate calibration of the Gurson model parameters. On the other hand,
following the work by Pardoen and Hutchinson (2000), a physically-based Thomason (1985a,b)
criterion is used as crack insertion criterion, and the coalescence model is used as governing
law of the cohesive band model (CBM) to model the crack opening.

The outline of this chapter is as follows. The continuous non-local damage model is �rst
presented in Section 3.1. Afterwards, the damage to crack transition is introduced with the
cohesive band model in Section 3.2. In particular, the questions of the crack insertion criterion
and the cohesive band thickness are addressed. The practical implementation of the current
framework is detailed in Section 3.3. The weak form is deduced from the strong form of
equations and is then discretised following the DG-formulation. The numerical time integration
is also discussed. Finally, Section 3.4 is devoted to illustrating the framework capability to
correctly represent the ductile fracture process. In particular, the results obtained by a local
form of the porous elastoplastic model and by introducing a crack at loss of ellipticity are
shown to be in good agreement with the results by Huespe et al. (2012). Then, we show that
when considering the Thomason criterion and the Thomason coalescence model to govern
respectively the crack initiation and propagation, the model is able to reproduce slant and
cup-cone failure modes in plane-strain specimens and axisymmetric bars, smooth and notched
ones, respectively. These complex failure patterns driven by shearing are herein captured, and
by Huespe et al. (2012) as well, because of the shear stress state obtained by the free surface
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Figure 3.2: A material body in the reference configuration Ω0 (left) and in the current
configuration Ω (right). The body displacement field is defined by u (X, t) and the corre-
sponding deformation gradient F between both configurations is decomposed into a plastic
part Fp followed by an elastic part Fe. The elastic part is also split in a symmetric stretch

part Ue and a rotational part Re.

creation during crack propagation. Without the introduction of the crack, these patterns do
not appear with a purely CDM model unless shear necking is considered in the yield surface as
suggested by Nguyen, Pardoen, and Noels (2020) and Reddi, Areej, and Keralavarma (2019).

3.1 Non-local continuum damage mechanics for porous plastic-

ity

In this section, the non-local continuum damage mechanics framework applied to porous plas-
ticity is developed, combining the formulations of Reusch, Svendsen, and Klingbeil (2003a,b)
and Besson (2009). Cracks are ignored in this description and the body is assumed to be
continuous as it is during the early damage stage. At �rst, the governing equations of the me-
chanical problem is provided. Then, a hyperelastic non-local porous plastic model is presented
before being particularised to the considered deformation mechanisms.

Consider a material body Ω0 ⊂ R3 in the reference con�guration at time t = 0 and its
boundary surface Γ0 as shown on Fig. 3.2. The external surface Γ0 is divided into a Dirichlet
part ΓD0 where displacements are prescribed, and a Neumann part ΓN0 where the traction force
is prescribed. This surface partition satis�es ΓD0∩ΓN0 = Γ0 and ΓD0∪ΓN0 = ∅. Ω and Γ denote
respectively the counterparts of Ω0 and Γ0 in the current con�guration at a given time t > 0.
During this time evolution, the displacement of a material particle initially at the position
X ∈ Ω0 to the current spatial position x (X, t) ∈ Ω is de�ned by u(X, t) = x (X, t) −X.
The derivative of the current spatial position in terms of the material con�guration, or in other
words, the deformation gradient, is

F =
∂x

∂X
= I +

∂u

∂X
, (3.1)

with its Jacobian J = detF > 0, and I the second-order identity tensor.
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The linear momentum conservation, under large deformation setting over the body Ω with
respect to the reference con�guration, is given by

ρ0ü =∇0 ·PT + b0 on Ω0, (3.2)

where ρ0 is the initial mass density, ∇0 is the gradient operator with respect to the reference
con�guration, P the �rst Piola-Kirchho� (PK1) stress tensor and b0 is the volumetric external
force vector (per unit of volume).

Boundary conditions are applied on the reference surface: prescribed displacement ū and
traction surface t̄N0 are respectively applied on the Dirichlet boundary ΓD0 and on the Neu-
mann boundary ΓN0:

u = ū on ΓD0, and
P ·N = t̄N0 on ΓN0,

(3.3)

with N the unit surface normal in the reference con�guration and t̄N0 de�ned in the current
con�guration per unit surface in the reference con�guration.

The boundary value problem de�ned by Eqs. (3.2) and (3.3) is completed by a material
constitutive law which de�nes the evolution of the stress tensor P at time t as

P (t) = P
(
F (t) , Z̃ (t) ;Z

(
t′
)
, t′ ∈ [0, t]

)
, (3.4)

in terms of the actual deformation gradient F and in terms of a set of local internal variables
Z and, potentially, a set of non-local Z̃ internal variables representative of all the material
history and path-dependence.

Non-local variables are introduced to avoid mesh-dependency. An implicit non-local gra-
dient approach (Peerlings et al., 1996), equivalent to a micromorphic approach (Aldakheel,
2017; Forest, 2009), is preferred as it is truly non-local in contrast to an explicit form, as
demonstrated by Peerlings et al. (2001). Moreover, the treatment of complex geometries and
boundaries is here more simple and convenient than with an equivalent integral approach
(Leclerc et al., 2018; Peerlings et al., 2001; Wu, Becker, and Noels, 2014, see Sections 2.1
and 2.2 ). Practically, some local variables Zi ∈ Z are replaced by their non-local counterpart
Z̃i ∈ Z̃, following

˙̃Zi −∇0 ·
(
Cli ·∇0

˙̃Zi

)
= Żi on Ω0, (3.5)

where Cli is a semi-positive de�nite symmetric tensor associated to the non-local variable
Z̃i. In an isotropic case, it reduces to l2cI; lc being the associated characteristic di�usion
length. Using Z̃i as in Eq. (2.16) or its time derivative in Eq. (3.5) is analogous since the
di�usion equation is linear. However, this latter formulation avoids numerical instabilities
due to evolving boundary conditions during the crack propagation presented in Section 3.2.
Furthermore, the local model is recovered when the characteristic length vanishes.

The di�erential equation (3.5) is completed by a natural boundary condition:(
Cli ·∇0

˙̃Zi

)
·N = 0 on Γ0. (3.6)

3.1.1 Hyperelastic-based elasto-plastic material model

No assumption has been made yet on the material behaviour (3.4). First, as shown on Fig.
3.2, a classical multiplicative decomposition of the deformation gradient (3.1) for elasto�plastic
materials is assumed

F = Fe · Fp , (3.7)

with Fe the elastic part of F and Fp, the plastic one. The tensor Fe can be separated into a
rotational part Re and a symmetric part Ue as Fe = Re ·Ue. The corresponding Jacobian
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terms are de�ned by
J = detF , Jp = detFp , and Je = detFe , (3.8)

and the corresponding right Cauchy strain tensors read

C = FT · F , Cp = FpT · Fp , and Ce = FeT · Fe . (3.9)

The macro-mechanical response of the material, represented by the �rst Piola-Kirchho�
stress tensor P, is determined by postulating the existence of a thermodynamic potential in
terms of the conjugate strain tensor F. Assuming an isothermal rate-independent hyperelastic
behaviour, the related free energy ψ can be written under the form ψ (Ce,Z). We note that is
it possible to derive a non-local version of the thermodynamic setting, see the work of Forest
(2009), Nguyen, Pardoen, and Noels (2020), and Peerlings et al. (1996, e.g.).

From the Clausius-Duhem inequality, the evolution of the free energy is bounded by

P : Ḟ− ψ̇ (Ce,Z) ≥ 0 , (3.10)

where the equality is obtained in case of reversible elastic increment. We now assume that the
free energy is split by ψ = ψe + ψp into two contributions : an elastic reversible part ψe (Ce)
and a plastic irreversible part ψp (Z). The equation (3.10) is developed by using Eq. (3.7)
and the form of ψ as

P : Ḟe · Fp − ∂ψe

∂Ce
: Ċe + P : Fe · Ḟp −

∑
k

∂ψp

∂Zk
Żk ≥ 0 , (3.11)

or, after developing Ċe, as(
P− 2Fe · ∂ψ

e

∂Ce
· Fp−T

)
: Ḟe · Fp + P : Fe · Ḟp −

∑
k

∂ψp

∂Zk
Żk ≥ 0 . (3.12)

Assuming an arbitrary elastic reversible increment, the inequality becomes(
P− 2Fe · ∂ψ

e

∂Ce
· Fp−T

)
: Ḟe · Fp = 0 , ∀ Ḟe . (3.13)

The PK1 stress is therefore de�ned by

P = 2Fe · ∂ψ
e

∂Ce
· Fp−T , (3.14)

and the Clausius-Duhem inequality (3.10) reduces to

P : Fe · Ḟp −
∑
k

∂ψp

∂Zk
Żk ≥ 0 . (3.15)

Using a logarithmic strain measure, i.e.,

E =
1

2
lnC , Ee =

1

2
lnCe , and Ep =

1

2
lnCp , (3.16)

the following isotropic quadratic potential is chosen

ψe(Ce) =
K

2
[tr (Ee)]2 +G (Ee)dev : (Ee)dev , (3.17)

where K = E
3(1−2ν) and G = E

2(1+ν) are the bulk and shear modulii of the material, in terms of
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Figure 3.3: A representative volume cell and its geometrical description defined by the
porosity fV, the cell aspect ratio λ and the ligament ratio χ.

the Young's modulus E and the Poisson ratio ν. Finally, applying the de�nition of ψ (3.17)
to Eq. (3.14) gives

P = Ktr (Ee)F−T + 2GFe ·Ce−1 · (Ee)dev · Fp−T . (3.18)

The Cauchy stress tensor σ is linked to the PK1 tensor by the classical relation

P = Jσ · F−T = κ · F−T , (3.19)

introducing κ as the Kirchho� stress tensor. This latter is obtained from the rewriting of Eq.
(3.18):

κ = Ktr (Ee) I + 2GFe ·Ce−1 · (Ee)dev · FeT . (3.20)

Because Ue and Ee commute, one has

κ = Re ·

Ktr (Ee)︸ ︷︷ ︸
pτ

I + 2G (Ee)dev︸ ︷︷ ︸
τdev

 ·ReT = Re · τ ·ReT , (3.21)

introducing pτ as the pressure, τ dev as the deviatoric part of the corotational Kirchho� stress

tensor τ . The equivalent stress τ eq is de�ned as τ eq =
√

3
2τ

dev : τ dev.

3.1.2 Porous elasto-plastic material model

The elastic domain in the stress space is limited by a yield function φ. As already announced
at the beginning of this chapter, two modes of plastic deformation compete. Plastic �ow can
be di�use in the matrix: it is described by the Gurson model. Conversely, it can be localised
between voids during the coalescence phase, it is then described by the GTN model (i.e. GTN
in the accelerated void growth phase) or by the Thomason model. By combining both modes
of plastic �ow, a full porous model is �nally obtained.

3.1.2.1 Generalities

The description of the damage mechanism at the microscale is similar to Besson (2009): defects
are assimilated as a periodic arrangement of spherical voids that stay spherical during the entire
process and grow inside a J2-plastic matrix. A representative volume consists in a cuboid cell
with a void at its centre as depicted on Fig. 3.3. Its geometrical state is fully described by
3 parameters: the porosity fV, the relative ligament ratio χ and the cell aspect ratio λ. The
porosity fV corresponds to the void volume fraction while the ligament ratio χ is the ratio
of the void diameter to the distance between neighbouring voids. Although more complex
and accurate microscopic descriptions exist, this one is chosen because of its simplicity and
isotropy.



60 Chapter 3. Transition framework applied to ductile materials

Yield surface and plastic �ow Whatever the selected plasticity model, the yield condition
φ 6 0 is here expressed in terms of the corotational Kirchho� stress τ instead of the classical
Kirchho� stress κ. As the rate of the plastic �ow is assumed to be irrotational, this change
does not modify the plasticity model while it simpli�es its implementation thanks to the
straightforward relation between the stress tensor τ and the logarithmic strain tensor Ee. The
yield criterion depends also on the matrix yield stress. At this level, a classical J2-plastic model
is assumed with an isotropic hardening curve τY (p) in terms of the equivalent matrix plastic
strain measure p. The yield surface is also dependent on the microscopic state, represented by
some e�ective variables Ẑ. The de�nition of the e�ective variables allows the transition from
a non-local framework governed by Z̃ to a local one governed by Z without discontinuity.
In particular, this set sums up the cumulative damage evolution during the homogeneous
non-local damage process and, in a second time, during the local crack propagation.

The macroscopic yield criterion, based on stress invariants, is therefore written under the
mathematical form

φ = φ
(
τ eq, pτ , τY, Ẑ

)
6 0 . (3.22)

If the yield criterion (3.22) is satis�ed, plastic �ow occurs, following an associated �ow
rule. As the plastic �ow is irrotational,

Ḟp · Fp−1 = γ̇Np = γ̇
∂φ

∂τ
, (3.23)

where γ̇ > 0 is the macro-scale plastic multiplier associated with the plastic normal Np. Since
φ depends only on the �rst and second invariants of the stress tensor, the normal Np can
be separated into a volumetric (or pressure) and a deviatoric part by stating Nd = ∂φ

∂τeq and

Nq = ∂φ
∂pτ

following

γ̇Np = γ̇
∂φ

∂τ eq

∂τ eq

∂τ
+ γ̇

∂φ

∂pτ

∂pτ
∂τ

= γ̇Nd 3τ dev

2τ eq
+ γ̇Nq 1

3
I = ḋ

3τ dev

2τ eq
+ q̇

1

3
I , (3.24)

where ḋ and q̇ respectively stand for γ̇Nd and for γ̇Nq.

Non-local variables Concerning the introduction of the non-locality, the model focuses on
di�using one variable: Z̃ = f̃V, as previously proposed by Reusch, Svendsen, and Klingbeil
(2003a,b). The related e�ective variable involved in the yield condition (3.22), f̂V, is simply
obtained through

˙̂
fV =

˙̃
fV , (3.25)

as long as the non-local model is used. Otherwise, its evolution is linked to the local porosity
growth (see Section 3.2.1 and in particular, Fig. 3.7 for more details). The porosity is foreseen
because this key parameter plays a key role in the entire damage and failure process. Among
all other possibilities, Nguyen, Pardoen, and Noels (2020) adopted three non-local variables
corresponding to the three plastic variables (d, q, p) in order to capture void growth, coales-
cence by necking and shearing in a mesh-independent way. Another possible choice could be
to di�use the couple (fV, χ). Thereby, each mechanism will have its non-local key parameter
associated with a corresponding non-local length. However, in this work, mesh-dependency
during the coalescence stage, linked to χ, is already avoided by introducing a cohesive band
model.

Internal variables evolution The macroscopic deformation induces a microscopic struc-
ture modi�cation and therefore, the evolution of the internal variables. The (local) porosity
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evolution ˙fV is governed by di�erent contributions all linked to the plastic �ow

˙fV = ˙fVnucl + ˙fVgrowth + ˙fVshear . (3.26)

Newly nucleated porosity ∆ ˙fVnucl add to the already present porosity. This nucleation re-
sults from precipitate debonding or cracking during plastic �ow. Among several existing
models, a strain-controlled relation, presented by Chu and Needleman (1980), is used here:
˙fVnucl = An (p) ṗ. Plastic �ow also induces the growth of the voids ˙fVgrowth. As the macro-
scopic plastic �ow is not purely deviatoric while the matrix volume is left unchanged by mass
conservation, macroscopic plastic volume change induces a porosity growth rate ˙fVgrowth =

(1− fV) tr (γ̇Np). Furthermore, the term ˙fVshear results from the extended Gurson model
proposed by Nahshon and Hutchinson (2008). It corresponds to an apparent or e�ective void
growth due to a shear-induced shape change with

˙fVshear = Bn (ζ)
τ dev : γ̇Np

τ eq
fV . (3.27)

In this expression, Bn (ζ) = kω
(
1− ζ2

)
is a growth coe�cient, controlled by the shear damage

coe�cient kω, that vanishes under axisymmetric stress state and which is maximal under a
combination of pure shear stress with an hydrostatic contribution. Nielsen and Tvergaard
(2010) enhanced the coe�cient by including a dependence on the triaxiality. Dunand and
Mohr (2011) called ζ

(
τ dev

)
the normalised third invariant

ζ =
27 det τ dev

2τ eq3
. (3.28)

The equivalent matrix plastic strain measure p is obtained by considering the energetic
equivalence between both micro and macroscales:

(1− fV0) τYṗ = τ : γ̇Np , (3.29)

where fV0 , the initial porosity, is used since Eq. (3.29) is stated here with respect to the
reference volume2.

The ligament size ratio χ is determined, following Besson (2009), from

χ =

[
3

2
f̂Vλ

] 1
3

, (3.30)

where f̂V is the e�ective porosity and the evolution of λ is given by λ̇ = κλṗ. By integration,
one thus has

χ =

[
3

2
f̂Vλ0

] 1
3

exp

(
1

3
κp

)
, (3.31)

where λ0 is the initial value of λ, the ratio of the void spacing arrangement, and where κ is a
�tting parameter (Besson, 2009).

The relationship (3.22) now needs to be particularised to the di�erent considered porous
plastic models while the features and equations common to each one have been presented.

2Rigorously speaking, this relation should also consider the nucleated porosity framed in the reference
con�guration, but this contribution is neglected herein.
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3.1.2.2 The Gurson micro-mechanical growth porous plastic model

The void growth phase is described by the Gurson model for spherical voids (Tvergaard and
Needleman, 1984). The corresponding yield surface φG is given by

φG

(
τ eq, pτ , τY, f̂V

)
=

(
τ eq

τY

)2

+ 2f̂Vq1 cosh

(
3q2pτ
2τY

)
− q2

3

(
f̂V

)2
− 1 6 0 , (3.32)

where q1, q2 and q3 are the Gurson parameters. Initially added by Tvergaard (1981), these
parameters are determined to better �t cell experiments (Faleskog, Gao, and Fong Shih, 1998)
and heuristically include several e�ects (e.g. strain hardening, void shape).

3.1.2.3 Phenomenological coalescence porous plastic model

After accumulation of plastic deformation and void growth, plastic �ow localises between
matrix voids, indicating the onset of void coalescence. It results in a signi�cant change of
the growth rate and overall deformation behaviour. This process can be described here by
a phenomenological approach. In this case, the Gurson yield surface (3.32) is modi�ed by a
corrected porosity f?V (Reusch, Svendsen, and Klingbeil, 2003b; Tvergaard and Needleman,
1984) once the coalescence criterion is met. The new coalescence yield surface is written

φGTN = φG (τ eq, pτ , τY, f
?
V) 6 0 , (3.33)

where the corrected e�ective porosity f?V is modi�ed after the onset of coalescence by

f?V

(
f̂V

)
=



f̂V if f̂V 6 fVC
;

fVC
+
f?Vf
− fVC

fVf
− fVC︸ ︷︷ ︸
δGTN

(
f̂V − fVC

)
if fVC

< f̂V 6 fVf
;

f?Vf
if f̂V > fVf

.

(3.34)

In Eq. (3.34), fVC
corresponds to the porosity value at the onset of coalescence. The value

is �xed in advance and can either be considered as a material parameter (Tvergaard and
Needleman, 1984) or corresponds to the value predicted by a more physically-based coalescence
criterion as the Thomason model (Guzmán et al., 2018; Zhang, Thaulow, and Ødegård, 2000).
After the onset of coalescence, the e�ective porosity growth rate ˙f?V increases due to the
acceleration rate δGTN. The porosity growth continues until the porosity fVf

at �nal failure,
and f?Vf

the corresponding corrected value, are reached. This coalescence model, besides the
coalescence criterion, is de�ned either by δGTN or by fVf

. The last remaining parameter, f?Vf
,

corresponds to a vanishing yield surface, i.e. f?V (fVf
) = f?Vf

=
q1−
√
q21−q23
q23

.

3.1.2.4 The Thomason micro-mechanical coalescence porous plastic model

Another possibility to describe the coalescence behaviour after its onset is to use a yield surface,
representative of the plastic �ow process during coalescence. According to the Thomason model
(Benzerga and Leblond, 2014; Thomason, 1985a,b), plastic �ow occurs inside voids ligaments
when the coalescence stress CφTτY, linked to the stress concentration factor CφT (due to void
con�guration) and the matrix �ow stress τY inside the localisation zone, is reached (Besson,
2009); i.e., assuming a traction along direction zz, the yield surface reads

τzz 6 CφT (χ) τY . (3.35)
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Equation (3.35) can be rewritten for any arbitrary orientation (Pardoen and Hutchinson, 2000)
in terms of the corotational Kirchho� stress as

φT+ =
2

3
τ eq + pτ − CφT (χ) τY 6 0 . (3.36)

Conversely, plastic �ow can also occur in compression, resulting in a supplementary yield
surface

φT− =
2

3
τ eq − pτ − CφT (χ) τY 6 0 . (3.37)

In order to ensure a smooth yield surface and remove vertices, Besson (2009) used an interpo-
lation between both φT+ and φT− , leading �nally to

φT (τ eq, pτ , τY, χ) =


(

2

3
τ eq + pτ

)
︸ ︷︷ ︸

τ+

n

+

(
2

3
τ eq − pτ

)
︸ ︷︷ ︸

τ−

n


1/n

− CφT (χ) τY 6 0 , (3.38)

with n a su�ciently high even integer interpolation exponent to stay close to the original
surfaces.

The concentration factor CφT is given in terms of the ligament size ratio χ,

CφT (χ) =
(
1− χ2

) [
α(1/χ− 1)2 + β

√
1/χ

]
, (3.39)

where the parameters α and β depend on the strain-hardening exponent hexp and are respec-
tively equal to 0.1 + 0.217hexp + 4.83h2

exp and 1.24 for 0 6 hexp 6 0.3 as calibrated by Pardoen
and Hutchinson (2000).

3.1.2.5 A complete porous elastoplastic model: the Gurson-Thomason model

The full porous model is obtained when both di�use and localised mechanisms are taken
into account. First, the "growth" mode and its corresponding yield surface (3.32) is active.
Afterwards, the coalescence mode (with the yield surface (3.38)) becomes dominant. During
the transition, both modes can be active by considering a two-surface model: at this point, the
e�ective elastic region results in their intersection as shown on Fig. 3.4. The yield condition
can be summarised by

φGT = max (φG, φT) 6 0 . (3.40)

A particular treatment has to be applied to remove surface vertices and to ensure a unique
and continuous Np between iterations for convergence purpose. Therefore, the management
of the intersection of yield surfaces can be done by interpolation (as similarly done for φT)
as suggested by Nguyen, Pardoen, and Noels (2020) or by using a cone of normals. A more
simple choice is made here: the current active yield surface is selected at the end of the previous
time step. This choice is justi�ed because the coalescence surface shrinks faster than the void
growth one. Once the coalescence is activated, oscillations between both strain modes are
mainly limited to the onset stage.

3.1.3 Numerical integration of the constitutive law

The constitutive material law is integrated numerically following a backward Euler scheme.
Before being adapted to the local model in Section 3.1.3.4, the methodology is �rst presented
in the context of the non-local model, i.e. Ẑ = Z̃ or in this case f̂V = f̃V. The objective
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Figure 3.4: The two-yield surface model combining the Gurson yield surface φG and the
Thomason yield model φT in the (pτ , τ

eq) space.

is therefore to compute the stress state and the local internal variables at time tn+1 (i.e.
(Pn+1, fn+1

V )) from the known state at the previous discrete time step tn and from the actual
deformation gradient Fn+1 and non-local variable f̃n+1

V .
The procedure is summarised in Fig. 3.5. Using Eqs. (3.18) to (3.21), the problem is

solved in terms of the τ stress and the plastic deformation Fp. The time integration on the
interval

[
tn, tn+1

]
is done using a predictor-corrector scheme similar to the one described by

Cuitino and Ortiz (1992). At �rst, the strain increment is assumed to be purely elastic (Section
3.1.3.1). If this predictor stress is outside the yield surface, a plastic �ow occurs: a plastic
correction is therefore applied following the implicit radial return-like algorithm presented
in Section 3.1.3.2. Section 3.1.3.3 provides in details the derivation of the material tangent
operators. If a solution cannot be found, a classical linear sub-stepping scheme is used to solve

the problem on smaller intervals
[
tn
′
, tn
′+1
]
⊂
[
tn, tn+1

]
. In the following lines, the superscript

n+ 1 used to refer to the variables evaluated at this time is omitted for readability purpose.

3.1.3.1 Elastic predictor

During the predictor step, the plastic deformation gradient is kept unchanged Fp
pr
n+1

= Fpn

as well as the others variables linked to plasticity. The stress state is computed following Eqs.
(3.7) to (3.21), leading to the elastic predictor deformation gradient

Fe
pr = F · Fp

pr
−1 , (3.41)

and the strain predictor tensors

Ce
pr = Fe

pr
T · Fe

pr and Ee
pr =

1

2
ln
(
Ce

pr

)
. (3.42)

The predictor stress components then read

τpr
dev = 2G

(
Ee

pr

)dev
and pτ pr = Ktr

(
Ee

pr

)
. (3.43)

3.1.3.2 Plastic corrector

The yield condition (3.22) is assessed using the predictor state (3.43). If the criterion is
satis�ed, the elastic predictor state corresponds to the �nal one: Fp = Fp

pr and τ = τpr.
Otherwise, a plastic correction, which is de�ned in terms of the predictor state, is needed.
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𝛕 = 𝛕pr

Check yield criterion (Eq. 3.23)

𝜙 𝐄pr
e , መ𝑓𝑉 ≥ 0 ?

Inputs:

𝐅, Δ ሚ𝑓V

Elastic predictor (Section 3.1.3.1)

𝛕pr 𝐄pr
e , መ𝑓𝑉 = መ𝑓𝑉

𝑛 + Δ ሚ𝑓V

No

Solve the residual form (Eq. 3.54)

𝒓p Δ𝑑, Δ𝑞, Δ𝑝 ; 𝐄pr
e , መ𝑓𝑉 ȁ𝐄pre , መ𝑓𝑉

= 𝟎

and compute 𝛕 𝛕pr, Δ𝑑, Δ𝑞, Δ𝑝 (Eq. 3.52)

Compute the outputs 𝐏 𝛕 (Eq. 3.55), Δ𝑓V (Eq. 3.62) and 
their derivatives (App. B.2) 

Box 1: 
Numerical
integration

of the 
non-local 

model

Figure 3.5: Numerical integration procedure of the non-local constitutive porous-plastic
model (material model level).

Plastic �ow and corrector stress The current plastic deformation gradient, re-expressed
in terms of the plastic update ∆γNp and of the predictor state, reads

Fp = exp (∆γNp) · Fp
pr . (3.44)

Using the �ow decomposition (3.24), the plastic increment is given by

∆γNp = ∆d
3τ dev

2τ eq
+ ∆q

1

3
I , (3.45)

where ∆d is the increment of the deviatoric macroscopic plastic �ow and ∆q of the macroscopic
volumetric part. The corresponding corrected elastic strain tensors are

Fe = F · Fp
pr
−1 · [exp (∆γNp)]−1 , and

Ee = Ee
pr −∆γNp ,

(3.46)

From these equations, the corotational Kirchho� stress components are computed thanks to
Eqs. (3.21) and (3.43), using the �ow decomposition (3.45), τ dev = (τpr)

dev − 3G∆d
τ dev

τ eq
,

pτ = pτ pr −K∆q .
(3.47)

This relation directly gives the relationshi between the corrected pressure pτ in terms of
the predictor stress and the volumetric plastic increment ∆q. The deviatoric counterpart is
obtained by exploiting the chosen form of the decomposition (3.45). Indeed, the predictor and
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corrected deviatoric stresses are coaxial as shown by rewriting Eq. (3.47) as[
τ eq + 3G∆d

τ eq

]
τ dev = (τpr)

dev . (3.48)

One has also, from the de�nition of the equivalent stress for both tensors,

(τ eq)2 =
3

2
(τ )dev : (τ )dev =

3

2

[
τ eq

τ eq + 3G∆d

]2

(τpr)
dev : (τpr)

dev =

[
τ eq

τ eq + 3G∆d

]2 (
τ eq

pr

)2
,

(3.49)
which �nally gives, after some manipulations, the sought relation

τ eq = τ eq
pr − 3G∆d and τ dev =

τ eq
pr − 3G∆d

τ eq
pr

(τpr)
dev . (3.50)

Therefore, the corrected stress state after plastic �ow reads

τ eq = τ eq
pr − 3G∆d , τ dev =

τ eq
pr − 3G∆d

τ eq
pr

(τpr)
dev , and pτ = pτ pr −K∆q . (3.51)

Furthermore, the deviatoric plastic correction can be simpli�ed by this last equation:

∆γNpdev = ∆d
3τ dev

2τ eq
= ∆d

3 (τpr)
dev

2τ eq
pr

, (3.52)

which shows the advantage of this formulation in which the deviatoric part of the normal is
constant during the plastic correction.

Solution procedure Using Eqs. (3.44) to (3.52), the corrector step can be summarised
as �nding, for a given couple (Ee

pr, f̃V), the macroscopic plastic increments (∆d,∆q) and the
microscopic one ∆p that simultaneously satisfy the yield condition (3.22), the normality rule
(3.23), the equivalence of the plastic power between scales (3.29), and the evolution laws of
the internal variables, or again, as �nding the set of plastic increments v = [∆d ∆q ∆p] T

that satis�es the residual form

rp

(
∆d, ∆q, ∆p; Ee

pr, f̃V

)∣∣∣
Ee

pr,f̃V
= 0 , (3.53)

which can solved using an iterative Newton-Raphson procedure. Once the stress state τ and
the plastic strain Fp are obtained, P is �nally recovered from Eq. (3.18):

P = Fe · (τ : Le) · Fp−T , (3.54)

with Le = ∂ lnCe

∂Ce dependent on the approximation involved when computing the function
lnCe.

Residual form This residual form rp(v) from Eq. (3.53) is now developed. The �rst
equation rp1 corresponds to the consistency condition associated with the yield surface after
plastic correction:

rp1 = φ
(
τ eq, pτ , τY, Ẑ

)
, (3.55)

involving τ eq = τ eq
pr − 3G∆d and pτ = pτ pr −K∆q. The second equation links the volumetric

and the deviatoric plastic increments through the normality rule. From Eqs. (3.24) and (3.45),
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one has

∆γ =
∆d

Nd
=

∆q

Nq
, (3.56)

or again,
rp2 = ∆dNq −∆qNd . (3.57)

The third equation results from the integration of Eq. (3.29)

(1− fV0)τY∆p = τ : ∆γNp . (3.58)

Using again Eq. (3.45), one has

rp3 = (1− fV0)τY∆p−
(
τ eq

pr − 3G∆d
)

∆d−
(
pτ pr −K∆q

)
∆q . (3.59)

To this set of equations is added the internal variables evolution laws as constraints. For
given values of the set v, the hardening law τY = τY (pn + ∆p) gives the expression of the
yield stress in terms of the matrix plastic increment. The porosity growth equation (3.26) is
rewritten by including the di�erent growth term expressions and the �ow description (3.24)

˙fV = An (p) ṗ+ (1− fV) q̇ +BnfVḋ . (3.60)

After using backward Euler integration, the porosity increment is obtained by

∆fV =
(1− fnV) ∆q +An (p) ∆p+Bn(ζpr)f

n
V∆d

1 + ∆q −Bn(ζpr)∆d
. (3.61)

In Eq. (3.61), the Lode variable at the predictor ζpr is used as the plastic �ow leaves it
unchanged. Then, the current ligament ratio (3.31) is computed using

χ = χn

(
f̂V

f̂nV

) 1
3

exp

(
1

3
κ∆p

)
, (3.62)

and the current cell aspect ratio given by

λ = λn exp (κ∆p) . (3.63)

Exponential regulation is applied to smoothly avoid out-of range values on the porosity and
the ligament ratio. Equations are also all dimensionless.

The problem is solved using a Newton-Raphson scheme from an initial guess v(0) and the
subsequent solutions v(i+1) = v(i) + ∆v obtained with

Jv

(
v(i)
)

∆v = −rp

(
v(i)
)

(3.64)

introducing Jv =
∂rp
∂v , the Jacobian matrix. Its components are

Jv1,∆d = −3GNd ,
Jv1,∆q = −KNq ,

Jv1,∆p = ∂φ
∂τY

h+ ∂φ
∂χ

∂χ
∂∆p ,

(3.65)

Jv2,∆d = Nq − 3∆d ∂N
q

∂τeqG+ 3∆q ∂N
d

∂τeqG ,

Jv2,∆q = −∆d∂N
q

∂pτ
K −Nd + ∆q ∂N

d

∂pτ
K ,

Jv2,∆p = ∆d∂N
q

∂τY
h−∆q ∂N

d

∂τY
h ,

(3.66)
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Jv3,∆d = −τ eq + 3G∆d ,
Jv3,∆q = −pτ +K∆q ,
Jv3,∆p = (1− fV0) (τY + h∆p) ,

(3.67)

where h corresponds to ∂τY
∂p . φ, N

d, Nq, and their derivatives with respect to τ eq, pτ , τY and
other internal variables for the involved strain mechanisms are speci�ed in Appendix B.1 in
order to complete the procedure.

3.1.3.3 Material linearisation

The constitutive model needs to provide the material tangent operators. Practically, these
are obtained by linearising the output of the material law (P, fV), given by Eqs. (3.54) and
(3.26) (see the integral form in Appendix B.1) in terms of the input (F, f̃V). Using the chain
rule and tensorial calculus, the problem can be re-expressed in terms of the derivatives of the
plastic increments v. In this purpose, the residual vector (3.53) is linearised in terms of the
predictor strain Ee

pr and the porosity f̃V:

ṙp

(
v; Ee

pr, f̃V

)
= 0 =

∂rp

∂v
v̇ +

∂rp

∂Ee
pr

Ėe
pr +

∂rp

∂f̃V

˙̃
fV = 0 , (3.68)

from which the derivatives can be easily extracted following the de�nition of the Jacobian
matrix Jv =

∂rp
∂v explicited in Section 3.1.3.2, with

∂v

∂Ee
pr

= −Jv−1 ∂rp

∂Ee
pr

and
∂v

∂f̃V

= −Jv−1 ∂rp

∂f̃V

. (3.69)

The derivatives in terms of the predictor strain can then be replaced in terms of the deformation
gradient, see Appendix B.2 for more details.

3.1.3.4 Local form of the porous model

The results of Sections 3.1.3.2 and 3.1.3.3 are now adapted under a local form, i.e. Ẑ = Z or
in this case f̂V = fV. Henceforth, the e�ective variables increments are no longer dependent
on the variations of the non-local values, and the stress state Pn+1 is computed from the
deformation gradient only. The residual form, from which the set of plastic increments v are
obtained, is slightly modi�ed

rp

(
∆d, ∆q, ∆p; Ee

pr

)∣∣
Ee

pr
= 0 , (3.70)

as well as the corresponding Jacobian matrix, both being detailed in Appendix B.3. The
material tangent operator, ∂P∂F , is consequently reformulated following the same procedure as
in Section 3.1.3.3, see Appendix B.3.2 for more details.
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its derivatives (App. B.3) 
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Figure 3.6: Numerical integration procedure of the local version of the constitutive porous-
plastic model (material model level).

3.2 The damage to crack transition

Crack surfaces are introduced in the mechanical problem through a cohesive band model.
For this purpose, the classical cohesive model is taken as a starting point and is extended
into a cohesive band formulation following Leclerc et al. (2018) for the case of elastic damage
(see Section 2.1.2). By contrast to the surfacic CZM, the damage model presented earlier
in Section 3.1 is volumic and depends on the 3D stress state. Moreover, near failure, all the
damage growth tends to concentrate within a band around the future crack surface. This band,
where coalescence typically occurs, is of �nite thickness although very thin (the calibration of
this parameter will be discussed in the next chapter). These physical facts can be included
by replacing the classical CZM by the cohesive band model (Huespe et al., 2012; Remmers
et al., 2013). While respecting a traction-separation model formalism, this latter mimics the
behaviour of a uniform thin band around the crack surface. A stress tensor is computed by
using the underlying damage model with an enhanced strain tensor at the interface.

The crack insertion criterion and the calibration of the cohesive band thickness are ex-
plained next.

3.2.1 Cohesive band model

We refer to Section 2.1.2, see also Fig. 2.2, for the description of the CBM, and give herein
the only di�erence related to the porous plasticity model.

The displacement �eld is not continuous across the cracked surfaces ΓIC0: two initially
neighbouring points at the same location X on ΓI0 are now separated by Ju (X)K. To satisfy
internal equilibrium, the surface traction forces in the current con�guration per unit of surface
in the reference con�guration, tI0, have to be continuous across the surface:

JtI0K = 0 on ΓIC0, (3.71)
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while this internal boundary surface is treated as a free boundary surface from a non-local
point of view (similarly to Eq. (3.6)):(

Cl ·∇0
˙̃Zi

)
·NI = 0 on ΓIC0. (3.72)

The evolution of the traction force tI0 is de�ned by the cohesive model. Pioneered by
Dugdale (1960) and Barenblatt (1962), this representation of the material response locally
dissipates energy by crack surface creation. As the crack gradually opens and the jump JuK
increases, the bounding traction forces tI0 between crack lips irreversibly decrease and dissipate
an amount of energy per unit of created surface in the reference con�guration, Gc (so-called,
critical energy release rate)

Gc =

∫ ∞
0
tI0 (JuK) · d JuK . (3.73)

Then, the dissipated power is related to the rate of crack surface creation Ȧ0 with respect to
the reference con�guration by

Φ̇surf = GcȦ0. (3.74)

The cohesive law simply de�nes the relationship tI0(JuK) between the traction force and
the crack opening.

As the displacement �eld u(X) is discontinuous at the interface, the deformation gradient
cannot be directly de�ned at the discontinuous surface ΓIC. Instead, we use the formulation
(2.27) reported here below:

F±b = F± +
1

hb
JuK⊗NI +

1

2

∂ JuK
∂X

, (3.75)

with F± = F
(
XI
±) evaluated on both sides of the band of thickness hb. In this last equation,

the displacement discontinuity Ju (X)K is assumed constant across the thickness, i.e

∂ Ju (X)K
∂X

·NI = 0. (3.76)

Besides, an enhanced stabilisation procedure, di�erent of the one used in Section 2.1.2,
is involved herein. Due to the higher dissipation generated by the plastic �ow, numerical
instabilities are strongly reduced and the current bulk deformation gradient is kept (so Eq.
(2.31) and the related ones are no longer needed). However, the normal part contribution of
the jump to Fb in Eq. (3.75) is limited in the case of negative values, i.e. in case of contact,
in order to avoid negative Jacobian value.

The stress tensor P±b on both sides of the interface is computed using the constitutive bulk
law in its local form

P±b (t) = P±b

(
F±b (t); Ẑ

±
(t),Z±(t′), t′ ∈ [0, t]

)
, (3.77)

where Fb replaces the classical deformation gradient, and where the e�ective internal vari-

ables depend henceforth only on the local evolution after crack insertion, i.e. ˙̂
Z = Ż, see

Section 3.1.3.4. This relation guarantees a continuous traction force at the interface during
the transition. The cohesive traction forces are �nally obtained by:

tI0 = Pb ·NI. (3.78)

Thereby, the cohesive forces are naturally de�ned in terms of the underlying material
behaviour and the in-plane stretch components. Stress triaxiality e�ects are therefore included
inside the cohesive law within a formalism similar to a classical cohesive zone model. The whole
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Inputs: 

• 𝐅, Δ ሚ𝑓V on Ω0;
• 𝐅, Δ ሚ𝑓V, 𝒖 , 𝜵 𝒖 on ΓI0

Yes No
Is the Gauss point at the 

interface and has transition 
already occurred ?

Compute 𝐅b 𝐅, 𝒖 , 𝜵 𝒖
(Eq. 3.76)

Compute stress tensor

𝐏 𝐅, Δ ሚ𝑓V with Box 1
Compute the band stress 
tensor 𝐏b 𝐅b with Box 2

Figure 3.7: The non-local diffuse damage to crack transition algorithm, including the co-
hesive band model, in the context of the porous-plastic model.

procedure is summarised in Fig. 3.7. In the context of a hybrid DG/CZM framework, only
a few changes are required to integrate this model, as the necessary Gauss points are already
present at the interface and as a stress tensor is already computed at the interface before crack
propagation, see Section 3.3.

3.2.2 Crack insertion criterion

A crack insertion criterion is now needed to decide how and when cracks should propagate on
the uncracked surface ΓIU. A suitable condition has (i) to ensure a softening behaviour after
insertion and an elastic unloading in the neighbouring elements, (ii) to predict the propagation
direction. In this framework, two possibilities are selected.

3.2.2.1 Loss of ellipticity

In the context of a local model, a requirement to keep solution uniqueness is to introduce the
CBM at the loss of strong ellipticity as detected using the acoustic tensor. This criterion will
allow the comparison of the results with the simulation performed by Huespe et al. (2012) in
the context of local models. Following Huespe et al. (2012), the strong ellipticity is lost at a
given point once

det

[
N ·2 ∂P

∂F
·N
]
6 0 , (3.79)

for any direction vectorN . The crack insertion is constrained along an interface perpendicular
to the interface normal NI, i.e.

det

[
NI ·2

∂P

∂F
·NI

]
6 0 , (3.80)

or, similarly

−min

(
eig

[
NI ·2

∂P

∂F
·NI

])
> ε > 0 , (3.81)

where the operator "·2" stands for
[
A ·2 B

]
ijkl

= AjmBimkl , the operator "eig" computes the
eigenvalues of a tensor, and where a thresehold ε (equal to a fraction of the Young's modulus)
has been introduced. Although numerical, this criterion will allow the comparison of the
results with the simulation performed by Huespe et al. (2012).
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3.2.2.2 Onset of coalescence

The second criterion is based on the onset of coalescence in order to adjust the physical
damage localisation with the numerical one. Thereby, the fast damage growth related to the
coalescence phase induces the localisation of damage process inside a band and initiates the
cracking process. The use of a non-local model allows the insertion of the cohesive band after
the onset of softening has been detected, as an approximation, by substituting the derivatives
∂P
∂F in the criterion (3.81) by ∂P

∂F + ∂P
∂f̂V

∂fV
∂F . The use of a non-local model allows the insertion of

the cohesive band after the loss of ellipticity since there is no mesh-dependency. The condition
needs also to carry a directional component. The coalescence condition (3.35) is thus rewritten
in terms of the interface orientation nI and the Kirchho� stress tensor (since both are de�ned
in the current con�guration, and since κ shares the same invariants as τ ) as

nI · κ · nI − CφTτY > 0 . (3.82)

3.2.3 E�ects of the cohesive band thickness

The band thickness directly impacts the energy dissipated during crack propagation. Indeed,
at this point, the damage accumulation concentrates inside the band while the surrounding
bulk material is elastically unloading. As the main contribution results from the jump opening,
the dissipated energy is proportional to hb.

The thickness hb can be calibrated by comparison of the dissipated energy or Gc with a
reference case (Leclerc et al., 2018, see Section 2.2). This reference could be the underlying non-
local model, based on another approach as a phase �eld model, a dedicated micromechanical
model or RVE simulations (Scheyvaerts, Pardoen, and Onck, 2010) or again, experimental
data. The band thickness can also be linked to a microstructure characteristic length: the
coalescence process leads to the concentration of the damage process in a few voids thick
layer. This e�ect will be studied in Section 3.4.

3.3 Numerical implementation

The implementation of the damage to crack transition inside a discontinuous Galerkin frame-
work was explained in this Section 2.3 and is herein adapted for the �nite deformation case.
The weak form and its discretised version are derived from the di�erential partial equations
and constitutive models de�ned in Sections 3.1 and 3.2. The implementation and the time
integration algorithm for the �nite element discretisation and the constitutive models are also
described.

3.3.1 Strong form of the equations

The time evolution of the material volume Ω corresponds to the knowledge of the �eld variables
(u(X, t), Z̃(X, t)). In particular, this includes the location of discontinuity surfaces through
time.

The exact solution of the problem (uexact, Z̃exact; Pexact, ∇0Z̃
exact

) satis�es the system
of partial di�erential equations (3.2) and (3.5) and their boundary conditions (3.3) and (3.6)
over the body Ω0\ΓI0 described in Section 3.1. Besides, on the uncracked surfaces ΓIU0, the
solution has to be continuous, i.e.

q
uexact

y
= 0,

q
Pexact

y
= 0,

r
Z̃exact

z
= 0,

r
Cl ·∇0Z̃

exact
z

= 0 on ΓIU. (3.83)



3.3. Numerical implementation 73

On the cracked surfaces ΓIC0, the relationships (3.71)-(3.72) govern the �eld evolution across
the discontinuity. The traction forces are obtained via the cohesive band model described
in Section 3.2. The switch from uncracked to cracked interfaces occurs wherever either the
criterion (3.81) or (3.82) is ful�lled.

3.3.2 Weak form of the equations

The initial body Ω0, presented in Sections 3.1 and 3.2, is now approximated by a collection
of �nite volume elements Be with a boundary Se such as ∪eBe ' Ω0. In the discontinu-

ous Galerkin framework, the sought approximation for (u, ˙̃Z) is element-wise continuous and

discontinuous across them, i.e. (u, ˙̃Z) ∈ H1(Be) and (u, ˙̃Z) ∈ L2(Ω0).3 The tests functions
(wu, wZ̃) share the same properties. The potential crack surface locations ΓI are therefore no
longer totally arbitrary but have to follow internal element boundaries, i.e. ΓI = ∪eSe\Γ0.
An interface element Ss is inserted on the common boundary surface Ss = Se+∩Se− between
each pair of elements (arbitrary called Be+ and Be−).

Proceeding as to obtain 2.71 leads to �nding (u, ˙̃Z) such that

∫
Ω0

ρ0wu · üdV0 +

∫
Ω0

P :∇0wudV0 +

∫
ΓIC

JwuK · 〈Pb〉 ·N−I dS0

+

∫
ΓIU

JwuK · 〈P〉 ·N−I dS0 +

∫
ΓIU

JwuK⊗N−I :

〈
βs

hs
Ce

〉
: JuK⊗N−I dS0

+

∫
ΓIU

JuK · 〈Ce :∇0wu〉 ·N−I dS0 =

∫
Ω0

wu · b0dV0 +

∫
ΓN0

t̄N0 ·wudS0 ;

(3.84)

∫
Ω0

(
˙̃ZwZ̃ +∇0wZ̃ ·Cl ·∇0

˙̃Z
)
dV0 +

∫
ΓIU

q
wZ̃

y〈
Cl ·∇0

˙̃Z
〉
·N−I dS0

+

∫
ΓIU

q
wZ̃

y
N−I ·

〈
βs

hs
Cl

〉
·N−I

r
˙̃Z
z
dS0 +

∫
ΓIU

r
˙̃Z
z 〈

Cl ·∇0wZ̃
〉
·N−I dS0

=

∫
Ω0

ŻwZ̃ dV0 ,

(3.85)

for ∀(wu, wZ̃) kinematically admissible. It introduces Ce = ∂P
∂F

∣∣
F=I

the constant elastic oper-
ator of the virgin material, βs > 1, a su�ciently high penalty parameter for solution stabil-
isation, and hs, a characteristic mesh size parameter dependent on the element size and the
involved polynomial approximation.

3.3.3 Finite element discretisation

The weak form (3.84)-(3.85) developed in the previous section is the starting point of the
�nite element discretisation. Inside each element, a nodal interpolation approximates the

�elds (u, ˙̃Z) and their respective test functions (wu, wZ̃). At each node a is associated one
polynomial shape function Na (X), identical for each �eld and test function. The �elds (and
the test functions) are therefore estimated inside an element following:

u (X) =
Nn∑
a=1

Na (X)ua , ∆Z̃ (X) =
Nn∑
a=1

Na (X) ∆Z̃a , and

wu (X) =
Nn∑
a=1

Na (X) δua , wZ̃ (X) =
Nn∑
a=1

Na (X) δZ̃a ,

(3.86)

3In the former, H1 corresponds to the Hilbert space and L2 to the square-integrable function space
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from the Nn nodal values (ua , Z̃a) (and (δua , δZ̃a)) associated with each of the Nn nodes of
the element. The degrees of freedom (DoF) are brought together in a nodal unknowns vector
qa = [(ua) T ∆Z̃a ]T for a node a and in a global vector q = [uT ∆Z̃T]T gathering all the DoF
of the mesh. Applying to the weak form (3.84)-(3.85) the discrete approximation (3.86) of the
di�erent �elds, the following set of di�erential equations is obtained by taking into account
the inter-element discontinuities{

Mü+ fu int (q) + fu I (q) = fu ext

fZ̃ int (q)− fZ int (q) + fZ̃ I (q) = 0
∀t > 0 , (3.87)

see Appendix B.4 for details and expressions. In the force equilibrium equations (3.87), fu int,
fu I and fu ext respectively stand for the internal, interface and external force vectors related
to the displacement �eld while M is the mass matrix. fZ̃ int, fZ int and fZ̃ I are respectively
the non-local internal, local internal and interface non-local force vectors.

3.3.4 Numerical time integration

The set of equations (3.87) obtained previously is integrated through time using the α-
generalised method developed by Chung and Hulbert (1993) and presented in Section 2.3.2.2.
The sti�ness matrices involved in Eqs. (2.82) and (2.86) are developped in Appendix B.5.

3.3.5 Speci�c details of the algorithm

This section gathers some practical details of the numerical algorithm, contributing to the
framework robustness.

• A crack surface is introduced at a whole interface element when the criterion is detected
at least at one of its Gauss points. Void evolution is also blocked on the neighbouring
volume elements (but not the plastic �ow), in order to favor elastic unloading instead of
further volume softening.

• In order to avoid inter-element penetration during crack opening, a (linear) penalty force
is added. However, no friction relation is taken into account.

• At a crack insertion using the coupled model presented in Section 3.1.2.5, a small shift
exits between the criterion (3.82) and the yield surface (3.38). To avoid stress disconti-
nuity, an o�set is therefore introduced in Eq. (3.38).

3.4 Numerical applications

The constitutive description of the ductile failure process and its numerical implementation is
applied in this section to some numerical examples. At �rst, in order to verify the formulation,
the problem analysed by Huespe et al. (2012), in which a crack is inserted at loss of ellipticity
of a local model and in which the crack opening is governed by an adequate calibration of
the Gurson model parameters, is reproduced with the developed framework. The e�ect of
the band thickness and the non-dependence to the mesh size are analysed. Then, the more
physical Thomason coalescence criterion is used as crack initiation criterion and the crack
opening is governed by the Thomason coalescence model. It is shown that, in this case,
although cracks are inserted during the strain softening stage of the process, because of the
non-local formulation of the damage model, the solution is not mesh dependent. Furthermore,
the model is able to reproduce the slant and cup-cone failure modes in plane-strain specimens
and axisymmetric bars, either smooth or notched, respectively. Finally, the e�ect of the non-
local characteristic length on the resulting material ductility is studied.
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𝑒m𝑒0

𝐿

Figure 3.8: Geometry of the plane strain specimen.

3.4.1 Framework veri�cation with a local Gurson model applied on a plane

strain specimen

The current framework is �rst degenerated into a local Gurson model4 to allow a comparison
with the results discussed by Huespe et al. (2012). With the local version of the Gurson model,
a crack is inserted when the loss of ellipticity is detected by the criterion (3.81) in order to
preserve solution uniqueness. The failure process is governed by the same Gurson model in
which coalescence is modelled by adequate parameters.

The plane strain specimen consists in a rectangular bar of thickness 2em = 5 [mm] and
length L = 3.5em as drawn on Fig 3.8. Practically, the problem symmetry is exploited to
model only one half of the specimen. To ensure localisation at the centre of the bar, a geomet-
rical defect is introduced. For this purpose, the thickness linearly decreases with a minimum
thickness e0 = 0.98em in the middle of the bar. This smallest cross section is chosen as the
reference surface area. The specimen is meshed using 6-node quadratic triangular elements
with an aspect ratio between 4 and 5 in the necking zone to ensure a square mesh near fail-
ure. Three mesh sizes scaled by a re�ning factor of 1.5 are used: lmesh = 75 [µm] for the
�nest mesh, lmesh = 110 [µm] and lmesh = 170 [µm] for the coarsest (and an aspect ratio of
4) corresponding respectively to 65, 45 and 30 elements through the thickness, and including
respectively 7180, 4224 and 2544 triangles in total. The stability parameter βs is �xed to 50,
a su�ciently high value to provide results independent of βs. As dynamic e�ects are out of
the scope of this work, the spectral radius ρ∞ is set to 0 and the loading time is long enough
for the results to become insensitive to it.

The material properties, gathered in Table 3.1, are similar to the one used by Huespe
et al. (2012) and by Besson, Steglich, and Brocks (2003)5. The elastic properties are E =
210 [GPa] for the Young's modulus and ν = 0.3 for the Poisson ratio. The density is equal to
7600

[
kg/m3

]
. The hardening law consists in a Swift law in terms of the matrix plastic strain

τY (p) = τY0 (1 + hyp)
hexp , (3.88)

with τY0 = 377 [MPa] the initial yield stress, hy = 555 [−] the strain-hardening modulus, and
hexp = 0.12 [−] the hardening exponent. The strain-controlled nucleation term is a Gaussian
function (Chu and Needleman, 1980)

Anucl =
fn

sn

√
2π

exp

[
−1

2

(
p− pn

sn

)2
]
, (3.89)

where fn = 4.0 × 10−6, pn = 0.1 and sn = 0.3 are distribution parameters for the nucleated
void part, identically to Huespe et al. (2012). The shear contribution from kω is also ignored.
To recover a local model, a small non-local length is chosen, here equal to 5 [µm], i.e. one 15th

4To recover a local model, the non-local framework is used with a small non-local length compared to the
mesh size, here equal to 5 [µm], i.e. one 15th of the �nest element size. Moreover, the derivatives ∂P

∂F
in the

criterion (3.81) is substituted by ∂P
∂F

+ ∂P

∂f̂V

∂fV
∂F

, since f̂V ' fV in this case.
5We refer to so-called "G-model" considered in this last reference
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Table 3.1: Material properties for the local Gurson model, adapted from Huespe et al.
(2012).

Elasto-plastic properties, Eqs. (3.21), (3.88):
Density ρ0 7600

[
kg/m3

]
Young's Modulus E 210 [GPa]
Poisson ratio ν 0.3
Initial yield stress τY0 377 [MPa]
Strain-hardening modulus hy 555
Strain-hardening exponent hexp 0.12

Porosity parameters, Eqs.(3.26), (3.89):
Initial porosity fV0 1.5× 10−4

Nucleation parameters fn 4.0× 10−6

pn 0.3
sn 0.1

Shear-induced parameter kω 0

Gurson model parameters, Eq.(3.32):
Gurson yield parameters q1, q3 1.5

q2 1.15

Cohesive band model:
Cohesive band thickness hb 12 [µm]

of the �nest element size. A scatter of 1% is added to the initial porosity fV0 = 1.5 × 10−4

in order to break the symmetry in the problem. The local Gurson model parameters are
q1 = q3 = 1.5; q2 is equal to 1.15 to simulate the coalescence similarly to Besson, Steglich,
and Brocks (2003). The crack is introduced when the criterion (3.81), based on the loss of
ellipticity, is satis�ed. The band thickness is, in a �rst time, �xed to 12 [µm], slightly higher
than Huespe et al. (2012) since these authors have considered an exponential smoothing of the
porosity evolution contrarily to the present analysis.

The force evolution is represented in Fig. 3.9 as a function of the thickness reduction
∆e/e0 for the three mesh sizes. At �rst, on Fig. 3.9a, the results are shown for the local model
without crack insertion. In this case, the results are mesh-dependent as expected. However,
on Fig. 3.9b, solutions involving the insertion of the cohesive band model (continuous lines) at
loss of ellipticity are mesh independent during the entire deformation process. Except for the
coarsest mesh, characterised by too large elements to correctly model the problem, only small
disparities are observed during crack propagation, essentially due to di�erent crack paths that
are constrained along the interface elements. Moreover, the results are globally in agreement
with the ones obtained by Huespe et al. (2012).

The corresponding plastic strain and the porosity distributions (on a logarithmic scale) of
the previous results are presented in Figs. 3.10 and 3.11 after the �rst crack insertion, during
crack propagation, and at complete failure for the �nest mesh. Two shear bands oriented
at around 45◦, noticeable by a higher plastic strain or a higher porosity value, intersect at
the centre of the specimen. The crack initiates at the centre and spreads toward the surface,
following one of those shear bands. While the coarsest mesh is again not re�ned enough to
correctly model the problem, resulting in a crack orientation more vertical than expected,
the crack orientation is around 45◦ for the other two meshes. We however note that the
crack eventually bifurcates towards the secondary shear band direction as both localisation
directions are possible. This behaviour was prevented in the work of Huespe et al. (2012) by
systematically favouring one direction. We will further show that when considering a non-local
model coupled with the Thomason coalescence criterion this is naturally avoided.
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Figure 3.9: Variation of the applied load as a function of minimum cross-section thickness
reduction of the plane strain specimen (a) for the local Gurson model without crack insertion,
and (b) for the local Gurson model coupled with the CBM for the three mesh sizes, and
comparison with the results of Besson, Steglich, and Brocks (2003) and Huespe et al. (2012)

(square and triangle makers).

(a) (b)

45°

(c)

𝑝 > 1.50.750

Figure 3.10: Matrix plastic strain distribution of the plane strain specimen model by intro-
ducing a crack at the loss of ellipticity occurring when the criterion in Eq. (3.81) is satisfied:
(a) at failure initiation, (b) during crack propagation and (c) at total failure for the fine mesh.

(a) (b)

45°
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𝑓𝑉
> 6%0.3%0.015%

Figure 3.11: Porosity distribution inside the plane strain specimen model by introducing a
crack at the loss of ellipticity occurring when the criterion in Eq. (3.81) is satisfied: (a) at
failure initiation, (b) during crack propagation and (c) at total failure for the fine mesh.

The response in terms of the band thickness is now examined in Fig. 3.12 using the medium
mesh (110 [µm]). If no clear trend is observed on the whole curve, the band thickness clearly
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in�uences the response right after the onset of cracking as seen in the zoom: the behaviour is
more ductile with a thicker band. However, quickly after the onset of cracking, crack paths
slightly di�er from one another, resulting in no comparable curves. A proper comparison could
be performed by enforcing a pre-de�ned path. It is worth mentioning that a vanishing value
of hb, closer to a brittle fracture expected behaviour, results in a straight crack path. Indeed,
the plastic strain distribution is compared on Fig. 3.13 for two values of hb. In this case,
increasing hb does not change the crack orientation while decreasing it results in a straight
crack. Surface energy dissipation, although small compared to the di�use plastic dissipation,
is therefore required to avoid this inconsistency with respect to physical evidences.
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Figure 3.12: Variation of the applied force as a function of the minimum cross-section
thickness reduction of the plane strain specimen for the local Gurson model coupled with the
CBM and for different values of the band thickness. A zoom is provided for the response just

at and after cracking initiation.

3.4.2 Non-local model and crack insertion based on Thomason coalescence

model

The insertion criterion (3.81) is now replaced by the coalescence criterion (3.82) inspired from
the Thomason coalescence model. This last one has the advantage to rely more on the void
geometry evolution. As we will illustrate later, this condition is generally ful�lled beyond
the softening point, hence the necessity of using the non-local model. After crack insertion,
another coalescence model is used to govern the failure process: the coupled Gurson-Thomason
model presented in Section 3.1.2.4. Since the model is di�erent, in this section, the material
properties of the Gurson-Thomason combined model are �rst identi�ed in order to recover the
results reported by Besson, Steglich, and Brocks (2003).

3.4.2.1 Parameters calibration

The elasto-plastic material parameters of Section 3.4.1 are used again, see Table 3.1. The other
materials parameters are gathered in Table 3.2. The Gurson parameters are now q1 = q3 = 1.5
and q2 = 1., which are more micromechanically sound (see Faleskog, Gao, and Fong Shih
(1998)) than the values used in Section 3.4.1. Two non-local lengths are investigated: 50
and 75 [µm], which are reasonable values with respect to literature but which are of course
microstructure dependent, and will vary from one material to another (e.g. Zhang, Lorentz,
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Figure 3.13: Plastic strain distribution within the plane strain specimen model by intro-
ducing a crack at the loss of ellipticity occurring when the criterion in Eq. (3.81) is satisfied
for two values of hb: (left) at failure initiation, (center) during crack propagation and (right)

at total failure for the medium refined mesh.

and Besson (2018)). The band thickness is still equal to hb = 12 [µm]. The ligament ratio
χ is computed using λ0 = 0.5 and κ = 0.4, see Eq. (3.31). In addition, the interpolation
exponent n of the yield surface φT is equal to 10.

The nucleation term An and the shear contribution kω are then calibrated in terms of the
non-local length lc = 50 [µm] (resp. lc = 75 [µm]) to predict the fracture strain value of
the smooth round bar and of the plane strain specimen reported by Besson, Steglich, and
Brocks (2003). As kω has no e�ect on failure initiation on the axisymmetric tests, as it will
be shown, a signi�cant nucleation term with fn = 2.0× 10−3 (resp. 3.5× 10−3), pn = 0.1 and
sn = 0.3 is added to capture the correct initiation point of this test. Then, an approximate
shear contribution, kω = 1 (resp. kω = 0.5) in agreement with literature (Xue et al., 2010,
e.g.), is chosen to �t the fracture initiation of the plane strain specimen.

Unless otherwise stated, the simulations are performed with lc = 50 [µm] and kω = 1.

3.4.2.2 Slant fracture in a plane strain specimen

The framework is �rst applied to the plane strain specimen, previously presented in Section
3.4.1 with lc = 50 [µm]. Figure 3.14a shows the force evolution predicted with the three
meshes used earlier. Since the elements are quadratic, the distance lc = 50 [µm] actually
covers several integration points for the �nest meshes. As observed previously, the simulations
with the coarsest mesh do not represent correctly the failure process. Regarding other meshes,
the expected necking process is recovered. Moreover, no mesh-dependency is observed in the
force-thickness reduction curves.

The plastic strain distribution is represented in Fig. 3.15 for the medium re�ned mesh.
Before crack insertion, two shear bands are developing at around 45◦ with respect to the
loading direction at future crack propagation sites. Cracks are then introduced by following
one of these localisation bands until total failure. We note that we do not have introduced a
direction criterion to select the band direction. This insertion occurs in this case beyond the
onset of softening shown by the coloured elements on Fig. 3.16. The process zone spreads
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Table 3.2: Material properties for the non-local Gurson-Thomason model.

lc = 50 [µm] lc = 75 [µm]

Porosity param., Eqs.(3.26), (3.89):
Initial porosity fV0 1.5× 10−4

Nucleation parameters fn 2.0× 10−3 3.5× 10−3

pn 0.3
sn 0.1

Shear-induced parameter kω 1.0 0.5

Gurson model param., Eq.(3.32):
Gurson yield parameters q1, q3 1.5

q2 1

Thomason model param., Eqs. (3.38), (3.31), (3.39):
Cell parameters λ0 0.5

κ 0.4
Thomason yield surface parameters α 0.196

β 1.24

Cohesive band model:
Cohesive band thickness hb 12 [µm]
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Figure 3.14: Variation of the applied force as a function of the minimum cross-section
thickness reduction of the plane strain specimen for the non-local Gurson-Thomason model
coupled with the CBM (continuous lines) for two values of lc, and comparison with the
results of Besson, Steglich, and Brocks (2003) and Huespe et al. (2012) (respectively square

and triangle markers).

over several elements and precedes the crack tip. While the process zone is almost symmetric
at failure initiation, it is afterwards inclined at 45◦.

3.4.2.3 Cup-cone fracture in round bar specimens

The framework is now applied to a di�erent stress state by considering axisymmetric smooth
and notched round bars, represented respectively in Figs. 3.17a and 3.17b. The round speci-
mens have a radius Re = 5 [mm] and a length L = 3.5Re. The considered notch radius of the
notched bars is equal to Rn = 4 [mm] with an external radius Re = 9 [mm]. For the smooth
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Figure 3.15: Matrix plastic strain distribution of the plane strain specimen using the non-
local model with lc = 50 [µm] and introducing a crack following Thomason coalescence crite-
rion and for the medium refined mesh: (a) at failure initiation, (b) during crack propagation

and (c) at total failure.

(a) (b) (c)

Figure 3.16: Mapping of the elements which entered strain softening stage in the plane
strain specimen using the non-local model with lc = 50 [µm] and the introduction of a crack
following Thomason coalescence criterion (medium refined mesh) (a) at the failure initiation,

(b) at a point during the failure process and (c) near the total failure.

round bar (i.e. Rn = ∞), a geometrical imperfection is introduced. It consists in a diameter
reduction around the central section as applied by Huespe et al. (2012). The reduction follows
a circular pro�le, extending on one seventh of the bar length from both sides of the maximum
reduction R0 = 0.98Re section. The minimum cross-section is used as reference surface S0.
The meshes for the di�erent notch radii Rn = ∞ and 4 [mm] consist respectively in 16598
and 16116 6-node triangular elements of 75 [µm] size with an aspect ratio around to 7 and
5. Moreover, the DG-stability parameter is increased (here the value βs = 175 is considered)
because of the use of di�erent elements (axisymmetric and not 2D ones). Besides, the term
1
2
∂JuK
∂X in Eq. (3.75) has been neglected. The material model and parameters are identical, as

de�ned in the Section 3.4.2.1 and lc = 50 [µm] is considered.
The variation of the tensile force applied on the smooth round bar is represented in Fig.

3.18 in terms of the radius reduction for lc = 50 [µm]. A good correlation is obtained with
both results presented by both Besson, Steglich, and Brocks (2001) and Huespe et al. (2012).
Besides, the force evolution is also shown in Fig. 3.18 for di�erent values of kω. As announced
in Section 3.4.2.1, one can notice that kω has no in�uence on the crack initiation as the Lode
term is vanishing near the bar center. However, once the crack is propagating, the stress state
changes and the kω e�ect becomes noticeable. The force evolutions for the two notch radii are
compared in Fig. 3.19a. A good correlation is obtained between the fracture strain measured
by Besson, Steglich, and Brocks (2001) despite the fact that the numerical results slightly
overestimate the real fracture strain.

Figs. 3.20a to 3.20c represent the deformed state of the smooth round bar at di�erent
points of the process as the plastic strain distribution for kω = 1. At a necking factor of 0.5,
a tensile crack initiates at the center. It radially propagates while shear bands are starting to
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Figure 3.17: Geometries (a) of the round bar and (b) of the notched bar.
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Figure 3.18: Variation of the applied force as a function of the central radius reduction of
the smooth round bar for the non-local Gurson-Thomason model with lc = 50 [µm] and the
CBM, and comparison with the results of Besson, Steglich, and Brocks (2001) and Huespe

et al. (2012) (respectively square and triangle markers).

develop aside of the crack (see Fig. 3.20b). At some point, the crack changes its direction,
following those shear bands until it reaches the surface. A cup-cone failure is thus obtained as
experimentally observed by Besson, Steglich, and Brocks (2001).

The plastic strain distributions in the deformed state of the notched bar are presented
in Figs. 3.20d to 3.20f. The crack also starts from the center of the specimen but at a
di�erent plastic strain value. Indeed, the increase of the stress triaxiality, caused by a smaller
notch radius, leads to an earlier failure initiation. At some point, the crack also bifurcates by
following a shear band, resulting in a cup-cone failure mode as observed experimentally by
Besson, Steglich, and Brocks (2001).
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Figure 3.19: Variation of the applied force as a function of the minimum cross-section radius
reduction of the smooth and notched round bars for the non-local Gurson-Thomason model
with the CBM for two values of lc, and comparison with the experimental fracture strain

given by Besson, Steglich, and Brocks (2001) (star markers).
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Figure 3.20: Matrix plastic strain distribution of the smooth (Rn = ∞) and the notched
(Rn = 4 [mm]) round bar specimen using the non-local model with lc = 50 [µm] and intro-
ducing a crack following Thomason coalescence criterion: (a) at failure initiation, (b) before

crack tilting, and (c) at total failure.

3.4.2.4 In�uence of the non-local length

Results presented in Sections 3.4.2.2 and 3.4.2.3 are now compared with the results obtained
with the second set of material parameters calibrated in Section 3.4.2.1 for lc = 75 [µm]. Similar
results are obtained, either in terms of force evolution or fracture surface. As an illustration,
the force evolution in terms of, respectively, the thickness and the diameter reductions are
compared in Figs. 3.14b and 3.19b, showing that the model can still predict the correct
trends and similar conclusions can be drawn about the results. The model is e�ectively rich
enough to represent the slant and cup-cone fracture, characteristic of the ductile failure process.
However, the simple procedure based on the information available to calibrate the model is
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unable to determine a unique set of material parameters. As several parameters combinations
can reproduce the expected behaviour, a more complete strategy needs to be adopted, based
on physical arguments involving for instance the determination of the tearing resistance and
fracture energy in problems with stable crack propagation. This task will be addressed in the
Chapter 4.

3.5 Conclusions

We have developed a damage to crack transition numerical framework in order to predict
the failure of porous ductile materials. This framework couples an implicit non-local damage
model, which captures the initial di�use damage stage, with a cohesive band model, which
captures the void coalescence and crack extension opening stage. The cohesive band model al-
lows considering complex 3D stress state e�ects during the �nal failure process. The transition
has been numerically implemented within a discontinuous Galerkin formulation.

The Gurson-Tvergaard-Needleman (GTN) model was selected to simulate the void growth
before the coalescence phase. First, in order to compare our results with the literature, a local
model was considered and the cracks were inserted in a local model at the loss of ellipticity.
Then, in order to illustrate the versatility of the non-local framework, we have considered the
Thomason coalescence criterion as crack initiation indicator, and the Thomason coalescence
model as crack opening governing law. In particular, it was shown that the Thomason coales-
cence criterion can be met during the strain softening stage, motivating the use of a non-local
damage formulation.

The framework was then applied to reproduce the slant and cup-cone failure modes of
plane-strain and axisymmetric specimens, respectively. In particular, it was shown that the
numerical predictions converge with the mesh re�nement, and that the cohesive band thickness
governs the fracture energy released during the coalescence stage, and possibly the failure mode
when vanishing values are considered.

The material model could be enhanced with more complex coalescence models: in this work,
slant and cup-cone failures are captured because of the creation of the free surface. Nguyen,
Pardoen, and Noels (2020) have recently introduced a non-local multi-surface approach ac-
counting for void growth, internal necking and shearing mechanisms capturing these patterns
without introducing a discontinuity. This non-local porous plasticity model will improve the
quality of the predictions at low stress triaxiality.

Another step should focus on the material parameters calibration. A proper procedure
should be developed, followed by a suitable experimental campaign. This step is addressed in
the next chapter.
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Chapter 4

Calibration of the material parameters
for high-strength steels1

In this chapter, the CDM/CBM (continuous damage model / cohesive band model) transition
framework developed in the previous chapters is calibrated for a high-strength steel alloy. In
particular, we mainly focus on the micromechanical model suited to ductile failure in the con-
text of �nite strains, the Gurson-Thomason (GT) model, which was developed in Chapter 3.
For this purpose, a thorough experimental campaign is involved to assess the material parame-
ters values. Moreover, the mechanical tests are completed with micromechanical observations,
cell numerical experiments and the development of a nucleation model allowing to reproduce
the porosity evolution experimentally observed in an alloy exhibiting failure anisotropy.

Indeed, the micromechanical-based model developed in Chapter 3 entails numerous param-
eters to calibrate. Comparatively, the number of mechanical tests usually available is more
limited. Therefore, this is possible to �nd a parameters combination by pure parametric op-
timisation which is close to the available experimental curves. However, due to this material
parameters profusion, nothing would prevent over�tting and nothing would ensure this solu-
tion to be unique or the optimal one. In other words, even if we observe a good agreement
between the available experimental results and the numerical ones, nothing would guarantee
that the chosen combination of numerical parameters correctly predicts other loading cases.
This would result in case-dependent parameters, which has to be prevented as previously
stated in Chapter 1.

Therefore, to avoid any case-dependent parameters, a di�erent strategy is chosen here.
In parallel to mechanical tests, we bene�t from the micromechanical-based model developed
previously by linking as much as possible the parameters values to their physical interpretation.
Hence, we mainly establish the calibration procedure as much as possible on micromechanics
observations and arguments. In this way, the propensity to over�tting would be reduced.

To do so, we include an extensive microstructure analysis based on SEM (Scanning Electron
Microscope) pictures. Those images have been taken before and after the mechanical tests at
di�erent locations as along the loading axis or on the failure surface. Those images provide
precious insights on the mechanisms in play. In particular, this helps us to identify the failure
sequence and its origin. Moreover, after image processing, the inclusions properties, their size,
shape, spatial distribution and composition can be extracted.

We also use elementary cell computations. Such a computation consists in a �nite element
(FE) simulation of a Representative Volume Element (RVE) of the actual microstructure.
Adequate boundary conditions are enforced with the elasto-plastic matrix behaviour identi�ed
from the mechanical tests. Since the early work of Needleman (1972), this method has been

1This calibration procedure is aimed to be published in two parts. This work is supported by di�erent
collaborations. Indeed, the mechanical tests, performed by Marie-Stéphane Colla and Matthieu Marteleur
from UCLouvain, are completed by several micromechanical data's also provided by them. They have studied
the microstructure properties and its evolution during the failure process using SEM pictures which they have
taken. Furthermore, we apply the hardening law calibrated in collaboration with Van-Dung Nguyen. We also
include the results of the elementary cell computations performed by Van-Dung Nguyen to assess a part of the
void growth and coalescence parameters.
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used with various levels of complexity in terms of loadings conditions, microstructure, matrix
behaviour,... see the review by Pineau, Benzerga, and Pardoen (2016). In this work, we
investigate the cell model considered by Pardoen and Hutchinson (2000).

This strategy is applied in this chapter on forged tubular blanks of a high-strength steel al-
loy. Due to its forming and manufacturing process, an anisotropy is expected in the mechanical
properties because of the anisotropy arising in its microstructure. The campaign of experimen-
tal mechanical tests is designed in consequence. It involves various specimens to cover a large
span of the stress state space with a focus on tensile behaviour since a signi�cant dependency
of the ductility on the stress conditions has been observed by Bai, Teng, and Wierzbicki (2009),
Bai and Wierzbicki (2008), Brünig, Brenner, and Gerke (2015), Brünig, Gerke, and Schmidt
(2018), Danas and Ponte Castañeda (2012), Driemeier et al. (2010), Dunand and Mohr (2011),
Liu, Kang, and Ge (2019), Liu, Wong, and Guo (2016), and Nahshon and Hutchinson (2008)
among others. However, in the design process of such tests, geometrical constraints from the
available material have to be considered. Moreover, the extreme strength of the material also
limits the size (i.e. the section) of the specimen. Furthermore, due to the expected anisotropy,
some mechanical tests have to be reproduced in di�erent material orientations.

As a summary, from the mechanical tests, the elasto-plastic parameters are �rst calibrated
by considering a virgin material. In other words, we neglect the disparities created by the
damage parameters between the microscopic matrix hardening properties and the apparent
macroscopic ones. This assumption is usually applied for most metallic alloys since, providing
a relatively low initial porosity, the damage parameters have generally a low in�uence on the
apparent hardening properties. Also, we assume that the elasto-plastic behaviour does not
exhibit anisotropy, the latter being limited to the porosity evolution and coalescence stage.
The resulting plastic behaviour is then compared and validated with the experimental results.
Besides, the stress conditions are evaluated at expected failure initiation points to analyse the
stress state space covered by the mechanical tests.

Afterwards, we exploit the inclusions properties from the microstructure analyses to char-
acterise the damage-related parameters. Indeed, those values serve as inputs to cell simulations
which allow in return calibrating the Gurson growth and coalescence parameters. Moreover,
we establish the calibration of characteristic lengths on the microstructure ones. Furthermore,
the nucleation model is entirely based on the conclusions drawn from the microstructure ob-
servations performed post-mortem along the specimen loading axis. It consists in an extended
version of the model of Beremin (1981) to anisotropic cases. This model, even though not all
its capabilities are exploited in this work, allows reproducing the failure anisotropy observed
during the mechanical campaign. Its predictions are validated by comparing the fracture strain
as well as the porosity distributions to their experimental counterparts.

Finally, the e�ect of the shear induced growth parameter, see Eq. (3.27), is studied, and the
damage-to-crack transition framework is applied ro reproduce the failure mode experimentally
observed on round bars and groove specimens. The numerical results are then discussed.
Guidelines to improve either the calibration or the materiel model are examined. Namely,
we discuss how to use unexploited mechanical tests, such as the Compact Tension Specimen
(CTS) or the Double-Edge Notched Tensile Specimen (DENT).

Consequently, this chapter is outlined as follows. At �rst, we present the results of the
experimental campaign in Section 4.1. Namely, preliminary microstructure analyses are pre-
sented in Section 4.1.1 before the actual mechanical tests in Section 4.1.2. We also present the
void fraction analysis in Section 4.1.3. Those experimental tests have been realised by Marie-
Stéphane Colla and Matthieu Marteleur from UCLouvain. We then address the elasto-plastic
law in Section 4.2 as a �rst estimation of the material behaviour. Afterwards, the damage
related parameters for the non-local micromechanical-based model are determined in Section
4.3. Assumptions are �rst discussed in Section 4.3.1. Growth and coalescence related parame-
ters are deduced from the material microstructure and from the cell experiments performed by
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Figure 4.1: Schematic representation of the inclusion populations observed inside the stud-
ied material.

Van-Dung Nguyen in Section 4.3.2. The model characteristic lengths are evaluated in Section
4.3.3. Section 4.3.4 is devoted to the development of the nucleation model, its calibration and
its validation. Then, the shear-induced growth parameter e�ect is the topic of Section 4.3.5.
Finally, Section 4.4 is devoted to the damage to crack transition. In particular, the predicted
crack patterns are compared to the experimental failure paths.

4.1 Experimental campaign

In this section, we detail the experimental campaign on which the calibration is based. Exper-
imental tests and result analyses performed by Marie-Stéphane Colla and Matthieu Marteleur
from UCLouvain are presented. At �rst, their preliminary microstructure analysis, performed
on the raw material is described Section 4.1.1. In particular, a thorough analysis of the inclu-
sions properties was carried. Next, Section 4.1.2 gather the results of their mechanical tests.
SEM images of some failure surfaces are presented and discussed. Additional tests involved
in this campaign, but which are not yet exploited in the following work, are not presented for
conciseness. Finally, Section 4.1.3 gathers the microstructure porosity analysis performed on
specimen post-mortem, i.e. after the mechanical failure.

The specimens are extracted from a forged tube, see Fig. 4.1. From now on, due to the
tube anisotropy from which the specimens are extracted, we designate by the longitudinal
direction (abbreviated by "long.") all properties links to the direction along the tube axis.
Conversely, the perpendicular direction ("perp.") apply on properties related to any direction
perpendicular to the blank axis, i.e along the tube thickness or circumference.

4.1.1 Preliminary analysis

In preparation to the mechanical tests, di�erent analyses were performed a priori on the raw
material by the UCLouvain in order to assess the chemical, mechanical and micromechanical
properties of the studied high-strength steel. An anisotropic behaviour is expected. It would
result from the manufacturing process of the studied material which is under the shape of
tubular blanks obtained by forging. The main relevant results of this analysis performed by
Marie-Stéphane Colla and Matthieu Marteleur are gathered here below.

At �rst, an optical emission spectrometry (ICP-OES) has been performed to determine
the chemical composition. Therewith, the crystalline properties of the material were analysed
by x-ray di�raction in order to determine the nature of the phase in the material. Coupled
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Figure 4.2: Inclusions populations observed under SEM: MnS inclusions in a direction (a)
parallel to the blank axis, and (b) perpendicular to it; (c) carbides inclusions.
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with a scanning electron microscope (SEM) analysis, a martensite phase is identi�ed. Besides,
di�raction results do not show preferential direction in the crystal texture. Therefore, plastic
�ow anisotropy is unlikely. This assumption will be veri�ed in Section 4.1.2.1 and 4.2.2.

Furthermore, microstructural analyses were performed using a scanning electron micro-
scope (SEM). This microscope is equipped with a detector suited for energy dispersive X-ray
spectrometry. After image post-processing, they allow identifying the nature of the inclusions
on pictures like on Fig. 4.2. Other geometrical properties are obtained by reproducing the
methodology developed by Hannard et al. (2016). Moroever, this operation is repeated in two
di�erent directions to assess the material anisotropy.

This analysis highlights two populations of inclusions in the microstructure as schematised
on Fig. 4.1. On the one hand, the largest population (in size) consists in highly-elongated MnS
precipitates, around 20 [µm] in length, aligned along the blank axis. Indeed, they are visible
as small disks on Fig. 4.2a taken parallel to the axis, and under small rods in a perpendicular
direction on Fig. 4.2b. On the other hand, the second family is made of small spherical carbide
particles of 0.06 [µm] in diameter (Fig. 4.2c).

More precisely, MnS inclusions are under the shape of prolate spheroids2. Resulting from
the forging process, they are oriented along the forging direction as depicted on Fig. 4.1.
Depending on the direction, one will observe circular inclusions in the tube axis (Fig. 4.2a) or
rods in other perpendicular directions (Fig. 4.2b). The aspect ratio (width on length ratio)
is estimated to be at around 16. However, it is probably higher as a small misalignment
with the inclusion axis leads to a large underestimation of the real aspect ratio. The volumic
fraction is equal to 2 × 10−3 and is extracted from the surface fraction in either directions.
The voids are randomly distributed inside the metallic matrix as on Figs. 4.2a and 4.2b.
Their mean inter-distance is almost isotropic and around 100 [µm]: the voids are separated
by an average inter-distance of 120 [µm] in the long. direction and by 80 [µm] in the perp.
direction. However, locally, inclusions are much closer and are regrouped into clusters. Those
have an harmful e�ect on the material ductility as they are privileged sites of coalescence onset
(Pineau, Benzerga, and Pardoen, 2016).

Besides, between those large MnS inclusions are spread smaller carbide particles inside the
matrix as observed on Fig. 4.2c. Their size is around 60 ± 20 [nm] in diameter (i.e. at least
100 times smaller than MnS particles) with an aspect ratio close to 1. However, these small
spheres account for 7.5% of volume fraction, which is 10 times higher than MnS inclusions.

Some expectations on the failure process can already be drawn from this microstructure
analysis but they need to be completed with post-mortem analyses in Sections 4.1.2 and 4.1.3.
Based on the microstructure, it is likely that MnS inclusions, as the largest population in size,
will drive the failure process. Their highly-elongated shape will induce a failure anisotropy
which needs to be assessed by the mechanical campaign tests.

4.1.2 Mechanical tests campaign

In this section, the mechanical test campaign is presented as well as the experimental results.
In particular, each test con�guration, its geometry and its purpose are detailed. The failure
surface is also described. Most of those tests consist of applying a uniaxial tensile load on a
steel sample with a particular geometry and observing the applied force evolution in terms of
the elongation or striction respectively measured with an extensometer or a strictometer. All
results are scaled using the initial yield stress τY0 and eventually, a reference cross-section.

In the literature, many authors (see the review by Pineau, Benzerga, and Pardoen (2016))
have demonstrated the predominant impact of the stress state on the experimental ductilities.

2Similarly to a rugby ball, a prolate spheroid is an ellipsoid of revolution, for which the larger demi-axis is
perpendicular to the symmetry plane (in which both other demi-axes are equal), by opposition to an oblate
spheroid.
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The stress state, σ is de�ned (in absence of anisotropy) through its three principal stress values
σI, σII and σIII (such as σI > σII > σIII), which basically correspond to the eigenvalues of the
tensor σ. Equivalently, σ can be characterised through a combination of its three invariants:

- the hydrostatic pressure pσ

pσ =
1

3
tr (σ) =

1

3
(σI + σII + σIII) , (4.1)

which is equal to 1
3I1, the �rst invariant of the stress tensor;

- the von Mises equivalent stress σeq

σeq =

√
3

2
σdev : σdev =

√
1

2
(σI − σII)

2 + (σII − σIII)
2 + (σIII − σI)

2 , (4.2)

introducing σdev, the deviatoric part of σ, which is related to the Jσ2 , the second invari-
ant of the deviatoric stress tensor following σeq =

√
3Jσ2 ;

- the third invariant of the deviatoric stress tensor Jσ3

Jσ3 = detσdev = (σI − pσ) (σII − pσ) (σIII − pσ) . (4.3)

In general, it is more convenient to work with the equivalent stress σeq and the dimension-
less parameters T and ζ. The stress triaxiality T corresponds to the dimensionless pressure

T =
pσ
σeq

. The normalised third invariant ζ (Bai, Teng, and Wierzbicki, 2009; Dunand and

Mohr, 2011) is the normalised version of Jσ3 :

ζ =
27 detσdev

2σeq3
with − 1 6 ζ 6 1 , (4.4)

so-called in the following the Lode variable. Besides, alternative de�nitions exist. The Lode
angle θL, de�ned as

ζ = cos (3θL) with 0 6 θL 6
π

3
, (4.5)

has the advantage to entail a geometric interpretation in the Haigh�Westergaard stress space.
A normalised version of the Lode angle, θ̄L, related to the previous de�nitions by

θ̄L = 1− 6θL

π
with − 1 6 θ̄L 6 1 , (4.6)

is also sometimes used (Bai, Teng, and Wierzbicki, 2009).
Depending on the specimen geometry, di�erent ranges of stress state, de�ned in terms of

stress triaxiality and Lode variable, can be covered. Spanning a large spectrum of stress states
therefore requires several test geometries. The expected stress state is granted, in some cases,
by analytical expressions. However, most of the time, �nite element simulations are needed to
determine its evolution during the process (see Section 4.2.2). Besides, when it is possible, a
ductility measure speci�c to each specimen is de�ned either in terms of stress, strain or speci�c
energy.

In order to evaluate the failure anisotropy suspected from the manufacturing process and
observed in Section 4.1.3, some tests are reproduced using specimens sampled along di�erent
directions. The specimen orientation is respectively quali�ed of longitudinal ("long.") or per-
pendicular ("perp.") depending whether the loading axis is aligned or perpendicular to the
tube axis.
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The mechanical tests are grouped according to the stress conditions or their geometries.
One can distinguish in this work the following traction tests: the round bars under axisym-
metric conditions (see Section 4.1.2.1); the grooved plates under plane strain conditions (see
Section 4.1.2.2); and the �at bars under plane stress condition, (see Section 4.1.2.3). Most of
them di�er from one to another by the presence or not of a notch. The notch consists in a
geometrical defect (circular, v-shaped,...) which locally modi�es the stress conditions (usually,
by increasing the stress triaxiality, see the work by Kiran and Khandelwal (2014) for instance).
Therewith, the ductility between those tests is compared through a strain measure: the mean
true strain at failure, ε̄f which is, from the equivalent plastic strain measure de�nition, equal
to

ε̄f =

√
2

3

(
ε2pf1

+ ε2pf2
+ ε2pf3

)
, (4.7)

where εpfi are the principal components of the plastic strain tensor at fracture. These compo-
nents are approximated using the geometrical change between the initial reference geometry
and the corresponding �nal one, customary measured post-mortem. The exact expression of
Eq. (4.7) is adapted to each case. This measure has the main advantage to be gauge-length
independent, compared to the drop point on the force-displacement curve, or compared to an
extension measure for example.

In addition to those tensile tests, others mechanical tests, for which results are available
(or partially) but not yet exploited, have been performed, and can be used to enhance the
calibration procedure. Namely, Arcan specimens (Fagerholt et al., 2010) can reproduce various
tensile or shear conditions depending on the loading direction. Besides, the Compact Tension
specimen (CTS), a pre-cracked specimen involving a stable crack propagation allows assessing
the failure energy as well as the crack advance through partial unloading during the experi-
ments (this geometry has been previously involved in Section 2.4.3). The CTS was extracted
with di�erent sampling orientations to assess the anisotropy. Moreover, Double-Edge Notched
Tensile (DENT) specimens with di�erent ligament sizes were involved in the campaign to
assess the essential work of failure (Pardoen, Marchal, and Delannay, 2002). Furthermore,
strain-rate dependency was explored using Hopkinson bars.

4.1.2.1 Smooth and notched round bars

These mechanical tests consist in subjecting axisymmetric bars to a uniaxial tensile force. They
are performed on specimens sampled in the two di�erent directions, "long." and "perp.". The
specimen geometries are represented on Figs. 4.3. Due to stricter geometrical constraints for
specimen sampled in the "perp." direction than in the long. one, a smaller version, schematised
on Figs. 4.3c and 4.3d with a reference radius R0 = 2 [mm] are involved, compared to the
geometry on Figs. 4.3a and 4.3b with R0 = 3 [mm]. For the sake of completeness, samples
with a reference radius of 2 [mm] are also extracted in the "long." direction.

The samples on Figs. 4.3a and 4.3c are usually nicknamed "dog-bone" due to their shape,
which consists in a central part surrounded by thicker loading grips where the displacement is
applied. The traction tests are performed on specimens sampled in the longitudinal direction
for three di�erent loading speeds in order to evaluate the strain-rate dependence. Each test is
reproduced on three samples to assess the material and experimental variability.

Previous geometries can be modi�ed by adding a circular notch in the central part. The
resulting geometries are shown in Figs. 4.3b and 4.3d. The addition of the notch locally
increases the stress triaxiality inside the minimum cross-section. Di�erent notch sizes are
considered in order to modulate this increase: the smaller the notch radius Rn is, the higher
is the stress triaxiality.

For these tests, the triaxiality state conditions can be roughly estimated (for design pur-
pose) using the analytical expressions initially developed by Bridgman (1952) or the corrected
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Figure 4.3: Specimen geometries of (a,c) the smooth round bars and (b,d) the notched ones.
Dimensions are all in [mm].

version of Bai, Teng, and Wierzbicki (2009). A uniform plastic �ow along the radius and
non-hardening material are assumed. The formula depends on the ratio R0/Rn, where R0 is
the minimal cross-section radius and Rn is the notch radius. From Bridgman (1952), the stress
triaxiality is estimated by

T =
1

3
+ ln

(
1 +

R0

2Rn

)
. (4.8)

One can notice that we recover the expected value of 1/3 for the uniaxial tension condition
encountered in a smooth round bar, corresponding to an in�nite notch radius. The (large)
notched specimens correspond to a theoretical triaxiality value T of 0.65, 0.90 and 1.25 re-
spectively for Rn = 4, 2 and 1 [mm]. The smaller versions match the same values excepted
the smaller notch radius which is not exactly scaled, i.e. one has T = 0.65, 0.90 and 1.02
respectively for Rn = 2.6, 1.3 and 1 [mm]. Besides, the Lode variable ζ remains unchanged.
It stays equal to 1 due to the tensile axisymmetric loading.

The results obtained on round bars are now shown on Figs. 4.4 and 4.5 for a loading speed
equal to 1 [mm/min]. Experimental tests performed at higher speeds (10 and 100 [mm/min])
are similar. As we are not focusing on the strain rate e�ects and as the results do not ex-
hibit signi�cant strain rate e�ects, they are therefore omitted for conciseness although the
implemented Gurson formalism allows considering them. On Fig. 4.4, the evolution of the
tensile force is shown in terms of the elongation of the central part on the smooth round bars,
and in terms of the diameter reduction for the notched ones. An extensometer with a length
L0 = 30 [mm] (resp. 20 [mm]) measures the central part elongation of the smooth specimen
with R0 = 3 [mm] (resp. 2 [mm]). The reference section S0 corresponds to the minimal
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(a) Smooth round bars.
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(b) Notched bars - R0 = 3 [mm].
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R0 = 2 [mm].

Figure 4.4: Experimental measurements of the applied force F in terms of (a) the elongation
∆L for the smooth round bars, and (b-c) of the radius reduction ∆R for the notched bars.
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Figure 4.5: Experimental measurements of the fracture strain on the round bars in terms
of (a) the notch size and (b) the expected stress triaxiality from Eq. (4.8) in both directions.
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cross section πR2
0. As speculated in Section 4.1.1, no plastic �ow anisotropy is visible between

the "long." and "perp." direction. Besides, a good correspondence is observed between the
smooth specimens with di�erent sizes and directions on Fig. 4.4a. However, we note that
one curve ("long. R0 = 2 [mm]") seems to behave di�erently. This discrepancy is due to the
necking zone which was decentered regarding the extensometer bounds. It then results in an
underestimation of the elongation after the necking onset. On Figs. 4.4b and 4.4c related to
the notched bars, higher levels of stress are obtained with smaller notch radii. This is due to
the higher stress triaxiality state obtained when the notch radius is decreased.

Furthermore, the ductility of the material is assessed using the mean true strain at failure
ε̄f using Eq. (4.7). Given the axisymmetric conditions (εpf2 = εpf3) and the plastic incom-
pressibility (εpf1 + εpf2 + εpf3 = 0), it is evaluated from the diameter reduction measured after
the specimen failure as

ε̄f = 2 ln

(
R0

Rf

)
, (4.9)

where Rf is the post-mortem minimal cross-section radius. The results obtained for the round
bars in both directions are shown on Fig. 4.5 either in terms of the notch size or of the
expected stress triaxiality. One can observe that, for a �xed specimen size or direction, a
smaller notch radius, or conversely, a higher stress triaxiality, results in a decrease of the
ductility. Furthermore, the failure anisotropy suspected in Section 4.1.1 is clearly visible
here: the "perp." specimens are globally less ductile than their "long." counterpart with
an equivalent triaxiality state. However, this di�erence decreases when the stress triaxiality
increases due to a smaller notch radius.

In addition, the failure surface is analysed on Figs. 4.6, 4.7 and 4.8. In the long. direction,
the well-known cup-cone pro�le is obtained on the smooth round bars as shown on Fig. 4.6a: it
consists of a central �at fracture surrounded by a slant crack near the surface. Cracks initiate
at the specimen centre and propagate radially until the crack tilts around 45◦ as shearing takes
over. This typical failure pro�le is even more clearly observed on Fig. 4.7 with the notched
specimens.

Observed under a SEM, the central part is shown on Fig. 4.6b for the smooth bar and on
Figs. 4.7d, 4.7e and 4.7f for the notched ones. This surface aspect is characteristic to failure by
intervoid necking (Pineau, Benzerga, and Pardoen, 2016). Large micrometric dimples are the
remnant of the voids formed around MnS particles which coalesce together by tensile internal
necking during the last steps of the failure process. At the bottom of the dimples, a part of the
inclusion is sometimes still visible (e.g. Fig. 4.7e). Smaller nanometric dimples are the results
of voids created from carbides decohesion. However, it is yet not possible to determine at which
moment they nucleate. A di�erent surface aspect is obtained near the sample external surface
on Fig. 4.6c where coalescence occurs under a higher shear contribution. Similar observations
can be made concerning the other specimens.

Besides, the same analysis is performed in the perp. direction. A cup-cone pro�le is
also obtained on Fig. 4.8a. However, the surface aspect is di�erent: the central part seems
�brous. After zooming on Fig. 4.8b, the �bres originate from the prolate MnS inclusions
loaded perpendicularly to their length and that have fused together, also by internal necking.
Smaller voids formed around Carbides inclusions are also present.

4.1.2.2 Plane strain plates

This mechanical test corresponds to a traction test in plane strain condition. This test is only
performed on specimens sampled in the longitudinal direction. The specimen consists in a
thick plate with a groove excavated transversely to the loading direction. The corresponding
geometry is shown on Fig. 4.9.
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(a)

(b) (c)

Figure 4.6: SEM pictures of the failure surface for a smooth round bar in the long. direction.
(a) General view. (b) Zoom on the central part. (c) Zoom near the edge.
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Figure 4.7: SEM pictures (a-c) of the failure surface for the notched round bars for the
different notch radii in the long. direction. (d-f) Zoom on the central part.
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(a) (b)

Figure 4.8: SEM pictures of the failure surface for a smooth round bar in the perp. direction.
(a) General view. (b) Zoom on the central part.
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Figure 4.9: Specimen cross-section geometries of the grooved plates (in plane strain condi-
tions). Dimensions are in [mm].

Similarly to the notched round bars (see Section 4.1.2.1), di�erent groove radii Rn are con-
sidered to vary the stress triaxiality. It increases for smaller notch radii, which can be estimated
using the analytical equations developed by Bai, Teng, and Wierzbicki (2009). Following this
work, T is approximated by

T =

√
3

3

[
1 + 2 ln

(
1 +

W0

4Rn

)]
, (4.10)

where W0 is the minimal in-plane thickness (see Fig. 4.9). Hence, one theoretically obtains
T = 1.05, 0.76 and 0.63 respectively for Rn = 1, 3 and 10 [mm]. Meanwhile, the Lode variable
ζ is equal to 0 due to the plane strain state.

The loading force evolution is represented on the Fig. 4.10 either in terms of the elongation
of the central part measured with an extensometer, and in terms of the thickness reduction
of the minimal cross-section measured with a strictometer. The extensometer has a length
L0 = 18 [mm]. The applied force is scaled using the reference surface S0 = W0t0 with
t0 = 50 [mm], the out-of-plane thickness andW0 = 2 [mm], the in-plane thickness. Once again,
reducing the notch radius induces a higher elastic sti�ness and a higher level of measured stress
due to a higher stress triaxiality in the centre of the specimen.

For this test family, the fracture strain ε̄f is estimated, given the plane strain state (εpf3 = 0
and thus, εpf1 = −εpf2), as

ε̄f =
2√
3

ln

(
W0

Wf

)
, (4.11)

where Wf is the (in-plane) thickness measured at failure. The experimental measurements are
gathered on Fig. 4.11 in terms of the notch size (Fig. 4.11a) and of the theoretical stress
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Figure 4.10: Experimental measurements of the applied force in terms of (a) the elongation
∆L and (b) of the thickness reduction ∆W for the grooved plates.
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Figure 4.11: Experimental measurements of the fracture strain on the grooved specimens
in terms of (a) the notch size, and (b) the expected triaxiality from Eq. (4.10).
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Figure 4.12: SEM pictures (a-c) of the failure surface for the grooved plates for the different
notch radii in the long. direction. (d-f) Zoom on the central part.
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triaxiality (Fig. 4.11b). One can note that the ductility is again decreasing with the notch
size, or equivalently, the stress triaxiality. However, the encountered strain values are smaller
compared to axisymmetric cases presented on Fig. 4.5b with comparable stress triaxiality. This
di�erence can be explained by an additional shear-induced damage contribution dependent on
ζ, which is active in plane strain states, but vacant in axisymmetric stress states.

In addition, Fig. 4.12 shows SEM pictures of the failure surface: a slant fracture is obtained
for the three groove radii. The surface aspect includes characteristics of shear failure and
intervoid necking. The latter is more visible on the specimen with Rn = 1 [mm] where the
stress triaxiality is the highest.

4.1.2.3 Plane stress �at bars

This family of mechanical tests involves dog-bone shaped �at specimens in plane stress con-
ditions. This is achieved by using thin plates under uniaxial tension. The corresponding ge-
ometries are represented on Fig 4.13. Comparatively to the smooth specimens on Fig. 4.13a,
a circular notch is introduced to modulate the stress triaxiality in the minimal cross-section
of the specimens on Fig. 4.13b, similarly to the other specimen families.
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(a) Smooth flat bars.
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(b) Notched flat bars.

Figure 4.13: Specimen geometries of (a) the smooth flat bars and (b) the notched ones.
Dimensions are in [mm].

Regarding the encountered stress conditions, the conditions are close to a uniaxial test:
the stress triaxiality T is equal to 1/3 for the smooth bars and slowly increases for smaller
notch radius until

√
3/3 (which corresponds to a plane strain state). Besides, due to the plane

stress conditions, the lode variable ζ is theoretically linked to the stress triaxiality (Bai and
Wierzbicki, 2008; Brünig, Brenner, and Gerke, 2015) as

ζ = −27

2
T

(
T 2 − 1

3

)
. (4.12)

Therefore, its expected value is included between 1 for the uniaxial conditions of the smooth
specimen and 0 for the (extreme) plane strain state.

Furthermore, the force evolutions either in terms of the elongation or of the thickness
reduction are respectively given on Fig. 4.14a for the smooth �at bars and on Fig. 4.14b
for the notched ones. The elongation is measured thanks to an extensometer of 30 [mm] and
the reference surface to scale the loading force is equal to S0 = W0t0 with t0 = 2 [mm], the
out-of-plane thickness and W0 = 7 [mm], the in-plane thickness.
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Figure 4.14: Experimental measurements of the applied force in terms of (a) the elongation
∆L and (b) the thickness reduction ∆R for the plane stress specimens.

Due to the similarities between the stress states, at least at the initiation, comparable
stress values are involved for the smooth �at bars on Fig. 4.14a than for the smooth round
bars (Fig. 4.4a). Moreover, reducing the notch radius results again in an increase of measured
stress. However, the impact of the notch size is more limited on this specimen family as the
range of reachable stress triaxiality value is more limited by the geometry.

Similarly to other tension specimens, the fracture strain is de�ned here in terms of the
reduction of the reference cross-section measured post-mortem. It is obtained by measuring
the in-plane thickness at failure Wf and the out-of-plane one tf . Assuming that the section
stays rectangular and applying Eq. (4.9), one has

ε̄f =

√√√√2

3

[
ln

(
W0

Wf

)2

+ ln

(
t0
tf

)2

+ ln

(
W0

tf

)
ln

(
t0
tf

)]
. (4.13)

However, as some experimental measurements are not available for all the samples, we assume
in the following that the reduction ratios are equal in both directions. This should induce an
underestimation of the real fracture strain. The results are shown on Fig. 4.15. In this case
again, we observe a smaller fracture strain when the notch radius decreases.

4.1.3 Post-mortem microstructure analysis

After having performed the mechanical tests up to failure, the microstructure porosity distri-
bution was studied by UCLouvain as follows. Small smooth round bar specimens (Fig. 4.3c)
were cut following their axis. Pictures were then taken at di�erent positions away from the
crack surface with the electronic microscope (SEM). Some examples of the obtained pictures
are shown on Figs. 4.16 and 4.17. Using image-processing, the surface fraction of the MnS
inclusions and their associated surrounding cavity is computed. The porosity is then deduced
by assuming that the surface fraction is equal to the volumic fraction.3 The obtained values
are then plotted in terms of the distance from the crack surface on Fig. 4.18 for both void
populations.

The porosity of both populations is maximum near the crack surface and fades away of the
crack. MnS inclusions nucleate very early in the process by particle cracking, on the one hand,

3which is the case for random distributed ellipsoidal voids.
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Figure 4.15: Experimental measurements of the fracture strain on the plane stress specimens
in terms of the notch size.

(a) (b)

(c)

Figure 4.16: Example of SEM images obtained at different distances from the crack surface
in the long. direction: (a) below the crack surface; (b) example of void coalescence below the

crack surface; (c) far away, at yielding initiation
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Figure 4.17: Example of a SEM image obtained below the crack surface in the perp.
direction.
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Figure 4.18: Experimental measurement of the different porosity populations (MnS and
Carbides) in terms of the distance to the crack surface on (a) one specimen sampled in the

long. direction and on (b) two specimens (A) and (B) sampled in the perp. direction.
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Figure 4.19: Evolution of the normalised hardening law function in term of the matrix
plastic strain.

in the long. direction (Fig. 4.16c) or by matrix/particle decohesion in the perp. direction.
On the other hand, Carbides nucleate later in the process by interface decohesion (see Figs.
4.16a).

The procedure to interpret those results is discussed in Section 4.3.1 once the elasto-plastic
behaviour will have been modelled in Section 4.2.

4.2 Calibration and validation of the elasto-plastic behaviour

At �rst, the elasto-plastic behaviour is adressed. In particular, the calibration of the J2-
hardening law is done in Section 4.2.1. Afterwards, each test is simulated in Section 4.2.2
using the freshly-calibrated law. The stress state involved in each specimen is analysed. It is
sampled by averaging inside a small box near the point of interest to avoid sampling aliasing.
A synthesis is performed in Section 4.2.3.

4.2.1 Calibration of the hardening law

The identi�cation is performed by considering the smooth round bars in the long. direction
(see Fig. 4.3a). More details are provided in Section 4.2.2.1 about the numerical simulations.
At this point, we assume that the macroscopic plastic �ow is equivalent to the microscopic or
matrix one. This hypothesis is reasonable since the damage parameters have a low in�uence
on the apparent hardening curve, at least on the curve beginning. We also suppose that this
latter obeys to an isotropic J2 elasto-plastic law. Both assumptions will be veri�ed in Section
4.2.2 by reproducing experimental tests under di�erent stress states.

Therefore, the hardening curve has to be identi�ed as a function which expresses the
equivalent Kirchho� stress in terms of the (natural) plastic strain. Prior to the necking, the
material behaviour within the gauge length can be considered as uniform: the true stress and
true strain measures during this stage can be used to identify the plastic hardening by curve
�tting. The hardening curve is expressed by a linear relation followed by a power one until
the peak stress, which corresponds to the necking initiation.

Once necking starts, these true stress-true strain curves are no longer valid since the defor-
mation is no longer uniform. To ascertain the actual hardening behaviour during the necking
stage, �nite element computations of the smooth round bars with R0 = 3 [mm] are performed.
Those simulations have been performed by Van-Dung Nguyen. The parameters of post-necking
hardening curves can be identi�ed by matching the engineering stress-strain curves obtained



4.2. Calibration and validation of the elasto-plastic behaviour 105

(a) Smooth round bar with
R0 = 3 [mm];
5196 elements.

(b) Notched round bar with
R0 = 3 [mm], Rn = 1 [mm];

4674 elements

Figure 4.20: Simulated mesh and zoom on its central part for two round bars: (a) a smooth
round bar (R0 = 3 [mm]) and (b) a notched round bar (R0 = 3 [mm], Rn = 1 [mm]).

by the �nite element and by experimental tests. During the necking stage, another power law
is assumed.

As a result, the following hardening law τY (p) is used:

τY (p) =


τY0 + hp if p ≤ p1 ,

τY1

(
p

p1

)n1

if p1 < p ≤ p2 ,

τY2

(
p

p2

)n2

if p2 ≤ p .

(4.14)

which is graphically represented on Fig. 4.19.

4.2.2 Validation of the hardening law

In order to validate the hardening law of Eq. (4.14), experimental tests presented in Section
4.1.2 are reproduced. A J2-plastic �ow is used under a large strain formulation. Time integra-
tion is performed using the dynamic scheme presented in Section 2.3.2.2. Parabolic elements
are used within a continuous Galerkin framework. A mesh size sensitivity analysis has been
systematically performed to ensure a su�ciently �ne mesh to produce converged results within
the studied range. Nevertheless, this analysis is omitted for conciseness.

4.2.2.1 Round bars

The round bar tests are reproduced using axisymmetric �nite element computations. We
illustrate on Fig. 4.20 the involved meshes for two round bars. Only the central part inside
the extensometer region is modelled. Around 50 elements are used along the radius in the
central zone or inside the notch, with a slightly �ner zone near the failure initiation point. A
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Figure 4.21: Variation of the applied force as a function of the elongation ∆L for the
smooth round bars simulated with the J2-plastic law (continuous lines) and comparison with

the experimental measurements (discontinuous lines).
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Figure 4.22: Variation of the applied force as a function of the radius reduction ∆R for the
notched round bars simulated with the J2-plastic law (continuous lines) and comparison with

the experimental measurements (discontinuous lines).
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Figure 4.23: Distribution of the plastic strain p (a-c) when the peak stress is reached and
(d-f) when the fracture strain is reached in the deformed configuration for (left) the smooth
round bar, (centre) the notch round bar Rn = 4 [mm] and (right) the notch round bar

Rn = 1 [mm], all with R0 = 3 [mm].
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Figure 4.24: Distribution of the stress triaxiality T (a-c) when the peak stress is reached
and (d-f) when the fracture strain is reached in the deformed configuration for (left) the
smooth round bar, (centre) the notch round bar Rn = 4 [mm] and (right) the notch round

bar Rn = 1 [mm], all with R0 = 3 [mm].
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Figure 4.25: Variation of the triaxiality as a function of the plastic strain at the centre of
the round bars simulated with the J2-plastic law.

coarser mesh is used elsewhere to spare elements. Inside the smooth bars, a small geometrical
defect4 at the centre is introduced to ensure that necking occurs where the mesh is re�ned.

On Fig. 4.21a, we see that the calibrated hardening law is able to reproduce the experi-
mental curves on round bars with R0 = 3 [mm]. The same observation is made on Fig. 4.21b
for R0 = 2 [mm]. The good agreement before material failure for both directions con�rms the
absence of plastic anisotropy.

However, the agreement with the notched bars seems to be less quantitative on Fig. 4.22.
In fact, the strictometer measures the local value of the diameter reduction between its two
pins. Therefore, it is very sensitive to misplacement or misalignment and tends to generally
underestimate the real striction value. Nevertheless, the stress values, and namely the peak
stress which is not a�ected by the strictometer misplacement, are correctly predicted by the
simulations.

The distributions of the matrix plastic strain p and of the stress triaxiality T are shown in
the deformed con�guration on Figs. 4.23 and 4.24 when the force reaches its maximum and
when the specimen reaches the (mean) experimental fracture strain for the smooth round bar
and two notched bars in the long. direction. Plastic �ow tends to be concentrated inside the
notch region or in the necking zone once formed. The values reached at failure increases for
larger notch radius due to their higher ductility. Besides, the stress triaxiality on Fig. 4.24
is higher for smaller notch radius as predicted by Eq. 4.8. These trends are con�rmed on
Fig. 4.25 where the stress triaxiality is sampled in terms of the plastic strain encountered
at the specimen centre until the experimental fracture strain is reached. The triaxiality T
globally increases with the plastic strain p as the plastic necking accentuates the potential
pre-existing notch. At equivalent plastic strain values, T is higher for a smaller notch radius
Rn. Besides, the approximation (4.8) looses in accuracy with the deformation increases as its
assumptions are less and less valid. Indeed, as observable on Fig. 4.23, the plastic strains
tend to concentrate near the specimen axis instead of a uniform �ow along the radius. The
evolution of the Lode variable is not shown as it is constant and equal to 1.

4.2.2.2 Grooved plates

The grooved thick plates are reproduced using 2D simulations in plane strain. The mesh is
shown on Fig. 4.26 for the grooved plates with Rn = 10 [mm] and Rn = 1 [mm]. Once gain,

4Practically, the radius is minimal at the centre and equal R0. It then linearly increases to reach R0/dg at
the extremities with dg = 0.999.
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(a) Grooved plates with
Rn = 10 [mm];
2589 elements.

(b) Grooved plates with
Rn = 1 [mm];
3680 elements

Figure 4.26: Simulated mesh and zoom on its central part for two grooved plates: (a)
Rn = 10 [mm] and (b) Rn = 1 [mm].
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Figure 4.27: Variation of the applied force as a function of the elongation ∆L for the
grooved plates simulated with the J2-plastic law (continuous lines) and comparison with the

experimental measurements (discontinuous lines).



4.2. Calibration and validation of the elasto-plastic behaviour 111

Rn = 10 [mm] Rn = 3 [mm] Rn = 1 [mm]

P
ea
k
fo
rc
e

(a) (b) (c)

A
t
fa
ilu
re

(d) (e) (f)

𝑝
> 10 0.5

Figure 4.28: Distribution of the plastic strain p (a-c) when the peak stress is reached and
(d-f) when the fracture strain is reached in the deformed configuration for the grooved plates

with (left) Rn = 10 [mm], (centre) Rn = 3 [mm] and (right) Rn = 1 [mm].
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Figure 4.29: Distribution of the stress triaxiality T (a-c) when the peak stress is reached
and (d-f) when the fracture strain is reached in the deformed configuration for the grooved

plates with (left) Rn = 10 [mm], (centre) Rn = 3 [mm] and (right) Rn = 1 [mm].
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Figure 4.30: Variation of the triaxiality as a function of the plastic strain at the centre line
of the grooved plates simulated with the J2-plastic law.

only the central part within the extensometer region is actually simulated. The �nest zone is
meshed with 35 [µm] long elements for a total of around 50 elements on thickness. However,
because of tolerance issue during the tooling process, the thickness outside the grooves (i.e.
We on Fig. 4.9) has been corrected to �t the elastic slope. The actually considered thicknesses
are 3 [mm], 3.4 [mm] and 3.75 [mm] for respectively Rn = 10 [mm] , Rn = 3 [mm] and
Rn = 1 [mm].

The simulated force evolutions are shown on Fig. 4.27 in terms of the specimen elongation.
The agreement between the experimental curves and the numerical simulations is correct for
at least two groove radii. The larger discrepancy on the Rn = 10 [mm] is larger (around 8%
of the maximal force), although acceptable, than the error observed on others specimen. It
could be either due to the plane strain approximation or due to another tooling issue. Another
explanation could be a Lode-dependence of the plastic �ow but this is unlikely as only this
specimen seems impacted.

The distributions of the plastic strain p and the stress triaxiality T are respectively shown
on Figs. 4.28 and 4.29 when the maximal loading force is applied and when the fracture strain
is reached. Comparatively to the round bars on Fig. 4.23, the plastic strain p tends to form
slanted shear bands. Those latter are more pronounced for the larger notch radius where the
shear stress is more preponderant compared to the stress triaxiality. Besides, the evolution
of the stress triaxiality at the specimen centre illustrated on Fig. 4.30 is coherent with the
distributions displayed on Fig. 4.29. Once again, the stress triaxiality increases with the
plastic strain and with smaller notch radius. Regarding the Lode variable, it stays constant
at 0 due to the plane strain state.

4.2.2.3 Plane stress �at bars

The plane stress �at bars are simulated using 3D elements. The meshes are shown on Fig. 4.31,
the di�erent colours materialising the partitions of the mesh. The smooth bar is simulated
with the loading grips while only the central section is modelled in the notched �at one. A
symmetry along the specimen mid-plane is used consistently with the failure mode presented
in Section 4.1.2.3. 100 [µm] are used in the most re�ned regions.

The applied force obtained numerically are compared to the experiments on Fig. 4.32 either
in terms of the elongation for the smooth bar or of the thickness reduction for the notched ones.
On Fig. 4.32a, a good concordance is observed between both results. Agreement is less good
on Fig. 4.32b due to the measurement based on a strictometer, more sensitive to experimental
errors. However, a good correlation is observed at least in terms of the encountered stress
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(a) Smooth flat specimen with 36732 elements and 6 partitions.

(b) Notched flat bar with Rn = 1.2 [mm]; 36759 elements and 6 partitions.

Figure 4.31: 3D view of the partitioned mesh for (a) the smooth flat bar and (b) a notched
flat bar (Rn = 1.2 [mm]).
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Figure 4.32: Variation of the applied force as a function of (a) the elongation ∆L for the
smooth plane stress plates and (b) the thickness reduction for the notched one simulated with
the J2-plastic law (continuous lines) and comparison with the experimental measurements

(discontinuous lines).
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Figure 4.33: Variation of (a) the triaxiality and (b) the Lode variable as a function of the
plastic strain at the centre of the mid-section of the plane stress plates simulated with the

J2-plastic law.

values. The evolution of the stress state is shown on Fig. 4.33 in terms of the plastic strain p
upon failure. The stress triaxiality globally increases with the plastic strain, however, unlike
other mechanical tests, modifying the notch radius as a low impact on it but not on the
resulting ductility. Besides, the Lode variable is not constant during the whole process: it
slightly increases with the deformation. In particular, it tends towards 0 for the notched bars,
evidence of a shear or a plane strain state occurring at the specimen center.

4.2.3 Fracture strain and stress conditions synthesis

In this section, the in�uence of the stress conditions on the fracture strain obtained with the
di�erent specimens presented in Section 4.1.2, is discussed. On Figs. 4.34, we regroup the
evolution of the stress state for all the studied specimen for the sake of completeness. We then
compare ε̄f in terms of the average value of the stress triaxiality and the Lode variable obtained
during the J2 simulations presented in Section 4.2.2. Specimens at constant Lode value (i.e.
the round bars and the grooved plates) experience a general decrease of their ductility with an
increasing stress triaxiality value as already observed. Similarly, if we compare the round bars
and the grooved plates which experience similar T -values but di�erent ζ-values, the presence
of shear stresses, when ζ drifts apart from +1 or −1, is harmful to the ductility. Besides,
the stress conditions inside the plane stress specimens in terms of the notch radius are more
complex. In this case, it seems that the fracture strain is controlled by the Lode variable which
strongly varies from one specimen to another contrarily to the stress triaxiality.

4.3 Calibration and validation of the non-local porous law

In the previous section, we have calibrated and validated the elasto-plastic law as a �rst guess
for the material behaviour. Now, the non-local porous law itself is identi�ed. As already
mentioned, parameters values should be as much as possible representative of the physical
reality.

As already stated, this process, and the related micromechanical model includes di�erent
components: the nucleation, the growth and the coalescence part. Each part is separately
addressed. At �rst, the di�erent assumptions on the micromechanics model are presented in
Section 4.3.1 from the interpretation of the experimental data presented in Section 4.1. Then,
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(a) Round bars (ζ = 1).
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(b) Grooved plates (ζ = 0).
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Figure 4.34: Comparison of (a-d) the evolution of the stress triaxiality on the (a) round
bars, (b) the grooved plates and (c) the flat bars, and the evolution of the Lode variable for the
(d) flat bars at the centre of the reference cross-section of all the specimens simulated with the
J2-plastic law; and (e-f) comparison of the fracture strain as a function of the corresponding

mean value of (e) the triaxiality and (f) the Lode variable.
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assuming a starting RVE geometry, the damage growth evolution parameters are evaluated
in Section 4.3.2 using cell simulations and the hardening law from Section 4.2.1. The deter-
mination of the non-local length is investigated in Section 4.3.3. Afterwards, the nucleation
parameters are estimated in order to tune the amount of initial damage emanating from the
MnS inclusions. In particular, to include the directional e�ects, an anisotropic stress-triggered
nucleation model is developed in Section 4.3.4. Finally, the impact of the shear stress is ad-
dressed in Section 4.3.5. Even if this part could be also estimated by RVE simulations, the
only parameter kω is calibrated by parameter �tting since a relatively simple model is involved.
This operation is performed using the plane strain grooved specimens. This choice is made as
the plane strain conditions induces a Lode variable constantly equal to zero before coalescence.

4.3.1 Micromechanics-based failure process

Based on the micromechanical observations presented in Section 4.1, it appears that the failure
process is mainly driven by the nucleation, growth and coalescence of voids originated from
the MnS inclusions.

Indeed, those particles are well known to have low material integrity with respect to the
matrix. As the largest and the less coherent inclusion population, they are the �rst nucleation
sites to be activated at the yielding initiation5 as shown on Fig. 4.16c. Depending on the
considered direction, they break along their length or detach themselves from the matrix. The
voids so created grow with the plastic �ow (see Fig. 4.16a). At some point, plastic �ow
localises between voids, in particular where inclusions clustering is more important as shown
on Fig. 4.16b. Voids �nally merge by internal necking and create a crack. The resulting
failure surface is the signature of this process. The largest dimples are the remaining of voids
created around MnS inclusions. In some cases, the MnS inclusion itself is visible in the middle
of the crater. The rest of the dimples, covering all the spectrum size, are partially the results
of second inclusion population.

Moreover, the MnS inclusions are also responsible for the failure anisotropy through their
shape: as proof, one can recall the radical of the failure surface between the long. (Fig. 4.6a)
and the perp. direction (Fig. 4.8a) on the round bars. For loading along the perp. direction,
void growth and coalescence are eased and result in a ductility drop.

Besides, the second void population, initiated from Carbide inclusions, has a di�erent
role on the failure process. Its e�ect is essentially summarised as a decrease of the ductility
(Lassance et al., 2007) and an ampli�cation of the primary-void shape e�ect. Therefore, we
do not explicitly include thereafter the Carbides population. Moreover, new measurements
need to be performed to improve the reliability of the data before its proper use. Indeed, the
current ones have been performed away from the main MnS inclusions. However, Fabrègue and
Pardoen (2008) have shown that the distribution of such second void population highly di�ers
along the ligament between two voids. The voids of the second population nucleate more easily
near larger voids where plastic �ow is more intense and stress conditions higher. Consequently,
we �rst focus on MnS inclusions in Section 4.3.4.2. However, the model presented further in
Section 4.3.4 is suited for this application.

4.3.2 Calibration from elementary cells

In this section, we use elementary cell computations in order to assess the damage evolution
parameters. In particular, we reproduce the analysis of Pardoen and Hutchinson (2000) mainly
to determine the ligament growth parameter κ, see Eq. (3.31), in Section 4.3.2.5, consistently
with the Thomason model presented in Section 3.1.2.4. At �rst, we present the RVE model

5potentially, nucleation can occur earlier but this hypothesis is di�cult to verify due to the small elastic
strains while having a low impact on the modelisation
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Figure 4.35: Assumed cell periodic arrangement. From Pineau, Benzerga, and Pardoen
(2016).

in Section 4.3.2.1. The geometry is �xed by the microstructural data's gathered during the
experimental campaign (Section 4.1) while the matrix behaviour was obtained in Section 4.2.1.
Afterwards, results are discussed in Section 4.3.2.2. They are then used to calibrate the Gurson
yield parameters (Section 4.3.2.3) while Section 4.3.2.4 is devoted to the identi�cation of the
coe�cients of the Thomason concentration factors.

4.3.2.1 Elementary cell simulations

Cell simulations have been performed with various levels of complexity. In the present work,
we restrain the applications to axisymmetric stress states for periodic voids, following the
paper of Pardoen and Hutchinson (2000). According to them, the material continuum is here
seen as a periodic hexagonal arrangement of unit cells with aligned void axis as shown on
Fig. 4.35. The hexagonal cells are reasonably approximated by axisymmetric computations
as shown by Worswick (1990).

The geometry and the boundary conditions of the simulated RVE are shown on Fig. 4.36a.
The added subscript "0" refers to initial values. The RVE consists in an axisymmetric cell of
axial and radial lengths Lz and Lr. An initially-ellipsoidal void of axial and radial semi-axes
Rz and Rr results in a porosity of volumic fraction fV. The initial geometry is determined by
the numerical values of the porosity fV0 , the initial cell aspect ratio λ0 and the initial void
aspect ratio W0 following the geometrical relations:

fV0 =
2R2

r0Rz0

3L2
r0Lz0

, λ0 =
Lz0

Lr0
, W0 =

Rz0

Rr0
. (4.15)

Parallel distribution of the axisymmetric unit cell implies the deformation boundary of RVE to
remain straight. A path-following method enforces the loading to be performed at �xed stress
triaxiality T . The resulting principal stress at the mesoscopic scale in the axial direction Σz

and in the radial one Σr are computed through the average force applied on the cell boundaries
per current area. The mesoscopic equivalent stress Σeq and pressure Σh and stress triaxiality
T are then given by

Σeq = |Σz − Σr| ; Σh =
1

3
(Σz + 2Σr) ; T = Σh/Σeq . (4.16)
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Figure 4.36: Unit cell (a) geometry and boundary conditions and (b) the corresponding
mesh for the initial parameters fV0 = 2× 10−3, W0 = 1 and λ0 = 1.

The corresponding strain measure are computed by

Er = ln
Lr

Lr0
; Ez = ln

Lz

Lz0
; Eeq =

2

3
|Ez − Er| , (4.17)

from the current dimensions Lz and Lr of cell. In addition to Eeq, another plastic strain
measure, pcell, is implicitly de�ned following

(1− fV0) τY

(
pcell

)
ṗcell =

1

V0

∫
V0

τY (p) ṗdV0 , (4.18)

where V0 is the matrix volume.
This de�nition allows then a comparison between the cell evolution and the porous model

by analogy to Eq. (3.29). Others geometrical current values are computed as follows. The
current porosity is computed by subtracting to the total cell volume the actual matrix volume,
i.e.,

fV =
πL2

rLz −
∫
V0
JdV0

πL2
rLz

, (4.19)

where J = detF. The current void and cell aspect ratio are respectively de�ned byW = Rz/Rr

and λ = Lz/Lr. Simulations results are presented in the next Section 4.3.2.2.

4.3.2.2 Elementary cell results

The results obtained with the unit cell simulations presented in Section 4.3.2.1 are now dis-
cussed using the following set of initial values:

[
fV0 = 2.0× 10−3, W0 = 1 , λ0 = 1

]
. Those

values are based on the microstructure analysis performed in Section 4.1 expect concerning
the aspect ratio because the cell simulations were performed before the obtention of all mi-
crostructure results. Besides, since the model will be used for samples extracted along the two
directions, we here only consider the spherical asperity shape and will account for the e�ect
of the aspect ratio in the nucleation law.
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Figure 4.37: Comparison of the evolution of (a) the equivalent stress and (b) the porosity
in terms of the matrix plastic strain for different prescribed stress triaxiality T = Σh/Σeq.

The evolution of the equivalent stress (4.16) and of the cell porosity (4.19) are compared
respectively on Figs. 4.37a and 4.37b for di�erent prescribed stress triaxiality values T =
Σh/Σeq. The coalescence onset is also highlighted. In addition, the distribution of the plastic
strain inside the matrix at di�erent points of the simulations is illustrated on Fig. 4.38 for two
stress triaxiality values: T = 1.5 and T = 3.

On Fig. 4.37, one can note that an increase of the stress triaxiality results in a faster
void growth and a coalescence onset, marked by the change of curve slope, occurring earlier
in terms of the plastic strain pcell. These observations are coherent with the plastic strain
distribution depicted on Fig. 4.38. Indeed,the resulting void volume fraction after undergoing
an equivalent plastic strain pcell of 5% is larger on Fig. 4.38d than on Fig. 4.38a obtained
at a lower stress triaxiality. Besides, the decrease of ductility is visible at coalescence onset:
the plastic strain inside the cell (beyond the immediate vicinity of the void) at this stage on
Fig. 4.38e at T = 3 is lower than on Fig. 4.38b at T = 1.5. Ultimately, one can observe
that, as expected for the investigated stress conditions, the failure occurs well through the
void coalescence by internal necking.

The slope change on Fig. 4.37, indicating the transition between the growth and the
coalescence stage, is sharper for lower triaxialities. Besides, one can observe that the porosity
values at coalescence onset are not constant: this con�rms that an approach similar to the
GTN model (see Section 3.1.2.3) is not adequate for various stress conditions.

Those results will be used as reference in Sections 4.3.2.3 and 4.3.2.5 to calibrate the Gurson
parameters q1 and q2, see Eq. (3.32) and the ligament growth parameter κ, see Eq. (3.31).

4.3.2.3 Calibration of the Gurson yield parameters

In this section, the porous-plastic model is compared to the results of the cell simulations
in order to calibrate the Gurson parameters q1 and q2. These parameters are chosen such
as minimising the di�erence in terms of the plastic work and the porosity evolution until
coalescence between the cell simulations (see Fig. 4.37) and the Gurson model. Practically,
an error is computed as the di�erence in the area under the curves σeq (p) /τY0 or Σeq (p) /τY0

and fV (p) from the initiation to the coalescence onset (de�ned in terms of the numerical
value prediction pcell observed on the cell simulations at coalescence onset), and so, for both
the cells and Gurson simulations. This error is then minimised in the studied space T ∈
[1; 4]× fV0 ∈

[
1× 10−3; 2× 10−3

]
. The cumulated error is shown on Fig. 4.39 in terms of q1
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Figure 4.38: Distribution of the plastic strain p inside the unit cell (a-b) during the void
growth phase (when the cell reaches pcell = 0.05), (c-d) at the onset of coalescence and (e-f)

near failure in the deformed configuration with (top) T = 1.5 and (bottom) T = 3.
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Figure 4.39: Relative error between the Gurson model and the cell simulations in terms of
q1 and q2. The optimum point is marked with a black cross.

and q2. The optimum is found for q1 = 1.414 and q2 = 1.0 which is quite close to the one used
or computed in the literature (Faleskog, Gao, and Fong Shih, 1998). The resulting yield stress
evolution and the porosity growth are shown on Figs. 4.40a and 4.40b with the Gurson model
(dotted lines) using a direct resolution. A good correlation is obtained until coalescence onset.
The behaviour after this point is addressed in the next Sections 4.3.2.4 and 4.3.2.5 with the
calibration of the coalescence parameters.

4.3.2.4 Calibration of the concentration factor coe�cients

The values of the coe�cients appearing in the concentration factor CφT (χ) presented in Eq.
(3.39), α and β, are given by the relation provided by Pardoen and Hutchinson (2000). Even
if the same result could be obtained from the cell computations, their results are still valid
because of the hypotheses made here. Following Pardoen and Hutchinson (2000), one thus has

α = 0.1 + 0.217n2 + 4.83n2
2 = 0.129 and β = 1.24 , (4.20)

in terms of the strain-hardening exponent n2, see Eq. (4.14) (which respects the condition
0 6 n2 6 0.3).

4.3.2.5 Calibration of the ligament growth parameter

In this section, we estimate the ligament growth parameter κ governing the cell aspect ratio
evolution rate through Eq. (3.31). For this purpose, the aspect ratio observed at coalescence
onset, λc, is written in terms of κ as

ln
λc

λ0
= κpc , (4.21)

where pc is the matrix plastic strain at coalescence onset. One could directly use λc measured
on the cell results. However, as this variable evolution is not accurately modelled in the GT
approach, it is more reliable to deduce λc from the coalescence stress σeq

c = σeq (pc) and the
porosity fVc = fV (pc) which have been observed from the cells simulations upon coalescence
onset in Section 4.3.2.3. Therefore, in this context, λc is deduced from its de�nition (3.30):

λc =
2χ3

c

3fVc

. (4.22)
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Figure 4.40: Comparison of the evolution of (a) the equivalent stress and (b) the porosity in
terms of the matrix plastic strain for different prescribed stress triaxiality T = Σh/Σeq using
cell simulations (continuous lines), the Gurson model (dotted lines) or the Gurson-Thomason

model (discontinuous lines).
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Figure 4.41: Cell aspect ratio at coalescence onset, λc, extracted from cell simulations and
the Gurson model and fitting of the ligament growth parameter κ.
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In this equation, only χc, the ligament ratio at coalescence onset, remains to be determined.
Its value is implicitly obtained as the one which satis�es the Thomason yield surface at the
corresponding stress state (

2

3
+ T

)
Jσeq

c /τY (pc)− CφT (χc) = 0 , (4.23)

using the value α and β previously calibrated in Section 4.3.2.4.
As a result, the corresponding value λc at di�erent triaxialities is shown on Fig. 4.41 for

fV0 ∈ [0.001; 0.002]. Using Eq. (4.21), the ligament growth parameter can be estimated as
κ = 1.22 by curve-�tting. When coupled with the previous results of Sections 4.3.2.3 and
4.3.2.4, the evolutions of the equivalent stress and of the porosity with the Gurson-Thomason
are compared on Figs. 4.40a and 4.40b to the cell simulations. This time, the agreement is
improved as compared to the sole Gurson model and the validity zone is extended to the whole
failure process.

4.3.3 Calibration of the non-local length

The (transition) model involves two characteristic lengths: the non-local length and the co-
hesive band thickness. Both control the dissipated energy but through di�erent mechanisms.
The �rst one is related to the porosity delocalisation through the non-local di�usion equation.
The second one acts only once the transition occurs: it impacts the energy release rate during
the crack propagation through the coalescence process. In the context of the Chapter 2, we
have drawn a relationship between both lengths in order to ensure the energy consistency
between the pure non-local case and the transition one (see Section 2.2) as we have assumed
that the failure process is similar before and after the transition. In the present case, we
no longer make this assumption. Instead, we consider two di�erent processes with their own
characteristic size.

Let us �rst consider the non-local length prior to the coalescence regime. In this case, the
Gurson growth mechanism dominates. The related characteristic length should be a multiple
of the relevant heterogeneities inter-distance (Geers et al., 1998), here the inter-void distance.
As detailed in Section 4.1.1, this distance is around 100 [µm] which gives the �rst guess for
lc. Besides, an isotropic length is considered for the sake of simplicity and because there is no
highly marked anisotropy in the void spatial distribution.

However, without transition, the dissipated energy related to the coalescence might be
overestimated. Indeed, as observed on the SEM images, the characteristic size for coalescence
is related to the voids thickness (i.e. the void size in the direction perpendicular to the
coalescence plane). From the microstructural analysis, this void size is around 1−20 [µm], i.e.
around one or two orders of magnitude smaller than the intervoids distance. Besides, in the
literature, the actual thickness of the process zone varies from a fraction of the void thickness
(Scheyvaerts, Pardoen, and Onck, 2010) to several times the inter-voids distance (along the
perpendicular direction to the coalescence plane) (Pineau, Benzerga, and Pardoen, 2016).

To avoid this dissipation overestimation, an alternative could be to use a smaller length
once the coalescence has been detected, but a much smaller mesh size would be requested to
resolve this length scale. Besides, the resulting error is quite small as the damage variable
evolves much faster during the coalescence. This overestimation issue can be overcome if the
transition scheme is used. Indeed, the cohesive band can be chosen around the size of the
voids without numerical inconsistencies.

In short, the non-local length lc is �xed at 100 [µm]. However, this �rst guess must be
improved and calibrated in a future work using a pre-crack specimens as a CT or a DENT
specimen. Moreover, the isotropy assumption must be con�rmed using samples with initial
cracks in di�erent orientations.
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4.3.4 Nucleation model derived from Beremin model

In Chapter 3, the nucleation law was assumed to be isotropic and strain-controlled. However,
as seen in Section 4.1, the coalescence stage is highly anisotropic. In this work, we assume
that the anisotropy results from the porosity nucleation triggered by the elongated MnS in-
clusion failure: when loaded in the long. direction, the MnS inclusions nucleate by particle
cracking, whilst when loaded in the perp. direction, porosity arises from the matrix/particle
decohesion. In both cases, the nucleation occurs very early in the process but the generated
void possesses a di�erent shape and volume fraction depending on the loading direction. These
properties then impact the void growth and coalescence process previously studied in the Sec-
tion 4.3.2. Assuming a monotonic loading, this e�ect is here included by generating an e�ective
micromechanics-based nucleation fraction as suggested by the work of Lassance, Scheyvaerts,
and Pardoen (2006). It is performed through an anisotropic stress-triggered nucleation law
developed in Section 4.3.4.1. The question of the e�ective amount of nucleated porosity and
the shape of the nucleation function are discussed in 4.3.4.2. This approach is then compared
in Section 4.3.4.3 to the experimental results gathered in Section 4.1.

4.3.4.1 New anisotropic nucleation model

Henceforth, we consider now a stress-triggered approach: nucleation occurs, by particle crack-
ing or interface decohesion, when the maximum tensile stress in a given particle σn, reaches a
critical value, σnc , i.e. the nucleation term in Eq. (3.26) becomes

˙fVnucl =

{
An (p) ṗ if there exists t′ < t such that σn (t′) > σnc ,
0 otherwise .

(4.24)

In the initial model of Beremin (1981) (following Pineau, Benzerga, and Pardoen (2016)),
nucleation initiation is assumed to be triggered by a critical local stress applied on the brittle
particles. This e�ective stress is the sum of two contributions: the far-�eld stress enhanced
by a contribution from the strain inhomogeneities e�ect around the inclusions. This latter
is computed using the theory of Eshelby (1957) for elastic inclusions and inhomogeneities
extended to elasto-plastic behaviour by Berveiller and Zaoui (1978). Concretely, the model
links the applied macroscopic Cauchy stress state σ to the maximal microscopic stress σn

induced on inclusions using the following relation:

σI + k(σeq − σY) = σn , (4.25)

where σI is the largest eigen-value or the maximal principal stress of σ, σeq is the macroscopic
von Mises stress, σY is the initial yield stress, and k is a function of the inclusions shape and
loading direction. Finally, combining Eq. (4.24) and (4.25), the nucleation activation criterion
simply becomes

σI + k(σeq − σY) > σnc . (4.26)

The main advantage of the Beremin model is the possibility to include a triaxiality de-
pendency. Moreover, the inclusions shape e�ect can be included. However, no anisotropy was
directly considered in the model: Beremin (1981) has originally accounted for anisotropy by
�tting the parameter value along the loading direction. To overcome this issue, this approach
is extended by considering the involved quantities as directional. Practically, the material
parameters involved in the model, k and σnc , are no longer represented by scalars. They are
substituted by a tensor form k and σnc . The problem becomes as �nding the direction which
maximises the criterion, i.e

max
n

[n · σ · n+ n · k · n(σeq − σY)− n · σnc · n] > 0 with n · n = 1 . (4.27)
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One can demonstrate, see Appendix C.1, that the solution of the previous problem is equivalent
to �nding the largest eigen-value of the tensor σ + k(σeq − σY) − σnc , associated with its
eigenvector n∗. Hence, the criterion corresponds to

max [eig (σ + k(σeq − σY)− σnc)] > 0 . (4.28)

Although, k and σnc are written in the current con�guration, by assuming that the plastic �ow
does not in�uence the coe�cients, those tensors are obtained from their counterparts in the
initial con�guration by using the rotation tensor Re computed from the polar decomposition
of the elastic part of the deformation gradient Fe, with

k = Re · k0 ·ReT and σnc = Re · σnc0 ·R
eT . (4.29)

4.3.4.2 Calibration of the nucleation model

In this section, we discuss how to calibrate the model developed in Section 4.3.4. In particular,
we address the choice of the nucleation function An (p− pnc ,n

∗), its shape and its intensity
depending on the plastic strain value pnc at which the criterion (4.28) is satis�ed and the
corresponding direction n∗. As a matter of fact, two main indications can be deduced from
the microstructure observations in Sections 4.1 and 4.3.1 to direct this choice. On the one
hand, the anisotropy results mainly from the initial void shape and its distribution of the MnS
inclusions. On the other hand, the nucleation is entirely settled directly after the onset of
yielding.

Consequently, a Gaussian distribution, similarly to Chapter 3, is chosen with a very low
deviation as follows:

An (p− pnc ,n
∗) =

fn (n∗)

sn

√
2π

exp

[
−1

2

(
p− pnc − 3sn

sn

)2
]
, (4.30)

with sn = 0.005 in order to ensure the end of the nucleation in the �rst plastic strain percent
and fn (n∗), the e�ective intensity. Consistently with the criterion (4.28), fn (n∗) is computed
through a tensorial entity fn following

fn (n∗) = n∗ · fn · n∗ , (4.31)

which should directly depends on the MnS inclusions fraction.
The determination of the nucleation intensity is inspired from the work of Lassance, Schey-

vaerts, and Pardoen (2006) and Lassance et al. (2007) who studied the growth and coalescence
of penny-shaped voids in metallic alloys. When a void nucleates from the cracking of an in-
clusion of volumic fraction fp and initial aspect ratio W0, it generates a penny-shaped void of
fraction fn with a very small aspect ratio Wn << 1, according to geometrical rules, equal to

fn = Wn
fp

W0
, (4.32)

which depends on the nucleated void aspect ratio Wn. In addition, Lassance, Scheyvaerts,
and Pardoen (2006) demonstrated, either with cell simulations or with the Gologanou model
associated with the Thomason model, that the ductility is not sensitive toWn, providingWn <
1 and a su�ciently low particle fraction (fp < 2%). Furthermore, they also demonstrated that
using an e�ective porosity fn such as

fn =
fp

W0
, (4.33)
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is a reasonable approximation in the context of a Gurson model to predict the coalescence
onset for voids such that Wn < 1. In the case where the particle breaks into n+ 1 fragments,
the Eq. (4.33) becomes

fn = n
fp

W0
. (4.34)

Applied to our case, on the one hand, the MnS inclusions are loaded along their length in
the longitudinal direction. SEM pictures show that inclusions break into nlong small square
fragments. The longer the particles, the higher the number of fragments. Therefore, assuming
that the inclusion breaks into a number equal toW0,long, the aspect ratio in the long. direction
as suggested by the observations, one has

fn,long = nlong
fp

W0,long
= fp = 2× 10−3 . (4.35)

On the other hand, in the perpendicular direction, the MnS inclusions are loaded along one
of the small axes. Nucleation occurs when the inclusions separate from the matrix, resulting
in one void only. Applying the previous formula (4.34), one has

fn,perp =
fp

W0,perp
. (4.36)

which depends on the aspect ratio W0,perp. This latter is computed from the ratio between
the inclusions semi-axis Ri . For a given direction 1, the related aspect ratio W1 is equal to
(Lassance, Scheyvaerts, and Pardoen, 2006)

W1 =
R1√
R2R3

. (4.37)

Therefore, for an oblate inclusions, one can obtain W0,perp = W
−1/2
0,long. The preliminary mi-

crostructure analysis in Section 4.1.1 �xes the value of the inclusions aspect ratio around
W0,long = 16. Here, in order to take into account neglected contributions to the observed
anisotropic behaviour, such as the inclusion spacing, second incusions populations etc., which
enhance the shape e�ects, a slightly higher value is chosen: W0,long = 24 and W0,perp = 0.204.

At the end of the day, if we assume that the "long." direction coincides with the z-direction,
the tensor fn takes a diagonal form. Its components are computed using either Eq. (4.35) or
(4.36): fnx = fny = fn,perp and fnz = fn,long.

The remaining parameters to calibrate are the concentration factor k and the critical stress
σnc . Consistently with the previous orientation, the latter are chosen equal to σncx = σncy =
σncz = σY0 as MnS inclusions have a very low material integrity compared to the matrix,
which induces nucleation immediately at the yielding onset as observed on SEM pictures.
Therewith, the concentration factor k components are equal to kx = ky = 5.35 and kz = 18.8.
Those values are computed using the inclusions geometry (analysed in Section 4.1.1) and
thanks to the relation provided by Beremin (1981). In this work, the authors applied the
extension of Eshelby (1957) by Berveiller and Zaoui (1978) to ellipsoidal inclusions assuming a
monotonic loading and negligible elastic deformations. Even though they experimentally found
out that the formulas tend to overestimate the real values, they still provide a reasonable and
pragmatical guess in our context.

4.3.4.3 Validation of the nucleation model

The nucleation parameters computed in the previous Section 4.3.4.2 are now used with the
nucleation model developed in Section 4.3.4.1. The numerical model is the same as the one
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Figure 4.42: Variation of the applied force as a function of the elongation ∆L for the smooth
round bars simulated with the non-local Gurson-Thomason model (continuous lines) and com-
parison with the J2-elasto plastic law (dotted lines) and with the experimental measurements

(discontinuous lines) in both directions.

described in Section 4.2.2, i.e. large strain continuous Galerkin �nite element formulation
with time integration performed using the dynamic scheme presented in Section 2.3.2.2 and
with the mesh of parabolic elements presented in Fig 4.20a. However, this time, the full
Gurson-Thomason model with the parameters identi�ed in Sections 4.3.2, 4.3.3 and 4.3.4.2
is considered. The result obtained in terms of the ductility and in terms of the porosity
distribution are then compared with experimental results. In particular, the measured porosity
distribution is used to determine meaningful boundaries to the porosity evolution.

For this purpose, the simulation results of the Gurson-Thomason model for the round bars
are analysed. At �rst, the force evolution for the smooth round bars are compared with the
J2-plastic and the experimental results in both directions on Fig. 4.42. The introduction of
the damage has a low impact on the results, only a slight reduction of the force amplitude
is visible until the coalescence onset marked with a cross on the graph. After this point, the
force abruptly drops (almost) vertically until nearly zero, signifying the specimen failure. One
can note that this fall occurs later in the long. direction (Fig. 4.42a) than in the perp. one
(Fig. 4.42b), which is a �rst sign of damage anisotropy.

Furthermore, the distribution of the representative internal variables of the model are
compared for both directions on Figs. 4.43 at the coalescence onset which occurs each time
at the specimen centre. Due to its higher ductility, the plastic strain values p are higher
in the long. smooth round bars than in the perp. one. However, the non-local e�ective
porosity values f̃V, i.e. including the e�ects from the void shape, are higher in the perp.
direction. Both previous observations countervail each other and lead to comparable values
for the ligament ratio χ at the coalescence onset. Besides, beyond the coalescence initiation,
the simulations produce a �at failure path in both directions as visible on Fig. 4.44. It consists
in the darker line due to one layer of highly deformed elements surrounded by spurious non-
local damage di�usion. This predicted failure path is not in agreement with experimental
observations corresponding to a cup-cone because the Gurson-Thomason model does include
shear coalescence mode (see the work of Nguyen, Pardoen, and Noels (2020)). Shearing will
be capture with the transition model as shown in Section 4.4.

The previous analysis is also completed by the results obtained on the notched bars. As
illustration, the force-striction curves obtained experimentally, with the GT model and with
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Figure 4.43: Distribution of (a-b) the matrix plastic strain p, (c-d) the non-local porosity
f̃V and (e-f) the ligament ratio χ in the deformed configuration for the smooth round bars
(R0 = 2 [mm]) at the onset of coalescence (left) in the long. direction and (right) in the perp.

direction.
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Figure 4.44: Distribution of (a-b) the matrix plastic strain p, (c-d) the non-local porosity
f̃V and (e-f) the ligament ratio χ in the deformed configuration for the smooth round bars
(R0 = 2 [mm]) at final failure (left) in the long. direction and (right) in the perp. direction.



4.3. Calibration and validation of the non-local porous law 131

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Rn = 1 [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) Rn = 2 [mm]

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c) Rn = 4 [mm]
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Figure 4.45: Variation of the applied force as a function of the diameter reduction ∆R for
the notched round bars simulated with the non-local Gurson-Thomason model (continuous
lines) and comparison with the J2-elasto plastic law (dotted lines) and with the experimental

measurements (discontinuous lines) with R0 = 3 [mm].
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Figure 4.46: Comparison of the fracture strain obtained by simulations of the round bars
R0 = 3 [mm] and R0 = 2 [mm] for the two directions with all the available experimental

measurements (i.e. with R0 = 3 [mm] and R0 = 2 [mm]).
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Figure 4.47: Experimental trend based on measurements of the MnS fractions in terms of
the distance to the crack surface on (a) one specimen sampled in the long. direction and on

(b) two specimens sampled in the perp. direction.

the J2-law are compared on Fig. 4.45 for the notched bars in the long. direction. The
observations made previously on the smooth bars are still applicable in this case.

The ductilities obtained on the round bars are shown on Fig. 4.46 for both directions
and both specimens sizes. The fracture strain is approximated by the value observed at the
coalescence onset because, beyond this stage, the failure path is not correctly predicted. It
will results in an overestimation of the real value. Thereby, on Fig. 4.46a, we compare the
predicted fracture strain for R0 = 3 [mm] and R0 = 2 [mm] in both directions. At equivalent
stress conditions, dictated by the notch size, the material response is slightly more ductile
with smaller specimens. Indeed, since the dissipated energy is governed by the ratio between
the non-local length compared to the specimen size, an increase of the latter results in a more
ductile behaviour. In others words, decreasing the specimen size is equivalent to increasing the
non-local length. Similar conclusions have been drawn previously in Section 2.2.4 in the elastic
regime. However, as this e�ect is relatively small, only the numerical predictions obtained with
R0 = 2 [mm] are kept in the following. On Fig. 4.46b, the numerical results are compared to
the experimental measurements. A good agreement compared to the experimental dispersion
is obtained: only the fracture strain of the smooth round bar in the perpendicular direction is
overestimated.

The current calibration is suitable to reproduce the frature strain of the round bars in both
directions. Now, we need to challenge the current calibration towards the porosity measure-
ments realised post-mortem. From MnS measurements presented on Fig. 4.18 in Section 4.1.3,
an experimental trend is obtained for visualisation purpose on Fig. 4.47 by �tting the mean
fraction value on a 0.5 mm bandwidth (the size of the uncertainty on the crack surface zero
point) with an exponential function. Upper and lower bounds are similarly obtained by �tting
the mean value +/- 2 times the standard deviation obtained on the same bandwidth. One can
notice that the distribution tends toward the volumic fraction of MnS inclusions fp = 2×10−3,
far away from the crack surface. On the previous distributions of Fig. 4.47, we added on Fig.
4.48 the apparent non-local porosity distributions obtained with the GT simulations. In these
numerical predictions, the e�ects of the void shape was removed, i.e. while the GT considers
the e�ective porosity f̃V resulting from the nucleation law (4.30), the apparent porosity in
the long. direction results from Eq. (4.35) and is equal to the e�ective one and the apparent
porosity in the perp. direction results from Eq. (4.36) and is equal to f̃V/W

0.5
0,long. Besides, the
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Figure 4.48: Comparison of the porosity distributions in terms of the distance to the crack
surface obtained with the numerical simulations (in which case we consider the apparent and
not effective porosity) of the smooth bar R0 = 2 [mm] and the experimental measurements

of the MnS fractions (a) in the long. direction and (b) in the perp. direction.
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Figure 4.49: Comparison of the porosity distributions in terms of the distance to the crack
surface obtained with the numerical simulations (in which case we consider the apparent
and not effective porosity) of the smooth round bar R0 = 2 [mm] and the experimental
measurements of the MnS fractions (a) in the long. direction and (b) in the perp. direction.
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Figure 4.50: Comparison of the fracture strain obtained on the round bars R0 = 2 [mm] for
different values of the MnS inclusions aspect ratio W0 and the experimental measurements.
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Figure 4.51: (a) Comparison of (a) the force evolution as a function of the specimen elon-
gation on the grooved plates predicted for different values of kω and (b) of the corresponding

fracture strain with the experimental measurements.

distributions are re-expressed in terms of the plastic strain on Fig. 4.49 although the resulting
curve is not obtained at �xed triaxiality. One can observe that the numerical distributions
are consistent and meaningful with the experiments in both directions despite the high data
dispersion. However, this agreement will be not observed at the complete failure with the pure
non-local model. Indeed, this model entails spurious damage di�usion visible on Fig. 4.44
which will pollute the results unless the transition is used, see Section 4.4.2.1.

In summary, the current calibration, while only using micromechanical-based arguments,
is able so far to reproduce the failure anisotropy at di�erent stress triaxiality values and
consistently reproduces the observed microscopic porosity evolution. To complete this analysis,
the e�ects of the inclusions aspect ratio, W0, is represented on Fig. 4.50. As expected from
Section 4.3.4.2, increasing W0 results in an increase of nucleated quantity in the perpendicular
direction, and therefore, a loss of ductility as observed on the graph. This motivates the
use of W0 = 24 although the expected value from the porosity geometries (see Section 4.1.1)
W0 = 16.
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Figure 4.52: Variation of the applied force as a function of the elongation ∆L or the thick-
ness reduction ∆W for the grooved plates simulated with the non-local Gurson-Thomason
model (continuous lines) and comparison with the J2-elasto plastic law (dotted lines) and

with the experimental measurements (discontinuous lines).
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Figure 4.53: Distribution of (a-c) the matrix plastic strain p, (d-f) the non-local porosity
f̃V and (g-i) the ligament ratio χ in the deformed configuration for the grooved plates at the

onset of coalescence.
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Figure 4.54: Distribution of (a-c) the matrix plastic strain p, (d-f) the non-local porosity
f̃V and (g-i) the ligament ratio χ in the deformed configuration for the grooved plates near

failure.
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4.3.5 Calibration of the shear-induced growth

In this section, the last remaining parameter, the shear-induced growth coe�cient kω, is cal-
ibrated. Nahshon and Hutchinson (2008) introduced this parameter in the porosity growth
rate (3.26) to include a non-trivial porosity growth rate under shear conditions (by opposition
to the classical Gurson model). We calibrate the value of kω in order to �t the experimental
fracture strain observed on grooved specimens. Those latter are preferred to others specimens
because of its stress condition state. Indeed, in plane strain, ζ = 0 and, following Eq. (3.27),
the parameter e�ect is maximised and constant along the whole test. Let us note that this
does not have an e�ect on previous axisymmetric results because the shear term is negligible
on the coalescence initiation occurring at ζ = ±1.

The numerical model used here is the same as the one described in Section 4.2.2, i.e. large
strain continuous Galerkin �nite element formulation with time integration performed using
the dynamic scheme presented in Section 2.3.2.2 and with the mesh of parabolic elements pre-
sented in Fig. 4.26. However, this time, the full Gurson-Thomason model with the parameters
identi�ed in Sections 4.3.2 and 4.3.3 and the nucleation law developed and identi�ed in Section
4.3.4 is considered.

On Fig. 4.51, the e�ects of kω is studied for such grooved specimens. The force evolution
is shown on Fig. 4.51a. On the latter, the coalescence onset, which is marked with a cross,
is used as reference point for the fracture strain computation reported in Fig. 4.51b despite
this choice will underestimate the real strain. We keep the same scale on Fig. 4.51b than
on Fig. 4.46 to ease the comparison between specimen families. Increasing kω decreases the
ductility. However, the e�ect weakens for a smaller notch size as the triaxiality is higher in
those specimens. Choosing kω = 5.0 allows obtaining a reasonable agreement with at least
two specimens on three knowing that the current value are underestimated and an acceptable
one on the third.

The loading force on the grooves specimen for the picked value of kω is represented on
Fig. 4.52. In a similar fashion as the round bars, the non-local GT model stays close to
the elasto-plastic results at the beginning of the curve. However, the gap gradually widens
until the coalescence onset. After this point, the loading force drops in terms of both the
elongation and of the striction. However, based and these curves, the amount of deformations
after coalescence is not negligible and is likely overestimated.

In addition, the corresponding distribution of the damage-driving variables are depicted on
Fig. 4.53 at the onset of the coalescence. The variables follow shear bands similar to the ones
spotted previously on Fig. 4.28, but they are more noticeable here. Their counterparts near
total failure are represented on Fig. 4.54. A �at crack path is obtained which is in opposition
to the experiments displayed on Fig. 4.12. This inaccurate failure path arises because the
Gurson-Thomason model does not include shear coalescence mode (see the work of Nguyen,
Pardoen, and Noels (2020)). Shearing will be capture with the transition model as shown in
Section 4.4. Moreover, the post-failure spurious non-local di�usion is clearly visible on those
specimens. Indeed, one can compare the porosity distribution at the coalescence onset and at
material failure, e.g. for Fig. 4.53d with Fig. 4.54d. Because of the wrong crack path, the
excessive strain arti�cially increases the ductility and the fracture strain, justifying why we
have considered the coalescence onset as fracture strain.

4.3.6 Validation on the plane stress specimens

In this section, we apply the calibrated non-local framework to the plane stress �at bars,
presented in Section 4.1.2.3 and already simulated in Section 4.2.2.3 with the elasto-plastic law.
We focus here on the fracture strain prediction only because the post-coalescence behaviour
requires important computation time. We use here the same numerical model as presented
in Section 4.2.2.3, i.e. large strain continuous Galerkin �nite element formulation with time
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Figure 4.55: Comparison of the force evolution as a function (a) of the specimen elongation
for the smooth flat bar and (b) of the thickness reduction for the notched flat bars.
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Figure 4.56: Comparison of the predicted fracture strain obtained on the flat specimens
with the experimental measurements.

integration performed using the dynamic scheme presented in Section 2.3.2.2 and with the 3D
mesh of second-order tetrahedra elements presented in Fig. 4.31.

On Fig. 4.55, the evolution of the applied force is compared with the experimental and the
elasto-plastic results. Simulations are shown until the coalescence onset, highlighted with a
cross, as we focus only on this part. Similarly to the previous specimens, either on Fig. 4.55a
for the smooth �at bars or on Fig. 4.55b for the notched counterparts, the same qualitative
correspondence is observed between the non-local porous model and the experimental results
than it was observed on Fig. 4.32 in Section 4.2.2.3 with the elasto-plastic model. In addition,
the fracture strain is shown on Fig. 4.56: the Gurson-Thomason model clearly reproduces the
experimental results in terms of ductility.

4.3.7 Material parameters and fracture strain summary

In this section, we summarise all the material parameters identi�ed during this calibration
campaign for the non-local porous model in Tab. 4.1. We also gather the numerical predictions
of the stress state and the fracture strain on each specimen on Fig. 4.57 and compare them
to the experimental or the elasto-plastic analysis performed in Section 4.2.3. On Figs. 4.57a
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Figure 4.57: Comparison of (a-d) the evolution of the stress triaxiality on (a) the round
bars, (b) the grooved plates and (c) the flat bars, and the evolution of the Lode variable for
(d) the flat bars at the centre of the reference cross-section of all the specimens simulated
with the J2-plastic law (discontinuous lines) and with the Gurson-Thomason model in both
directions (continuous lines for the long. direction and dotted lines for the perp. direction);
and (e-f) comparison of fracture strain obtained numerically with the non-local porous model
(continuous lines) and experimentally (discontinuous lines) as a function of the mean value
of (e) the triaxiality and (f) the Lode variable at the centre of the reference cross-section of

all the specimens simulated with the J2-plastic law.
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Table 4.1: Calibrated material parameters.

E Young modulus
ν Poisson's ratio
τY (p) Isotropic stress hardening law
fV0 Initial porosity
sn, pn Nucleation distribution parameters
fn,long, fn,perp Nucleation intensity
klong, kperp Nucleation stress concentration factors
σnc long, σncperp Critical nucleation stress parameters
λ0 (or χ0) Initial spacing ratio (or initial ligament ratio)
q1, q2 Gurson yield surface coe�cients
α, β Thomason concentration load factors
κ Void spacing growth factor
kω Shear-induced growth factor
lc Non-local length

to 4.57f, the stress state evolutions inside each specimen are successively obtained with the
elasto-plastic model (Section 4.2.2) and the calibrated non-local porous model. If both models
undergo similar stress states at the yielding initiation, the di�erence increases with the plastic
�ow: the Gurson-Thomason results predict a higher stress triaxiality for a given plastic strain
value, and the discrepancy is larger for higher stress triaxiality states. Besides, the predicted
plastic strain at which fracture is observed di�ers signi�cantly. This demonstrates that the
e�ect of the porosity evolution on the stress state is not totally negligible.

One can observe on Figs. 4.57e and 4.57f a general agreement between the numerical
predictions and the experimental observations6. Only the smooth round bars in the perp.
direction and two of the grooved plates have a less good correspondence. Still, the trends
described in Section 4.2.3 for the experimental specimens are also respected for the numerical
simulations.

4.4 Calibration and validation of the damage to crack transition

Henceforth, we consider the complete non-local damage to crack transition developed in Chap-
ter 3. For this, the Gurson-Thomason model with material parameters calibrated in Sections
4.2.1 and 4.3 is used, and the transition occurs once the criterion (3.82) is satis�ed. The
stability parameter for the Discontinuous Galerkin framework is �xed at βs = 100. At this
point, only the cohesive band thickness needs to calibrated; Section 4.4.1 is dedicated to this
task. Afterwards, the results obtained on the axisymmetric and the grooved specimens are
presented and discussed in Section 4.4.2. In particular, the crack path is examined.

4.4.1 Calibration of the cohesive band thickness hb

As already discussed in Section 4.3.3 about the non-local length, the cohesive band thickness
should be representative of the mechanisms in play. Since the plastic �ow during coalescence
has collapsed inside the ligament between voids, it is meaningful to assume that the character-
istic length linked to the coalescence is related to the void size. Therefore, the cohesive band
thickness hb is assumed to be equal to 8 [µm], the half of the void length.

6In the following, we keep the stress conditions extracted from the J2-simulations for the sake of simplicity.
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Figure 4.58: Variation of the applied force as a function of (a) the elongation ∆L and
(b) the radius reduction ∆R for the smooth round bar (R0 = 3 [mm]) simulated with the
non-local Gurson-Thomason model within the transition framework and comparison with the

non-local model in the long. direction.

However, this �rst value should be improved in a future work either by cell simulations
or by mechanical tests performed on the CTS and DENT specimens. In the �rst case, one
can obtain a more accurate guess for the coalescence characteristic size by evaluating the
relative thickness inside which the plastic �ow localises inside the RVE. In the second case,
the �tting between the numerical and the experimental dissipated energy allows the hb values
to be estimated. Moreover, an anisotropy in this value is likely which can be estimated using
samples in di�erent orientations.

4.4.2 Validation of the transition framework

As the transition framework is now fully de�ned, it is applied on di�erent specimens involved
in the experimental campaign. The round bars are simulated in Section 4.4.2.1. Section 4.4.2.2
reproduces the grooved plates. Comparatively to the simulations of the previous sections, a
scatter of 1% is applied on the nucleation intensity to promote crack kinking as it is often the
case for fracture simulations involving CZM (Zhou and Molinari (2004)).

4.4.2.1 Round bars

The round bar specimens, presented in Section 4.1.2.1, are now simulated using the damage
to crack transition. The results are shown on Figs. 4.58 and 4.59 for the smooth round bar
in the long. direction. The force evolution is represented on Fig. 4.58 for the non-local model
with and without crack insertion. Before crack insertion, no di�erence is noticeable. After
it, both curves quickly fall. However, the drop is steeper with the transition: the fracture
strain only increases of 0.05 after the onset compared to 0.13 for the non-local model. This
fact highlights that the dissipation is lower with the crack transition. Another evidence is
the force oscillations visible especially on Fig. 4.58b resulting from the dynamic integration.
At the end of the day, the resulting fracture strain with the crack transition, equal to 0.95,
is in agreement with the experimental values (relative error of 2%). Besides, it justi�es the
approximated link of the fracture strain to the values observed at the coalescence onset, as
done in Section 4.3.4.3.
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Figure 4.59: Distribution of (a-c) the matrix plastic strain p, (d-f) the non-local porosity
f̃V and (g-i) the ligament ratio χ in the deformed configuration for the smooth round bar in
the long. direction at different steps: (left) at coalescence onset, (centre) before crack kinking

and (right) at final failure.
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In addition, the distributions of the matrix plastic strain p, the non-local porosity f̃V and
the ligament ratio χ are compared in the deformed con�guration at di�erent instants of the
failure process: at the coalescence onset, before the slant bifurcation and at the total failure.
Before crack insertion, the results are identical to the non-local model. A crack then initiates
at the centre of the specimen and propagates radially, following the elements boundary. At
some point, near the free surface, shear bands appear ahead the crack front and the crack tilts
at around 45◦ to propagate until it reaches the surface. This results in a so-called cup-cone
fracture, typically observed in literature (Pineau, Benzerga, and Pardoen, 2016, e.g.). It is
also in accordance with the experimental fracture surface observed on Fig. 4.6.

However, it is worth mentioning that the robustness of the damage to crack transition,
when capturing such a bifurcation, needs to be improved. Indeed, the current micromechanics-
based model, succeeds well in predicting the failure onset and the crack orientation in tensile-
dominated conditions through the internal necking coalescence. However, it is less the case
in shear-dominated states. The cup-cone failure is captured because of the creation of free
surfaces: their presence promotes the shear bands onset, the damage localisation inside these
bands, followed by crack insertions. It also requires the use of a scatter in the material
parameters. In fact, other localisation mechanisms and criteria come into play in those stress
conditions and a�ect the failure process. In a future work, other coalescence modes (Nguyen,
Pardoen, and Noels, 2020, e.g.), should enhance the actual micromechanical description in
order to include these additional failure modes.

4.4.2.2 Grooved plates

The damage to crack transition is now applied in a di�erent stress state on the grooved
specimen with Rn = 10 [mm]. The evolution of the applied force is shown on Fig. 4.60. The
results are qualitatively close to the ones of the previous section: the damage dissipation is
more limited after the crack initiation. The distributions of the matrix plastic strain p, the
non-local porosity f̃V and the ligament ratio χ in the deformed con�guration are shown on Fig.
4.61. By opposition to the previous case, the plastic strain localises inside shear bands. The
crack also initiates at the centre and then propagates towards the surface, forming a slanted
crack. Comparatively to the smooth round bar, failure occurs at a lower level of plastic strain
while the encountered porosity is higher. This observation is due to a higher triaxiality level
compared to the smooth round bars, ampli�ed by a contribution in shear. At the end of day, a
slanted crack is observed on the numerical simulations, coherently to the experimental failure
(Fig. 4.12c).

4.5 Conclusions

In this chapter, we have addressed the calibration of the micromechanical-based damage to
crack transition framework developed in Chapter 3.

In particular, once the elasto-plastic behaviour has been identi�ed from stress-strain load-
ing curves, the Gurson-Thomason material parameters have been inferred from cell simulations.
An anisotropic nucleation law has been developed in order to recover the di�erence of ductility
observed for di�erent loading directions. The parameters of this anisotropic nucleation law
have been estimated from the morphology of the inclusions experimentally observed in the
tested material. Finally the characteristic lengths involved in the model have been estimated
from the inclusion morphology and distribution.

The di�erent identi�cation steps have been validated on di�erent experimental samples, in
terms of loading response but also in terms of porosity evolution. Although a pure Gurson-
Thomason model cannot predict the observed slant and cup-cone failure modes of the grooved
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Figure 4.60: Variation of the applied force as a function of (a) the elongation ∆L and
(b) the thickness reduction ∆W for the grooved plates (Rn = 10 [mm]) simulated with the
non-local Gurson-Thomason model within the transition framework and comparison with the

non-local model and the experimental measurements.

and axisymmetric specimens, because of the insertion of the free surfaces, the damage to crack
transition framework is able to predict the crack kinking experimentally observed.
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Figure 4.61: Distribution of (a-c) the matrix plastic strain p, (d-f) the non-local porosity
f̃V and (g-i) the ligament ratio χ in the deformed configuration for the grooved plates (Rn =
10 [mm]) in the long. direction at different steps: (left) at the onset of coalescence, (centre)

before crack kinking and (right) at final failure.
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Chapter 5

General conclusions and perspectives

The main achievement of this work is the development of an original damage to crack transition
framework suitable for modelling the ductile failure. Indeed, through the literature review in
Chapter 1, most of the existing FE solutions are of limited reliability when the whole ductile
failure process, see Fig. 1.1, has to be modelled. In particular, most of them su�er either
from mesh-dependency or pathological case-dependency, from an inability to account for the
stress-state e�ect, from energetic inconsistencies or again from the lack of scalability and 3D-
applicability. This work focused on bringing a pragmatical and complete solution to such
issues.

For this purpose, we considered as a starting point the DG-based transition framework
including a non-local continuum-damage-mechanics model coupled with an extrinsic cohesive
zone model developed in the work of Wu, Becker, and Noels (2014). Practically, the initial
di�use damage stage is modelled by a non-local implicit approach. However, large distor-
tions appear inside the most damaged elements, which induce spurious damage spreading and
numerical problems. To overcome this issue, a discontinuity is inserted through a CZM to
simulate the last failure stage. This combination has the advantage to be mesh-independent
thanks to the non-local method and the extrinsic nature of the CZM. Moreover, the scheme
inherits from the numerical properties of the DG-method (including convergence, stability,
scalability, and easiness of parallel and crack insertion implementation). However, the CZM
is unable to account for the stress state e�ect on the energy release rate.

The originality lies here in the substitution of the CZM by a cohesive band model. It
consists in a cohesive model with a �ctitious �nite thickness along which the displacement
�eld discontinuity is assumed to be smeared. A strain tensor in this band is reconstructed by
enhancing the neighbouring bulk strain by the cohesive jump. From this, the bulk material
damage constitutive law is used in its local way to compute a stress tensor and then, the
corresponding traction forces. Hence, the cohesive band model accounts for the triaxiality
state during the crack opening, which was missing so far for any accurate ductile failure
simulations.

In Chapter 2, we focused on the framework development in the context of small displace-
ments for a damage-enhanced linear elasticity in order to demonstrate the proof of concept.
In particular, we analysed the framework behaviour. Energetic equivalence and consistency
were studied trough the in�uence of both involved material characteristic lengths: the non-
local length and, the only one additional parameter introduced by our new model, the cohesive
band thickness. This latter was determined from the former based on energetic considerations.
The framework capabilities and its expected numerical properties are demonstrated through
several examples in 2D and 3D. Besides, the superiority of our CBM over prevalent CZMs
is shown by comparing simulations in di�erent stress conditions. According to these results,
one has to consider the triaxiality state in the failure process if the cohesive energy is not
negligible. And it was shown that one e�cient way to do so is to include the CBM which
allows complex 3D stress state e�ects to be accounted for during the crack opening.
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Afterwards, in Chapter 3, we extended the new framework to elasto-plastic material be-
haviours in large deformations; a more realistic context regarding the ductile failure. Huespe
et al. (2012) have proposed to coupled a CBM with a Gurson model. In this approach the
Gurson model represents the coalescence stage through a phenomenological porosity acceler-
ation model (Tvergaard and Needleman, 1984). The loss of ellipticity is used as a criterion
to introduce the crack band, so that no non-local formalism is required. However this ap-
proach su�ers from a lack of micro-mechanics justi�cation. Physically, it is more meaningful
to introduce the crack at coalescence onset, which can occur beyond strain softening. Also
the method should be general enough to consider di�erent coalescence models. Towards this
end, we developed an original suited material model. It consists in a non-local formulation of
a porous plasticity model and its closed form iterative resolution algorithm. This formulation
combines di�erent micromechanics-based models in order to simulate the whole ductile failure
process by void nucleation, growth and coalescence. It involves a Gurson model to simulate the
void growth stage and a Thomason model to represent the coalescence phase. A shear-induced
void growth term is also added to cover the damage evolution at low stress-triaxiality regime.
We then coupled the damage to crack transition with this porous elasto-plastic model. Crack
transition was managed using either the loss of ellipticity or using an original crack insertion
criterion with the cohesive evolution law based on the coalescence part of the micro-mechanics
model. This combination allows reproducing the well-known slant and cup-cone failure modes
of plane-strain and axisymmetric specimens, respectively. In particular, it was shown that the
numerical predictions converge with the mesh re�nement, and that the cohesive band thick-
ness governs the fracture energy released during the coalescence stage, and possibly the failure
mode when vanishing values are considered. Moreover, it was shown that the Thomason coa-
lescence criterion can be met during the strain softening stage, justifying the use of a non-local
damage formulation.

In the Chapter 4, the numerical framework developed during the previous chapters was
calibrated for a high-strength steel. Usually, the calibration lies on a reduced amount of macro-
scale stress-strain curves (Liu, Kang, and Ge, 2019, e.g.), although some model parameters
are evaluated from unit-cell simulations only (Faleskog, Gao, and Fong Shih, 1998, e.g). So
the problem is to have a calibration that represents as many loading cases as possible. We
took bene�t from the micromechanical-based model developed previously by linking as much
as possible the parameters values to their physical interpretation, including the characteristic
lengths. Hence, in complement to the mechanical campaign results, the novelty is to establish
the calibration procedure mainly on micromechanics observations and arguments by using
unit cell simulations, inclusions morphology and their post-mortem distribution. This way,
the propensity to material parameters over�tting is reduced compared to a pure classical
parametric optimisation. We note that this approach would have been impossible or more
complex with any other phenomenology-based damage model, or with a phase-�eld method
for instance.

Besides, the considered high-strength steel has the particularity to exhibit failure anisotropy
due to its microstructural morphology. In order to include those e�ects, we took as starting
point the nucleation criterion suggested by Beremin (1981). In this work, they created a crite-
rion to take into account the void inclusions but which is isotropic. On this basis, we created
a new anisotropic void nucleation model allowing representing the failure anisotropy. As pre-
viously, its design and its calibration rests on micromechanical arguments. At the end of the
day, the non-local model was shown to be able to predict the failure initiation for several stress
conditions while taking into account the failure anisotropy. In addition, the transition allows
reproducing the slant and cup-cone failure modes of plane-strain and axisymmetric specimens
while the pure non-local model failed at it.

Nonetheless, this work should be brought further. Indeed, the current micromechanics-
based model, coupled to the transition framework succeeds well in predicting the failure onset
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and its orientation in tensile-dominated conditions through the internal necking coalescence.
However, its predictions still lack of robustness in shear-dominated states. Slant and cup-cone
failures are captured because of the creation of free surface. Their presence, as well the use of
scatter in the material parameters, promotes the shear bands onset, the damage localisation
inside these bands, followed by crack insertions. In fact, others localisation mechanisms and
criteria come into play in those stress conditions and a�ect the failure process. In a future
work, others coalescence modes, in particular shear dominated ones, (Nguyen, Pardoen, and
Noels, 2020, e.g.), should enhance the actual micromechanical description in order to include
these additional failure modes.

The micromechanics-based nucleation model could be also enhanced by incorporating the
e�ects of the second inclusions population to improve the reliability of the simulations. Non-
monotonic loading can be considered by extending the anisotropy from the nucleation model
to the void growth and coalescence.

Regarding the material calibration itself, unused mechanical tests should be involved in the
calibration procedure. In particular, the compact tension test and the double edge notched
specimen would help to ascertain the characteristic lengths beyond the current �rst guess.
Other tests as the Arcan and the Hopkinson results will extend the validity zone. Besides,
some parts of the stress state spectrum are still be missing: compression tests would help to
�ll this lack.

Anyway, at the end of the day, the developed non-local CDM/CBM framework, combined
to the micromechanical model and the micromechanics-based calibration, provides the basis
of a comprehensive and operational method exploitable for industrial applications. Its use will
allow reliable ductile failure predictions by discarding the numerical inconsistencies and the
case-dependencies which are a�ecting most of actual numerical methods. Consequently, the
access to those predictions for industrial applications will a�ord precious insights in the physical
process with a reduced cost. Experimental campaign could be minimised while improving the
structural design.

Moreover, the framework versatility renders it easily applicable to other material be-
haviours. Furthermore, its implementation requires only few modi�cations (comparatively
to other crack insertion framework). This will ease the CDM/CBM integration into standard
FE industrial codes (we note that user elements are already developed to introduce DG in com-
mercial codes (Charles, 2014)). Besides, despite the DG-method advantages, the formalism
can be combined with any other crack insertion techniques, as for instance, a node-splitting
method or the xFEM for which the last improvements (Vigueras et al., 2015) in this framework
makes it more attractive to industrial applications.
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Appendix A

Appendix related to Chapter 2

A.1 Linearisation of the elastic damage model

One has from Eq. (2.39):

δσij =
∂σij
∂εkl

δεkl +
∂σij
∂ẽ

δẽ. (A.1)

Depending if the applied damage model is local or non-local, the derivatives ∂σ
∂ε and ∂σ

∂ẽ have
di�erent expressions. For the implicit non-local damage model, one has

δσij = [(1−D)Hijkl ]︸ ︷︷ ︸
Cuu

δεkl +

[
−Hijklεkl

∂D

∂ẽ

]
︸ ︷︷ ︸

Cuẽ

δẽ, (A.2)

while for the local damage model, applied in the cohesive band

δσij =

[
(1−D)Hijkl −Hijmnεmn

∂D

∂εkl

]
︸ ︷︷ ︸

Cloc
uu

δεkl (A.3)

Concerning the local value e, the linearisation of Eq. (2.41) gives

δe =
∂e

∂εij
δεij =

[∑
k+

εk
vki v

k
j

e

]
︸ ︷︷ ︸

Ceu

δεij , (A.4)

where εk is a eigenvalue of ε, vk is the associated eigenvector, and where the sum
∑

k+ carries
only on positive eigenvalues.

A.2 Computation and linearisation of the cohesive band model

stress tensor

The band deformation gradient is computed by applying the Eq. (2.31) on the corresponding
side of the interface, using the corresponding deformation gradient FiJ , the jump displacement
JuiK and the gradient of the jump displacement ∇J JuiK. The deformation gradient FiJ and
the jump displacement JuiK are computed with the shape functions of the volume elements
while the computation of ∇J JuiK involves the shape functions of the interface elements only
(because a node outside the interface does not have to in�uence this value in order to satisfy
the condition (2.28)). As jump values and their gradients are not equal to zero before crack
insertion due to the DG formalism, initial jump values (and their gradients) at crack insertion
are deducted from the e�ective values used in (2.31).
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The derivatives of the band deformation gradient Fb (2.31) with respect to the bulk de-
formation gradient F read

∂FbiJ

∂FkL
=

∂

∂FkL
[FiJ − FiMNIMNIJ ] = IikIJL − IikNIJNIL, (A.5)

and, with respect to the jump displacement at the interface read

∂FbiJ

∂ Juk K
= nIinIm [FcmL − ImL]NILNIJ

nIk

δmax
n

1(<δmax
n ) (δn)

+ sIisIm [FcmL − ImL]NILNIJ
sIk

δmax
t

1(<δmax
t ) (δt)

+ s′Iis
′
Im [FcmL − ImL]NILNIJ

s′Ik
δmax

s

1(<δmax
s ) (δs)

+
NIJ

hb
δik ,

(A.6)

where the function 1y (x) is equal to 1 if the argument x satis�es the condition y, and to
0 otherwise. The derivative with respect to the gradient of the displacement jump at the
interface reads

∂FbiJ

∂∇L Juk K
=

1

2
IikIJL. (A.7)

Then, the stress tensor σb is computed using Eq. (2.46) as damage law evolution, leading
to

〈σb〉 =
σ+

b

(
ε+

b ,Z
+
)

+ σ−b
(
ε−b ,Z

−)
2

(A.8)

Finally, the material tangent tensor of the cohesive band model can be obtained by lin-
earisation of the band stress tensor:

δ
〈
σbij

〉
=

∂〈σbij 〉
∂F+

mN

δF+
mN +

∂〈σbij 〉
∂F−mN

δF−mN +
∂〈σbij 〉
∂JumK δ JumK +

∂〈σbij 〉
∂∇nJumKδ∇n JumK

=
1

2

∂σb
+
ij

∂Fb
+
kL

∂Fb
+
kL

∂F+
mN

δF+
mN +

1

2

∂σb
−
ij

∂Fb
−
kL

∂Fb
−
kL

∂F+
mN

δF−mN

+
1

2

(
∂σb

+
ij

∂Fb
+
kL

∂Fb
+
kL

∂JumK +
∂σb
−
ij

∂Fb
−
kL

∂Fb
−
kL

∂JumK

)
δ JumK

+
1

2

(
∂σb

+
ij

∂Fb
+
kL

∂Fb
+
kL

∂∇nJumK +
∂σb
−
ij

∂Fb
−
kL

∂Fb
−
kL

∂∇nJumK

)
δ∇n JumK .

(A.9)

By introducing

Cb±
uFijmn = Cloc±

uuijkl
∂Fb

±
kl

∂F±mn
; Cb±

uJuKijm
= Cloc±

uuijkl
∂Fb

±
kl

∂JumK ; and

Cb±
u∇JuKijmn

= Cloc±
uuijkl

∂Fb
±
kl

∂∇nJumK ,
(A.10)

with Cloc
uu as the material tangent in its local form, see Appendix A.1, the previous relation

reads

δ 〈σb〉 =
1

2
Cb+
uF : δF+ +

1

2
Cb−
uF : δF− +

〈
Cb
uJuK

〉
· δ JuK +

〈
Cb
u∇JuK

〉
: δ∇ JuK (A.11)
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A.3 Formulation of �nite element forces

From the weak form (2.71), the nodal forces are derived by applying the discretisation (2.72).
This leads to the following elementary nodal forces for the volume elementsBe and the interface
elements Ss .

• Inertial forces Me,ab · üb :

δua ·Me,ab · üb =

∫
Be

ρwu · üdV = δua ·
∫
Be

NaρN bdV üb; (A.12)

• Internal forces f e,a
u int:

δua · f e,a
u int =

∫
Be

∇wu : σdV = δua ·
∫
Be

σ ·∇NadV ; (A.13)

• External forces f e,a
ext :

δua · f e,a
ext =

∫
Be

ρwu · bdV +

∫
Ss
N

wu · t̄NdS

= δua ·
∫
Be

ρNabdV + δua ·
∫
Ss
N

Na t̄NdS;
(A.14)

• Interface forces f s,a±

u I

δua± · f s,a±

u I =

∫
Ss
IC

JwuK · 〈σb〉 · nIdS +

∫
Ss
IU

JwuK · 〈σ〉 · nIdS

+

∫
Ss
IU

JwuK⊗ nI :

〈
βs

hs
H
〉

: JuK⊗ nIdS

+

∫
Ss
IU

JuK · 〈H :∇wu〉 · nIdS

= δua± ·
∫
Ss
IC

(
±Na±

)
〈σb〉 · nIdS

+δua± ·
∫
Ss
IU

(
±Na±

)
〈σ〉 · nIdS

+δua± ·
∫
Ss
IU

(
±Na±

)
nI ·

[〈
βs

hs
H
〉

:
r
N bub

z
⊗ nI

]
dS

+
1

2
δua± ·

∫
Ss
IU

r
N bub

z
·
[
H± :∇Na± ⊗ nI

]
dS;

(A.15)

• Internal non-local forces fe,aẽ int:

δẽafe,aẽ int =

∫
Be

(
wẽẽ+ l2c∇wẽ ·∇ẽ

)
dV (A.16)

= δẽa
∫
Be

(
NaN b ẽb + l2c∇Na ·∇N b ẽb

)
dV ;

• Internal local forces fe,ae int:

δẽafe,ae int =

∫
Be

wẽedV = δẽa
∫
Be

NaedV ; (A.17)
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• Interface forces f s,a
±

ẽ I :

δẽa
±
f s,a

±

ẽ I =

∫
Ss
IU

JwẽK
〈
l2c∇ẽ

〉
· nIdS +

∫
Ss
IU

JwẽKnI

〈
βs

hs
l2c

〉
· nI JẽK dS

+
∫
Ss
IU

JẽK
〈
l2c∇wẽ

〉
· nIdS

= δẽa
±
∫
Ss
IU

(
±Na±

)〈
l2c∇N b ẽb

〉
· nIdS

+δẽa
±
∫
Ss
IU

(
±Na±

)〈βs

hs
l2c

〉r
N b ẽb

z
dS

+
1

2
δẽa

±
∫
Ss
IU

r
N b ẽb

z
l±c

2∇Na± · nIdS.

(A.18)

In this section, the superscripts a, b, ... refer to the corresponding node a of the considered
element e. For interface elements s, the node is so-called a+ or a−, depending to which
element between Be+ or Be− the considered degree of freedom belongs to. The computation
of the spatial gradient of the jump displacement �eld involves the shape functions associated
with interface elements only in order to respect condition (2.28). So-called Na±

s , they are
di�erent from their volume counterparts noted Na± . Besides, the displacement �eld in the
nodal forces are the ones associated to volume elements. Therefore, the symmetrisation term
introduces a contribution of all nodes of both elements in the interface term. Integration
on the volume is performed using reduced quadrature rules, while interface elements use full
integration to avoid spurious penetration mode as shown by Noels and Radovitzky (2008).
Notice the proposed implementation does not duplicate the nodes between shared interfaces,
but directly the degrees of freedom by taking advantage of the �exible DoF manager of Gmsh.

A.4 Formulation of �nite element sti�ness matrices

The elementary sti�ness matrices can be obtained by linearising the elementary forces of Eqs.
(A.12) to (A.18). Those expressions involve material tangent matrices Cuu, Cuẽ and Ceu and
tangent matrices related to the cohesive band Cb

uJuK, C
b
u∇JuK and C

b
uF. They are respectively

detailed in Appendix A.1 and A.2. Therefore, the di�erent sti�ness matrix contributions read

• Internal force sti�ness matrices Ke,ab
uu intij and K

e,ab
uẽ inti :

Ke,ab
uu intik =

∂fe,au inti

∂ubk
=

∫
Be

∇jN
a ∂σij

∂ubk
dV =

∫
Be

∇jN
aCuuijkl∇lN

bdV, (A.19)

Ke,ab
uẽ inti =

∂fe,au inti

∂ẽb
=

∫
Be

∇jN
a ∂σij
∂ẽb

dV =

∫
Be

∇jN
aCuẽijN

bdV ; (A.20)
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• Interface force sti�ness matrices Ks,a±b±

uu I ij and K
s,a±b±

uẽ I i :

Ks,a±b±

uu I ik =
∂f s,a

±

u I i

∂ub
±

k

(A.21)

=

∫
Ss
IC

(
±Na±

)〈∂σbij

∂ub
±

k

〉
nIjdS +

∫
Ss
IU

(
±Na±

)〈 ∂σij

∂ub
±

k

〉
nIjdS

+

∫
Ss
IU

(
±Na±

)
nIj

〈
βs

hs
Hijkl

〉(
±N b±

)
nIldS

+
1

2

∫
Ss
IU

(
±N b±

)
H±ikjl∇jN

a±nIldS

=

∫
Ss
IC

(
±Na±

)(〈
Cb
uJuKijk

〉(
±N b±

s

)
+
〈
Cb
u∇JuKijkl

〉(
±∇lN

b±
s

))
nIjdS

+
1

2

∫
Ss
IC

(
±Na±

)
Cb±
uFijkl∇lN

b±nIjdS

+
1

2

∫
Ss
IU

(
±Na±

)
C±uuijkl∇lN

b±nIjdS

+

∫
Ss
IU

(
±Na±

)
nIj

〈
βs

hs
Hijkl

〉(
±N b±

)
nIldS

+
1

2

∫
Ss
IU

(
±N b±

)
H±ikjl∇jN

a±nIldS,

Ks,a±b±

uẽ I i =
∂f s,a

±

u I i

∂ẽb±
=

∫
Ss
IU

(
±Na±

)〈 ∂σij

∂ẽb±

〉
nIjdS (A.22)

=
1

2

∫
Ss
IU

(
±Na±

)
CuẽijN

b±nIjdS;

• Internal non-local force sti�ness matrices Ks,ab
ẽu intk and Ks,ab

ẽẽ int:

Ks,ab
ẽu intk =

∂fe,aẽ int

∂ubk
= 0, (A.23)

Ks,ab
ẽẽ int =

∂fe,aẽ int

∂ẽb
=

∫
Be

(
NaN b + l2c∇iN

a∇iN
b
)
dV ; (A.24)

• Internal local force sti�ness matrices Ke,ab
eu intk and Ke,ab

eẽ int:

Ke,ab
eu intk =

∂fe,ae int

∂ubk
=

∫
Be

Na ∂e

∂ubk
dV =

∫
Be

NaCeuki∇iN
bdV, (A.25)

Ke,ab
eẽ int =

∂fe,ae int

∂ẽb
= 0; (A.26)

• Interface non-local force sti�ness matrices Ks,a±b±

ẽu I k and Ks,a±b±

ẽẽ I :
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Ks,a±b±

ẽu I k =
∂f s,a

±

ẽ I

∂ub
±

k

= 0, (A.27)

Ks,a±b±

ẽẽ I =
∂f s,a

±

ẽ I

∂ẽb±
=

1

2

∫
Ss
IU

(
±Na±

)
l±c

2∇iN
b±nIidS

+

∫
Ss
IU

(
±Na±

)〈βs

hs
l2c

〉(
±N b±

)
dS

+
1

2

∫
Ss
IU

(
±N b±

)
l±c

2∇iN
a±nIidS.

(A.28)
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Appendix related to Chapter 3

B.1 Formulation of the plastic residual form

The details on the determination of the plastic corrector omitted in Section 3.1.3 are presented
here.

B.1.1 Gurson residual form

When the Gurson model is used, the residues involve the yield surface (3.32) and its derivatives.
The derivatives of φG are given by

Nd
G = 2

τ eq

τ2
Y

and Nq
G =

3q1q2f̂V

τY
sinh

(
3q2pτ
2τY

)
, (B.1)

and
∂φG

∂τY
= −2

τ eq2

τ3
Y

− 3q1q2pτ f̂V

τ2
Y

sinh

(
3q2pτ
2τY

)
and

∂φG

∂χ
= 0 , (B.2)

while the derivatives of the normal are

∂Nd
G

∂τ eq
=

2

τ2
Y

and
∂Nq

G

∂τ eq
= 0 , (B.3)

∂Nd
G

∂pτ
= 0 and

∂Nq
G

∂pτ
=

9q1q
2
2 f̂V

2τ2
Y

cosh

(
3q2pτ
2τY

)
, (B.4)

and

∂Nd
G

∂τY
= −4

τ eq

τ3
Y

and
∂Nq

G

∂τY
= −9q1q

2
2 f̂Vpτ

2τ3
Y

cosh

(
3q2pτ
2τY

)
− 3q1q2f̂V

τ2
Y

sinh

(
3q2pτ
2τY

)
. (B.5)

B.1.2 Thomason residual form

When Thomason model is used, the yield surface (3.38) steps in the residues rp(v). The
derivatives of φT are

∂φT

∂τY
= −CφT and

∂φT

∂χ
= −τY

∂CφT
∂χ

, (B.6)

with
∂CφT
∂χ = − (2χ)

[
α(1/χ− 1)2 + β

√
1/χ

]
−
(
1− χ2

) [
2α(1/χ− 1)(1/χ2) + 1

2βχ
−3/2

]
,

(B.7)

The normal components are

Nd
T =

2

3
(τ+

n + τ−
n)

1−n
n
(
τ+

n−1 + τ−
n−1
)
, (B.8)
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and
Nq

T = (τ+
n + τ−

n)
1−n
n
(
τ+

n−1 − τ−n−1
)
. (B.9)

The derivatives of the normal components are

∂Nd
T

∂τ eq
=

4

9
(n− 1)

[
(τ+

n + τ−
n)

1
n
−1 (τ+

n−2 + τ−
n−2
)

(B.10)

− (τ+
n + τ−

n)
1
n
−2 (τ+

n−1 + τ−
n−1
)2]

,

∂Nq
T

∂τ eq
=

2

3
(n− 1)

[
(τ+

n + τ+
n)

1
n
−1 (τ−n−2 − τ−n−2

)
(B.11)

− (τ+
n + τ−

n)
1
n
−2 (τ+

2n−2 − τ−2n−2
)]
,

∂Nd
T

∂pτ
=

2

3
(n− 1)

[
(τ+

n + τ−
n)

1
n
−1 (τ+

n−2 − τ−n−2
)

(B.12)

− (τ+
n + τ−

n)
1
n
−2 (τ+

2n−2 − τ−2n−2
)]
,

∂Nq
T

∂pτ
= (n− 1)

[
(τ+

n + τ−
n)

1
n
−1 (τ+

n−2 + τ−
n−2
)

(B.13)

− (τ+
n + τ−

n)
1
n
−2 (τ+

n−1 − τ−n−1
)2]

,

∂Nd

∂τY
= 0 and

∂Nq

∂τY
= 0 . (B.14)

B.2 Formulation of the material operators

The material operator is obtained by linearising the output of the bulk constitutive law in
terms of the input. Four terms are therefore required: ∂P

∂F ,
∂fV
∂F ,

∂P
∂f̃V

, ∂fV
∂f̃V

.

B.2.1 Stress tensor derivatives

From its de�nition (3.54), the derivative of the �rst Piola-Kirchho� tensor reads

∂P

∂F
=

∂Fe

∂F
2 · (τ : Le) · Fp−T + Fe ·3

(
∂τ

∂F
1,2 : Le

)
4 · Fp−T (B.15)

+Fe ·
(
τ :

∂Le

∂F

)
· Fp−T + Fe · (τ : Le) · ∂F

p−T

∂F
,

∂P

∂f̃V

=
∂Fe

∂f̃V

· (Le : τ ) · Fp−T + Fe ·
(
∂τ

∂f̃V

: Le

)
· Fp−T (B.16)

+Fe ·
(
τ
∂Le

∂f̃V

)
· Fp−T + Fe · (τ : Le) · ∂F

p−T

∂f̃V

,

where
[
A ·3 B

]
ijkl

= AkmBijml .
In Eqs. (B.15) and (B.16), the derivative of each factor has still to be developed. For this

purpose, one has for:
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• The inverse of the plastic deformation mapping Fp−1 :
∂Fp−1

IJ
∂FkL

= −F p−1
IM

∂Fp
MN

∂FkL
F p−1

NJ ,
∂Fp−1

IJ

∂f̃V
= −F p−1

IM
∂Fp

MN

∂f̃V
F p−1

NJ ;
(B.17)

• The elastic deformation gradient Fe:
∂F e

iJ
∂FkL

= δikF
p−1
LJ + FiM

∂Fp−1
MJ

∂FkL
,

∂F e
iJ

∂f̃V
= FiM

∂Fp−1
MJ

∂f̃V
;

(B.18)

• The approximation of the strain measure derivatives Le:

∂Le

∂F
=
∂Le

∂Ce
:
∂Ce

∂Fe
:
∂Fe

∂F
and

∂Le

∂f̃V

=
∂Le

∂Ce
:
∂Ce

∂Fe
:
∂Fe

∂f̃V

. (B.19)

Combining Eqs. (B.17), (B.18) and (B.19), the derivatives (B.15) - (B.16) can be expressed
in terms of the derivatives of Fp and τ only. The derivative in terms of F in the previous
equations can be substituted by a derivative in terms of Ee

pr by using the chain rule and the
following relation

∂Ee
prIJ

∂FkL
=

1

2
Le

prIJMN

(
F e

prkN
F p

pr
−1
LM + F e

prkM
F p

pr
−1
LN

)
, (B.20)

obtained from the Eqs. (3.41), (3.42) and the de�nition of Le
pr =

∂ lnCe
pr

∂Ce
pr

.

In the case of an elastic step, no plastic �ow occurs and it follows that the only non-trivial
derivative is

∂τ

∂Ee
pr

= 2GIdev +KI⊗ I , (B.21)

obtained from Eq. (3.21), with Idev = I − 1
3I ⊗ I and I the fourth-order symmetric unit

tensor.
Otherwise, in case of plasticity, the derivatives of the plastic deformation mapping are

obtained from its de�nition (3.44), leading to

∂FpT

∂Ee
pr

= Fp
pr

T · ∂ exp (∆γNp)
∂Ee

pr
= Fp

pr
T · E : ∂(∆γNp)

∂Ee
pr

,

∂FpT

∂f̃V
= Fp

pr
T · ∂ exp (∆γNp)

∂f̃V
= Fp

pr
T · E : ∂(∆γNp)

∂f̃V
,

(B.22)

where E = ∂ exp(∆γNp)
∂∆γNp depends on the approximation used to compute the tensor exponential.

The plastic corrections appearing here above, computed by Eq. (3.45) and (3.52), are also
derived

∂∆γNp

∂Ee
pr

=
3(τpr)

dev

2τeqpr
⊗ ∂∆d

∂Ee
pr

+ 3G∆d
τeqpr

(
Idev − 3(τpr)

dev⊗(τpr)
dev

τeqpr
2

)
+ 1

3I⊗
∂∆q
∂Ee

pr
,

∂∆γNp

∂f̃V
= ∂∆d

∂f̃V

3(τpr)
dev

2τeqpr
+ 1

3
∂∆q

∂f̃V
I .

(B.23)
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The Kirchho� stress is also linearised from Eqs. (3.47)-(3.50) and one �nally has

∂τ
∂Ee

pr
=

(
1− 3G∆d

τeqpr

)
2GIdev − 3G

τeqpr
(τpr)

dev ⊗
[
∂∆d
∂Ee

pr
− 3G∆d(τpr)

dev

2τeqpr
2

]
+KI⊗

(
I− ∂∆q

∂Ee
pr

)
,

∂τ
∂f̃V

= − 3G
τeqpr

∂∆d
∂f̃V

(τpr)
dev −K ∂∆q

∂f̃V
I .

(B.24)

The last missing steps are the derivatives of the plastic increments, computing through Eq.
(3.69) and results of Appendix B.2.3.

B.2.2 Porosity derivatives

The derivatives of the local porosity is obtained by derivation of Eq. (3.61)

∂fV
∂Ee

pr
= ∂fV

∂Bn

∂Bn
∂Ee

pr
+ ∂fV

∂∆d
∂∆d
∂Ee

pr
+ ∂fV

∂∆q
∂∆q
∂Ee

pr
+ ∂fV

∂∆p
∂∆p
∂Ee

pr
,

∂fV
∂f̃V

= ∂fV
∂∆d

∂∆d
∂f̃V

+ ∂fV
∂∆q

∂∆q

∂f̃V
+ ∂fV

∂∆p
∂∆p

∂f̃V
,

(B.25)

combined with Eq. B.20 to obtain the derivatives in terms of the deformation gradient. In
addition, one has

∂Bn

∂Ee
pr

= −4Gkωζpr
2

[
(τpr)

dev −T − 9

2

(τpr)
dev

τ eq
pr

2

]
: Idev , (B.26)

and

∂fV

∂∆d
=

Bn

1 + ∆q −Bn∆d
fV ,

∂fV

∂∆q
=

1

1 + ∆q −Bn∆d
(1− fV) , (B.27)

∂fV

∂∆p
=

An + ∂An
∂p ∆p

1 + ∆q −Bn∆d
.

B.2.3 Internal variables derivatives

In order to complete the tangent operator formulation, the derivatives of the plastic increment
in terms of the predictor strain, appearing in Eq. (3.68), are obtained thanks to

∂rp

∂Ee
pr

=
∂rp

∂τ eq
pr
⊗ ∂τ eq

pr

∂Ee
pr

+
∂rp

∂pτ pr

⊗
∂pτ pr

∂Ee
pr

=
∂rp

∂τ eq
pr
⊗ 3G (τpr)

dev

τ eq
pr

+
∂rp

∂pτ pr

⊗KI , (B.28)

with

∂rp1

∂τ eq
pr

= Nd ,
∂rp2

∂τ eq
pr

= ∆d
∂Nq

∂τ eq
−∆q

∂Nd

∂τ eq
,

∂rp3

∂τ eq
pr

= −∆d , and (B.29)

∂rp1

∂pτ pr

= Nq ,
∂rp2

∂pτ pr

= ∆d
∂Nq

∂pτ
−∆q

∂Nd

∂pτ
,

∂rp3

∂pτ pr

= −∆q . (B.30)

The derivatives with respect to the non-local porosity are given by:

∂rp1

∂f̃V

=
∂φ

∂f̂V

,
∂rp2

∂f̃V

= ∆d
∂Nq

∂f̂V

−∆q
∂Nd

∂f̂V

and
∂rp3

∂f̃V

= 0 , (B.31)
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where the derivatives of φ and Np depends on the considered strain mechanisms.

B.2.3.1 Gurson model

If the Gurson model is used, the derivatives of the yield surface are, for the non-local model
as well for the local one,

∂φG

∂f̂V

= 2q1 cosh

(
3q2pτ
2τY

)
− 2q2

3 f̂V , (B.32)

while those of the plastic normal read

∂Nd
G

∂f̂V

= 0 and
∂Nq

G

∂f̂V

=
3q1q2

τY
sinh

(
3q2pτ
2τY

)
. (B.33)

B.2.3.2 Thomason model

The derivatives of φ and Np in terms of the e�ective porosity are, for the non-local model as
well for the local one,

∂φT

∂f̂V

= −τY
∂CφT
∂χ

∂χ

∂f̂V

, (B.34)

and

∂Nd
G

∂f̂V

= 0 and
∂Nq

G

∂f̂V

= 0 . (B.35)

B.3 Formulation in the local form

This section presents the modi�cations required to bring to the constitutive law under its local
form.

B.3.1 Local residual form

The local residual form (3.70) is computed in a similar way as the non-local one (3.53). How-
ever, the e�ective porosity is no longer �xed at the predictor state by the non-local increment
and Eq. (3.61) is no longer aside but is coupled within the Newton-Raphson scheme. The
Jacobian matrix (3.64) of the system is consequently modi�ed:

Jv1,∆d = −3GNd +
(
∂φ

∂f̂V
+ ∂φ

∂χ
∂χ

∂f̂V

)
∂fV
∂∆d ,

Jv1,∆q = −KNq +
(
∂φ

∂f̂V
+ ∂φ

∂χ
∂χ

∂f̂V

)
∂fV
∂∆q ,

Jv1,∆p = ∂φ
∂τY

h+
(
∂φ

∂f̂V
+ ∂φ

∂χ
∂χ

∂f̂V

)
∂fV
∂∆p + ∂φ

∂χ
∂χ
∂∆p ,

(B.36)

Jv2,∆d = Nq + ∆d
(
∂Nq

∂f̂V

∂fV
∂∆d − 3G ∂Nq

∂τeq

)
−∆q

(
∂Nd

∂f̂V

∂fV
∂∆d − 3G∂Nd

∂τeq

)
,

Jv2,∆q = ∆d
(
∂Nq

∂f̂V

∂fV
∂∆q −K

∂Nq

∂pτ

)
−Nd −∆q

(
∂Nd

∂f̂V

∂fV
∂∆q −K

∂Nd

∂pτ

)
,

Jv2,∆p = ∆d
(
∂Nq

∂f̂V

∂fV
∂∆p + ∂Nq

∂τY
h
)
−∆q

(
∂Nd

∂f̂V

∂fV
∂∆p + ∂Nd

∂τY
h
)
,

(B.37)

and Jv3,v is left unchanged. The derivatives appearing in the previous expressions can be
found in Appendices B.1 and B.2.
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B.3.2 Formulation of the local material operators

The procedure is similar to the method explained in Section 3.1.3.3 and Appendix B.2. Equa-
tions (B.15) to (B.24) are still applicable to express ∂P

∂F in terms of the plastic increment v.
These derivatives are extracted using Eq. (3.69) and the corresponding modi�ed version of
Eq. (B.28) for the residues derivatives reads

∂rp

∂Ee
pr

=
∂rp

∂τ eq
pr
⊗ 3G (τpr)

dev

τ eq
pr

+
∂rp

∂pτ pr

⊗KI +
∂rp

∂f̂V

⊗ ∂fV

∂Ee
pr

. (B.38)

B.4 Formulation of the �nite element forces

The expressions of the �nite element forces appearing in Eq. (3.87) are presented here. The
weak form (3.84)-(3.85) developed in Section 3.3.2 is the starting point of the �nite element
discretisation. By taking into account the discretisation (3.86) and the discontinuities between
elements, one has the following elementary terms:

• Inertial forces Meab · üb with:

M eab
ij =

∫
Be

ρ0N
aN bδij dV0 ; (B.39)

• Internal forces f e
u int

a :

feu int
a
i =

∫
Be

PiK (∇0N
a)K dV0 ; (B.40)

• External forces f e
u ext

a :

feu ext
a
i =

∫
Be

ρ0b0iN
a dV0 +

∫
Ss
N

t̄N0iN
a dS0 ; (B.41)

• Interface forces f s
u I

a± :

f su I
a±

i =

∫
Ss
IC

(
±Na±

)
〈PbiK 〉N−I K dS0 +

∫
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IU

(
±Na±

)
〈PiK 〉N−I K dS0

+

∫
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IU

(
±Na±

)
NI
−
K

〈
βs

hs
Ce
iKmN

〉
JumKNI

−
N dS0

+
1

2

∫
Ss
IU

Juk K Ce±
kMiN

(
∇0N

a±
)
N
NI
−
M dS0 .

(B.42)

• Internal non-local forces fe
Z̃ int

a :

fe
Z̃ int

a =

∫
Be

(
∆Z̃Na + (∇0N

a)K ClKL

(
∇0∆Z̃

)
L

)
dV0 ; (B.43)

• Internal local forces feZ int
a :

feZ int
a =

∫
Be

∆ZNa dV0 ; (B.44)
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• Interface non-local forces f s
Z̃ I

a± :

f s
Z̃ I

a± =

∫
Ss
IU

(
±Na±

)
〈Cl〉KL

(
∇0∆Z̃
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L
NI
−
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2

∫
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IU
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z
NI
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KCl

±
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∇0N

a±
)
L
dS0 .

(B.45)

In those expressions, the superscripts a, b, ... stand for the node a which belongs to a
volume element Be or to a interface one Ss . The sign + or − in the case of interface elements
di�erentiates if the node (i.e. a+ or a−) belongs to Be+ or Be− . Practically, only the degrees of
freedom are duplicated at the interfaces and not the node itself. The computation of the volume
element force involves the shape functions of the volume elements. All nodes of both volume
elements are therefore contributing in the interface term thanks to the symmetrisation term.
Only the gradient of the jump displacement uses interface shape functions to naturally respect
condition (3.76). The quadratic volume elements are integrated using a reduced integration
while the surface element are fully-integrated to avoid spurious penetration modes.

B.5 Formulation of the �nite element sti�ness matrices

The expressions of the contribution ot �nite element sti�ness matrixK appearing in Eq. (2.86)
are detailed here. The sti�ness matrix regroups all the sti�ness components resulting from the
linearisation of the elementary forces in equations (B.39) to (B.45). One obtains

K =

[
Kuu int + Kuu I KuZ̃ int + KuZ̃ I

KZ̃u int −KZu int + KZ̃u I KZ̃Z̃ int −KZZ̃ int + KZ̃Z̃ I

]
, (B.46)

with

• Internal force sti�ness terms Ke
uu int

ab and Ke
uZ̃ int
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Ke
uu int

ab
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∂feu int
a
i
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∫
Be

CuFiKjL (∇0N
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dV0 ; (B.47)

Ke
uZ̃ int
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i

=
∂feu int

a
i

∂Z̃b
=

∫
Be

CuZ̃ iK
(∇0N

a)K N b dV0 ; (B.48)

• Interface force sti�ness terms Ks
uu I

a±b± and Ks
uZ̃ I

a±b± :
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Ks
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(B.49)

Ks
uZ̃ I
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∂f su I
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∂Z̃b±
=

1

2

∫
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IU

(±Na)CuZ̃
±
iK
N b±N−I K ; (B.50)

• Internal non-local force sti�ness terms Ke
Z̃u int

ab and Ke
Z̃Z̃ int

ab :

Ke
Z̃u int

ab
j

=
∂fe

Z̃ int
a

∂ubj
= 0 ; (B.51)

Ke
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∫
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a)K ClKL

(
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b
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L
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dV0 ; (B.52)

• Internal local force sti�ness terms Ke
Zu int

ab and Ke
ZZ̃ int

ab :

Ke
Zu int

ab
j =

∂feZ int
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∂ubj
=

∫
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CZFjKN
a
(
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b
)
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dV0 ; (B.53)

Ke
ZZ̃ int

ab =
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∂Z̃b
=

∫
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CZZ̃N
aN b dV0 ; (B.54)

• Interface non-local forces Ks
Z̃u I

a±b± and Ks
Z̃Z̃ I

a±b± :

Ks
Z̃u I

a±b±

j
= 0 ; (B.55)
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(B.56)
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The expressions above involve material tangent tensors computed in Appendix B.2. If the
considered point is not located on a cohesive band, the relations are directly obtained

CuF =
∂P

∂F
, CuZ̃ =

∂P

∂∆f̃V

, CZF =
∂∆fV

∂F
, CZZ̃ =

∂∆fV

∂∆f̃V

. (B.57)

If the point is located on a cohesive band model, the derivatives of the band deformation
gradient Fb have to be included. They directly derived from the computation of Fb (3.75)

δFb
±
iJ = δF±iJ +

NIJ

hb
δ JuiK +

1

2
δ (∇0 JuiK)J . (B.58)

From the previous equation, the tangent sti�ness terms are thus:

Cb
uF =

∂Pb

∂Fb
, (B.59)

Cb
uJuK =

∂Pb

∂Fb
· NI

hb
, (B.60)

Cb
u∇JuK =

1

2

∂Pb

∂Fb
, (B.61)

and the derivatives of ∂Pb
∂Fb

corresponds to the local version of the material tangent calculated
in Appendix B.3.2.
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Appendix C

Appendix related to Chapter 4

C.1 Demonstration of the anisotropic criterion

The problem presented by Eq. (4.27) can be rewritten as the optimisation problem under
constraint

max
n

[n · σ · n+ n · k · n(σeq − σY)− n · σnc · n] > 0 with n · n = 1 , (C.1)

with n a normed direction vector (the tensors and vectors are de�ned in the current con�gu-
ration). This problem is rewritten using a dual form L

L = [n · σ · n+ n · k · n(σeq − σY)− n · σnc · n]− λ [n · n− 1] , (C.2)

with λ a Lagrange multiplier. Following the Lagrange theorem, the solution n∗ of the problem
is among the stationary point of L, satisfying:

∂L

∂n
= 2 (σ + k(σeq − σY)− σnc) · n− 2λn = 0 ,

∂L

∂λ
= n · n− 1 = 0 .

(C.3)

These equations could be satis�ed only if n∗ is a unitary eigenvector of the tensor σ +
k(σeq − σY) − σnc . Moreover, the solution corresponds to the eigenvector associated to the
largest eigenvalue.
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